

DASY/EASY – Parameters of Probe: ES3DV3 - SN: 3252

Calibration Parameter Determined in Body Tissue Simulating Media

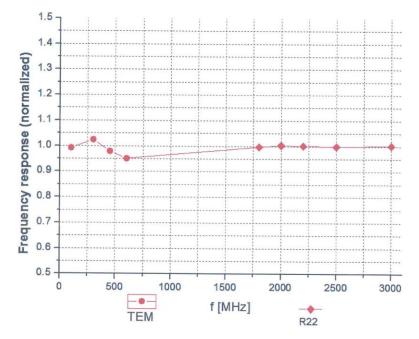
f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	6.34	6.34	6.34	0.60	1.20	±12.1%
850	55.2	0.99	6.14	6.14	6.14	0.38	1.63	±12.1%
900	55.0	1.05	6.06	6.06	6.06	0.46	1.49	±12.1%
1750	53.4	1.49	4.95	4.95	4.95	0.49	1.52	±12.1%
1900	53.3	1.52	4.69	4.69	4.69	0.67	1.33	±12.1%
2000	53.3	1.52	4.89	4.89	4.89	0.69	1.25	±12.1%
2300	52.9	1.81	4.58	4.58	4.58	0.57	1.65	±12.1%
2450	52.7	1.95	4.42	4.42	4.42	0.68	1.42	±12.1%
2600	52.5	2.16	4.22	4.22	4.22	0.56	1.66	+12.1%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z17-97112

Page 6 of 11



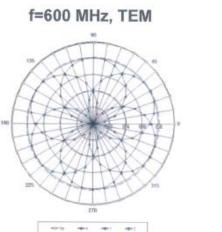
 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

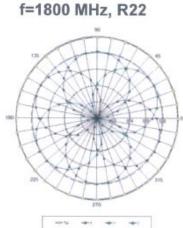
 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

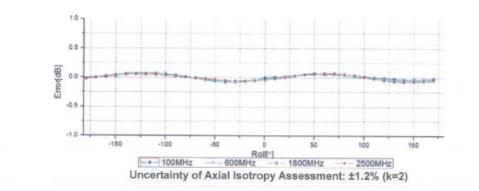
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

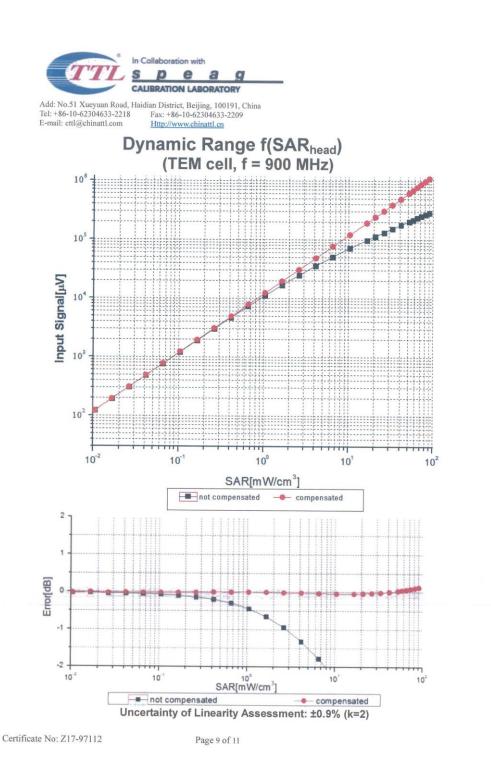
Certificate No: Z17-97112

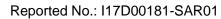

Page 7 of 11





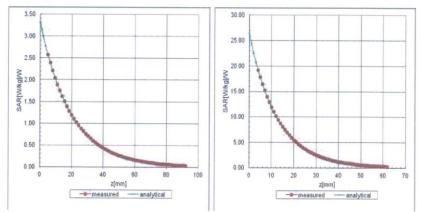
Receiving Pattern (Φ), θ=0°

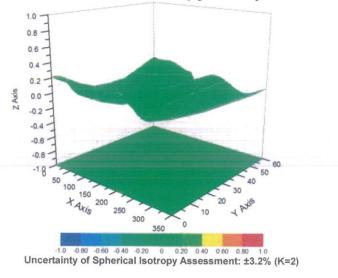




Certificate No: Z17-97112

Page 8 of 11




Conversion Factor Assessment

f=835 MHz, WGLS R9(H_convF)

f=1750 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Certificate No: Z17-97112

Page 10 of 11

DASY/EASY – Parameters of Probe: ES3DV3 - SN: 3252

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	130.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	4mm
Probe Tip to Sensor X Calibration Point	2mm
Probe Tip to Sensor Y Calibration Point	2mm
Probe Tip to Sensor Z Calibration Point	2mm
Recommended Measurement Distance from Surface	3mm

Certificate No: Z17-97112

Page 11 of 11

Client ECI		Certificate No: Z1	5-97165
ONLIDIATION C	ERTIFICAT		
Object	D835V	2 - SN: 4d112	
Calibration Procedure(s)		-2-003-01 fion Procedures for dipole validation kits	
Calibration date:	October	22, 2015	
humidity<70%. Calibration Equipment used	(M&TE critical fo	r calibration)	
Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	01-Jul-15 (CTTL, No.J15X04256)	Jun-16
the state of the s	101919 101547	01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256)	Jun-16 Jun-16
Power Meter NRP2 Power sensor NRP-Z91	101919 101547	01-Jul-15 (CTTL, No.J15X04256)	Jun-16
Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4	101919 101547 SN 3617	01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 28-Aug-15(SPEAG,No.EX3-3617_Aug15)	Jun-16 Jun-16 Aug -16
Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4	101919 101547 SN 3617 SN 777	01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15)	Jun-16 Jun-16 Aug -16 Aug -16
Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673	01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729) 03-Feb-15 (CTTL, No.J15X00728)	Jun-16 Jun-16 Aug -16 Aug -16 Scheduled Calibration Feb-16 Feb-16
Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673 Name	01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729) 03-Feb-15 (CTTL, No.J15X00728) Function	Jun-16 Jun-16 Aug -16 Aug -16 Scheduled Calibration Feb-16
Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673	01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729) 03-Feb-15 (CTTL, No.J15X00728)	Jun-16 Jun-16 Aug -16 Aug -16 Scheduled Calibration Feb-16 Feb-16
Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673 Name	01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729) 03-Feb-15 (CTTL, No.J15X00728) Function	Jun-16 Jun-16 Aug -16 Aug -16 Scheduled Calibration Feb-16 Feb-16
Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673 Name Zhao Jing	01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729) 03-Feb-15 (CTTL, No.J15X00728) Function SAR Test Engineer	Jun-16 Jun-16 Aug -16 Aug -16 Scheduled Calibration Feb-16 Feb-16

	Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinatl.com Http://www.chinatl.cn
Gloss	ary:
TSL ConvF	tissue simulating liquid sensitivity in TSL / NORMx.v.z
N/A	not applicable or not measured
	ation is Performed According to the Following Standards:
	E Std 1528-2013, "IEEE Recommended Practice for Determining the Peak tial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless
Con	nmunications Devices: Measurement Techniques", June 2013
b) IEC	62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held
200	ices used in close proximity to the ear (frequency range of 300MHz to 3GHz)*, February 5
c) KDI	3865664, SAR Measurement Requirements for 100 MHz to 6 GHz
	onal Documentation:
1) DA:	SY4/5 System Handbook
	ds Applied and Interpretation of Parameters:
Mo	easurement Conditions: Further details are available from the Validation Report at the end the certificate. All figures stated in the certificate are valid at the frequency indicated.
An	itenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
po	int exactly below the center marking of the flat phantom section, with the arms oriented
	rallel to the body axis. ed Point Impedance and Return Loss: These parameters are measured with the dipole
po me	sitioned under the liquid filled phantom. The impedance stated is transformed from the easurement at the SMA connector to the feed point. The Return Loss ensures low lected power. No uncertainty required.
Ele	actrical Delay: One-way delay between the SMA connector and the antenna feed point.
	R measured: SAR measured at the stated antenna input power.
SA	R normalized: SAR as measured, normalized to an input power of 1 W at the antenna
	nnector. R for nominal TSL parameters: The measured TSL parameters are used to calculate the
no	minal SAR result.
The	reported uncertainty of measurement is stated as the standard uncertainty of
Mea Con	surement multiplied by the coverage factor k=2, which for a normal distribution responds to a coverage probability of approximately 95%.
	te No: Z15-97165 Page 2 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinatl.com Http://www.chinatl.cn

Measurement Conditions

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

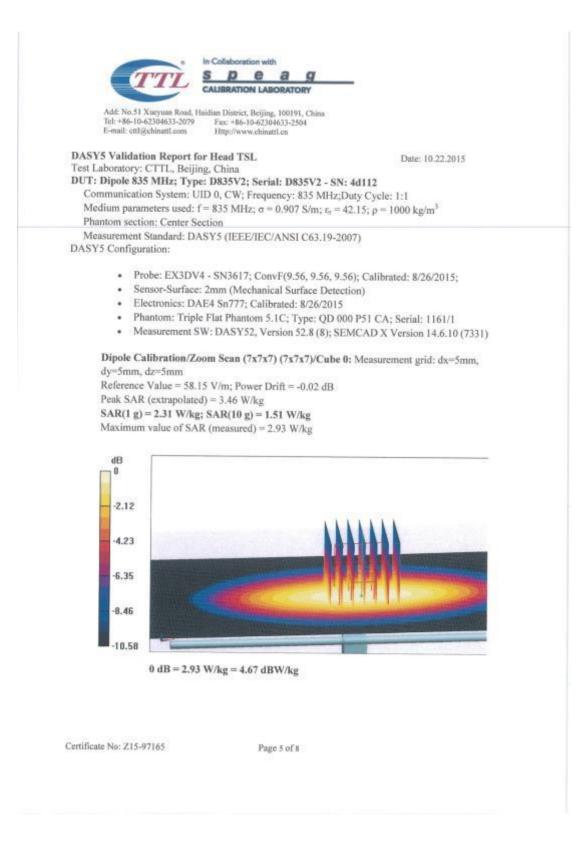
	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.2 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

