

ANNEX D. Position of the wireless device in relation to the

phantom

D.1. General considerations

This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.

Picture D.3 Tilt position of the wireless device on the left side of SAM

D.2. Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.

Picture D.4Test positions for body-worn devices

D.3. Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.

Picture D.5 Test positions for desktop devices

D.4. DUT Setup Photos

Picture D.6 DSY5 system Set-up

Note:

The photos of test sample and test positions show in additional document.

ANNEX E. Equivalent Media Recipes

The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

	835	835	1900	1900	2450	2450	
Frequency (MHZ)	Head	Body	Head	Body	Head	Body	
Ingredients (% by weight)							
Water	41.45	52.5	55.242	69.91	58.79	72.60	
Sugar	56.0	45.0	١	١	١	١	
Salt	1.45	1.4	0.306	0.13	0.06	0.18	
Preventol	0.1	0.1	١	١	١	١	
Cellulose	1.0	1.0	١	١	١	١	
Glycol Monobutyl	١	١	44.452	29.96	41.15	27.22	
Dielectric							
Denensetens	ε=41.5	ε=55.2	ε=40.0	ε=53.3	ε=39.2	ε=52.7	
Parameters	σ=0.90	σ=0 97	σ=1 40	σ=1 52	σ=1 80	σ=1 95	
Target Value	0 0.00	0 0.01	0 1.40	0 1.02	0 1.00	0 1.00	

Table E.1:	Composition of	of the Tissue	Equivalent Matter

ANNEX F. System Validation

The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must bevalidated with the SAR system(s) that operates with such components.

System	Drobo SN	Liquid pomo	Validation	Frequency	Permittivit	Conductivity
No.	PIODE SN.		date	point	yε	σ (S/m)
1	3252	Head 835MHz	2018/11/4	835 MHz	42.152	0.923
2	3252	Head 1750MHz	2018/11/5	1750MHz	40.967	1.382
3	3252	Head 1900MHz	2018/11/7	1900 MHz	41.865	1.414
4	3252	Head 2450MHz	2018/11/9	2450 MHz	39.542	1.813
5	3252	Head 2600MHz	2018/11/15	2600 MHz	40.142	1.975
6	3252	Body 835MHz	2018/11/4	835 MHz	57.108	1.001
7	3252	Body 1750MHz	2018/11/5	1750MHz	55.385	1.476
8	3252	Body 1900MHz	2018/11/16	1900 MHz	52.151	1.549
9	3252	Body 2450MHz	2018/11/9	2450 MHz	54.121	1.932
10	3252	Body 2600MHz	2018/11/15	2600 MHz	54.366	2.111
11	3252	Body 1900MHz	2018/11/20	1900 MHz	52.451	1.555

Table F.1: System Validation Part 1

Table F.2: System Validation Part 2

CW Validation	Sensitivity	PASS	PASS
	Probe linearity	PASS	PASS
	Probe Isotropy	PASS	PASS
Mod Validation	MOD.type	GMSK	GMSK
	MOD.type	OFDM	OFDM
	Duty factor	PASS	PASS
	PAR	PASS	PASS

