

Certificate Number: 5055.02

TEST REPORT FOR WLAN TESTING

Report No: SRTC2019-9004(F)-19101501(G)

Product Name: Mobile Phone

Product Model: HLTE220E

Applicant: Hisense International Co., Ltd.

Manufacturer: Hisense Communications Co., Ltd.

Specification: FCC Part 15, Subpart C (2019)

FCC ID: 2ADOBHLTE220E

The State Radio_monitoring_center Testing Center (SRTC) 15th Building, No.30, Shixing Street, Shijingshan District, Beijing, P.R.China

Tel: 86-10-57996183 Fax: 86-10-57996388

CONTENTS

1. GENERAL INFORMATION	2
1.1 NOTES OF THE TEST REPORT 1.2 INFORMATION ABOUT THE TESTING LABORATORY 1.3 APPLICANT'S DETAILS 1.4 MANUFACTURER'S DETAILS 1.5 TEST ENVIRONMENT	
2. DESCRIPTION OF THE DEVICE UNDER TEST	4
2.1FINAL EQUIPMENT BUILD STATUS 2.2WIRELESS TECHNOLOGY AND FREQUENCY RANGE 2.3 SUPPORT EQUIPMENT 2.4 NOTE	5 6
3 REFERENCE SPECIFICATION	8
4 KEY TO NOTES AND RESULT CODES	8
5. RESULT SUMMARY	9
6 TEST RESULT	10
 6.1 Average Conducted Output Power 6.2 Occupied Bandwidth 6.3 Transmitter Power Spectral Density 6.4 Unwanted Conducted Emission Measurement	
7 MEASUREMENT UNCERTAINTIES	26
8 TEST EQUIPMENTS	27
APPENDIX A – TEST DATA OF CONDUCTED EMISSION	29
APPENDIX B – TEST DATA OF RADIATED EMISSION	53

1. GENERAL INFORMATION

1.1 Notes of the test report

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written permission of The State Radio_monitoring_center Testing Center (SRTC). The test results relate only to individual items of the samples which have been tested. The certification and accreditation identifiers used in this report shall not be applicable to the tested or calibrated samples thereof. The manufacturer shall not mark the tested samples or items (or a separate part of the item) with the identifiers of certification and accreditation to mislead relevant parties about the tested samples or items.

1.2 Information about the testing laboratory

Company:	The State Radio_monitoring_center Testing Center (SRTC)
Address:	15th Building, No.30 Shixing Street, Shijingshan District, P.R.China
City:	Beijing
Country or Region:	P.R.China
Contacted person:	Liu Jia
Tel:	+86 10 57996183
Fax:	+86 10 57996388
Email:	liujiaf@srtc.org.cn

1.3 Applicant's details

Company:	Hisense International Co., Ltd.	
Address:	Floor 22, Hisense Tower, 17 Donghai Xi Road, Qingdao, 266071,	
Audress.	China	
City:	Qingdao	
Country or Region:	China	
Contacted person:	Geng Ruifeng	
Tel:	+86-532-80877742	
Fax:		
Email:	gengruifeng@hisense.com	

1.4 Manufacturer's details

Company:	Hisense Communications Co., Ltd.	
Address:	No.218 Qianwangang Road, Economic & Technological	
Audress.	Development Zone, Qingdao, China	
City:	Qingdao	
Country or Region:	China	
Contacted person:	Song Haibin	
Tel:	+86-532-55753700	
Fax:		
Email:	songhaibin@hisense.com	

1.5 Test Environment

Date of Receipt of test sample at SRTC:	2019-10-15
Testing Start Date:	2019-10-15
Testing End Date:	2019-11-11

Environmental Data:	Temperature (°C)	Humidity (%)
Ambient	25	30
Maximum Extreme	50	
Minimum Extreme	0	

Normal Supply Voltage (V d.c.):	3.80
Maximum Extreme Supply Voltage (V d.c.):	4.35
Minimum Extreme Supply Voltage (V d.c.):	3.50

2. DESCRIPTION OF THE DEVICE UNDER TEST

2.1Final Equipment Build Status

U-NII-1:5150MHz-5250MHz Frequency Band(s) U-NII-2A:5250MHz-5350MHz U-NII-3:5725MHz-5850MHz U-NII-3:5725MHz-5850MHz		
DFS	Client Without Radar Detection	
Modulation Type	802.11a 802.11n (HT20/HT40)	
Antenna Type	Fixed Internal Antenna	
Antenna Gain	-1.3 dBi	
Power Supply	Battery/AC adapter	
Hardware Version	YK680MB-V0.1	
Software Version	Hisense_HLTE220E_MX02_L201.01_20190926	
IMEI	863501040484886	

Note: The equipments have two supplies, is different on the supplier of CTP/Earphone/Camera/Data cable.

Main Supply

Part Name	Model	Supplier(Brand)	Description
Camera	ST-CFKS816-5MFF-V2.0/ ST-CFKS816-30WFF-V2.0/	Union Image	Front CAM
Camera	ST-CFKS816BF-V2.0	Union Image	Rear CAM
CTP	CCF11700-6.0	Jiangxi Holitech Technology Co.,Ltd	CTP
Data cable	KLKS816AUSB	Dongguan Keling Electronic Technology Co., Ltd.	
Earphone	KLKS816A	Shenzhen Jinchuangju Electronic Technology Co.,Ltd.	

Secondary Supply

Part Name	Model Name supplier		Remark
Camera	HTP1157/HTV1155	JIXIHOLITECH TECHNOLGY CO.LTD	Front CAM
Camera	HTV1156 JIXIHOLITECH TECHNOLGY CO.LTD		Rear CAM
СТР	Y152073B2-D-X Dongguan Yuye Communication Technology CO.,ted		СТР
Data cable	A106-0022-S	SHENZHEN KOAR ELECTIC CO.,LTD	
Earphone	Earphone W1G513A06S Shenzhen Jinchuangju Electronic Technology Co.,Ltd.		