Condition	
250 mW input power	2.31 mW/g
normalized to 1W	9.22 mW /g ± 20.8 % (k=2)
Condition	
250 mW input power	1.51 mW/g
normalized to 1W	6.03 mW /g ± 20.4 % (k=2)
	250 mW input power normalized to 1W Condition 250 mW input power

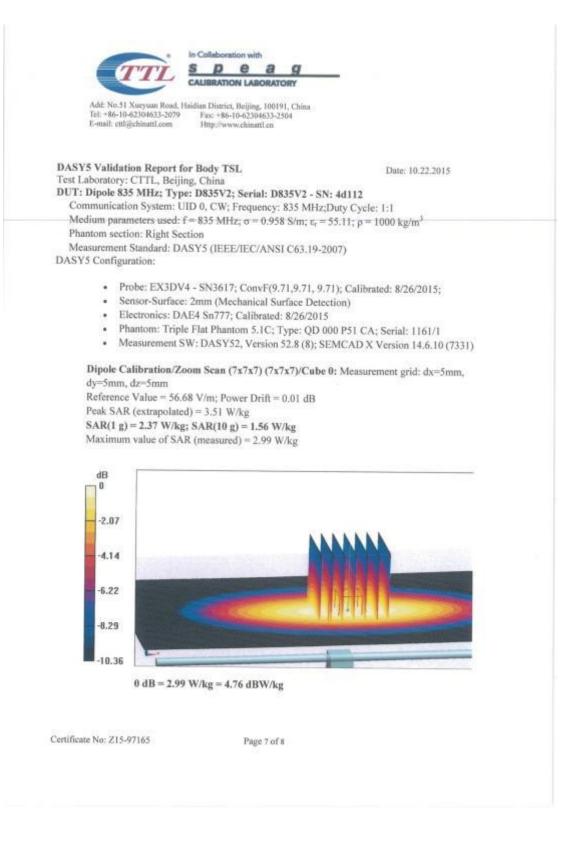
Body TSL parameters

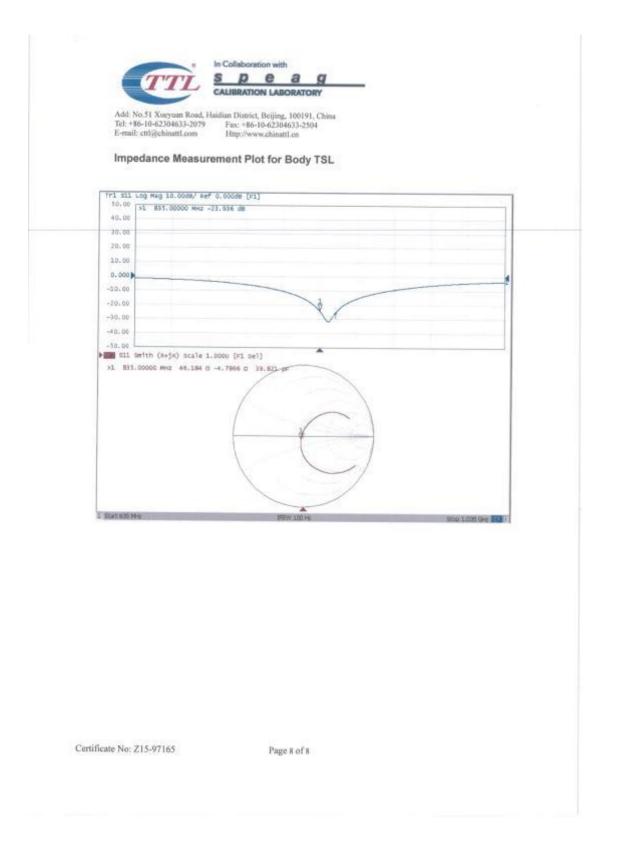
	Temperature	Permitt	ivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	8	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.1 ±	6 %	0.96 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C			
result with Body TSL				12
SAR averaged over 1 cm ³ (1 g) of Body TSL	Cond	ition		
SAR measured	250 mW ii	nput power		2.37 mW / g
SAR for nominal Body TSL parameters	normaliz	ed to 1W	9.57	mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body T	SL Cond	ition		
SAR measured	250 mW ii	put power		1.56 mW / g
SAR for nominal Body TSL parameters	normalize	ed to 1W	6.29 mW /g ± 20.4 % (k=2	


Certificate No: Z15-97165

Page 3 of 8

	Parameters with Head TSL	
Impeda		
	nce, transformed to feed point	
Return		49.1Q- 4.20jQ
Lancourse and the	.055	- 27.3dB
Antenna	Parameters with Body TSL	
Impeda	nce, transformed to feed point	46.2Ω- 4.79jΩ
Return I	.055	- 23.9dB
General /	Antenna Parameters and Design	p
	1000/1000/1000/1000/1000/1000/1000/100	
Electrica	al Delay (one direction)	
The dipole connected of the dipol according t	ed. is made of standard semirigid coaxial of to the second arm of the dipole. The ar es, small end caps are added to the dip of the position as explained in the "Mea	1.502 ns nly a slight warming of the dipole near the feedpoint can cable. The center conductor of the feeding line is directly interna is therefore short-circuited for DC-signals. On some ipole arms in order to improve matching when loaded asurement Conditions" paragraph. The SAB data are not
The dipole connected of the dipol according t affected by No excessi	ed. is made of standard semirigid coaxial to the second arm of the dipole. The ar es, small end caps are added to the di o the position as explained in the "Mea this change. The overall dipole length	nly a slight warming of the dipole near the feedpoint can cable. The center conductor of the feeding line is directly intenna is therefore short-circuited for DC-signals. On some ipole arms in order to improve matching when loaded asurement Conditions" paragraph. The SAR data are not is still according to the Standard.
be measure Connected of the dipole according to affected by No excession connections	ed. is made of standard semirigid coaxial of to the second arm of the dipole. The ar es, small end caps are added to the dip of the position as explained in the "Meas this change. The overall dipole length of force must be applied to the dipole.	nly a slight warming of the dipole near the feedpoint can cable. The center conductor of the feeding line is directly intenna is therefore short-circuited for DC-signals. On some ipole arms in order to improve matching when loaded asurement Conditions" paragraph. The SAR data are not is still according to the Standard.
The dipole connected of the dipol according t affected by No excessi connections	ed. is made of standard semirigid coaxial (to the second arm of the dipole. The ar es, small end caps are added to the di o the position as explained in the "Mea this change. The overall dipole length ve force must be applied to the dipole s near the feedpoint may be damaged.	a slight warming of the dipole near the feedpoint can cable. The center conductor of the feeding line is directly intenna is therefore short-circuited for DC-signals. On some ipole arms in order to improve matching when loaded asurement Conditions" paragraph. The SAR data are not is still according to the Standard.
The dipole connected of the dipol according t affected by No excessi connections	ed. is made of standard semirigid coaxial of to the second arm of the dipole. The ar es, small end caps are added to the dip o the position as explained in the "Mes this change. The overall dipole length ve force must be applied to the dipole is near the feedpoint may be damaged.	nly a slight warming of the dipole near the feedpoint can cable. The center conductor of the feeding line is directly intenna is therefore short-circuited for DC-signals. On some ipole arms in order to improve matching when loaded asurement Conditions" paragraph. The SAR data are not is still according to the Standard. arms, because they might bend or the soldered
The dipole connected of the dipol according t affected by No excessi connections	ed. is made of standard semirigid coaxial of to the second arm of the dipole. The ar es, small end caps are added to the dip o the position as explained in the "Mes this change. The overall dipole length ve force must be applied to the dipole is near the feedpoint may be damaged.	nly a slight warming of the dipole near the feedpoint can cable. The center conductor of the feeding line is directly intenna is therefore short-circuited for DC-signals. On some ipole arms in order to improve matching when loaded asurement Conditions" paragraph. The SAR data are not is still according to the Standard. arms, because they might bend or the soldered
The dipole connected of the dipol according t affected by No excessi connections	ed. is made of standard semirigid coaxial of to the second arm of the dipole. The ar es, small end caps are added to the dip o the position as explained in the "Mes this change. The overall dipole length ve force must be applied to the dipole is near the feedpoint may be damaged.	nly a slight warming of the dipole near the feedpoint can cable. The center conductor of the feeding line is directly intenna is therefore short-circuited for DC-signals. On some ipole arms in order to improve matching when loaded asurement Conditions" paragraph. The SAR data are not is still according to the Standard. arms, because they might bend or the soldered
The dipole connected of the dipol according t affected by No excessi connections	ed. is made of standard semirigid coaxial of to the second arm of the dipole. The ar es, small end caps are added to the dip o the position as explained in the "Mes this change. The overall dipole length ve force must be applied to the dipole is near the feedpoint may be damaged.	nly a slight warming of the dipole near the feedpoint can cable. The center conductor of the feeding line is directly intenna is therefore short-circuited for DC-signals. On some ipole arms in order to improve matching when loaded asurement Conditions" paragraph. The SAR data are not is still according to the Standard. arms, because they might bend or the soldered
The dipole connected of the dipol according t affected by No excessi connections	ed. is made of standard semirigid coaxial of to the second arm of the dipole. The ar es, small end caps are added to the dip o the position as explained in the "Mes this change. The overall dipole length ve force must be applied to the dipole is near the feedpoint may be damaged.	nly a slight warming of the dipole near the feedpoint can cable. The center conductor of the feeding line is directly intenna is therefore short-circuited for DC-signals. On some ipole arms in order to improve matching when loaded asurement Conditions" paragraph. The SAR data are not is still according to the Standard. arms, because they might bend or the soldered
be measure The dipole connected of the dipol according t affected by No excessi connections	ed. is made of standard semirigid coaxial of to the second arm of the dipole. The ar es, small end caps are added to the dip o the position as explained in the "Mes this change. The overall dipole length ve force must be applied to the dipole is near the feedpoint may be damaged.	nly a slight warming of the dipole near the feedpoint can cable. The center conductor of the feeding line is directly intenna is therefore short-circuited for DC-signals. On some ipole arms in order to improve matching when loaded asurement Conditions" paragraph. The SAR data are not is still according to the Standard. arms, because they might bend or the soldered