ANNEX G. Probe and DAE Calibration Certificate

Client EC	inattl.com <u>Htt</u>	certificati	a No: 717-97266
CALIBRATION	CERTIFICA	ТЕ	
Object	DAE	L SN- 1244	
Calibration Procedure(c)	Unch	- 5N, 1244	
Calibration Procedure(s)	FF-Z' Calibi (DAE	11-002-01 ration Procedure for the Data Acqui x)	sition Electronics
Calibration date:	Dece	mber 04, 2017	
	an oondaotoo m	the closed laboratory lacinty. citvin	Anneni temperature(2213) c an
humidity<70%. Calibration Equipment us Primary Standards Process Calibrator 753	ID # C	for calibration) al Date(Calibrated by, Certificate No.) 27-Jun-17 (CTTL, No.J17X05859)	Scheduled Calibration June-18
humidity<70%. Calibration Equipment us Primary Standards Process Calibrator 753	ed (M&TE critical ID # C 1971018	for calibration) al Date(Calibrated by, Certificate No.) 27-Jun-17 (CTTL, No.J17X05859)	Scheduled Calibration June-18
humidity<70%. Calibration Equipment us Primary Standards Process Calibrator 753 Calibrated by:	ed (M&TE critical ID # C 1971018 Name	for calibration) al Date(Calibrated by, Certificate No.) 27-Jun-17 (CTTL, No.J17X05859) Function	Scheduled Calibration June-18 Signature
humidity<70%. Calibration Equipment us Primary Standards Process Calibrator 753 Calibrated by: Reviewed by:	ed (M&TE critical ID # C 1971018 Name Yu Zongying	for calibration) al Date(Calibrated by, Certificate No.) 27-Jun-17 (CTTL, No.J17X05859) Function SAR Test Engineer	Scheduled Calibration June-18 Signature
humidity<70%. Calibration Equipment us Primary Standards Process Calibrator 753 Calibrated by: Reviewed by:	eed (M&TE critical ID # C 1971018 Name Yu Zongying Lin Hao	for calibration) al Date(Calibrated by, Certificate No.) 27-Jun-17 (CTTL, No.J17X05859) Function SAR Test Engineer SAR Test Engineer	Scheduled Calibration June-18 Signature
humidity<70%. Calibration Equipment us Primary Standards Process Calibrator 753 Calibrated by: Reviewed by: Approved by:	eed (M&TE critical ID # C 1971018 Name Yu Zongying Lin Hao Qi Dianyuan	for calibration) al Date(Calibrated by, Certificate No.) 27-Jun-17 (CTTL, No.J17X05859) Function SAR Test Engineer SAR Test Engineer SAR Project Leader	Scheduled Calibration June-18 Signature
humidity<70%. Calibration Equipment us Primary Standards Process Calibrator 753 Calibrated by: Reviewed by: Approved by: This calibration certificate	ed (M&TE critical ID # C 1971018 Name Yu Zongying Lin Hao Qi Dianyuan	for calibration) al Date(Calibrated by, Certificate No.) 27-Jun-17 (CTTL, No.J17X05859) Function SAR Test Engineer SAR Test Engineer SAR Project Leader	Scheduled Calibration June-18 Signature A. H. Superson Superson Issued: December 05, 2017 proval of the laboratory.

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Glossary: DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z17-97266

Page 2 of 3

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

DC Voltage Measurement

A/D - Converter Re	solution nomin	nai		
High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV,	full range =	-1+3mV
DASY measuremen	t parameters:	Auto Zero	Time: 3 sec; Meas	uring time: 3 sec

Calibration Factors	х	Y	Z
High Range	403.862 ± 0.15% (k=2)	403.603 ± 0.15% (k=2)	404.516 ± 0.15% (k=2)
Low Range	3.95366 ± 0.7% (k=2)	3.96972 ± 0.7% (k=2)	3.97929 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	22.5° ± 1 °
· · · · · · · · · · · · · · · · · · ·	

