

Report No.: SZEM160100046801

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Nanshan

District, Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594

Email: ee.shenzhen@sgs.com Page: 1 of 32

FCC REPORT

Application No: SZEM1601000468RG

Applicant: Hisense International Co., Ltd.

Manufacturer: Hisense Communications Co., Ltd.

Factory: Hisense Communications Co., Ltd.

Product Name: Mobile Phone Model No.(EUT): Hisense L675

Trade Mark: Hisense FCC ID: 2ADOBL675

Standards: 47 CFR Part 2(2014)

47 CFR Part 22 subpart H(2014) 47 CFR Part 24 subpart E(2014)

47 CFR Part 27(2014)

Test Method: FCC KDB 971168 D01 Power Meas License Digital Systems v02r02

Date of Receipt: 2016-01-26

Date of Test: 2016-02-15 to 2016-02-23

Date of Issue: 2016-03-03

Test Result: PASS *

Authorized Signature:

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

^{*} In the configuration tested, the EUT detailed in this report complied with the standards specified above.

Report No.: SZEM160100046801

Page: 2 of 32

2 Version

Revision Record				
Version	Chapter	Date	Modifier	Remark
00		2016-03-03		Original

Authorized for issue by:		
Tested By	David Chen	2016-02-23
	(David Chen) /Project Engineer	Date
Prepared By	Hedy Wen.	2016-03-03
	(Hedy Wen) /Clerk	Date
Checked By	J.L. Hog	2016-03-03
	(Jim Huang) /Reviewer	Date

Report No.: SZEM160100046801

Page: 3 of 32

3 Test Summary

Test Item	FCC Rule No.	Requirements	Test Result	Verdict
Effective (Isotropic) Radiated Power Output Data	§2.1046, §22.913, §24.232 §27.50	FCC: ERP ≤ 7 W FCC: EIRP ≤ 2 W FCC: EIRP ≤ 1 W	Section 1 of Appendix B	PASS
Peak-Average Ratio	§24.232	≤13dB	Section 2 of Appendix B	PASS
Modulation Characteristics	§2.1047	Digital modulation	Section 3 of Appendix B	PASS
Bandwidth	§2.1049(h), §22.917, §24.238 §27.53	OBW:No limit EBW: No limit	Section 4 of Appendix B	PASS
Band Edge Compliance	§2.1051, §22.917, §24.238 §27.53	≤ -13dBm/1%*EBW, in 1 MHz bands immediately outside and adjacent to the frequency block.	Section 5 of Appendix B	PASS
Spurious emissions at antenna terminals	§2.1051, §22.917, §24.238 §27.53	FCC: ≤ -13dBm/100 kHz, from 9 kHz to 10th harmonics but outside authorized operating frequency ranges.	Section 6 of Appendix B	PASS
Field strength of spurious radiation	§2.1051, §22.917, §24.238 §27.53	FCC: ≤ -13dBm/100 kHz,	Section 7 of Appendix B	PASS
Frequency stability	§2.1055, §22.355, §24.235 §27.54	≤ ±2.5ppm.	Section 8 of Appendix B	PASS

Report No.: SZEM160100046801

Page: 4 of 32

4 Content

			Page
1	СО	VER PAGE	1
2	VE	RSION	2
3	TE	ST SUMMARY	2
3			
4	СО	NTENT	4
5	GE	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	TEST MODE	
	5.4	TEST ENVIRONMENT	6
	5.5	TEST FREQUENCY	
	5.6	TEST LOCATION	
	5.7	TEST FACILITY	
	5.8	DEVIATION FROM STANDARDS	
	5.9	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.10	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.11	TECHNICAL SPECIFICATION	
6	DE	SCRIPTION OF TESTS	
	6.1	CONDUCTED OUTPUT POWER	
	6.2	EFFECTIVE (ISOTROPIC) RADIATED POWER OF TRANSMITTER	
	6.3	OCCUPIED BANDWIDTH	
	6.4	BAND EDGE AT ANTENNA TERMINALS	
	6.5	Spurious And Harmonic Emissions at Antenna Terminal	
	6.6	PEAK-AVERAGE RATIO	
	6.7	FIELD STRENGTH OF SPURIOUS RADIATION	
	6.8	FREQUENCY STABILITY / TEMPERATURE VARIATION	
	6.9	TEST SETUPS	
	6.9 6.9	!	
	6.9	•	
	6.9		
	6.10	TEST CONDITIONS	
7		IN TEST INSTRUMENTS	
8	ME	ASUREMENT UNCERTAINTY	30
9	PH	OTOGRAPHS - EUT TEST SETUP	31
	9.1	RADIATED EMISSION	31
	9.2	RADIATED SPURIOUS EMISSION	
10) PH	OTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	32

Report No.: SZEM160100046801

Page: 5 of 32

5 General Information

5.1 Client Information

Applicant:	Hisense International Co., Ltd.		
Address of Applicant:	Floor 22, Hisense Tower, 17 Donghai Xi Road, Qingdao, 266071 China		
Manufacturer:	Hisense Communications Co., Ltd.		
Address of Manufacturer:	218 Qianwangang Road, Qingdao Economic & Technological Development Zone, Qingdao		
Factory:	Hisense Communications Co., Ltd.		
Address of Factory:	218 Qianwangang Road, Qingdao Economic & Technological Development Zone, Qingdao		

5.2 General Description of EUT

Product Name:	Mobile Phone
Model No.:	Hisense L675
Trade Mark:	Hisense
Sample Type:	Portable product
Hardware version:	V1.00
Test Software of EUT:	L675-userdebug 6.0 MRA58K L1224.6.01.01 release-keys
Antenna Type:	PIFA
Antenna Gain:	GSM850:0.5dBi, GSM1900:1dBi,
	WCDMA B2:1dBi, WCDMA B4:1dBi, WCDMA B5:0.5dBi,
	LTE B2:1dBi, LTE B4:1dBi, LTE B5: 5dBi, LTE B7: 1dBi.
Battery:	Lithium-ion battery:3.8V(charge by USB)

Remark:

We, Hisense International Co., Ltd. certify the product: Mobile Phone, and item No.: Hisense L675, in black and white.