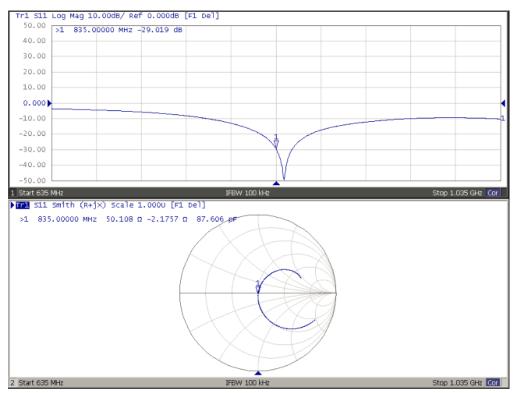
40.0	>1 835.00000 MHz -27.270 de
9103.00	
30.0	
20.0	
2,0.0	
0.00	
-10.0	
~20.0	No. /
~30.0	N/
-60.00	
	L Swith (A+jx) scale 1.0000 [F1 Del]
1 Station	
	NHO NOW MORE STOCION OF COM

D835V2, Serial No.4d112 Extended Dipole Calibrations

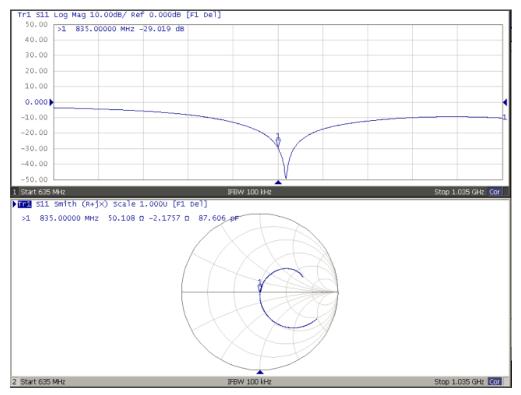
Per IEEE Std 1528-2013, the dipole should have a return loss better than -20dB at the test frequency to reduce uncertainty in the power measurement.

Per KDB 865664 D01, if dipoles are verified in return loss(<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

Justification of the extended calibration

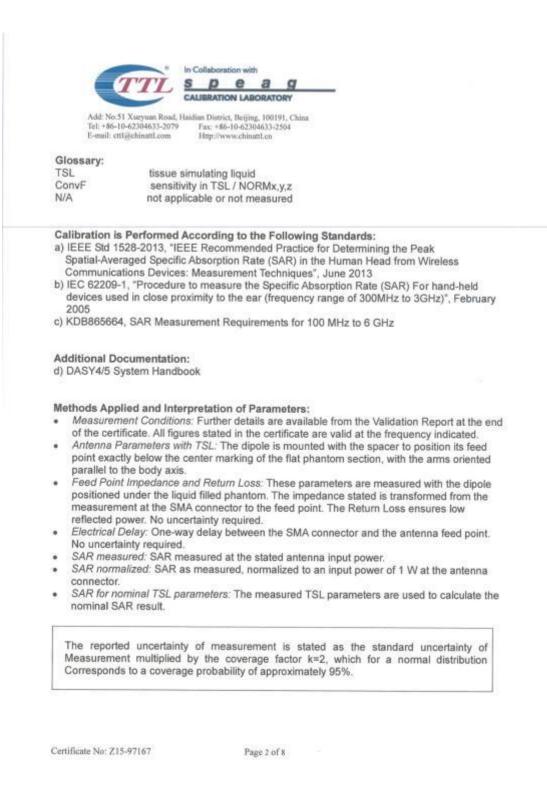

		D835	V2 Serial No.4	d112					
			835 Head						
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)			
10.22.2015	-27.27		49.108		-4.2018				
10.21.2016	-29.019	6.41	50.108	1	-2.1757	2.0261			

		D835	V2 Serial No.4	d112		
			835 Body			
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
10.22.2015	-23.036		46.184		-4.7866	
10.21.2016	-23.131	0.56	47.003	0.819	-2.9072	1.8794


The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole Verification Data D835V2 Serial No.4d112 835MHz-Head

835MHz - Body



		tion LABORATORY	CNAS
Add: No.51 Xueyu Tel: +86-10-62304 E-mail: ettl@china	633-2079 Fax:	strict, Beijing, 100191, China +86-10-62304633-2504 //www.chinattl.en	CALIBRATION No. L0570
Client ECI	IT	Certificate No: Z	15-97167
CALIBRATION C	ERTIFICAT	ΓE	
Object	D1750	V2 - SN: 1044	
Calibration Procedure(s)			
contraction (construction)		1-2-003-01	
	Calibra	tion Procedures for dipole validation kits	
Calibration date:	Novem	iber 3, 2015	
pages and are part of the or All calibrations have been		the closed laboratory facility: environment	t temperature/22+3\10 and
All calibrations have been humidity<70%. Calibration Equipment used	i conducted in		
All calibrations have beer humidity<70%. Calibration Equipment used Primary Standards	I conducted in (M&TE critical f	or calibration) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
All calibrations have been humidity<70% Calibration Equipment used Primary Standards Power Meter NRP2	conducted in (M&TE critical f ID # 101919	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256)	Scheduled Calibration Jun-16
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	I conducted in (M&TE critical f ID # 101919 101547	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256)	Scheduled Calibration Jun-16 Jun-16
All calibrations have been humidity<70% Calibration Equipment used Primary Standards Power Meter NRP2	I conducted in (M&TE critical f ID # 101919 101547	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 28-Aug-15(SPEAG,No.EX3-3617_Aug15)	Scheduled Calibration Jun-16 Jun-16 Aug -16
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4	I conducted in (M&TE critical f ID # 101919 101547 SN 3617	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256)	Scheduled Calibration Jun-16 Jun-16 Aug -16
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards	I conducted in (M&TE critical f 10 # 101919 101547 SN 3617 SN 777 ID #	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration Jun-16 Jun-16 Aug -16
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4	I conducted in (M&TE critical f 101919 101547 SN 3617 SN 777 ID# MY49071430	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 28-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration Jun-16 Jun-16 Aug -16 Aug -16
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	I conducted in (M&TE critical f 101919 101547 SN 3617 SN 777 ID# MY49071430	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729)	Scheduled Calibration Jun-16 Jun-16 Aug -16 Aug -16 Scheduled Calibration Feb-16
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	I conducted in (M&TE critical f 101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15 (SPEAG,No.EX3-3617_Aug15) 26-Aug-15 (SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729) 03-Feb-15 (CTTL, No.J15X00728)	Scheduled Calibration Jun-16 Jun-16 Aug -16 Aug -16 Scheduled Calibration Feb-16 Feb-16
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	Conducted in (M&TE critical f 101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 28-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729) 03-Feb-15 (CTTL, No.J15X00728) Function	Scheduled Calibration Jun-16 Jun-16 Aug -16 Aug -16 Scheduled Calibration Feb-16 Feb-16
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	Conducted in (M&TE critical f 101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673 Name Zhao Jing	Cal Date(Calibrated by, Certificate No.) O1-Jul-15 (CTTL, No.J15X04256) O1-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) O2-Feb-15 (CTTL, No.J15X00729) O3-Feb-15 (CTTL, No.J15X00728) Function SAR Test Engineer	Scheduled Calibration Jun-16 Jun-16 Aug -16 Aug -16 Scheduled Calibration Feb-16 Feb-16

Certificate No: Z15-97167

Page 1 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Tel: +86-10-62304633-2079 E-mail: ettl@chinattl.com

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.7 ± 6 %	1.40 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

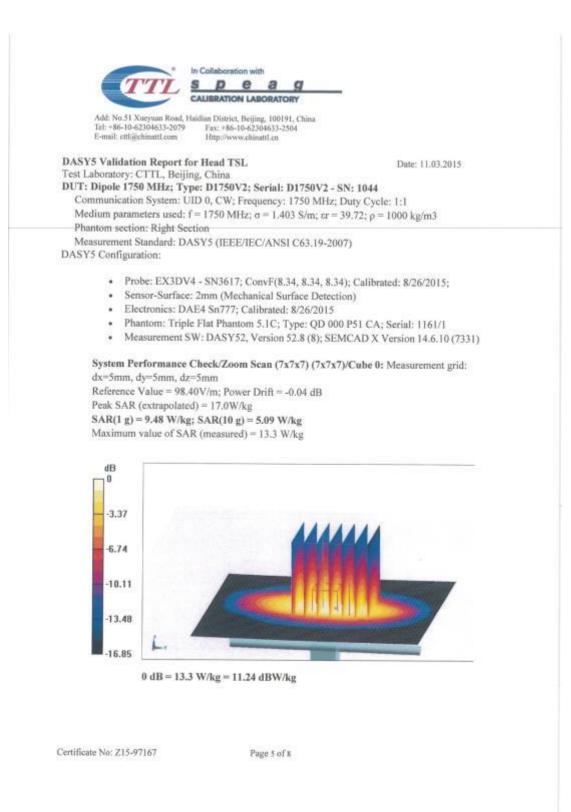
SAR result with Head TSL

SAR averaged over 1 cm ² (1 g) of Head TSL	Condition	A
SAR measured	250 mW input power	9.48 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	37.3 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.09 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.1 mW /g ± 20.4 % (k=2)