Certificate No: Z17-97266

Page 3 of 3

T			中国认可国际互认
Add: No.51 Xueyu Tel: +86-10-623046 E-mail: cttl@chinat	n Road, Haidian Dist 33-2218 Fax: + tl.com <u>Http://</u>	rict, Beijing, 100191, China 86-10-62304633-2209 www.chinatil.en	CALIBRATION CNAS L0570
Client ECI	Г	Certificate No: Z17-	97112
CALIBRATION CI	ERTIFICAT	E	
Object	ES3DV	3 - SN:3252	Selection of the select
Calibration Procedure(s)	FF-Z11-	004-01	
	Calibrat	ion Procedures for Dosimetric E-field Probes	
Calibration date:	August	31, 2017	
This calibration Certificate measurements(SI). The mea pages and are part of the ce	documents the t asurements and ertificate.	raceability to national standards, which real the uncertainties with confidence probability a	ize the physical units of are given on the following
All calibrations have been humidity<70%.	conducted in t	he closed laboratory facility: environment	temperature(22±3)°C and
Calibration Equipment used	(M&TE critical for	r calibration)	
Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	27-Jun-17 (CTTL, No.J17X05857)	Jun-18
Power sensor NRP-Z91	101547	27-Jun-17 (CTTL, No.J17X05857)	Jun-18
Power sensor NRP-Z91	101548	27-Jun-17 (CTTL, No.J17X05857)	Jun-18
Reference10dBAttenuator	18N50W-10dB	13-Mar-16(CTTL,No.J16X01547)	Mar-18
Reference20dBAttenuator	18N50W-20dB	13-Mar-16(CTTL, No.J16X01548)	Mar-18
Reference Probe EX3DV4	SN 7433	26-Sep-16(SPEAG,No.EX3-7433_Sep16)	Sep-17
DAE4	SN 549	13-Dec-16(SPEAG, No.DAE4-549_Dec16)	Dec -17
Secondary Standards	ID #	Cal Date(Calibrated by Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A	6201052605	27-Jun-17 (CTTL, No. 117X05858)	Jun-18
Network Analyzer E5071C	MY46110673	13-Jan-17 (CTTL, No.J17X00285)	Jan -18
	Name	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	ANT
	ru zongying	OAR lest Engineer	AVIC I
			to the
Reviewed by:	Lin Hao	SAR lest Engineer	alber
Reviewed by: Approved by:	Lin Hao Qi Dianyuan	SAR Test Engineer	28
Reviewed by: Approved by:	Lin Hao Qi Dianyuan	SAR Test Engineer SAR Project Leader Issued: Septer	mber 01, 2017

Certificate No: Z17-97112

Page 1 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com <u>Http://www.chinattl.cn</u>

Glossarv TS

TSL	tissue simulating liquid
NORMx, y, z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,v,z
DCP	diode compression point
CF	crest factor (1/duty_cvcle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane no

axis that is in the plane normal to probe axis (at measurement center), i θ=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF
- DCPx, y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax, y, z; Bx, y, z; Cx, y, z; VRx, y, z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required)

Certificate No: Z17-97112

Page 2 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com <u>Http://www.chinattl.cn</u>

Glossarv

TSL	tissue simulating liquid
NORMx, y, z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,v,z
DCP	diode compression point
CF	crest factor (1/duty_cvcle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane no

axis that is in the plane normal to probe axis (at measurement center), i θ=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF
- DCPx, y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax, y, z; Bx, y, z; Cx, y, z; VRx, y, z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required)

Certificate No: Z17-97112

Page 2 of 11

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	1.32	1.40	1.37	±10.0%
DCP(mV) ^B	101.5	101.9	101.5	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	Х	0.0	0.0	1.0	0.00	278.4	±2.5%
		Y	0.0	0.0	1.0		287.4	-
		Z	0.0	0.0	1.0		284.8	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution

and is expressed for the square of the field value.

Certificate No: Z17-97112

Page 4 of 11

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	6.25	6.25	6.25	0.50	1.25	±12.1%
835	41.5	0.90	6.19	6.19	6.19	0.32	1.66	±12.1%
900	41.5	0.97	6.16	6.16	6.16	0.36	1.62	±12.1%
1750	40.1	1.37	5.30	5.30	5.30	0.42	1.62	±12.1%
1900	40.0	1.40	5.11	5.11	5.11	0.73	1.18	±12.1%
2000	40.0	1.40	4.97	4.97	4.97	0.76	1.19	±12.1%
2300	39.5	1.67	4.90	4.90	4.90	0.90	1.10	±12.1%
2450	39.2	1.80	4.75	4.75	4.75	0.90	1.10	+12.1%
2600	39.0	1.96	4.44	4.44	4.44	0.90	1.15	±12.1%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z17-97112

Page 5 of 11

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	6.34	6.34	6.34	0.60	1.20	±12.1%
850	55.2	0.99	6.14	6.14	6.14	0.38	1.63	±12.1%
900	55.0	1.05	6.06	6.06	6.06	0.46	1.49	±12.1%
1750	53.4	1.49	4.95	4.95	4.95	0.49	1.52	±12.1%
1900	53.3	1.52	4.69	4.69	4.69	0.67	1.33	±12.1%
2000	53.3	1.52	4.89	4.89	4.89	0.69	1.25	±12.1%
2300	52.9	1.81	4.58	4.58	4.58	0.57	1.65	±12.1%
2450	52.7	1.95	4.42	4.42	4.42	0.68	1.42	±12.1%
2600	52.5	2.16	4.22	4.22	4.22	0.56	1.66	+12.1%