2.2Wireless Technology and Frequency Range

Wireless Technology		Bandwidth	Channel	Frequency(MHz)
			36	5180
		201414-	40	5200
		20MHz	44	5220
	U-NII-1		48	5240
		40MHz	38	5190
			46	5230
			52	5260
	U-NII-2A	20MHz	56	5280
		20101112	60	5300
Wi-Fi			64	5320
		40MHz	54	5270
			62	5310
	20M U-NII-3		149	5745
			153	5765
		20MHz	157	5785
			161	5805
			165	5825
		40MHz	151	5755
			159	5795

2.3 Support Equipment

The following support equipment was used to exercise the DUT during testing:

Equipment	Battery
Manufacturer	Shenzhen Tianjin New Energy Technology Co.,Ltd;
Model Number	KS816
Serial Number	

Equipment	Charger
Manufacturer	Shenzhen Tianyin Electronics Co., Ltd
Model Number	TPA-97050100VU
Serial Number	

Equipment	USB Cable1
Manufacturer	SHENZHEN KOAR ELECTIC CO.,LTD
Model Number	A106-0022-S
Serial Number	

Equipment	USB Cable2
Manufacturer	Dongguan Keling Electronic Technology Co., Ltd.
Model Number	KLKS816AUSB
Serial Number	

2.4 Note

Г

Automatically	Automatically Discontinue Transmission		
Description	The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digita technologies to complete frame or burst intervals. Applicants shal include in their application for equipment authorization to describe how this requirement is met.		
Result	While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.		

The antenna provide to the EUT, please refer to the following table:

Brand	Model	Antenna gain	Frequency Bands(GHz)	Antenna type	Connecter Type
N/A	N/A	-1.3dBi	5150MHz-5350MHz 5725MHz-5850MHz	Fixed Internal Antenna	N/A
Manufacturers ensure that their designs will not be modified by the user or third parties					

arbitrary antenna parameters and performance.

<u>3 REFERENCE SPECIFICATION</u>

Specification	Version	Title
15.35	2019	Measurement detector functions and bandwidths.
15.209	2019	Radiated emission limits; general requirements.
15.205	2019	Restricted bands of operation.
15.207	2019	Conducted limits.
15.407	2019	General technical requirements
ANSI C63.10	2013	Standard of Procedures for Compliance Testing of
/ 1101 000.10	2010	Unlicensed Wireless Devices
KDB 644545	August 14,	GUIDANCE FOR IEEE Std 802.11acTM DEVICES EMISSION
D03	2014	TESTING
KDB 905462	August 22,	U-NII CLIENT DEVICES WITHOUT RADAR DETECTION
D03	2016	CAPABILITY
		COMPLIANCE MEASUREMENT PROCEDURES FOR
KDB 905462	April 8,	UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE
D02	2016	DEVICES OPERATING IN THE 5250-5350 MHz AND 5470-5725
002	2010	MHz BANDS INCORPORATING DYNAMIC FREQUENCY
		SELECTION
KDB 662911	October 31,	Emissions Testing of Transmitters with Multiple Outputs in the Same
D01	2013	Band
KDB 789033	December	GUIDELINES FOR COMPLIANCE TESTING OF UNLICENSED
D02	14, 2017	NATIONAL INFORMATION INFRASTRUCTURE (U-NII) DEVICES
002	14, 2017	PART 15, SUBPART E

4 KEY TO NOTES AND RESULT CODES

The following are the definition of the test result.

Code	Meaning
PASS	Test result shows that the requirements of the relevant specification have been met.
FAIL	Test result shows that the requirements of the relevant specification have not been met.

5. RESULT SUMMARY

No.	Test case	FCC reference	Verdict
1.	Average Conducted Output Power	15.407(a)	Pass
2.	Occupied Bandwidth	15.407(e)	Pass
3.	Transmitter Power Spectral Density	15.407(a)	Pass
4.	Unwanted Conducted Emission Measurement	15.407(b)	Pass
5.	Frequency Stability	15.407(g)	Pass
6.	Unwanted Radiated Emission Measurement	15.205 15.209 15.35(b)	Pass
7.	AC Power line Conducted Emission	15.207	Pass
8.	DFS	15.407(h)	Pass
9.	Automatically Discontinue Transmission	15.407(c)	Pass(See 2.4Note)
10.	Antenna Requirements	15.407(a) &15.203	Pass(See 2.4Note)

This Test Report Is Issued by:	Checked by:
Mr. Peng Zhen 🚽 🦷	Mr. Li Bin P
45 #	(A 78K)
24 014	
Tested by:	Issued date:
Mr. He Dengshun 45723 112	
10 7 10	20191111

6 TEST RESULT

6.1 Average Conducted Output Power

6.1.1 Ambient condition

Temperature	Relative humidity	Pressure
25°C	30%	101.5kPa

6.1.2 Test Description

A transmitter antenna terminal of EUT is connected to the power meter. Measurement is made using a broadband power meter capable of making peak and average measurements while the EUT is operating at its maximum duty cycle (>98%), at maximum power, and at the appropriate frequencies.

6.1.3 Test limit

FCC Part15.407 (a)(1),

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

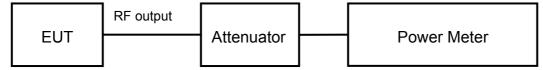
FCC Part15.407 (a)(2),

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11.0 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11.0 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

FCC Part15.407 (a)(3),

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30.0 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

6.1.4 Test Procedure Used


KDB 789033 D02 v02r01,Section E.3.b (Method PM-G).

6.1.5 Test Settings

Measurements perform using a wideband gated RF power meter.

6.1.6 Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

6.1.7 Test result

The test results are shown in Appendix A.

6.2 Occupied Bandwidth

6.2.1 Ambient condition

Temperature	Relative humidity	Pressure
25°C	30%	101.5kPa

6.2.2 Test Description

A transmitter antenna terminal of EUT is connected to the Spectrum Analyzer. This connected to the transmitter antenna terminal of the EUT while the EUT is operating at maximum power and at the appropriate frequencies.

6.2.3 Test limit

Rule FCC Part §15.407(e)

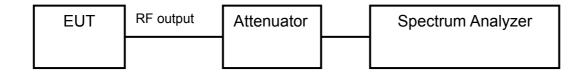
Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

6.2.4 Test Procedure Used

KDB 789033 D02 v02r01,Section D.

6.2.5 Test Settings

For U-NII-1, set RBW ≈1% OCB kHz, VBW≥3×RBW, measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission.


For U-NII-3, Set RBW =100 kHz, VBW≥3×RBW, measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described above.

Use the 99 % power bandwidth function of the instrument.

6.2.6 Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

6.2.7 Test result

The test results are shown in Appendix A .

6.3 Transmitter Power Spectral Density

6.3.1 Ambient condition

Temperature	Relative humidity	Pressure
25°C	30%	101.5kPa

6.3.2 Test Description

The peak power density is measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle (>98%), at maximum power, and at the appropriate frequencies. All data rates were investigated and the worst case configuration results are reported in this section.

6.3.3 Test limit

FCC Part15.407 (a)(1),

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum

antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

FCC Part15.407 (a)(2),

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11.0 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11.0 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

FCC Part15.407 (a)(3),

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30.0 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

6.3.4 Test Procedure Used

KDB 789033 D02 v02r01,Section F.