Their electrical circuit design, layout, components used and internal wiring are identical, only the color is different.

And the accessories have different colors as below for marketing purpose.

Accessories	Model No	Color
Earphone	NLD-EM116T-50SH/NLD-EM116T-40SH	white and black
Data cable	GEM1-2828L08WHR/ GEM1-2828L08BKR	white and black
Adaptor	A31-501000	white and black

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM160100046801

Page: 6 of 32

5.3 Test Mode

Test Mode	Test Modes Description
GSM/TM1	GSM system, GSM/GPRS/EGPRS, GMSK modulation
GSM/TM2	GSM system, EGPRS, 8PSK modulation
UMTS/TM1	UMTS system, WCDMA, QPSK modulation
LTE/TM1	LTE system, QPSK modulation
LTE/TM2	LTE system, 16QAM modulation

NOTE: The test mode(s) are selected according to relevant radio technology specifications.

5.4 Test Environment

Environment Parameter	Selected Values During Tests		
Relative Humidity	52%		
Atmospheric Pressure:	1	1005Pa	
Temperature	TN	25 ℃	
	VL	3.45V	
Voltage :	VN	3.8V	
	VH	4.35V	

NOTE: VL= lower extreme test voltage

VN= nominal voltage

VH= upper extreme test voltage

TN= normal temperature

Report No.: SZEM160100046801

Page: 7 of 32

5.5 Test Frequency

Test Mode	TX / RX	RF Channel		
i cat iviode		Low (L)	Middle (M)	High (H)
	TX	Channel 128	Channel 192	Channel 251
GSM850		824.2MHz	836.6MHz	848.8MHz
GSIVIOSU	RX	Channel 128	Channel 192	Channel 251
	ΠA	869.2MHz	881.6MHz	893.8MHz
Test Mode	TX / RX		RF Channel	
rest Mode	IA/BA	Low (L)	Middle (M)	High (H)
	TX	Channel 512	Channel 661	Channel 810
GSM1900	1.8	1850.2MHz	1880.0MHz	1909.8MHz
G5W1900	RX	Channel 512	Channel 661	Channel 810
	KX	1930.2 MHz	1960.0 MHz	1989.8 MHz
Test Mode	TV / DV		RF Channel	
rest Mode	TX / RX	Low (L)	Middle (M)	High (H)
	TX	Channel 9262	Channel 9400	Channel 9538
WCDMA BAND 2		1852.4 MHz	1880.0 MHz	1907.6 MHz
WCDIVIA BAIND 2	RX	Channel 9662	Channel 9800	Channel 9938
		1932.4 MHz	1960.0 MHz	1987.6 MHz
Test Mode	TX / RX	RF Channel		
rest Mode		Low (L)	Middle (M)	High (H)
	TV	Channel 1312	Channel 1413	Channel 1513
WCDMA BAND 4	TX	1712.4MHz	1732.6 MHz	1752.6 MHz
WCDIVIA BAIND 4	RX	Channel 1537	Channel 1638	Channel 1738
	ΠA	2112.4 MHz	2132.6 MHz	2152.6 MHz
Test Mode	TX / RX		RF Channel	
rest Mode	IA/ fiA	Low (L)	Middle (M)	High (H)
WODMA DAND 5	TX	Channel 4132	Channel 4182	Channel 4233
		826.4MHz	836.4MHz	846.6MHz
WCDMA BAND 5	RX	Channel 4357	Channel 4407	Channel 4458
	ΠΛ	871.4 MHz	881.4 MHz	891.6 MHz