^c Frequency validity above 300 MHz of \pm 100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to \pm 50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z17-97112

Page 6 of 11

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No: Z17-97112

Page 7 of 11

Tel: +86-10-62304633-2218 E-mail: ettl@chinattl.com

Receiving Pattern (Φ), θ=0°

Certificate No: Z17-97112

Page 8 of 11

Http://www.chinattl.cn

Conversion Factor Assessment

f=835 MHz, WGLS R9(H_convF)

E-mail: cttl@chinattl.com

f=1750 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Certificate No: Z17-97112

Page 10 of 11

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	130.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	4mm
Probe Tip to Sensor X Calibration Point	2mm
Probe Tip to Sensor Y Calibration Point	2mm
Probe Tip to Sensor Z Calibration Point	2mm
Recommended Measurement Distance from Surface	3mm

Certificate No: Z17-97112

Page 11 of 11

Tel: +86-10-62304 E-mail: cttl@china	633-2512 Fax: +8 ttl.com <u>Http://v</u>	ct, Beijing, 100191, China 6-10-62304633-2504 www.chinattl.cn	CNAS L057
Client ECI	Т	Certificate No: Z18-	60343
CALIBRATION C	ERTIFICATI	E	
Object	ES3DV3	- SN:3252	
Calibration Procedure(s)			
	FF-Z11-C	004-01	
	Calibratio	on Procedures for Dosimetric E-field Probes	
Calibration date:	Septemb	per 04, 2018	
This calibration Certificate	documents the tra	aceability to national standards, which reali	ze the physical units of
measurements(SI). The me	asurements and th	ne uncertainties with confidence probability a	re given on the following
pages and are part of the ce	ertificate.		
All calibrations have been	conducted in th	a closed laboratory facility and incoments	
humidity<70%.	conducted in th	le closed laboratory facility: environment t	emperature(22±3)°C and
,			
Calibration Equipment used	(M&TE critical for	calibration)	
Primary Standards	ID# (Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	20-Jun-18 (CTTL, No.J18X05032)	lup 19
		(,	Juli-19
Power sensor NRP-Z91	101547	20-Jun-18 (CTTL, No.J18X05032)	Jun-19
Power sensor NRP-Z91 Power sensor NRP-Z91	101547 101548	20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032)	Jun-19 Jun-19
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator	101547 101548 18N50W-10dB	20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18(CTTL, No.J18X01133)	Jun-19 Jun-19 Feb-20
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator	101547 101548 18N50W-10dB 18N50W-20dB	20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18 (CTTL, No.J18X01133) 09-Feb-18 (CTTL, No.J18X01132)	Jun-19 Jun-19 Feb-20 Feb-20
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4	101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 3846	20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132) 25-Jan-18(SPEAG,No.EX3-3846_Jan18)	Jun-19 Jun-19 Feb-20 Feb-20 Jan-19
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4	101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 777	20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132) 25-Jan-18(SPEAG,No.EX3-3846_Jan18) 15-Dec-17(SPEAG, No.DAE4-777_Dec17)	Jun-19 Jun-19 Feb-20 Feb-20 Jan-19 Dec -18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards	101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 777	20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132) 25-Jan-18(SPEAG,No.EX3-3846_Jan18) 15-Dec-17(SPEAG, No.DAE4-777_Dec17) Cal Date(Calibrated by Certificate No.)	Jun-19 Jun-19 Feb-20 Feb-20 Jan-19 Dec -18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A	101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 777 ID # 6201052605	20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132) 25-Jan-18(SPEAG,No.EX3-3846_Jan18) 15-Dec-17(SPEAG, No.DAE4-777_Dec17) Cal Date(Calibrated by, Certificate No.) 21-Jun-18 (CTTL, No.J18X05033)	Jun-19 Jun-19 Feb-20 Feb-20 Jan-19 Dec -18 Scheduled Calibration
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator/MG3700A Network Analyzer E5071C	101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 777 ID # 6201052605 MY46110673	20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18 (CTTL, No.J18X01133) 09-Feb-18 (CTTL, No.J18X01132) 25-Jan-18 (SPEAG, No.EX3-3846_Jan18) 15-Dec-17 (SPEAG, No.DAE4-777_Dec17) Cal Date(Calibrated by, Certificate No.) 21-Jun-18 (CTTL, No.J18X05033) 14-Jan-18 (CTTL, No.J18X00561)	Jun-19 Jun-19 Feb-20 Feb-20 Jan-19 Dec -18 Scheduled Calibration Jun-19 Jan -19
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator/MG3700A Network Analyzer E5071C	101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 777 ID # 6201052605 MY46110673 Name	20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18 (CTTL, No.J18X01133) 09-Feb-18 (CTTL, No.J18X01132) 25-Jan-18 (SPEAG, No.EX3-3846_Jan18) 15-Dec-17 (SPEAG, No.DAE4-777_Dec17) Cal Date(Calibrated by, Certificate No.) 21-Jun-18 (CTTL, No.J18X05033) 14-Jan-18 (CTTL, No.J18X00561) Function	Jun-19 Jun-19 Feb-20 Feb-20 Jan-19 Dec -18 Scheduled Calibration Jun-19 Jan -19 Signature