6.3.5 Test Settings

Set RBW = 500 kHz, VBW =1.5MHz for the band 5.725-5.85 GHz

Set RBW = 1 MHz, VBW =3MHz for the band 5.150-5.250 GHz, 5.250-5.350 GHz and 5.470-5.725 GHz.

The conducted PSD is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically.

6.3.6 Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

6.3.7 Test result

The test results are shown in Appendix A.

6.4 Unwanted Conducted Emission Measurement

6.4.1 Ambient condition

Temperature	Relative humidity	Pressure
25°C	40%	101.5kPa

6.4.2 Test Description

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle (>98%), at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration.

6.4.3 Test limit

FCC Part 15.407(b),

Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

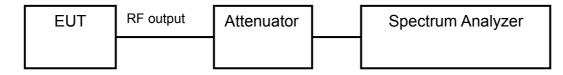
(2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(4) For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

6.4.4 Test Procedure Used

KDB 789033 D02 v02r01,Section G.


6.4.5 Test Settings

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 1 MHz.
- c) Set the VBW \geq 3 MHz.
- d) Detector = peak.
- e) Set span to encompass the spectrum to be examined
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level.

6.4.6 Test Setup

6.4.7 Test result

The test results are shown in Appendix A.

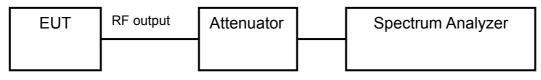
6.5 Frequency Stability

6.5.1 Ambient condition

Temperature	Relative humidity	Pressure
20.8°C	36.5%	100.9kPa

6.5.2 Test limit

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.


6.5.3 Test Procedure Used

1. To ensure emission at the band edge is maintained within the authorized band, those values shall be measured by radiation emissions at upper and lower frequency points, and finally compensated by frequency deviation as procedures below.

2. The EUT was operated at the maximum output power, and connected to the spectrum analyzer, which is set to maximum hold function and peak detector. The peak value of the power envelope was measured and noted. The upper and lower frequency points were respectively measured relatively 10dB lower than the measured peak value.

3. The frequency deviation was calculated by adding the upper frequency point and the lower frequency point divided by two. Those detailed values of frequency deviation are provided in table below.

6.5.4 Test Setup

6.5.5 Test result

The test results are shown in Appendix A.

6.6 Unwanted Radiated Emission Measurement

6.6.1 Ambient condition

Temperature	Relative humidity	Pressure
20.8°C	36.5%	100.9kPa

6.6.2 Test Description

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at maximum power and at the appropriate frequencies. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

6.6.3 Test limit

FCC Part15.205, 15.209,;

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in below Table per Section 15.209.

Frequency [MHz]	Field strength [µV/m]	Measured Distance [meters]
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

FCC Part15.35(b):

Radiated Limits

There is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

Frequency [MHz]	Detector	Unit (dBµV/m)
30~88	Quasi-peak	40.0
88~216	Quasi-peak	43.5
216~960	Quasi-peak	46.0
960~1000	Quasi-peak	54.0
1000 \sim 5th harmonic of the highest frequency or	Average	54.0
40GHz, whichever is lower	Peak	74.0

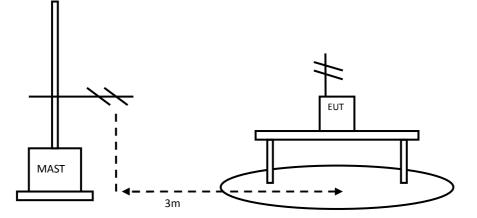
Conversion Radiated limits

6.6.4 Test Procedure Used

KDB 789033 D02 v02r01, Sections G.3, G.4, G.5, and G.6.

6.6.5 Test Settings

Average Field Strength Measurements


- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be > 2 x span/RBW)
- 6. Sweep time = auto
- 7. Trace (RMS) averaging was performed over at least 100 traces

Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

6.6.6 Test Setup

The EUT and measurement equipment were set up as shown in the diagram below

The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna. The radiated emissions measurements were made in a typical installation configuration. Then start the test software ES-K1. Sweep the whole frequency band through the range from 30MHz to 1GHz or above, using receive log period antenna HL562 or Ridge horn antenna HF906.

During the test, the antenna height and EUT azimuth were varied in order to identify the

maximum level of emission from the EUT. The height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turn table shall be rotated from 0 to 360 degrees. The measurements shall be repeated with orthogonal polarization of the test antenna. The results shall be showed the worst case of the three orthogonal axes.

The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing.

6.6.7 Test result

The test results are shown in Appendix B.

6.7 AC Power line Conducted Emission

6.7.1 Ambient condition

Temperature	Relative humidity	Pressure
24°C	36%	100.9kPa

6.7.2 Test limit

FCC Part 15.207(a),

Frequency of Emission (MHz)	Conducted Limit (dBuV)	
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.

The measurement is made according to ANSI C63.10-2013

6.7.3 Test result

The test results are shown in Appendix B.

6.8 Dynamic Frequency Selection

6.8.1 Ambient condition

Temperature	Relative humidity	Pressure
25°C	30%	101.5kPa

6.8.2 Test limit

FCC Part 15.407(h) and FCC 06-96 APPENDIX "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVCIES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION".

6.8.3 DFS Overview

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

Requirement	Operatio	Operational Mode	
	Master	Client Without Radar Detection	Client With Radar Detection
Non-Occupancy Period	Yes	Not required	Yes
DFS Detection Threshold	Yes	Not required	Yes
Channel Availability Check Time	Yes	Not required	Not required
U-NII Detection Bandwidth	Yes	Not required	Yes

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational Mode		
	Master Device or Client with Radar Detection	Client Without Radar Detection	
DFS Detection Threshold	Yes	Not required	
Channel Closing Transmission Time	Yes	Yes	
Channel Move Time	Yes	Yes	
U-NII Detection Bandwidth	Yes	Not required	
Additional requirements for devices with	Master Device or Client with	Client Without Radar	
multiple bandwidth modes	Radar Detection	Detection	
U-NII Detection Bandwidth and Statistical	All BW modes must be tested	Not required	
Performance Check			
Channel Move Time and Channel Closing	Test using widest BW mode	Test using the widest	
Transmission Time	available	BW mode available for	
the link			
All other tests	ther tests Any single BW mode Not required		
Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several			
frequencies within the radar detection bandwidth and frequencies near the edge of the radar			
detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the			
bonded 20 MHz channels and the chan	nnel center frequency.		