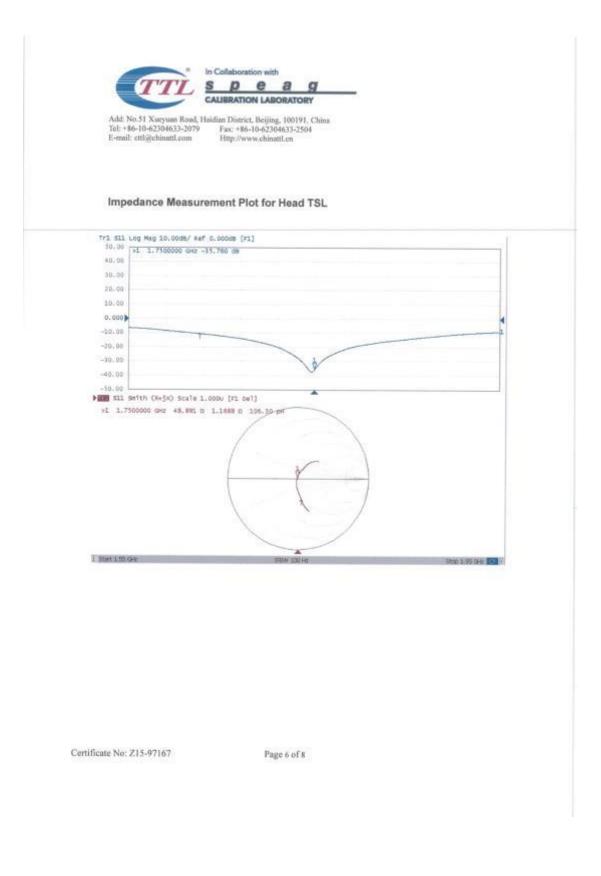
Body TSL parameters The following parameters a

S

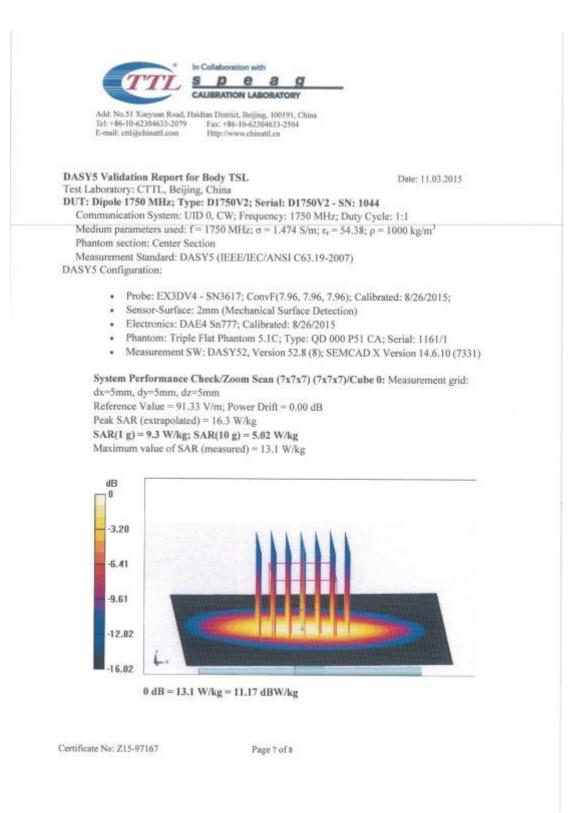
	Tempera	ture	Permitti	vity	Conductivity
Nominal Body TSL parameters	22.0 °C	0	53.4		1.49 mho/m
Measured Body TSL parameters	(22.0±0.2)°C	54.4 ± 1	3 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	8		2	
R result with Body TSL					
SAR averaged over 1 cm ³ (1 g) of Body TSL	311	Condit	ion		
SAR measured	250) mW ing	put power		9.30 mW / g
SAR for nominal Body TSL parameters	no	normalized to 1W		37.6 1	mW /g ± 20.8 % (k=2
SAR averaged over 10 cm ² (10 g) of Body T	SL	Conditi	ion		
SAR measured	250	mW inp	out power		5.02 mW / g
SAR for nominal Body TSL parameters	00	rmalized	No 1W	20.2	nW/g ± 20.4 % (k=2


Certificate No: Z15-97167

Page 3 of 8



Impedance, transformed to feed point	48.9Ω+ 1.17]Ω
Return Loss	- 35.8dB
Antenna Parameters with Body TS	L
Impedance, transformed to feed point	45.5Ω+ 0.58jΩ
Return Loss	- 26.5dB
General Antenna Parameters and D	1.319 ns
be measured. The dipole is made of standard semirigid c connected to the second arm of the dipole, of the dipoles, small end caps are added to according to the position as explained in th affected by this change. The overall dipole	wer, only a slight warming of the dipole near the feedpoint o oaxial cable. The center conductor of the feeding line is dire The antenna is therefore short-circuited for DC-signals. On the dipole arms in order to improve matching when loaded is "Measurement Conditions" paragraph. The SAR data are length is still according to the Standard.
After long term use with 100W radiated por be measured. The dipole is made of standard semirigid c connected to the second arm of the dipole. of the dipoles, small end caps are added to according to the position as explained in th affected by this change. The overall dipole	wer, only a slight warming of the dipole near the feedpoint of oaxial cable. The center conductor of the feeding line is dire The antenna is therefore short-circuited for DC-signals. On the dipole arms in order to improve matching when loaded is "Measurement Conditions" paragraph. The SAR data are length is still according to the Standard. dipole arms, because they might bend or the soldered
After long term use with 100W radiated por be measured. The dipole is made of standard semirigid c connected to the second arm of the dipole. of the dipoles, small end caps are added to according to the position as explained in th affected by this change. The overall dipole No excessive force must be applied to the connections near the feedpoint may be dar	wer, only a slight warming of the dipole near the feedpoint of oaxial cable. The center conductor of the feeding line is dire The antenna is therefore short-circuited for DC-signals. On the dipole arms in order to improve matching when loaded is "Measurement Conditions" paragraph. The SAR data are length is still according to the Standard. dipole arms, because they might bend or the soldered



40.00 90.00 10,00 -20.00 -	50,00	Log Mag 10.00dB/ Hef 0.000dB [F1]
20.00 0.000 -10.00 -20.00 -30.00	10.000	24 417399900 GH2 -201323 GB
10,00 0.000 -10,00 -20,00 -30,00	30,00	
0.000	20,00	
-10.00 -20.00 -30.00 -80.00 -5	10,00	
-20.00 -30.00 -80.00 -5	0.000	•
-30.00 -40.00 -50.00 -50.01 Swith (A+)x) Scale 1.0000 [#1 be1]	-10.00	1
-80.00 -50.00 III Sal Setth (R+3A) Scale 1.0000 [F1 Del]	-20.00	
-10.00 salth (#+)x) Scale 1.0000 [#1 be1]	-30.00	
III 511 Smith (#+jK) Scale 1.0000 [#1 Del]	-40.00	
	-50.00	
51 1.7100000 GHz 43,530 0 583,33 HD 53,653-9R		
Sar 1.85 Get UNV 103-le Pool 1.95 Tet I		

Certificate No: Z15-97167

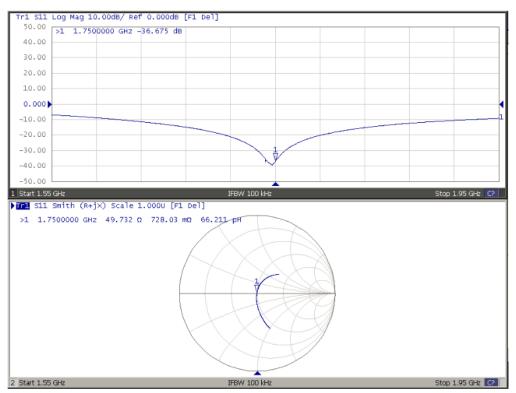
Page 8 of 8

D1750V2, Serial No.1044 Extended Dipole Calibrations

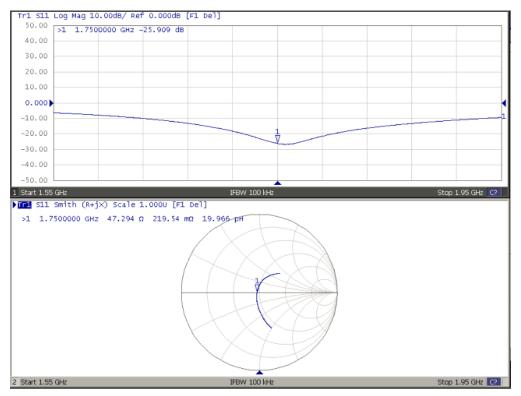
Per IEEE Std 1528-2013, the dipole should have a return loss better than -20dB at the test frequency to reduce uncertainty in the power measurement.