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator/MG3700A Network Analyzer E5071C	101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 777 ID # 6201052605 MY46110673 Name Yu Zongying	20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132) 25-Jan-18(SPEAG, No.EX3-3846_Jan18) 15-Dec-17(SPEAG, No.DAE4-777_Dec17) Cal Date(Calibrated by, Certificate No.) 21-Jun-18 (CTTL, No.J18X05033) 14-Jan-18 (CTTL, No.J18X00561) Function SAR Test Engineer	Jun-19 Jun-19 Feb-20 Feb-20 Jan-19 Dec -18 Scheduled Calibration Jun-19 Jan -19 Signature
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator/MG3700A Network Analyzer E5071C Calibrated by: Reviewed by:	101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 777 ID # 6201052605 MY46110673 Name Yu Zongying Lin Hao	20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132) 25-Jan-18(SPEAG,No.EX3-3846_Jan18) 15-Dec-17(SPEAG, No.DAE4-777_Dec17) Cal Date(Calibrated by, Certificate No.) 21-Jun-18 (CTTL, No.J18X05033) 14-Jan-18 (CTTL, No.J18X00561) Function SAR Test Engineer SAR Test Engineer	Jun-19 Jun-19 Feb-20 Feb-20 Jan-19 Dec -18 Scheduled Calibration Jun-19 Jan -19 Signature
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator/MG3700A Network Analyzer E5071C Calibrated by: Reviewed by:	101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 777 ID # 6201052605 MY46110673 Name Yu Zongying Lin Hao Qi Dianyuan	20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132) 25-Jan-18(SPEAG,No.EX3-3846_Jan18) 15-Dec-17(SPEAG, No.DAE4-777_Dec17) Cal Date(Calibrated by, Certificate No.) 21-Jun-18 (CTTL, No.J18X05033) 14-Jan-18 (CTTL, No.J18X00561) Function SAR Test Engineer SAR Test Engineer	Jun-19 Jun-19 Feb-20 Feb-20 Jan-19 Dec -18 Scheduled Calibration Jun-19 Jan -19 Signature
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C Calibrated by: Reviewed by:	101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 777 ID # 6201052605 MY46110673 Name Yu Zongying Lin Hao Qi Dianyuan	20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132) 25-Jan-18(SPEAG,No.EX3-3846_Jan18) 15-Dec-17(SPEAG, No.DAE4-777_Dec17) Cal Date(Calibrated by, Certificate No.) 21-Jun-18 (CTTL, No.J18X05033) 14-Jan-18 (CTTL, No.J18X00561) Function SAR Test Engineer SAR Test Engineer	Jun-19 Jun-19 Feb-20 Feb-20 Jan-19 Dec -18 Scheduled Calibration Jun-19 Jan -19 Signature
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator/MG3700A Network Analyzer E5071C Calibrated by: Reviewed by: his calibration certificate sh	101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 777 ID # 6201052605 MY46110673 Name Yu Zongying Lin Hao Qi Dianyuan all not be reproduc	20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132) 25-Jan-18(SPEAG, No.EX3-3846_Jan18) 15-Dec-17(SPEAG, No.DAE4-777_Dec17) Cal Date(Calibrated by, Certificate No.) 21-Jun-18 (CTTL, No.J18X05033) 14-Jan-18 (CTTL, No.J18X0561) Function SAR Test Engineer SAR Test Engineer SAR Project Leader	Jun-19 Jun-19 Feb-20 Feb-20 Jan-19 Dec -18 Scheduled Calibration Jun-19 Jan -19 Signature Jan-19 Signature
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator/MG3700A Network Analyzer E5071C Calibrated by: Reviewed by: his calibration certificate sh	101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 777 ID # 6201052605 MY46110673 Name Yu Zongying Lin Hao Qi Dianyuan all not be reproduc	20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132) 25-Jan-18(SPEAG, No.EX3-3846_Jan18) 15-Dec-17(SPEAG, No.DAE4-777_Dec17) Cal Date(Calibrated by, Certificate No.) 21-Jun-18 (CTTL, No.J18X05033) 14-Jan-18 (CTTL, No.J18X0561) Function SAR Test Engineer SAR Test Engineer SAR Project Leader Issued: Septem ceed except in full without written approval of t	Jun-19 Jun-19 Feb-20 Feb-20 Jan-19 Dec -18 Scheduled Calibration Jun-19 Jan -19 Signature
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator/MG3700A Network Analyzer E5071C Calibrated by: Reviewed by: his calibration certificate sh	101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 777 ID # 6201052605 MY46110673 Name Yu Zongying Lin Hao Qi Dianyuan all not be reprodue	20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132) 25-Jan-18(SPEAG,No.EX3-3846_Jan18) 15-Dec-17(SPEAG, No.DAE4-777_Dec17) Cal Date(Calibrated by, Certificate No.) 21-Jun-18 (CTTL, No.J18X05033) 14-Jan-18 (CTTL, No.J18X0561) Function SAR Test Engineer SAR Test Engineer SAR Project Leader Issued: Septem ced except in full without written approval of t	Jun-19 Jun-19 Feb-20 Feb-20 Jan-19 Dec -18 Scheduled Calibration Jun-19 Jan -19 Signature