Report No.: SZEM160100046801

Page: 8 of 32

Took Mode	TX / RX	RF Channel		
Test Mode		Low (L)	Middle (M)	High (H)
	T)/	Channel 18607	Channel 18900	Channel 19193
LTE BAND 2	TX	1850.7 MHz	1880 MHz	1909.3 MHz
1.4MHz	RX	Channel 607	Channel 900	Channel 1193
	HX	1930.7 MHz	1960 MHz	1989.3 MHz
Test Mode	TX / RX		RF Channel	
rest wode	IA / NA	Low (L)	Middle (M)	High (H)
	TX	Channel 18615	Channel 18900	Channel 19185
LTE BAND 2	1.7	1851.5 MHz	1880 MHz	1908.5 MHz
3MHz	RX	Channel 615	Channel 900	Channel 1185
	ΠΛ	1931.5 MHz	1960 MHz	1988.5 MHz
Test Mode	TX / RX		RF Channel	
rest wode	IA/ na	Low (L)	Middle (M)	High (H)
	TX	Channel 18625	Channel 18900	Channel 19175
LTE BAND 2		1852.5 MHz	1880 MHz	1907.5 MHz
5MHz	RX	Channel 625	Channel 900	Channel 1175
	n n	1932.5 MHz	1960 MHz	1987.5 MHz
Test Mode	TX / RX	RF Channel		
Test Mode	IX/ fix	Low (L)	Middle (M)	High (H)
	TX RX	Channel 18650	Channel 18900	Channel 19150
LTE BAND 2		1855 MHz	1880 MHz	1905 MHz
10MHz		Channel 650	Channel 900	Channel 1150
	TIX	1935 MHz	1960 MHz	1985 MHz
Test Mode	TX / RX	RF Channel		
T CST WICGO	17(71)	Low (L)	Middle (M)	High (H)
	TX	Channel 18675	Channel 18900	Channel 19125
LTE BAND 2	170	1857.5 MHz	1880 MHz	1902.5 MHz
15MHz	RX	Channel 675	Channel 900	Channel 1125
	TIX	1937.5 MHz	1960 MHz	1982.5 MHz
Test Mode	TX / RX		RF Channel	
1 COL WIOGO	17(/10)	Low (L)	Middle (M)	High (H)
	TX	Channel 18700	Channel 18900	Channel 19100
LTE BAND 2	17	1860 MHz	1880 MHz	1900 MHz
20MHz	RX	Channel 700	Channel 900	Channel 1100
	HX.	1940 MHz	1960 MHz	1980 MHz

Report No.: SZEM160100046801

Page: 9 of 32

Test Mode	TX / RX	RF Channel		
1 GSt MOGE		Low (L)	Middle (M)	High (H)
	T)/	Channel 19957	Channel 20175	Channel 20393
LTE BAND 4	TX	1710.7 MHz	1732.5 MHz	1754.3 MHz
1.4MHz	RX	Channel 1957	Channel 2175	Channel 2393
	HX	2110.7 MHz	2132.5 MHz	2154.3 MHz
Test Mode	TX / RX	RF Channel		
rest Mode	IA/BA	Low (L)	Middle (M)	High (H)
	TX	Channel 19965	Channel 20175	Channel 20385
LTE BAND 4	1.7	1711.5 MHz	1732.5 MHz	1753.5 MHz
3MHz	RX	Channel 1957	Channel 2175	Channel 2385
	ΠΛ	2110.7 MHz	2132.5 MHz	2153.5 MHz
Test Mode	TX / RX		RF Channel	
rest Mode	IA/ na	Low (L)	Middle (M)	High (H)
	TX	Channel 19975	Channel 20175	Channel 20375
LTE BAND 4		1712.5 MHz	1732.5 MHz	1752.5 MHz
5MHz	RX	Channel 1975	Channel 2175	Channel 2375
	n n	2112.5 MHz	2132.5 MHz	2152.5 MHz
Test Mode	TX / RX	RF Channel		
Test Wiode	TX/ NX	Low (L)	Middle (M)	High (H)
	TX RX	Channel 20000	Channel 20175	Channel 20350
LTE BAND 4		1715 MHz	1732.5 MHz	1750 MHz
10MHz		Channel 2000	Channel 2175	Channel 2350
	TIX	2115 MHz	2132.5 MHz	2150 MHz
Test Mode	TX / RX	RF Channel		
Test Wiode	TX / TIX	Low (L)	Middle (M)	High (H)
	TX	Channel 20025	Channel 20175	Channel 20325
LTE BAND 4	17	1717.5 MHz	1732.5 MHz	1747.5 MHz
15MHz	RX	Channel 2025	Channel 2175	Channel 2325
	TIX.	2117.5 MHz	2132.5 MHz	2147.5 MHz
Test Mode	TV / DV		RF Channel	
i est ividue	TX / RX	Low (L)	Middle (M)	High (H)
	TX	Channel 20050	Channel 20175	Channel 20300
LTE BAND 4	17	1720 MHz	1732.5 MHz	1745 MHz
20MHz	RY	Channel 2050	Channel 2175	Channel 2300
	RX	2120 MHz	2132.5 MHz	2145 MHz

Report No.: SZEM160100046801

Page: 10 of 32

Took Mode	Test Mode TX / RX		RF Channel		
rest Mode	IX/HX	Low (L)	Middle (M)	High (H)	
	TX	Channel 20407	Channel 20525	Channel 20643	
LTE BAND 5	I X	824.7 MHz	836.5 MHz	848.3 MHz	
1.4MHz	RX	Channel 2407	Channel 2525	Channel 2643	
	l uv	869.7 MHz	881.5 MHz	893.3 MHz	
Test Mode	TX / RX		RF Channel		
rest Mode	IA/BA	Low (L)	Middle (M)	High (H)	
	TX	Channel 20415	Channel 20525	Channel 20635	
LTE BAND 5	'^	825.5 MHz	836.5 MHz	847.5 MHz	
3MHz	RX	Channel 2415	Channel 2525	Channel 2635	
	l uv	870.5 MHz	881.5 MHz	892.5 MHz	
Test Mode	TX / RX	RF Channel			
rest Mode	IA/ nA	Low (L)	Middle (M)	High (H)	
	TX	Channel 20425	Channel 20525	Channel 20625	
LTE BAND 5	1/	826.5 MHz	836.5 MHz	846.5 MHz	
5MHz	RX	Channel 2425	Channel 2525	Channel 2625	
	ΠΛ	871.5 MHz	881.5 MHz	891.5 MHz	
Test Mode	TX / RX	RF Channel			
rest Mode	IX/ NX	Low (L)	Middle (M)	High (H)	
	TX	Channel 20450	Channel 20525	Channel 20600	
LTE BAND 5	17	829 MHz	836.5 MHz	844 MHz	
10MHz	RX	Channel 2450	Channel 2525	Channel 2600	
	ПЛ	874 MHz	881.5 MHz	889 MHz	