Per KDB 865664 D01, if dipoles are verified in return loss(<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

oustilleation of		andiation				
D1750V2 Serial	No.1044					
1750 Head						
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
11.03.2015	-36.76		48.891		1.1688	
11.02.2016	-36.675	0.23	49.732	0.841	0.738	0.431


Justification of the extended calibration

D1750V2 Serial 1750Body	No.1044					
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
11.03.2015	-26.523		45.53		0.583	
11.02.2016	-25.909	2.31	47.294	1.764	0.219	0.364


The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole Verification Data D1750V2 Serial No.1044 1750MHz-Head

1750MHz - Body

	LSP	oration with	CNAS
	CALIBRA	TION LABORATORY	BC-MRA
Add: No.51 Xueyu Tel: +86+10-62304 E-mail: ettl@china	633-2079 Faxt	strict, Beijing, 100191, China +86-10-62304633-2504 //www.chinattl.cn	CALIBRATION No. L0570
Client ECI	т	Certificate No: Z	15-97168
CALIBRATION C	ERTIFICAT	ΓE	
Object	D1900	V2 - SN: 5d134	
Calibration Procedure(s)	FD-Z1	1-2-003-01	
	Calibra	ation Procedures for dipole validation kits	
Calibration date:	Novem	nber 4, 2015	A COMPANY OF A COMPANY
This calibration Certificate	documents the	traceability to national standards, which re	salize the physical units of
managements (Cl). The set	anumante and	the uncertainties with confidence probability	vare given on the following
measurements(SI). The me	asurements and	the arrest latting that so induced probability	
pages and are part of the ce		the stress and the stress becaused proceeding	, and ground and a solution of
pages and are part of the ce	ertificate.		1988 - 5978 - 356 - 478 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 1
pages and are part of the ce	ertificate.		1988 - 5978 - 356 - 478 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 1
pages and are part of the ce	ertificate.	the closed laboratory facility: environmen	1988 - 5978 - 356 - 478 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 1
pages and are part of the ce All calibrations have been	ertificate.		1949 - 5979 - 355, 1949 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1
pages and are part of the ce All calibrations have been humidity<70%.	conducted in	the closed laboratory facility; environmen	1949 - 5979 - 355, 1949 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1
pages and are part of the ce All calibrations have been	conducted in	the closed laboratory facility; environmen	1949 - 5979 - 355, 1949 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1
pages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used	conducted in	the closed laboratory facility; environmen	1949 - 5979 - 355, 1949 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1
pages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	conducted in (M&TE critical f	the closed laboratory facility: environmen or calibration)	it temperature(22±3)℃ and
pages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	(M&TE critical f ID # 101919 101547	the closed laboratory facility: environmen or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256)	t temperature(22±3)℃ and Scheduled Calibration
pages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4	(M&TE critical f ID # 101919 101547 SN 3617	the closed laboratory facility: environmen or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256)	t temperature(22±3)℃ and Scheduled Calibration Jun-16
pages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	(M&TE critical f ID # 101919 101547	the closed laboratory facility: environmen or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256)	t temperature(22±3)℃ and Scheduled Calibration Jun-16 Jun-16 Aug -16
pages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4	ID# ID1547 SN 3617 SN 777	the closed laboratory facility: environmen or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG, No.EX3-3617_Aug15) 26-Aug-15(SPEAG, No.DAE4-777_Aug15)	t temperature(22±3)℃ and Scheduled Calibration Jun-16 Jun-16 Aug -16 Aug -16
pages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards	ID # ID # ID 547 SN 3617 SN 777 ID #	the closed laboratory facility: environmen or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.)	t temperature(22±3)℃ and Scheduled Calibration Jun-16 Jun-16 Aug -16 Aug -16 Scheduled Calibration
pages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	entificate. conducted in (M&TE critical f 1D # 101919 101547 SN 3617 SN 777 ID # MY49071430	the closed laboratory facility: environmen or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15 (SPEAG, No.EX3-3617_Aug15) 26-Aug-15 (SPEAG, No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729)	t temperature(22±3)℃ and Scheduled Calibration Jun-16 Jun-16 Aug -16 Aug -16 Scheduled Calibration Feb-16
pages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards	ID # ID # ID 547 SN 3617 SN 777 ID #	the closed laboratory facility: environmen or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729)	t temperature(22±3)℃ and Scheduled Calibration Jun-16 Jun-16 Aug -16 Aug -16 Scheduled Calibration
pages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	entificate. conducted in (M&TE critical f 1D # 101919 101547 SN 3617 SN 777 ID # MY49071430	the closed laboratory facility: environmen or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15 (SPEAG, No.EX3-3617_Aug15) 26-Aug-15 (SPEAG, No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729)	t temperature(22±3)℃ and Scheduled Calibration Jun-16 Jun-16 Aug -16 Aug -16 Scheduled Calibration Feb-16 Feb-16
pages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	entificate. conducted in (M&TE critical f 101919 101547 SN 3617 SN 3617 SN 777 ID # MY49071430 MY46110673	the closed laboratory facility: environmen or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 28-Aug-15 (CTTL, No.J15X04256) 26-Aug-15 (SPEAG, No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00728)	t temperature(22±3)℃ and Scheduled Calibration Jun-16 Jun-16 Aug -16 Aug -16 Scheduled Calibration Feb-16
pages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	entificate. conducted in (M&TE critical f 101919 101547 SN 3617 SN 777 ID # MY49071430 MY49071430 MY46110673 Name	the closed laboratory facility: environmen or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 28-Aug-15(SPEAG,No.EX3-3617_Aug15) 28-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729) 03-Feb-15 (CTTL, No.J15X00728) Function	t temperature(22±3)℃ and Scheduled Calibration Jun-16 Jun-16 Aug -16 Aug -16 Scheduled Calibration Feb-16 Feb-16
pages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	entificate. conducted in (M&TE critical f 101919 101547 SN 3617 SN 777 ID # MY49071430 MY49071430 MY46110673 Name	the closed laboratory facility: environmen or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 28-Aug-15(SPEAG,No.EX3-3617_Aug15) 28-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729) 03-Feb-15 (CTTL, No.J15X00728) Function	t temperature(22±3)℃ and Scheduled Calibration Jun-16 Jun-16 Aug -16 Aug -16 Scheduled Calibration Feb-16 Feb-16
pages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	ertificate. conducted in (M&TE critical f 101919 101547 SN 3617 SN 777 ID # MY49071430 MY49071430 MY46110673 Name Zhao Jing	the closed laboratory facility: environmen or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 28-Aug-15(SPEAG,No.EX3-3617_Aug15) 28-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729) 03-Feb-15 (CTTL, No.J15X00728) Function SAR Test Engineer	t temperature(22±3)℃ and Scheduled Calibration Jun-16 Jun-16 Aug -16 Aug -16 Scheduled Calibration Feb-16 Feb-16

Certificate No: Z15-97168

Page 1 of 8

Tel: +86+1	51 Xueyuan Road, Haidian District, Beijing, 100191, China 10-62304633-2079 Fax: =86-10-62304633-2504 Il@chinatil.com Http://www.chinattl.cn
Glossary: TSL ConvF N/A	tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured
 a) IEEE Std 1 Spatial-Ave Communica b) IEC 62209- devices use 2005 	A Performed According to the Following Standards: 528-2013, "IEEE Recommended Practice for Determining the Peak raged Specific Absorption Rate (SAR) in the Human Head from Wireless ations Devices: Measurement Techniques", June 2013 -1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held ed in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 4, SAR Measurement Requirements for 100 MHz to 6 GHz
a second second second second	ocumentation: system Handbook
Measurem of the cert Antenna F point exact parallel to Feed Poir positioned measurem reflected g Electrical No uncert SAR mea. SAR norm connector	ominal TSL parameters: The measured TSL parameters are used to calculate the
	ed uncertainty of measurement is stated as the standard uncertainty of

4

Add: No.51 Xueyuan Rond, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

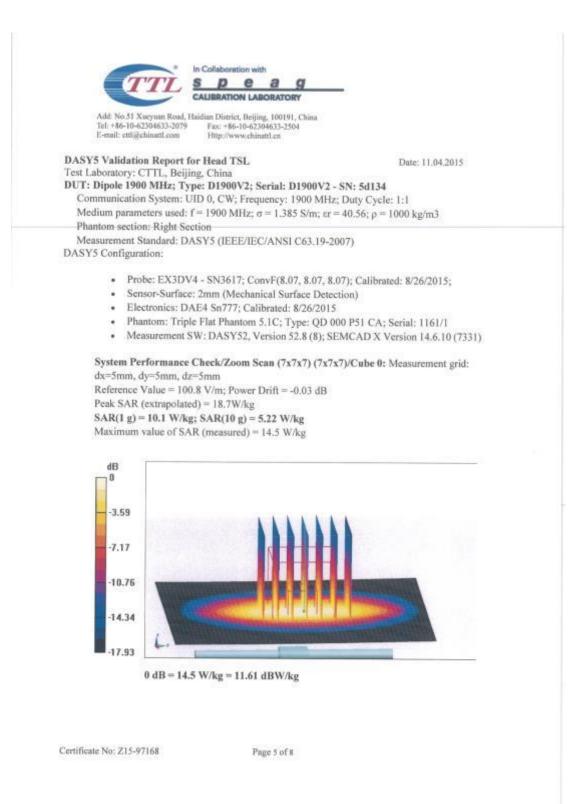
	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.6 ± 6 %	1.39 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