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty cycle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

θ=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.

Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat
phantom exposed by a patch antenna.

- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
 probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z18-60343

Page 2 of 11

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>

Probe ES3DV3

SN: 3252

Calibrated: September 04, 2018

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: Z18-60343

Page 3 of 11

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	1.29	1.35	1.33	±10.0%
DCP(mV) ^B	102.7	105.4	103.6	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	Х	0.0	0.0	1.0	0.00	268.8	±2.5%
		Y	0.0	0.0	1.0		276.1	
		Z	0.0	0.0	1.0		278.3	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6). ^B Numerical linearization parameter: uncertainty not required.

E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: Z18-60343

Page 4 of 11

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	6.51	6.51	6.51	0.40	1.42	±12.1%
835	41.5	0.90	6.36	6.36	6.36	0.40	1.56	±12.1%
900	41.5	0.97	6.31	6.31	6.31	0.45	1.48	±12.1%
1750	40.1	1.37	5.39	5.39	5.39	0.61	1.28	±12.1%
1900	40.0	1.40	5.18	5.18	5.18	0.67	1.26	±12.1%
2000	40.0	1.40	5.17	5.17	5.17	0.71	1.20	±12.1%
2300	39.5	1.67	4.92	4.92	4.92	0.90	1.14	±12.1%
2450	39.2	1.80	4.74	4.74	4.74	0.90	1.15	±12.1%
2600	39.0	1.96	4.46	4.46	4.46	0.72	1.37	±12.1%