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM160100046801

Page: 11 of 32

Test Mode TX / RX		RF Channel			
1 CSt WIOGO	17() 17(Low (L)	Middle (M)	High (H)	
	TX	Channel 20775	Channel 21100	Channel 21425	
LTE BAND 7	17	2502.5 MHz	2535 MHz	2567.5 MHz	
5MHz	RX	Channel 2775	Channel 3100	Channel 3425	
	ΠΛ	2622.5 MHz	2630 MHz	2687.5 MHz	
Test Mode	TX / RX		RF Channel		
rest Mode	IA / NA	Low (L)	Middle (M)	High (H)	
	TX	Channel 20800	Channel 21100	Channel 21400	
LTE BAND 7	1.8	2505 MHz	2535 MHz	2565 MHz	
10MHz	RX	Channel 2800	Channel 3100	Channel 3400	
	ΠΛ	2625 MHz	2630 MHz	2685 MHz	
Test Mode	TX / RX	RF Channel			
rest Mode	IA / NA	Low (L)	Middle (M)	High (H)	
	TX	Channel 20825	Channel 21100	Channel 21375	
LTE BAND 7	17	2507.5 MHz	2535 MHz	2562.5 MHz	
15MHz	RX	Channel 2825	Channel 3100	Channel 3375	
	ΠA	2627.5 MHz	2630 MHz	2682.5 MHz	
Test Mode	Test Mode TX / RX		RF Channel		
rest Mode	IA / NA	Low (L)	Middle (M)	High (H)	
	TX	Channel 20850	Channel 21100	Channel 21350	
LTE BAND 7	1.	2510 MHz	2535 MHz	2560 MHz	
20MHz	RX	Channel 2850	Channel 3100	Channel 3350	
	nv.	2630 MHz	2630 MHz	2680 MHz	

5.6 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch E&E Lab,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

Report No.: SZEM160100046801

Page: 12 of 32

5.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

• FCC - Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

The 3m Semi-anechoic chambers and the 10m Semi-anechoic chambers of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-2, 4620C-3.

5.8 Deviation from Standards

None.

5.9 Abnormalities from Standard Conditions

None.

5.10Other Information Requested by the Customer

None.

Report No.: SZEM160100046801

Page: 13 of 32

5.11 Technical Specification

Characteristics	Description			
	⊠ GSM			
Radio System Type	□ UMTS □			
	CCMOEO	Transmission (TX): 824 to 849 MHz		
	GSM850	Receiving (RX): 869 to 894 MHz		
	CCM1000	Transmission (TX): 1850 to 1910 MHz		
	GSM1900	Receiving (RX): 1930 to 1990 MHz		
	LIMTO OFO	Transmission (TX): 824 to 849 MHz		
	UMTS 850	Receiving (RX): 869 to 894 MHz		
	LIMTO 4700	Transmission (TX): 1710 to 1755 MHz		
	UMTS 1700	Receiving (RX): 2110 to 2155 MHz		
Constant of Francisco Dance	LIMTO 4000	Transmission (TX): 1850 to 1910 MHz		
Supported Frequency Range	UMTS 1900	Receiving (RX): 1930 to 1990 MHz		
	LTE 4000	Transmission (TX): 1850 to 1910 MHz		
	LTE 1900	Receiving (RX): 1930 to 1990 MHz		
	LTE 4700	Transmission (TX): 1710 to 1755 MHz		
	LTE 1700	Receiving (RX): 2110 to 2155 MHz		
	LTE 050	Transmission (TX): 824 to 849 MHz		
	LTE 850	Receiving (RX): 869 to 894 MHz		
	. ==	Transmission (TX): 2500 to 2570 MHz		
	LTE 2600	Receiving (RX): 2620 to 2690 MHz		
	GSM850: 35dBm			
	GSM1900: 31dBm			
	UMTS 850: 24dBm			
	UMTS 1700: 24dBm			
Target TX Output Power	UMTS 1900: 24dBm			
	LTE 1900: 23dBm			
	LTE 1700: 23dBm			
	LTE 850: 23dBm			
	LTE 2600: 23dBm			
	GSM system:	∑200 kHz		
Supported Channel Bandwidth	UMTS system:	∑5 MHz		
	LTE system			
Designation of Emissions	GSM850:	247KGXW, 251KG7W		
(Note: the necessary bandwidth of	GSM1900: 247KGXW, 251KG7W 4M15F9W			
which is the worst value from the	UMTS1700:	4M15F9W		

Report No.: SZEM160100046801

Page: 14 of 32

measured occupied bandwidths for	UMTS1900:	4M15F9W
each type of channel bandwidth	LTE 1900:	1M12G7D;1M11W7D
configuration.)		2M69G7D;2M69W7D
		4M51G7D;4M52W7D
		9M00G7D;9M00W7D
		13M4G7D;13M5W7D
		17M9G7D;17M9W7D
	LTE 1700:	1M12G7D;1M11W7D
		2M69G7D;2M69W7D
		4M51G7D;4M52W7D
		9M00G7D;9M00W7D
		13M4G7D;13M5W7D
		17M9G7D;17M9W7D
	LTE 850:	1M12G7D;1M11W7D
		2M69G7D;2M69W7D
		4M51G7D;4M52W7D
		9M00G7D;9M00W7D
	LTE 2600:	4M51G7D;4M52W7D
		9M00G7D;9M00W7D
		13M4G7D;13M5W7D
		17M9G7D;17M9W7D