Table 3: DFS Detection Thresholds for Master Devices and Client Devices with Radar Detection

Maximum Transmit Power	Value	
	(See Notes 1, 2, and 3)	
EIRP ≥ 200 milliwatt	-64 dBm	
EIRP < 200 milliwatt and	-62 dBm	
power spectral density < 10 dBm/MHz		
EIRP < 200 milliwatt that do not meet the power spectral density	-64 dBm	
requirement		
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.		
Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the		
test transmission waveforms to account for variations in measurement equipment. This will ensure that		
the test signal is at or above the detection threshold level to trigger a DFS response.		
Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication		
662911 D01.		

Table 4: DFS Response Requirement Values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an
	aggregate of 60
	milliseconds over remaining
	10 second period.
	See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the U-
	NII 99% transmission
	power bandwidth. See Note
	3.
Note 1: Channel Move Time and the Channel Closing	g Transmission Time should be performed with
Radar Type 0. The measurement timing begins at the e	nd of the Radar Type 0 burst.
Note 2: The Channel Closing Transmission Time is co	morised of 200 milliseconds starting at the

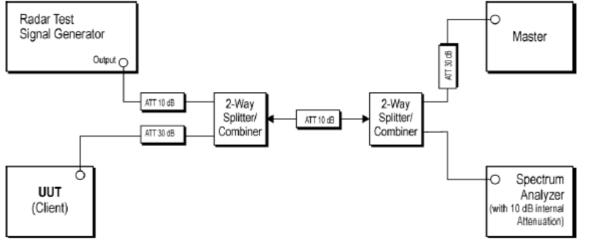
Note 2: The *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required to facilitate a *Channel* move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions. **Note 3:** During the *U-NII Detection Bandwidth* detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Table 5 – Short Pulse Radar Test Waveforms

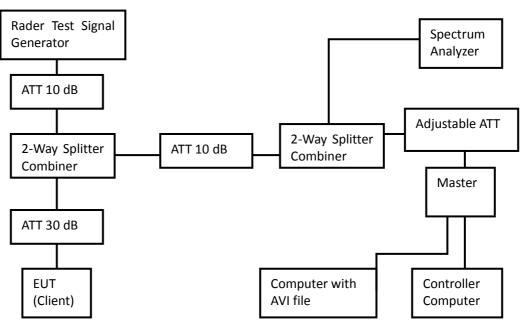
Radar	Pulse Width	PRI	Number of Pulses	Minimum	Minimum
Туре	(µsec)	(µsec)		Percentage of	Number of
				Successful	Trials
				Detection	
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique	$\left(\left(1 \right) \right)$	60%	30
		PRI values	$\left(\frac{1}{360}\right)$		
		randomly selected	Roundup (500)		
		from the list of 23	(19.10 ⁶)		
		PRI values in Table	PRI		
		5a	$\left(\left(P K I_{\mu sec} \right) \right)$		
		Test B: 15 unique			
		PRI values			
		randomly selected			
		within the range of			
		518-3066 µsec,			
		with a minimum			
		increment of 1			
		µsec, excluding			
		PRI values selected			
		in Test A			
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
	Radar Types 1-	80%	120		
Note 1: Sho	ort Pulse Rada	r Type 0 should be u	sed for the detection ba	ndwidth test, ch	annel move
time, and ch	nannel closing	time tests.			

Table 6 – Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per <i>Burst</i>	Number of <i>Bursts</i>	Minimum Percentage of Successful	Minimum Number of Trials
	(µsec)	(14112)		per Durst		Detection	111415
5	50-100	5-20	1000- 2000	1-3	8-20	80%	30


Table 7 – Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30



6.8.4 TEST AND MEASUREMENT SYSTEM

Setup for Client with injection at the Master

Setup of EUT CLIENT MODE:

Test Setup Operation

System testing was performed with the designated MPEG-4

(1080P,WEBRip,DD5.1.x264-btbta) test file that streams full motion video from the Access Point to the Client in full motion video mode using the media player with the V2.61 Codec package.

This file is used by IP and Frame based systems for loading the test channel during the In-service compliance testing of the device.

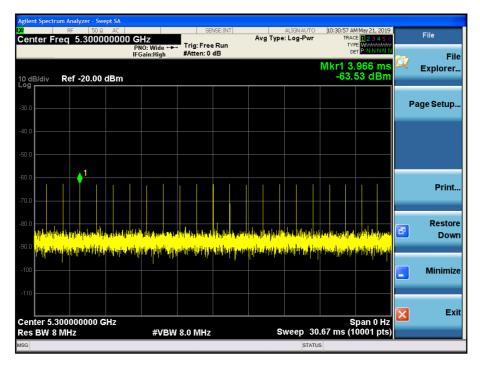
The waveform parameters from within the bounds of the signal type are selected randomly using uniform distribution.

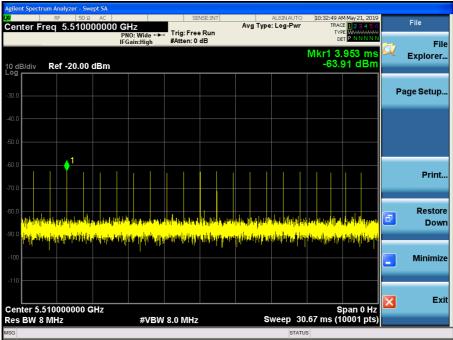
A spectrum analyzer is used as a monitor to verify that the EUT has vacated the Channel within the (Channel Closing Transmission Time and Channel Move Time, and does not transmit on a Channel during the Non-Occupancy Period after the detection and Channel move. It is also used to monitor EUT transmissions during the Channel Availability Check Time.

6.8.5 Test Procedure Used

(i) Operational Modes. The DFS requirement applies to the following operational modes:(A) The requirement for channel availability check time applies in the master operational mode.

(B) The requirement for channel move time applies in both the master and slave operational modes.


(ii) Channel Availability Check Time. A U-NII device shall check if there is a radar system already operating on the channel before it can initiate a transmission on a channel and when it has to move to a new channel. The U-NII device may start using the channel if no radar signal with a power level greater than the interference threshold values listed in paragraph (h)(2) of this section, is detected within 60 seconds.


(iii) Channel Move Time. After a radar's presence is detected, all transmissions shall cease on the operating channel within 10 seconds. Transmissions during this period shall consist of normal traffic for a maximum of 200 ms after detection of the radar signal. In addition, intermittent management and control signals can be sent during the remaining time to facilitate vacating the operating channel.

(iv) Non-occupancy Period. A channel that has been flagged as containing a radar system, either by a channel availability check or in-service monitoring, is subject to a non-occupancy period of at least 30 minutes. The non-occupancy period starts at the time when the radar system is detected.

6.8.6 RADAR WAVEFORM

6.8.7 Test result

The test results are shown in Appendix A.