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z18-60343

Page 5 of 11

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	6.53	6.53	6.53	0.40	1.50	±12.1%
835	55.2	0.97	6.34	6.34	6.34	0.42	1.58	±12.1%
900	55.0	1.05	6.29	6.29	6.29	0.47	1.51	±12.1%
1750	53.4	1.49	4.99	4.99	4.99	0.65	1.28	±12.1%
1900	53.3	1.52	4.77	4.77	4.77	0.75	1.23	±12.1%
2000	53.3	1.52	4.95	4.95	4.95	0.67	1.28	$\pm 12.1\%$
2300	52.9	1.81	4.63	4.63	4.63	0.90	1.15	$\pm 12.1\%$
2450	52.7	1.95	4.41	4.41	4.41	0.90	1.17	+12.1%
2600	52.5	2.16	4.19	4.19	4.19	0.90	1.15	+12.1%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z18-60343

Page 6 of 11

Certificate No: Z18-60343

Page 7 of 11

Certificate No: Z18-60343

Page 8 of 11

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	131.6
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	4mm
Probe Tip to Sensor X Calibration Point	2mm
Probe Tip to Sensor Y Calibration Point	2mm
Probe Tip to Sensor Z Calibration Point	2mm
Recommended Measurement Distance from Surface	3mm