Report No.: SZEM160100046801

Page: 15 of 32

6 Description of Tests

6.1 Conducted Output Power

Measurement Procedure:

The transmitter output was connected to a calibrated coaxial cable, attenuator and power meter, the other end of which was connected to a Base Station Simulator. The Base Station Simulator was set to force the EUT to its maximum power setting. The power output at the transmitter antenna port was determined by adding the value of the cable insertion loss to the power reading. The tests were performed at three frequencies (low channel, middle channel and high channel) and on the highest power levels, which can be setup on the transmitters.

Note: Reference test setup 1

6.2 Effective (Isotropic) Radiated Power of Transmitter

Measurement Procedure:

Below 1GHz test procedure as below:

- 1). The EUT was powered ON and placed on a 0.8m high table in the chamber. The antenna of the transmitter was extended to its maximum length.
- 2). The disturbance of the transmitter was maximized on the test receiver display by raising and lowering from 1m to 4m the receive antenna and by rotating through 360° the turntable. After the fundamental emission was maximized, a field strength measurement was made.
- 3). Steps 1) and 2) were performed with the EUT and the receive antenna in both vertical and horizontal polarization.
- 4). The transmitter was then removed and replaced with another antenna. The center of the antenna was approximately at the same location as the center of the transmitter.
- 5). A signal at the disturbance was fed to the substitution antenna by means of a non-radiating cable. With both the substitution and the receive antennas horizontally polarized, the receive antenna was raised and lowered to obtain a maximum reading at the test receiver. The level of the signal generator was adjusted until the measured field strength level in step 2) is obtained for this set of conditions.
- 6). The output power into the substitution antenna was then measured.
- 7). Steps 5) and 6) were repeated with both antennas polarized.
- 8). Calculate power in dBm by the following formula:

ERP (dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBd)

Where:

Pg is the generator output power into the substitution antenna.

Report No.: SZEM160100046801

Page: 16 of 32

Above 1GHz test procedure as below:

1). Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber

2). Calculate power in dBm by the following formula:

EIRP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBi)

EIRP=ERP+2.15dB

Where:

Pg is the generator output power into the substitution antenna.

- 3). Test the EUT in the lowest channel, the middle channel the Highest channel
- 4). The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, Only the test worst case mode is recorded in the report.
- 5). Repeat above procedures until all frequencies measured was complete.

Note: Reference test setup 2

6.3 Occupied Bandwidth

Measurement Procedure:

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. The transmitter output was connected to a calibrated coaxial cable, attenuator and Spectrum analyser, the other end of which was connected to a Base Station Simulator. The Base Station Simulator was set to force the EUT to its maximum power setting. The tests were performed at three frequencies (low channel, middle channel and high channel). The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth shall be set to as close to 1 percent of the selected span as is possible without being below 1 percent. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used since a peak or, peak hold, may produce a wider bandwidth than actual. The trace data points are recovered and are directly summed in linear terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 percent of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points. This frequency is recorded. The span between the two recorded frequencies is the occupied bandwidth.

Note: Reference test setup 1

Report No.: SZEM160100046801

Page: 17 of 32

6.4 Band Edge at Antenna Terminals

Measurement Procedure:

The transmitter output was connected to a calibrated coaxial cable, attenuator and Spectrum analyser, the other end of which was connected to a Base Station Simulator. The Base Station Simulator was set to force the EUT to its maximum power setting. The tests were performed at three frequencies (low channel and high channel).in the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of 100kHz or 1% of the emission bandwidth of the fundamental emission of the transmitter may be employed. The EUT emission bandwidth is measured as the width of the signal between two points, outside of which all emission are attenuated at least 26dB below the transmitter power. The video bandwidth of the spectrum analyzer was set at thrice the resolution bandwidth. Detector Mode was set to peak or peak hold power.

Note: Reference test setup 1

6.5 Spurious And Harmonic Emissions at Antenna Terminal

Measurement Procedure:

The transmitter output was connected to a calibrated coaxial cable, attenuator and Spectrum analyzer, the other end of which was connected to a Base Station Simulator. The Base Station Simulator was set to force the EUT to its maximum power setting. The tests were performed at three frequencies (low channel and high channel). The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log(P) dB. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

Note: Reference test setup 1

Report No.: SZEM160100046801

Page: 18 of 32

6.6 Peak-Average Ratio

Measurement Procedure:

A peak to average ratio measurement is performed at the conducted port of the EUT. For WCDMA signals, the spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level. For GSM signals, an average and a peak trace are used on a spectrum analyzer to determine the largest deviation between the average and the peak power of the EUT in a bandwidth greater than the emission bandwidth. The traces are generated with the spectrum analyzer set to zero span mode.