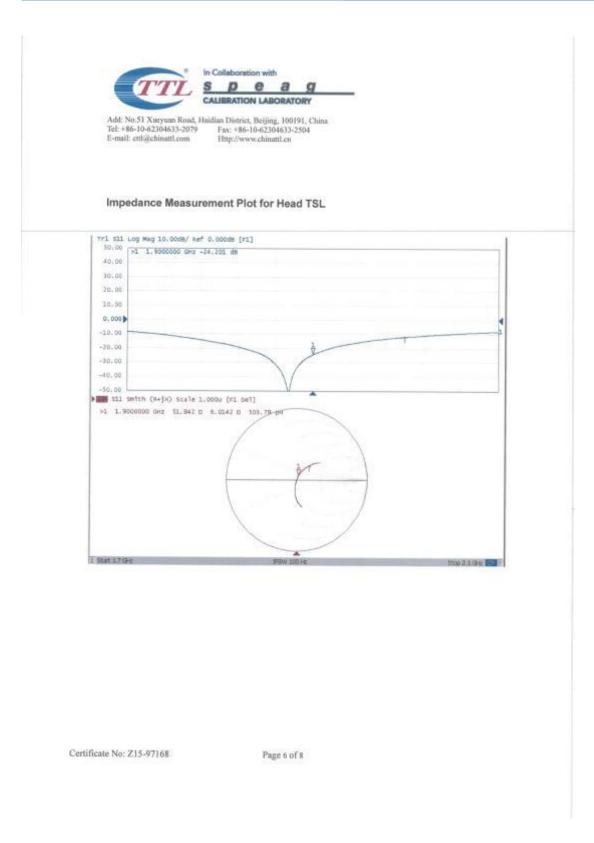
SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition		
SAR measured	250 mW input power	10.1 mW/g	
SAR for nominal Head TSL parameters	normalized to 1W	40.8 mW /g ± 20.8 % (k=2)	
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition		
SAR measured	250 mW input power	5.22 mW / g	
SAR for nominal Head TSL parameters	normalized to 1W	21.0 mW /g ± 20.4 % (k=2)	

Body TSL parameters

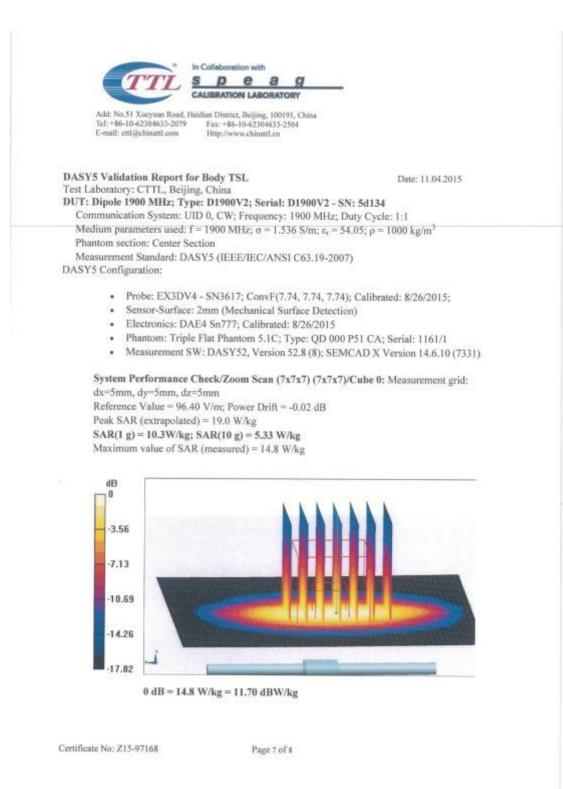
	Temperature	Permitti	ivity	Conductivity	
Nominal Body TSL parameters	22.0 °C	53.3		1.52 mho/m	
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.1 ±	6 %	1.54 mho/m ± 6 %	
Body TSL temperature change during test	<1.0 °C		2		
R result with Body TSL	-				
SAR averaged over 1 cm ³ (1 g) of Body TSL	Cond	ition			
SAR measured	250 mW i	250 mW input power		10.3 mW / g	
SAR for nominal Body TSL parameters	normaliz	normalized to 1W		41.1 mW /g ± 20.8 % (k=)	
SAR averaged over 10 cm3 (10 g) of Body T	SL Cond	Condition			
SAR measured	250 mW ir	250 mW input power		5.33 mW / g	
SAR for nominal Body TSL parameters	normalize	normalized to 1W		21.3 mW /g ± 20.4 % (k=2	

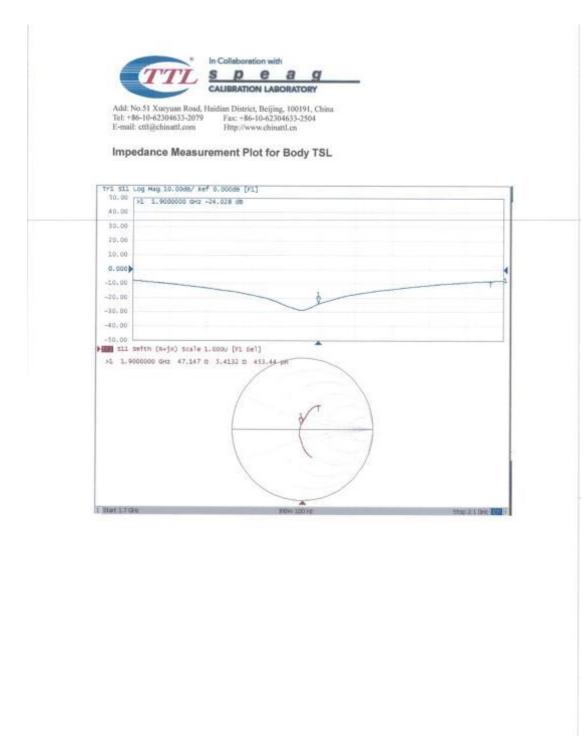

Certificate No: Z15-97168

Page 3 of 8



Appendix		
Antenna Parameters with Hea	d TSL	
Impedance, transformed to feed point	nt	51.8Ω+ 6.01jΩ
Return Loss		- 24.2dB
Antenna Parameters with Bod	y TSL	
Impedance, transformed to feed poir		1710-5410
Return Loss	-	47.1Ω+ 5.41jΩ - 24.0dB
		- 24 MJD
General Antenna Parameters a	and Design	
Construction of the construction of the second second		17.6225.32
be measured. The dipole is made of standard semir connected to the second arm of the d of the dipoles, small end caps are ad	igid coaxial cable. The ce ipole. The antenna is then ded to the dipole arms in c	1.305 ns ming of the dipole near the feedpoint can iter conductor of the feeding line is directly fore short-circuited for DC-signals. On so rder to improve matching when loaded
After long term use with 100W radiate be measured. The dipole is made of standard semin connected to the second arm of the d of the dipoles, small end caps are ad according to the position as explained affected by this change. The overall of No excessive force must be applied to connections near the feedpoint may to	igid coaxial cable. The ce ipole. The antenna is ther ded to the dipole arms in d in the "Measurement Co lipole length is still accord o the dipole arms, becaus	ming of the dipole near the feedpoint can iter conductor of the feeding line is directly fore short-circuited for DC-signals. On so rder to improve matching when loaded inditions" paragraph. The SAR data are not not to the Standard.
After long term use with 100W radiate be measured. The dipole is made of standard semir connected to the second arm of the d of the dipoles, small end caps are ad	igid coaxial cable. The ce ipole. The antenna is ther ded to the dipole arms in d in the "Measurement Co lipole length is still accord o the dipole arms, becaus	ming of the dipole near the feedpoint can iter conductor of the feeding line is directly fore short-circuited for DC-signals. On so rder to improve matching when loaded inditions" paragraph. The SAR data are not not to the Standard.





Certificate No: Z15-97168

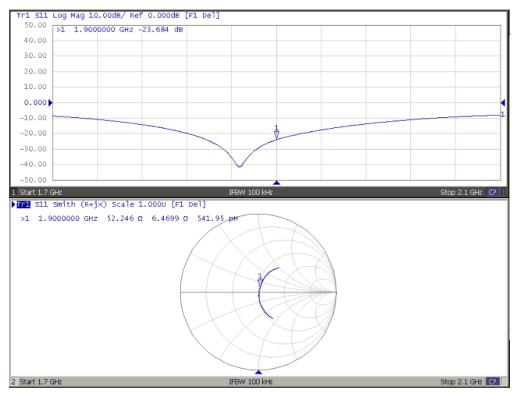
Page 8 of 8

D1900V2, Serial No.5d134 Extended Dipole Calibrations

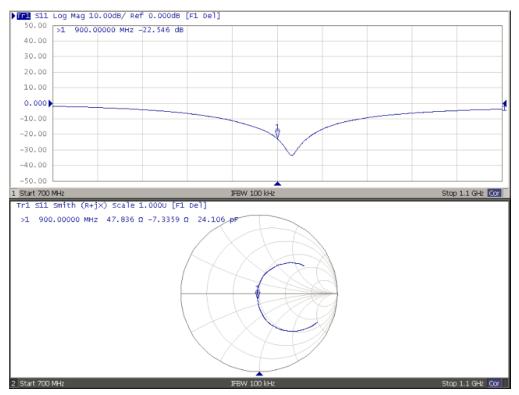
Per IEEE Std 1528-2013, the dipole should have a return loss better than -20dB at the test frequency to reduce uncertainty in the power measurement.