7 MEASUREMENT UNCERTAINTIES

Items	Uncertainty		
Occupied Bandwidth	3kl	Ηz	
Output Power	0.67dB		
Transmitter Power Spectral Density	0.75dB		
	30MHz~1GHz	2.83dB	
Spurious emissions	1GHz~12.75GHz	2.50dB	
	12.75GHz~40GHz	2.75dB	

8 TEST EQUIPMENTS

No.	Name/ Model	Manufacturer	S/N	Cal date	Cal Due date
1.	Spectrum Analyzer FSV	ROHDE&SCHWA RZ	101065	2019.08.20	2020.08.19
2.	Signal Analyzer N9020A	Agilent	MY48010771	2019.08.20	2020.08.19
3.	Chamber SH-241	ESPEC	92013758	2019.08.20	2020.08.19
4.	DC Power Apply E3645A	Agilent	MY40000741	2019.03.01	2020.02.29
5.	Power Meter E4416A	Agilent	MY52370013	2019.03.01	2020.02.29
6.	Power Sensor E9327A	Agilent	MY52420006	2019.03.01	2020.02.29
7.	12.65m×8.03m×7.50m Fully-Anechoic Chamber	FRANKONIA			
8.	23.18m×16.88m×9.60m Semi-Anechoic Chamber	FRANKONIA			
9.	Turn table Diameter:1m	HD			
10.	Turn table Diameter:5m	HD			
11.	Antenna master FAC(MA4.0)	MATURO			
12.	Antenna master SAC(MA4.0)	MATURO			
13.	9.080m×5.255m×3.525 m Shielding room	FRANKONIA			
14.	HF 906 Double-Ridged Waveguide Horn Antenna	R&S	100030	2019.08.20	2020.08.19
15.	HF 906 Double-Ridged Waveguide Horn Antenna	R&S	100029	2019.08.20	2020.08.19
16.	HL562 Ultra log antenna	R&S	100016	2019.08.20	2020.08.19
17.	3160-09 Receive antenna	SCHWARZ-BECK	002058-002	2019.08.20	2020.08.19
18.	ESI 40 EMI test receiver	R&S	100015	2019.08.20	2020.08.19
19.	Radio tester	CMU 200	114667	2019.08.20	2020.08.19
20.	ESCS30 EMI test receiver	R&S	100029	2019.08.20	2020.08.19
21.	HL562 Receive antenna	R&S	100167	2019.08.20	2020.08.19
22.	ESH3-Z5 LISN	R&S	100020	2019.08.20	2020.08.19

No.: SRTC2019-9004(F)-19101501 (G) FCC ID: 2ADOBHLTE220E

23.	Spectrum Analyzer N9020A	Agilent	MY48010771	2019.08.20	2020.08.19
24.	Signal Generator SMBV100A	R&S	260910	2019.08.20	2020.08.19
25.	Bluetooth Test Set MT8852B	Anritsu	1142010	2019.03.01	2020.02.29
26.	Cable 104EA	SUCOFLEX	9272/4EA	2019.03.01	2020.02.29
27.	Cable 104EA	SUCOFLEX	9266/4EA	2019.03.01	2020.02.29
28.	WLAN AP WIA3300-20	SKSpruce	81520170607003 39		
29.	Notebook E470c	Lenovo	PF10UZW7		

APPENDIX A – TEST DATA OF CONDUCTED EMISSION

Output Power Result

In order to find the worst case condition, Pre-tests are needed at the presence of different data rate. Data rate below means worst-case rate of each test item.

Worst-case data rates are shown as following table.

Test Mode	Data Rate
802.11a	6Mbps
802.11n HT20	MCS0(6.5 Mbps)
802.11n HT40	MCS0(13.5 Mbps)

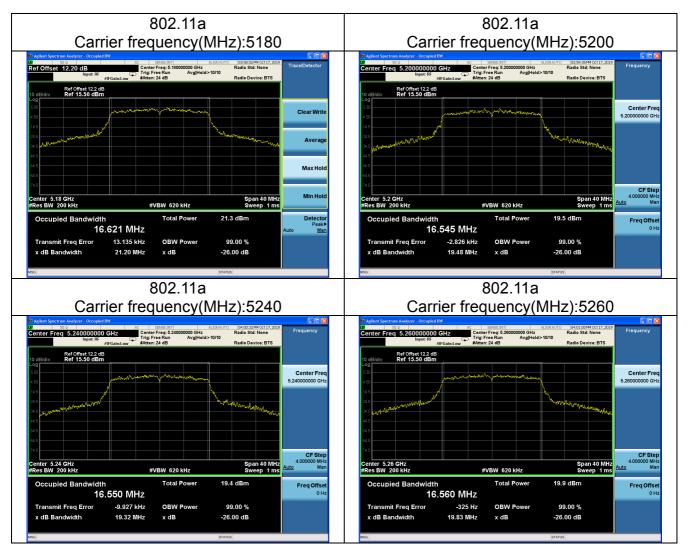
Duty Cycle Result

Mode	Duty Cycle (%)	Correction Factor(dB)
802.11a	97.6	0.106
802.11n HT20	97.4	0.114
802.11n HT40	95.1	0.218

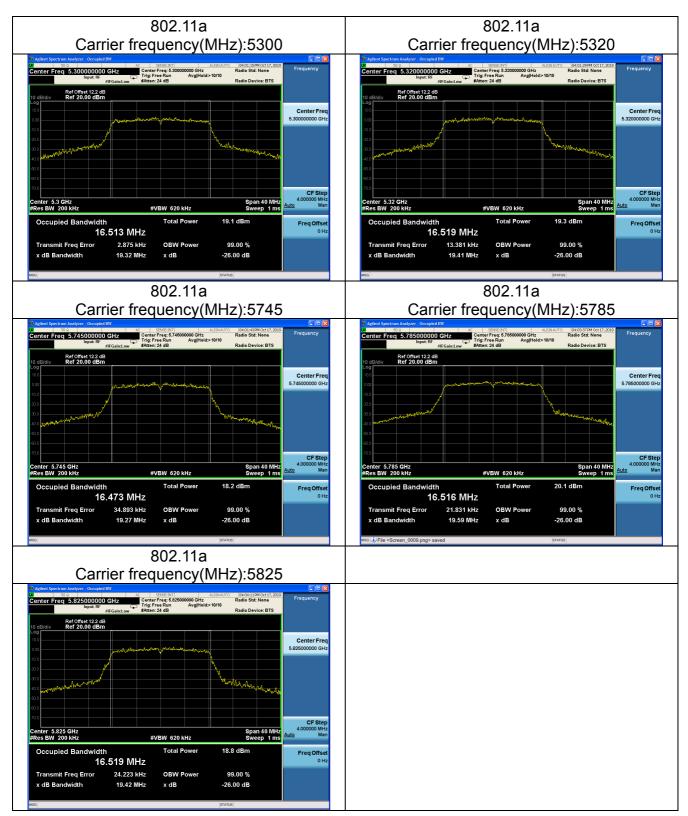
Correction factor = $10^* \log (1/duty cycle)$