Note: Reference test setup 1

6.7 Field Strength of Spurious Radiation

Measurement Procedure:

Below 1GHz test procedure as below:

- 1). The EUT was powered ON and placed on a 80cm high table in the chamber. The antenna of the transmitter was extended to its maximum length.
- 2). The disturbance of the transmitter was maximized on the test receiver display by raising and lowering from 1m to 4m (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) the receive antenna and by rotating through 360° the turntable. After the fundamental emission was maximized, a field strength measurement was made.
- 3). Steps 1) and 2) were performed with the EUT and the receive antenna in both vertical and horizontal polarization.
- 4). The transmitter was then removed and replaced with another antenna. The center of the antenna was approximately at the same location as the center of the transmitter.
- 5). A signal at the disturbance was fed to the substitution antenna by means of a non-radiating cable. With both the substitution and the receive antennas horizontally polarized, the receive antenna was raised and lowered to obtain a maximum reading at the test receiver. The level of the signal generator was adjusted until the measured field strength level in step 2) is obtained for this set of conditions.
- 6). The output power into the substitution antenna was then measured.
- 7). Steps 5) and 6) were repeated with both antennas polarized.
- 8) Calculate power in dBm by the following formula:

ERP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBd)

Report No.: SZEM160100046801

Page: 19 of 32

Where:

Pd is the dipole equivalent power, Pg is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to Pg [dBm] – cable loss [dB]. The calculated Pd levels are then compared to the absolute spurious emission limit of -13dBm which is equivalent to the required minimum attenuation of 43 + 10log10(Power [Watts]).

Above 1GHz test procedure as below:

- Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber
- 2) Calculate power in dBm by the following formula:

EIRP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBi)

EIRP=ERP+2.15dB

Where:

Pg is the generator output power into the substitution antenna.

- 3. Test the EUT in the lowest channel, the middle channel the Highest channel
- 4. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, Only the test worst case mode is recorded in the report.
- 5. Repeat above procedures until all frequencies measured was complete

Note: Reference test setup 3

6.8 Frequency Stability / Temperature Variation

Measurement Procedure:

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-C-2004. The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -30 °C to +50 °C in 10 °C increments using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Specification – The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency.

Time Period and Procedure:

1. The carrier frequency of the transmitter is measured at room temperature (20 °C to provide a reference).

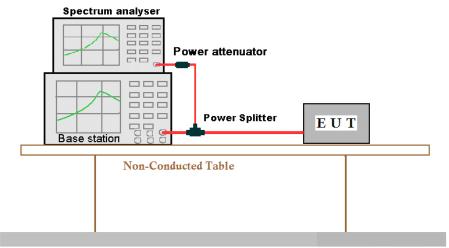
Report No.: SZEM160100046801

Page: 20 of 32

2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.

3. Frequency measurements are made at 10 °C intervals ranging from -30 °C to +50 °C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

Note: Reference test setup 4

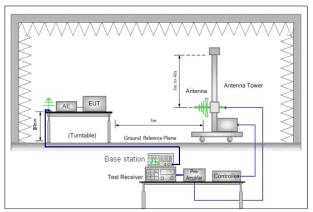


Report No.: SZEM160100046801

Page: 21 of 32

6.9 Test Setups

6.9.1 Test Setup 1


Ground Reference Plane

Report No.: SZEM160100046801

Page: 22 of 32

6.9.2 Test Setup 2

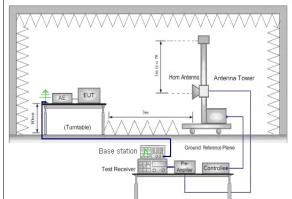


Figure 1. 30MHz to 1GHz

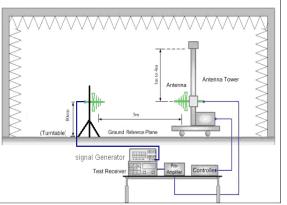


Figure 2. above 1GHz

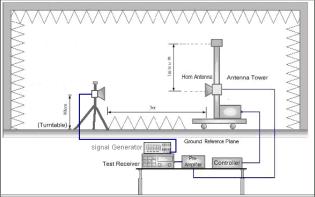


Figure 1. 30MHz to 1GHz

Figure 2. above 1GHz

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sqs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM160100046801

Page: 23 of 32

6.9.3 Test Setup 3

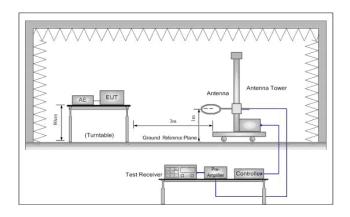
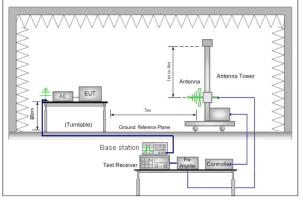



Figure 1. Below 30MHz

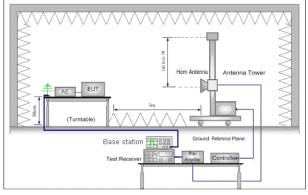


Figure 2. 30MHz to 1GHz

Antenna Tower

Antenna Tower

Ground Reference Plane

Signal Generator

Test Receiver

Amplife

Controlles

Figure 3. above 1GHz

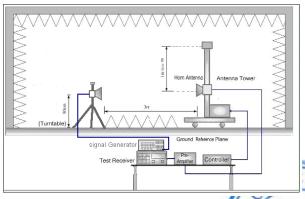
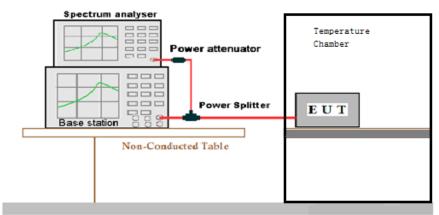