Per KDB 865664 D01, if dipoles are verified in return loss(<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

Justification of the extended calibration


D1900V2 Serial No.5d134							
1900 Head							
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)	
11.04.2015	-24.201		51.842		6.0142		
11.03.2016	-23.684	2.13	52.246	0.404	6.4699	0.456	

D1900V2 Serial No.5d134							
1900 Body							
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)	
11.04.2015	-24.028		47.147		5.4132		
11.03.2016	-23.250	3.24	48.572	1.425	6.1951	0.782	


The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole Verification Data D1900V2 Serial No.5d134 1900MHz-Head

1900MHz - Body

		ATION LABORATORY	
Add: No.51 Xueyu Tel: +86-10-62304 E-mail: cttl@china	633-2079 Fax:	strict, Beijing, 100191, China +86-10-62304633-2504 ://www.chinattl.cn	CALIBRATION No. L0570
Client EC	Т	Certificate No:	Z15-97171
CALIBRATION C	ERTIFICA	TE	
Object	20150		
00,000	D2450	IV2 - SN: 858	
Calibration Procedure(s)	FD-71	1-2-003-01	
		ation Procedures for dipole validation kits	
Calibration date:			
Calibration date.	Octobe	er 30, 2015	
measurements(SI). The me pages and are part of the ca	asurements and	traceability to national standards, which r the uncertainties with confidence probabili	ty are given on the following
All calibrations have been humidity<70%.	conducted in	the closed laboratory facility: environme	nt temperature(22±3)°C and
Calibration Equipment used	(M&TE critical f	or calibration)	
Calibration Equipment used Primary Standards	(M&TE critical f	or calibration) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Primary Standards Power Meter NRP2	ID # 101919	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256)	Scheduled Calibration Jun-16
Primary Standards Power Meter NRP2 Power sensor NRP-Z91	ID # 101919 101547	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256)	Jun-16 Jun-16
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4	ID # 101919 101547 SN 3617	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15)	Jun-16 Jun-16) Aug-16
Primary Standards Power Meter NRP2 Power sensor NRP-Z91	ID # 101919 101547	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256)	Jun-16 Jun-16) Aug-16
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4	ID # 101919 101547 SN 3617	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15)	Jun-16 Jun-16) Aug-16) Aug-16
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4	ID # 101919 101547 SN 3617 SN 777	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.)	Jun-16 Jun-16) Aug-16 ;) Aug-16 Scheduled Calibration
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards	ID # 101919 101547 SN 3617 SN 777 ID #	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15 (CTTL, No.J15X04256) 26-Aug-15 (SPEAG, No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729)	Jun-16 Jun-16) Aug-16) Aug-16
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	ID # 101919 101547 SN 3617 SN 777 ID # MY49071430	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15 (CTTL, No.J15X04256) 26-Aug-15 (SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729)	Jun-16 Jun-16) Aug-16) Aug-16 <u>Scheduled Calibration</u> Feb-16 Feb-16
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	ID # 101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00728) 03-Feb-15 (CTTL, No.J15X00728)	Jun-16 Jun-16) Aug-16 ;) Aug-16 Scheduled Calibration Feb-16
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	ID # 101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729) 03-Feb-15 (CTTL, No.J15X00728) Function	Jun-16 Jun-16) Aug-16) Aug-16 <u>Scheduled Calibration</u> Feb-16 Feb-16
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C Calibrated by: Reviewed by:	ID # 101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673 Name Zhao Jing	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729) 03-Feb-15 (CTTL, No.J15X00728) Function SAR Test Engineer	Jun-16 Jun-16) Aug-16) Aug-16 <u>Scheduled Calibration</u> Feb-16 Feb-16
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C Calibrated by: Reviewed by: Approved by:	ID # 101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673 Name Zhao Jing Qi Dianyuan Lu Bingsong	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729) 03-Feb-15 (CTTL, No.J15X00728) Function SAR Test Engineer SAR Project Leader Deputy Director of the laboratory	Jun-16 Jun-16 Aug-16) Aug-16 Scheduled Calibration Feb-16 Feb-16 Signature

	dd: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China el: +86-10-62304633-2079 Fax: +86-10-62304633-2504
	-mail: cttl@chinattl.com Http://www.chinattl.cn
a) IEEE Spatia Comm b) IEC 62 device 2005	tion is Performed According to the Following Standards: Std 1528-2013, "IEEE Recommended Practice for Determining the Peak al-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless nunications Devices: Measurement Techniques", June 2013 2209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held es used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 665664, SAR Measurement Requirements for 100 MHz to 6 GHz
	nal Documentation: ′4/5 System Handbook
 Measof the Anterpoint paral Feed positi measoreflect Elect No uu SAR SAR SAR 	s Applied and Interpretation of Parameters: surement Conditions: Further details are available from the Validation Report at the end e certificate. All figures stated in the certificate are valid at the frequency indicated. <i>Anna Parameters with TSL</i> : The dipole is mounted with the spacer to position its feed t exactly below the center marking of the flat phantom section, with the arms oriented llel to the body axis. <i>A Point Impedance and Return Loss:</i> These parameters are measured with the dipole tioned under the liquid filled phantom. The impedance stated is transformed from the surement at the SMA connector to the feed point. The Return Loss ensures low cted power. No uncertainty required. <i>trical Delay:</i> One-way delay between the SMA connector and the antenna feed point. <i>measured:</i> SAR measured at the stated antenna input power. <i>normalized:</i> SAR as measured, normalized to an input power of 1 W at the antenna tector. <i>for nominal TSL parameters:</i> The measured TSL parameters are used to calculate the inal SAR result.
Measu	eported uncertainty of measurement is stated as the standard uncertainty of uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution sponds to a coverage probability of approximately 95%.
Certificate N	No: Z15-97171 Page 2 of 8

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Measurement Conditions

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

g

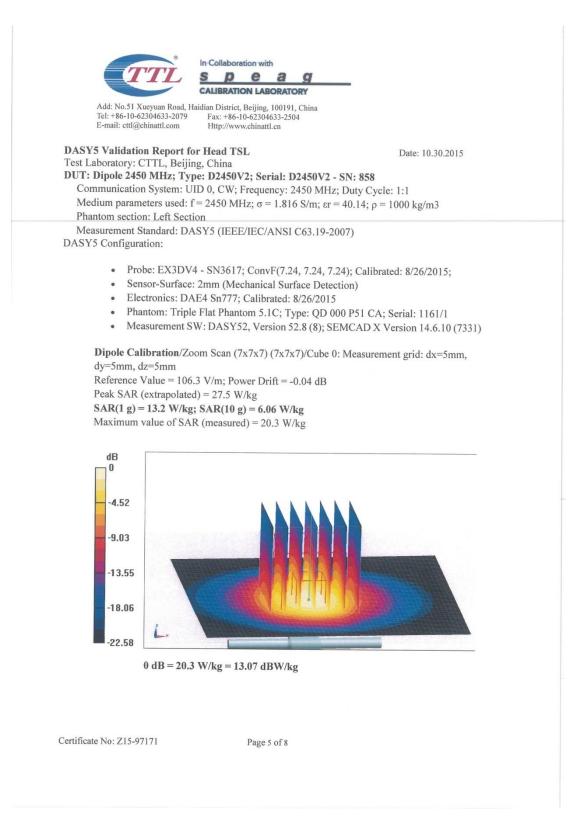
Head TSL parameters The following parameters and calculations were applied.

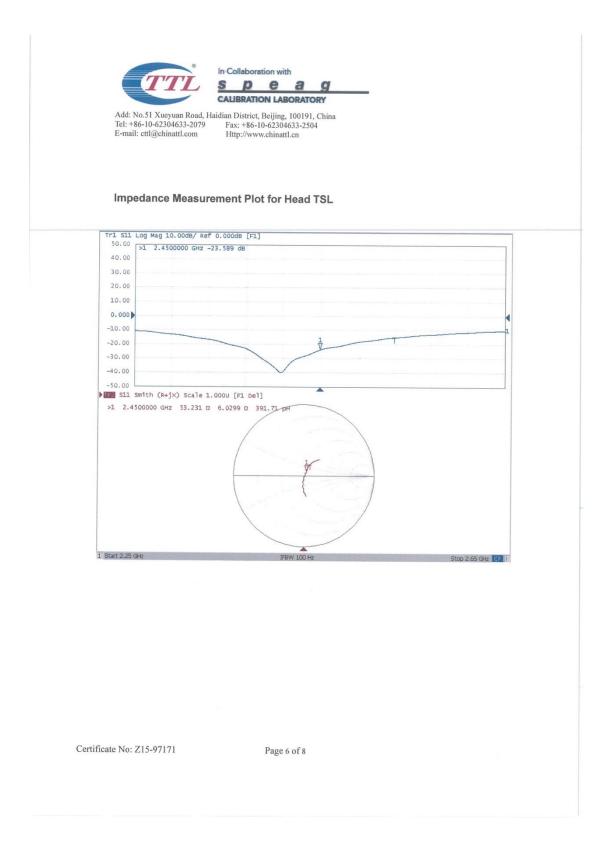
	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.1 ± 6 %	1.82 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

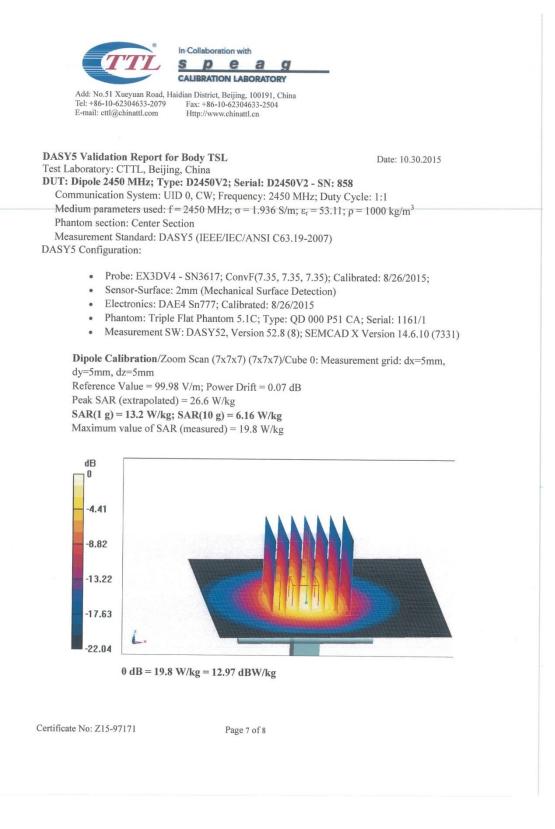
SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.9 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.06 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.3 mW /g ± 20.4 % (k=2)