Output Power

Band	Test Mode	Frequency (MHz)	Average Power (dBm)	Limit(dBm)
	802.11a	5180	14.96	24.0
	802.11a	5200	14.87	24.0
	802.11a	5240	14.89	24.0
U-NII-1	802.11n HT20	5180	14.76	24.0
0-INII- I	802.11n HT20	5200	14.93	24.0
	802.11n HT20	5240	14.96	24.0
	802.11n HT40	5190	14.92	24.0
	802.11n HT40	5230	14.94	24.0
	802.11a	5260	14.54	24.0
	802.11a	5300	14.69	24.0
	802.11a	5320	13.96	24.0
U-NII-2A	802.11n HT20	5260	14.45	24.0
U-INII-ZA	802.11n HT20	5300	13.92	24.0
	802.11n HT20	5320	14.52	24.0
	802.11n HT40	5270	14.64	24.0
	802.11n HT40	5310	14.15	24.0
	802.11a	5745	12.76	30.0
	802.11a	5785	13.42	30.0
-	802.11a	5825	14.32	30.0
U-NII-3	802.11n HT20	5745	13.31	30.0
0-111-3	802.11n HT20	5785	13.48	30.0
	802.11n HT20	5825	14.22	30.0
	802.11n HT40	5755	13.27	30.0
	802.11n HT40	5795	13.15	30.0

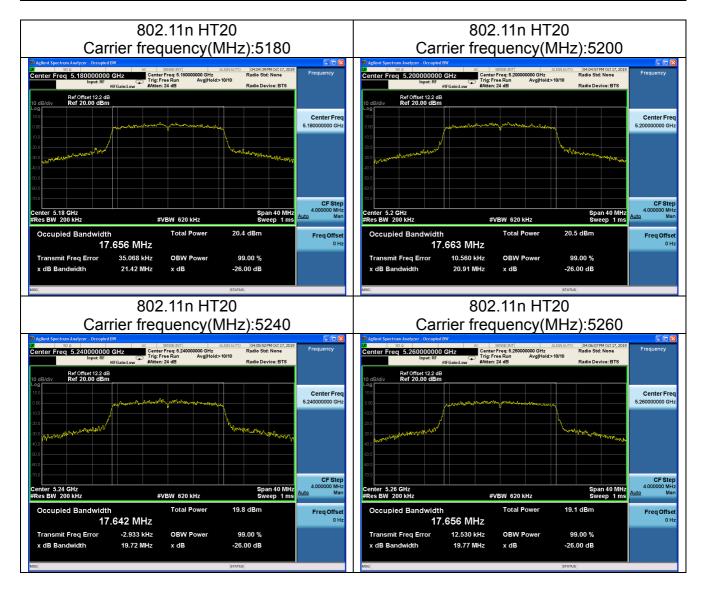


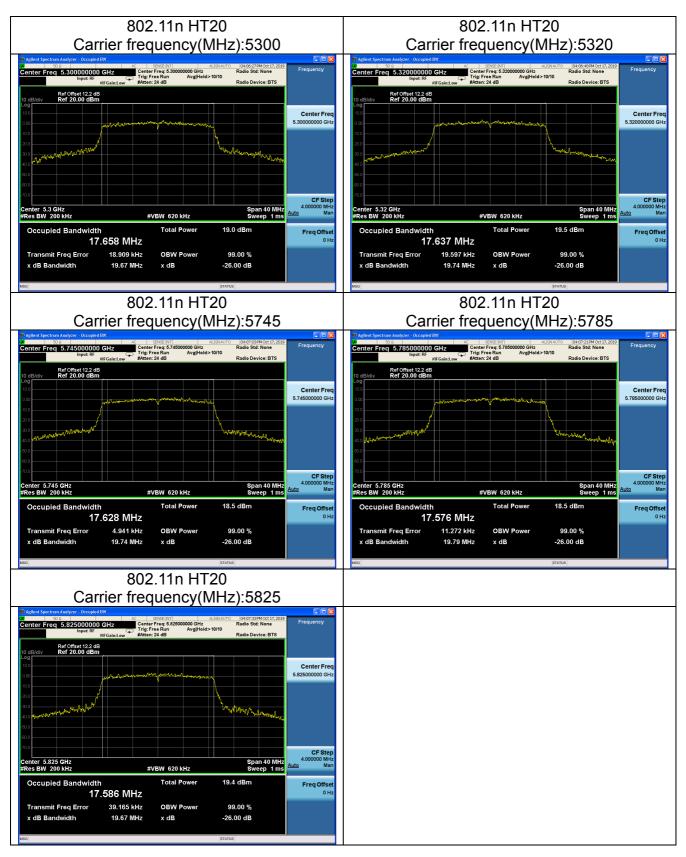
Occupied Bandwidth


Offset 12.2dB = Attenuator 10dB+ Temporary antenna connector loss 0.2dB+ Cable loss 2dB

Test Mode: 802.11a

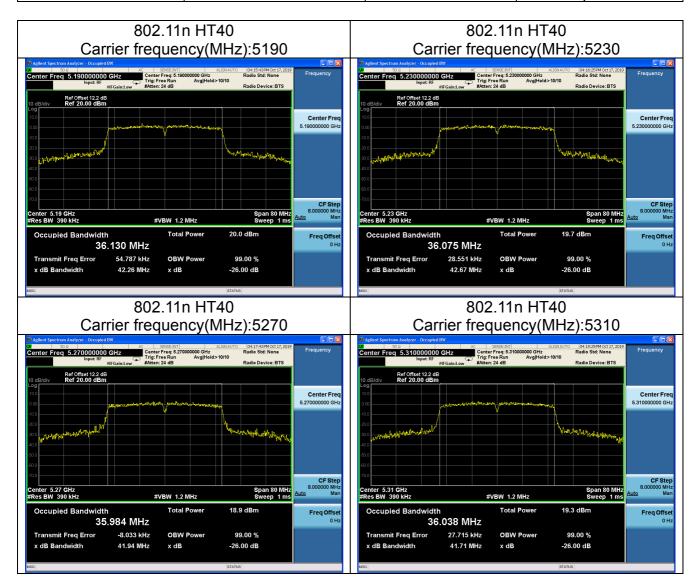
Carrier frequency (MHz)	99% Bandwidth(MHz)	Minimum 26dB Bandwidth(MHz)	Conclusion
5180	16.621	21.20	pass
5200	16.545	19.48	pass
5240	16.550	19.32	pass
5260	16.560	19.83	pass
5300	16.513	19.32	pass
5320	16.519	19.41	pass
5745	16.473	19.27	pass
5785	16.516	19.59	pass
5825	16.519	19.42	pass