Certificate No: Z18-60343

Page 11 of 11

and the second	CALIBR	ATION LABORATORY	NAS校准
Add: No.51 Xueyu Tel: +86-10-62304 E-mail: cttl@china	an Road, Haidian Di 633-2079 Fax: ttl.com http:	istrict, Beijing, 100191, China +86-10-62304633-2504 //www.chinattl.cn	CALIBRATION CNAS L0570
Client ECIT		Certificate No: Z1	8-60425
CALIBRATION C	ERTIFICA	TE	
Dbject	D835\	/2 - SN: 4d112	
alibration Procedure(s)	FE-71	1.003.01	
	Calibra	ation Procedures for dipole validation kits	
alibration date:	Octobe	er 25, 2018	
			52 St. 10
II calibrations have been umidity<70%. alibration Equipment used	(M&TE critical f	the closed laboratory facility: environment	temperature(22±3)°C and
Il calibrations have been umidity<70%. alibration Equipment used rimary Standards	(M&TE critical f	the closed laboratory facility: environment for calibration) Cal Date(Calibrated by, Certificate No.)	temperature(22±3)°C and
Il calibrations have been umidity<70%. alibration Equipment used rimary Standards Power Meter NRVD	(M&TE critical f ID # 102083	the closed laboratory facility: environment for calibration) Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756)	Scheduled Calibration
Il calibrations have been umidity<70%. alibration Equipment used rimary Standards Power Meter NRVD Power sensor NRV-Z5	Conducted in (M&TE critical f ID # 102083 100542	the closed laboratory facility: environment for calibration) Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756)	Scheduled Calibration Oct-18 Oct-18
Il calibrations have been umidity<70%. alibration Equipment used rimary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4	(M&TE critical f ID # 102083 100542 SN 7514 SN 1555	the closed laboratory facility: environment for calibration) Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18)	Scheduled Calibration Oct-18 Oct-18 Aug-19 Aug-19
Il calibrations have been umidity<70%. alibration Equipment used rimary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4	Conducted in (M&TE critical f 102083 100542 SN 7514 SN 1555	the closed laboratory facility: environment for calibration) Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18)	Scheduled Calibration Oct-18 Oct-18 Aug-19 Aug-19
Il calibrations have been umidity<70%. alibration Equipment used rimary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	conducted in (M&TE critical f 102083 100542 SN 7514 SN 1555 ID # MY49071430	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No. J18X00560)	Scheduled Calibration Oct-18 Oct-18 Aug-19 Aug-19 Scheduled Calibration
Il calibrations have been umidity<70%. alibration Equipment used rimary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C JetworkAnalyzer E5071C	Conducted in (M&TE critical f 102083 100542 SN 7514 SN 1555 ID # MY49071430 MY46110673	the closed laboratory facility: environment for calibration) Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560) 24-Jan-18 (CTTL, No.J18X00561)	temperature(22±3)°C and Scheduled Calibration Oct-18 Oct-18 Aug-19 Aug-19 Scheduled Calibration Jan-19 Jan-19
Il calibrations have been umidity<70%. alibration Equipment used rimary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	Conducted in (M&TE critical f 102083 100542 SN 7514 SN 1555 ID # MY49071430 MY46110673	the closed laboratory facility: environment for calibration) Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560) 24-Jan-18 (CTTL, No.J18X00561)	temperature(22±3)°C and Scheduled Calibration Oct-18 Oct-18 Aug-19 Aug-19 Scheduled Calibration Jan-19 Jan-19
Il calibrations have been umidity<70%. alibration Equipment used rimary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C JetworkAnalyzer E5071C	conducted in (M&TE critical f 102083 100542 SN 7514 SN 1555 ID # MY49071430 MY46110673 Name Zhao Jing	the closed laboratory facility: environment for calibration) Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560) 24-Jan-18 (CTTL, No.J18X00561) Function	temperature(22±3)°C and Scheduled Calibration Oct-18 Oct-18 Aug-19 Aug-19 Scheduled Calibration Jan-19 Jan-19 Jan-19
Il calibrations have been umidity<70%. alibration Equipment used rimary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	Conducted in (M&TE critical f 102083 100542 SN 7514 SN 1555 ID # MY49071430 MY46110673 Name Zhao Jing	the closed laboratory facility: environment for calibration) Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560) 24-Jan-18 (CTTL, No.J18X00561) Function SAR Test Engineer	temperature(22±3)°C and Scheduled Calibration Oct-18 Oct-18 Aug-19 Aug-19 Scheduled Calibration Jan-19 Jan-19 Jan-19 Signature
Il calibrations have been umidity<70%. alibration Equipment used rimary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C alibrated by:	Conducted in (M&TE critical f 102083 100542 SN 7514 SN 1555 ID # MY49071430 MY46110673 Name Zhao Jing Lin Hao	the closed laboratory facility: environment for calibration) Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560) 24-Jan-18 (CTTL, No.J18X00561) Function SAR Test Engineer SAR Test Engineer	Scheduled Calibration Oct-18 Oct-18 Aug-19 Aug-19 Scheduled Calibration Jan-19 Jan-19 Jan-19 Jan-19
Il calibrations have been umidity<70%. alibration Equipment used rimary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C alibrated by: eviewed by:	Conducted in (M&TE critical f 102083 100542 SN 7514 SN 1555 ID # MY49071430 MY46110673 Name Zhao Jing Lin Hao Qi Dianyuan	the closed laboratory facility: environment for calibration) Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560) 24-Jan-18 (CTTL, No.J18X00561) Function SAR Test Engineer SAR Test Engineer	temperature(22±3)で and Scheduled Calibration Oct-18 Oct-18 Aug-19 Aug-19 Scheduled Calibration Jan-19 Jan-19 Jan-19 Jan-19

- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z18-60425

Page 2 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as	not given on page 1.	
DASY Version	DASY52	52.10.2.1495
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.4 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.38 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.63 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.55 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.25 mW /g ± 18.7 % (k=2)

Body TSL parameters

	Temperature	Permitt	ivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2		0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.3 ±	6 %	0.96 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C			
R result with Body TSL				
SAR averaged over 1 cm ³ (1 g) of Body TSL	Condi	tion		
SAR measured	250 mW in	put power		2.42 mW / g
SAR for nominal Body TSL parameters	normalize	d to 1W	9.75	mW /g ± 18.8 % (k=2
SAR averaged over 10 cm ³ (10 g) of Body TS	SL Condi	tion		
SAR measured	250 mW in	put power		1.59 mW / g
SAR for nominal Body TSL parameters	normalize	d to 1W	6.40	mW /g ± 18.7 % (k=2)

Certificate No: Z18-60425

Page 3 of 8

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.7Ω- 1.03jΩ		
Return Loss	- 31.0dB		

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.2Ω- 6.11jΩ	
Return Loss	- 24.1dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.265 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly The oppose is made or standard semining coasta cape. The center conductor or the reconnumber is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: Z18-60425

Page 4 of 8