Figure 2. 30MHz to 1GHz


Figure 3. above 1GHz

Report No.: SZEM160100046801

Page: 24 of 32

6.9.4 Test Setup 4

Ground Reference Plane

Report No.: SZEM160100046801

Page: 25 of 32

6.10 Test Conditions

Test Case		Test Conditions			
Transmit	Average Power,	Test Environment	Ambient Climate & Rated Voltage		
Output	Total	Test Setup	Test Setup 1		
Power Data		RF Channels (TX)	L, M, H		
			(L= low channel, M= middle channel, H= high channel)		
		Test Mode	GSM/TM1;GSM/TM2;UMTS/TM1; LTE/TM1;LTE/TM2		
	Average Power,	Test Environment	Ambient Climate & Rated Voltage		
	Spectral Density (if required)	Test Setup	Test Setup 1		
	(ii roquirou)	RF Channels (TX)	L, M, H		
			(L= low channel, M= middle channel, H= high channel)		
		Test Mode	GSM/TM1;GSM/TM2;UMTS/TM1; LTE/TM1;LTE/TM2		
Peak-to-Ave	rage Ratio	Test Environment	Ambient Climate & Rated Voltage		
(if required)		Test Setup	Test Setup 1		
		RF Channels (TX)	L, M, H		
			(L= low channel, M= middle channel, H= high channel)		
		Test Mode	GSM/TM1;GSM/TM2;UMTS/TM1; LTE/TM1;LTE/TM2		
Modulation C	Characteristics	Test Environment	Ambient Climate & Rated Voltage		
		Test Setup	Test Setup 1		
		RF Channels (TX)	M		
			(M= middle channe)		
		Test Mode	GSM/TM1;GSM/TM2;UMTS/TM1; LTE/TM1;LTE/TM2		
Bandwidth	Occupied	Test Environment	Ambient Climate & Rated Voltage		
	Bandwidth	Test Setup	Test Setup 1		
		RF Channels (TX)	L, M, H		
			(L= low channel, M= middle channel, H= high channel)		
		Test Mode	GSM/TM1;GSM/TM2;UMTS/TM1;		
			LTE/TM1;LTE/TM2		
	Emission	Test Environment	Ambient Climate & Rated Voltage		
	Bandwidth	Test Setup	Test Setup 1		
	(if required)	RF Channels (TX)	L, M, H		
			(L= low channel, M= middle channel, H= high channel)		

Report No.: SZEM160100046801

Page: 26 of 32

	Test Mode	GSM/TM1;GSM/TM2;UMTS/TM1; LTE/TM1;LTE/TM2		
Band Edges Compliance	Test Environment	Ambient Climate & Rated Voltage		
	Test Setup	Test Setup 1		
	RF Channels (TX)	L, H		
		(L= low channel, H= high channel)		
	Test Mode	GSM/TM1;GSM/TM2;UMTS/TM1; LTE/TM1;LTE/TM2		
Spurious Emission at Antenna	Test Environment	Ambient Climate & Rated Voltage		
Terminals	Test Setup	Test Setup 1		
	RF Channels (TX)	L, H		
		(L= low channel, M= middle channel, H= high channel)		
	Test Mode	GSM/TM1;GSM/TM2;UMTS/TM1; LTE/TM1;LTE/TM2		
Field Strength of Spurious	Test Environment	Ambient Climate & Rated Voltage		
Radiation	Test Setup	Test Setup 2		
	Test Mode	GSM/TM1;GSM/TM2;UMTS/TM1; LTE/TM1;LTE/TM2		
		NOTE: If applicable, the EUT conf. that has maximum power density (based on the equivalent power level) is selected.		
	RF Channels (TX)	L, M, H		
		(L= low channel, M= middle channel, H= high channel)		
Frequency Stability	Test Env.	(1) -30 ℃ to +50 ℃ with step 10 ℃ at Rated Voltage;		
		(2) VL, VN and VH of Rated Voltage at Ambient Climate.		
	Test Setup	Test Setup 4		
	RF Channels (TX)	L, M, H		
		(L= low channel, M= middle channel, H= high channel)		
	Test Mode	GSM/TM1;GSM/TM2;UMTS/TM1; LTE/TM1;LTE/TM2		

Note: The worst-case is EUT on the highest power. Based on RF conducted power measurement investigations. Only the worst-case data is recorded in the report.

Report No.: SZEM160100046801

Page: 27 of 32

7 Main Test Instruments

	Conducted Emission					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)	
1	Shielding Room	ZhongYu Electron	GB-88	SEL0042	2016-05-13	
2	LISN	Rohde & Schwarz	ENV216	SEL0152	2015-10-24	
3	LISN	ETS-LINDGREN	3816/2	SEL0021	2016-05-13	
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T8-02	SEL0162	2016-08-30	
5	4 Line ISN	Fischer Custom Communications Inc. FCC-TLIS T4-02		SEL0163	2016-08-30	
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T2-02	SEL0164	2016-08-30	
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEL0022	2016-05-13	
8	Coaxial Cable	SGS	N/A	SEL0025	2016-05-13	
9	Universal radio communication tester	Rohde & Schwarz	CMU200	SEL0091	2016-10-23	
10	Universal radio communication tester	Rohde & Schwarz	CMU200	SEL0194	2016-10-23	
11	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2016-10-09	