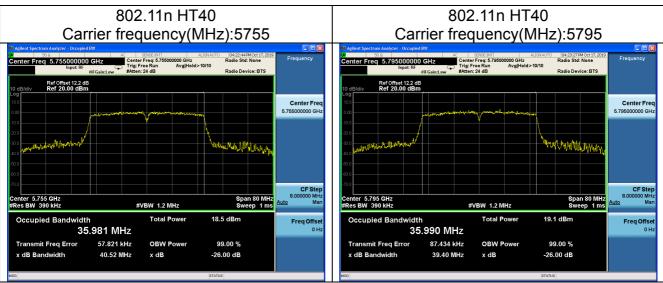




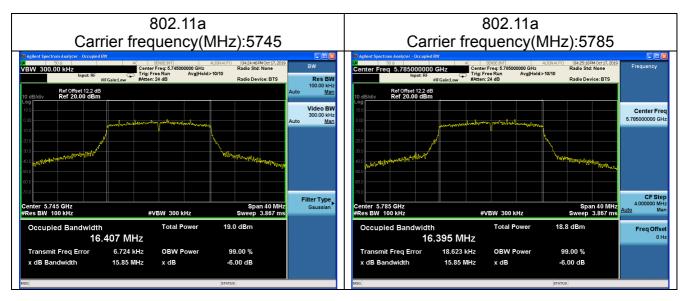
No.: SRTC2019-9004(F)-19101501 (G) FCC ID: 2ADOBHLTE220E

Test Mode: 802.11n HT20					
Carrier frequency (MHz)	99% Bandwidth(MHz)	Minimum 26dB Bandwidth(MHz)	Conclusion		
5180	17.656	21.42	pass		
5200	17.663	20.91	pass		
5240	17.642	19.72	pass		
5260	17.656	19.77	pass		
5300	17.658	19.67	pass		
5320	17.637	19.74	pass		
5745	17.628	19.74	pass		
5785	17.576	19.79	pass		
5825	17.586	19.67	pass		

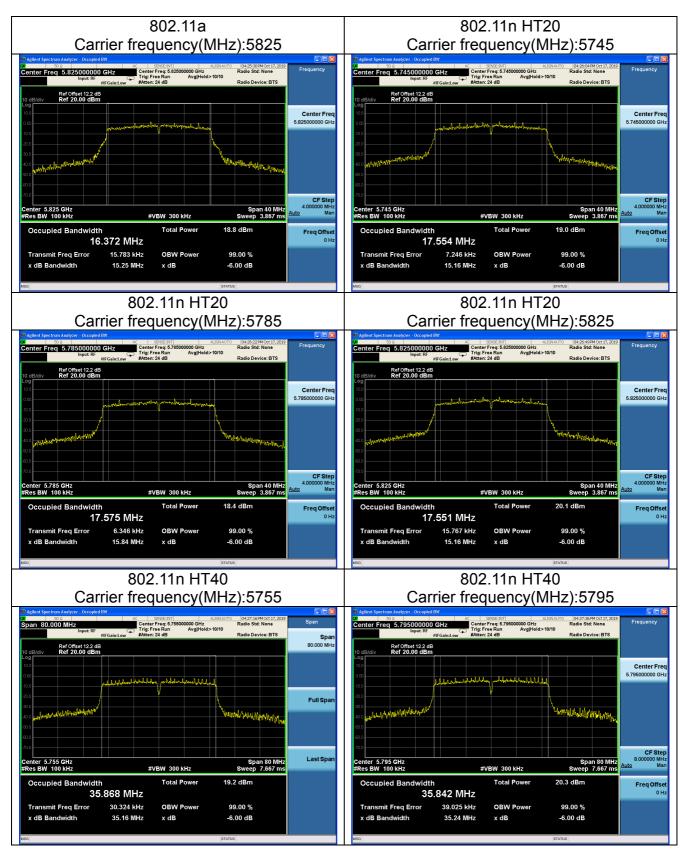




Test Mode: 802.11n HT40					
Carrier frequency (MHz)	99% Bandwidth(MHz)	Minimum 26dB Bandwidth(MHz)	Conclusion		
5190	36.130	42.26	pass		
5230	36.075	42.67	pass		
5270	35.984	41.94	pass		
5310	36.038	41.71	pass		
5755	35.981	40.52	pass		
5795	35.990	39.40	pass		