Report No.: SZEM160100046801

Page: 28 of 32

	RE in Chamber				
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	2016-05-13
2	EMI Test Receiver	Agilent Technologies	N9038A	SEL0312	2016-10-09
3	EMI Test software	AUDIX	E3	SEL0050	N/A
4	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0015	2017-11-15
5	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0006	2018-10-17
6	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	2017-11-24
7	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	2016-05-13
8	Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEL0168	2016-10-17
9	Coaxial cable	SGS	N/A	SEL0027	2016-05-13
10	Coaxial cable	SGS	N/A	SEL0189	2016-05-13
11	Coaxial cable	SGS	N/A	SEL0121	2016-05-13
12	Coaxial cable	SGS	N/A	SEL0178	2016-05-13
13	Band filter	Amindeon	82346	SEL0094	2016-05-13
14	Barometer	Chang Chun	DYM3	SEL0088	2016-05-13
15	Universal radio communication tester	Rohde & Schwarz	CMU200	SEL0091	2016-10-23
16	Universal radio communication tester	Rohde & Schwarz	CMW500	SEL0366	2016-10-23
17	Signal Generator (10M-27GHz)	Rohde & Schwarz	SMR27	SEL0067	2016-05-13
18	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2016-10-24
19	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2016-10-09
	BiConiLog Antenna				
20	(30MHz-3GHz)	Schwarzbeck	VULB9163	SEL0334	2016-07-14
21	Horn Antenna	D	115005	051.0046	0040.00.43
	(800MHz-18GHz)	Rohde & Schwarz	HF907	SEL0310	2018-06-14

Report No.: SZEM160100046801

Page: 29 of 32

RF c	RF connected test					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-09	2016-10-09
2	Humidity/ Temperature Indicator	HYGRO	ZJ1-2B	SEL0033	2015-10-24	2016-10-24
3	Spectrum Analyzer	Rohde & Schwarz	FSP	SEL0154	2015-10-17	2016-10-17
4	Coaxial cable	SGS	N/A	SEL0178	2015-05-13	2016-05-13
5	Coaxial cable	SGS	N/A	SEL0179	2015-05-13	2016-05-13
6	Barometer	ChangChun	DYM3	SEL0088	2015-05-13	2016-05-13
7	Signal Generator	Rohde & Schwarz	SML03	SEL0068	2015-04-25	2016-04-25
8	POWER METER	R&S	NRVS	SEL0144	2015-10-09	2016-10-09
9	Universal radio communication tester	Rohde & Schwarz	CMU200	SEL0091	2015-10-23	2016-10-23
10	Universal radio communication tester	Rohde & Schwarz	CMU200	SEL0194	2015-10-23	2016-10-23
11	Attenuator	Beijin feihang taida	TST-2-6dB	SEL0205	2015-04-25	2016-04-25
12	Universal radio communication tester	Anritsu	8820C	SEL0401	2015-04-25	2016-04-25
13	MXA Signal Analyzer	Agilent Technologies Inc	N9020A	SEL0257	2015-07-18	2016-07-18
14	Universal radio communication tester	Rohde & Schwarz	CMW500	SEL0368	2016-01-14	2017-01-14

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

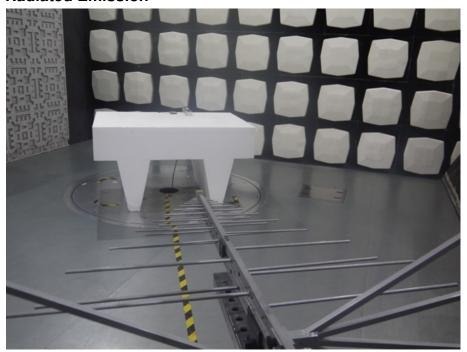
Report No.: SZEM160100046801

Page: 30 of 32

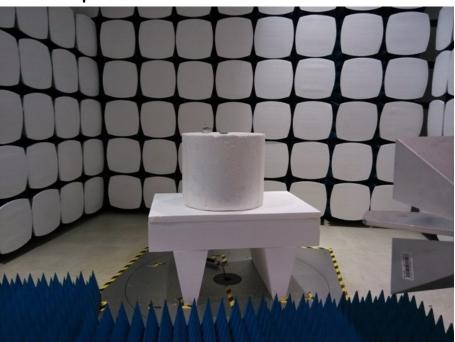
8 Measurement Uncertainty

For a 95% confidence level (k = 2), the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 as following:

Test Item	Extended Uncertainty	Data
Transmit Output Power Data	Power [dBm]	U = 0.37 dB
Bandwidth	Magnitude [%]	U = 0.2%
Band Edge Compliance	Disturbance Power [dBm]	U = 2.0 dB
Spurious Emissions, Conducted	Disturbance Power [dBm]	U = 2.0 dB
Field Strength of Spurious	ERP [dBm]	For 3 m Chamber:
Radiation		U = 4.5 dB (30 MHz to 1GHz)
		U = 3.3 dB (above 1 GHz)
		For 10 m Chamber:
		U = 4.5 dB (30 MHz to 1GHz)
		U = 3.2 dB (above 1 GHz)
Frequency Stability	Frequency Accuracy [ppm]	U = 0.24 ppm



Report No.: SZEM160100046801


Page: 31 of 32

9 Photographs - EUT Test Setup

9.1 Radiated Emission

9.2 Radiated Spurious Emission

Report No.: SZEM160100046801

Page: 32 of 32

10 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1601000468RG.

The End