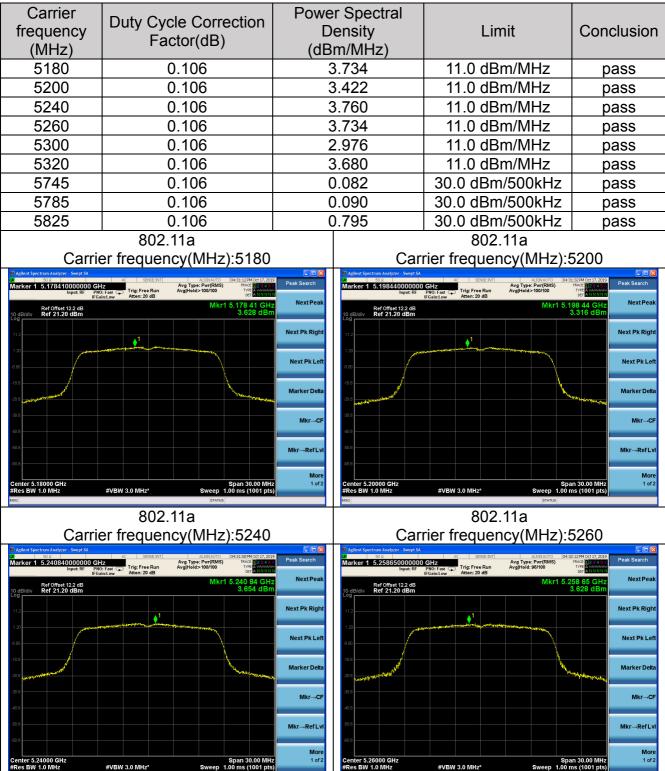


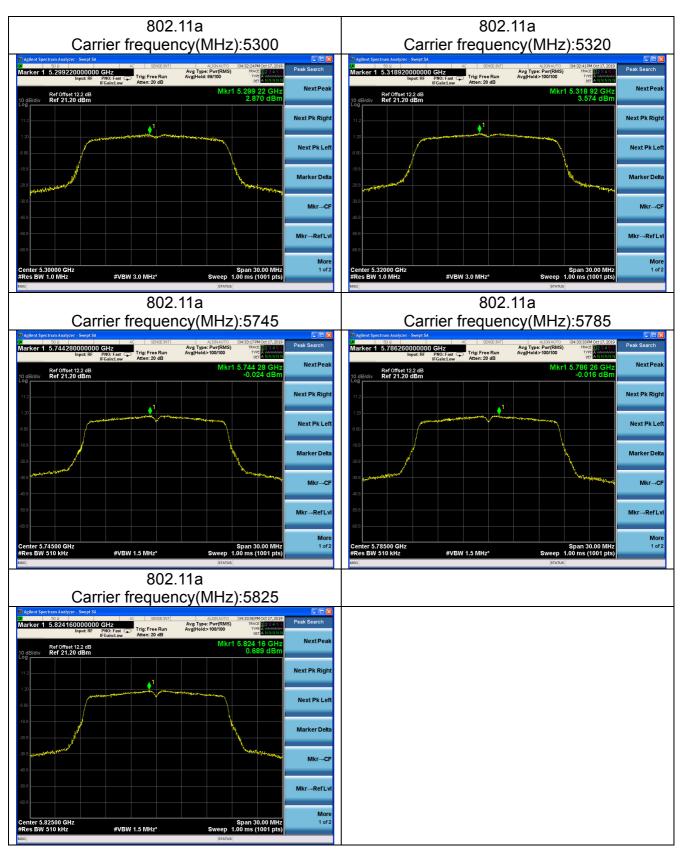
6dB Bandwidth


Offset 12.2dB = Attenuator 10dB+ Temporary antenna connector loss 0.2dB+ Cable loss 2dB

Test Mode:

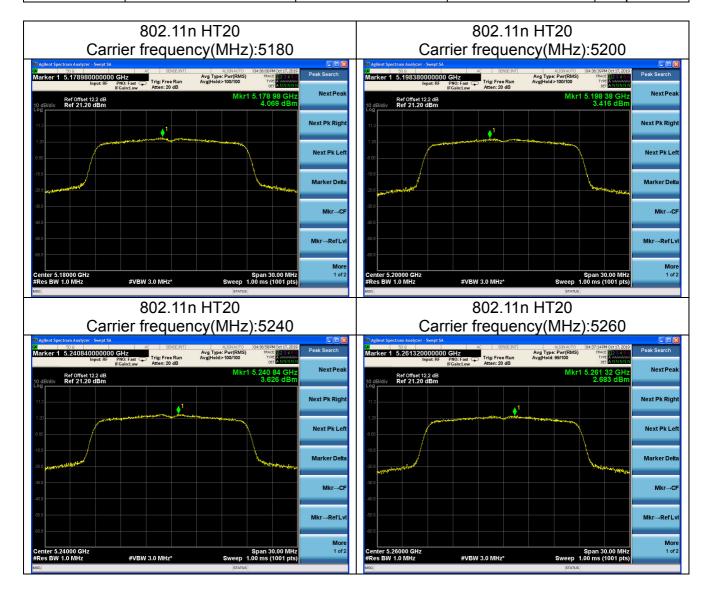
Test Mode	Carrier frequency (MHz)	6dB Bandwidth(MHz)	Minimum Limit (MHz)	Conclusion
802.11a	5745	15.85	0.5	pass
802.11a	5785	15.85	0.5	pass
802.11a	5825	15.25	0.5	pass
802.11n HT20	5745	15.16	0.5	pass
802.11n HT20	5785	15.84	0.5	pass
802.11n HT20	5825	15.16	0.5	pass
802.11n HT40	5755	35.16	0.5	pass
802.11n HT40	5795	35.24	0.5	pass

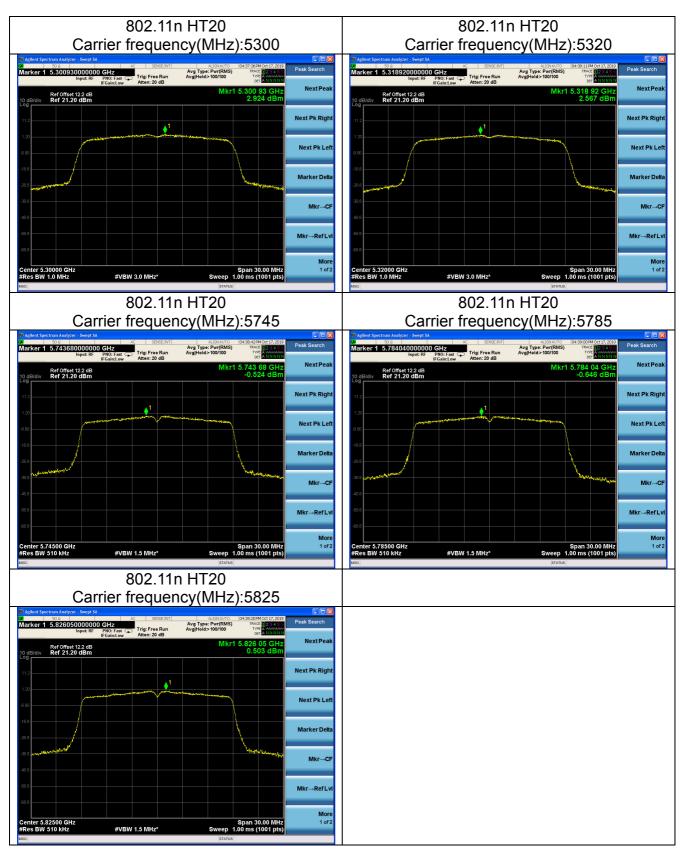



Transmitter Power Spectral Density

Offset 12.2dB = Attenuator 10dB+ Temporary antenna connector loss 0.2dB+ Cable loss 2dB

Test Mode: 802.11a




1-----

No.: SRTC2019-9004(F)-19101501 (G) FCC ID: 2ADOBHLTE220E

Test Mode: 802.11n HT20							
Carrier frequency (MHz)	Duty Cycle Correction Factor(dB)	Power Spectral Density (dBm/MHz)	Limit	Conclusion			
5180	0.114	4.183	11.0 dBm/MHz	pass			
5200	0.114	3.530	11.0 dBm/MHz	pass			
5240	0.114	3.740	11.0 dBm/MHz	pass			
5260	0.114	2.797	11.0 dBm/MHz	pass			
5300	0.114	3.038	11.0 dBm/MHz	pass			
5320	0.114	2.681	11.0 dBm/MHz	pass			
5745	0.114	-0.410	30.0 dBm/500kHz	pass			
5785	0.114	-0.532	30.0 dBm/500kHz	pass			
5825	0.114	0.617	30.0 dBm/500kHz	pass			