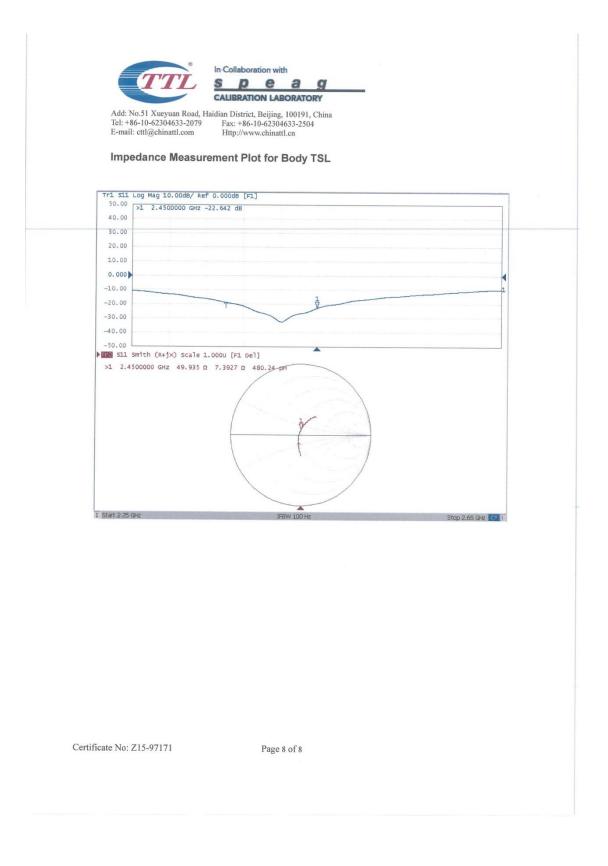
Body TSL parameters


	Temperature	Permitti	vity	Conductivity	
Nominal Body TSL parameters	22.0 °C	52.7		1.95 mho/m	
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.1 ± 0	6 %	1.94 mho/m ± 6 %	
Body TSL temperature change during test	<1.0 °C				
R result with Body TSL					
SAR averaged over 1 cm^3 (1 g) of Body TSL	. Cond	ition			
SAR measured	250 mW i	nput power		13.2 mW / g	
SAR for nominal Body TSL parameters	normaliz	ed to 1W	53.1 r	mW /g ± 20.8 % (k=2)	
SAR averaged over 10 cm^3 (10 g) of Body T	SL Cond	ition			
SAR measured	250 mW ii	nput power		6.16 mW / g	
SAR for nominal Body TSL parameters	normaliz	normalized to 1W		24.7 mW /g ± 20.4 % (k=2	



Add: No.51 Xueyuan Road, H Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com	Fax: +86-10-62304633-2 Http://www.chinattl.cn	504
Appendix Antenna Parameters with	Head TSL	
Impedance, transformed to fe	ed point	53.2Ω+ 6.03jΩ
Return Loss		- 23.6dB
Antenna Parameters with	Body TSL	
Impedance, transformed to fe	ed point	49.9Ω+ 7.39jΩ
Return Loss		- 22.6dB
Electrical Delay (one direction After long term use with 100W be measured.	radiated power, only a semirigid coaxial cabl	1.261 ns slight warming of the dipole near the feedpoint can
Electrical Delay (one direction After long term use with 100W be measured. The dipole is made of standard connected to the second arm o of the dipoles, small end caps a according to the position as exp according to the position as	radiated power, only a semirigid coaxial cabl f the dipole. The anten are added to the dipole plained in the "Measure erall dipole length is si plied to the dipole arm	slight warming of the dipole near the feedpoint can e. The center conductor of the feeding line is directly ha is therefore short-circuited for DC-signals. On some arms in order to improve matching when loaded ment Conditions'' paragraph The SAP data are pot
After long term use with 100W be measured. The dipole is made of standard connected to the second arm o of the dipoles, small end caps a according to the position as exp affected by this change. The ov	radiated power, only a semirigid coaxial cabl f the dipole. The anten are added to the dipole plained in the "Measure erall dipole length is si plied to the dipole arm	slight warming of the dipole near the feedpoint can e. The center conductor of the feeding line is directly ha is therefore short-circuited for DC-signals. On some arms in order to improve matching when loaded ement Conditions" paragraph. The SAR data are not ill according to the Standard
Electrical Delay (one direction After long term use with 100W be measured. The dipole is made of standard connected to the second arm o of the dipoles, small end caps a according to the position as exp iffected by this change. The ov No excessive force must be app connections near the feedpoint Additional EUT Data	radiated power, only a semirigid coaxial cabl f the dipole. The anten are added to the dipole plained in the "Measure erall dipole length is si plied to the dipole arm	slight warming of the dipole near the feedpoint can e. The center conductor of the feeding line is directly na is therefore short-circuited for DC-signals. On some arms in order to improve matching when loaded ment Conditions" paragraph. The SAR data are not ill according to the Standard. b, because they might bend or the soldered



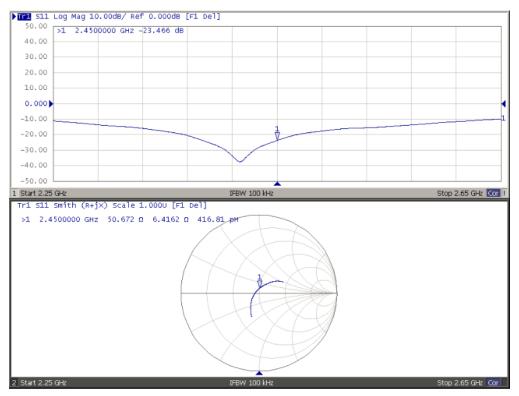


D2450V2, Serial No.858 Extended Dipole Calibrations

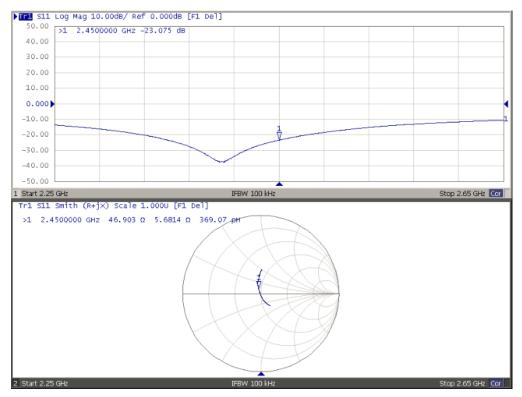
Per IEEE Std 1528-2013, the dipole should have a return loss better than -20dB at the test frequency to reduce uncertainty in the power measurement.

Per KDB 865664 D01, if dipoles are verified in return loss(<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

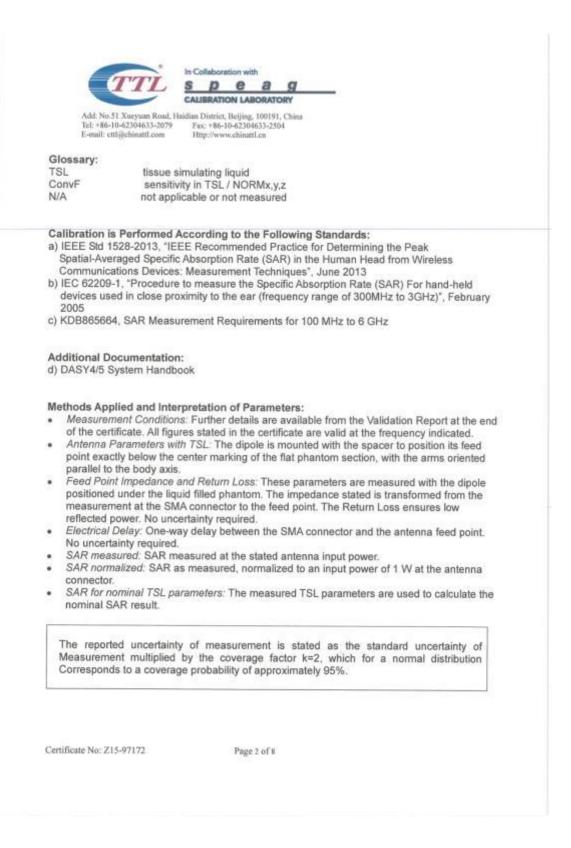
Justification of the extended calibration


	D2450V2 Serial No.858							
2450 Head								
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)		
10.30.2015	-23.589		53.231		6.0299			
10.29.2016	-23.466	0.52	50.672	2.559	6.4162	0.386		

	D2450V2 Serial No.858 2450 Body							
2450 Body								
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)		
10.30.2015	-22.642		49.935		7.3927			
10.29.2016	-23.075	1.91	46.903	3.032	5.6814	1.711		


The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole Verification Data D2450V2 Serial No.858 2450MHz-Head


2450MHz - Body

Add: No.51 Xueyu Tel: +86-10-62304 E-mail: ettli@china	ttl.com Hup:	+86-10-62304633-2504 //www.chinattl.cn	CALIBRATION No. L0570
Client ECI			15-97172
CALIBRATION C	ERTIFICAT	re .	
Object			
object	D2600	V2 - SN: 1031	
Calibration Procedure(s)	ED.71	1-2-003-01	
		tion Procedures for dipole validation kits	
Calibration date:		or 30, 2015	
This calibration Certificate	documents the	traceability to national standards, which re	alize the physical units of
		the uncertainties with confidence probability	are given on the following
pages and are part of the ce	artificate.		Al CLARK CONTRACTOR AND A DOC
All collibrations have been	conducted in	the strend television forthis	
humidity<70%.	conducted in	the closed laboratory facility: environment	t temperature(22±3) C and
Calibration Equipment used	(M&TE critical fi	or calibration)	
and the second	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	01-Jul-15 (CTTL, No.J15X04256)	Jun-16
Power Meter NRP2 Power sensor NRP-Z91	101919 101547	01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256)	Jun-16 Jun-16
Power Meter NRP2	101919 101547	01-Jul-15 (CTTL, No.J15X04256)	Jun-16 Jun-16 Aug-16
Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4	101919 101547 SN 3617 SN 777	01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15)	Jun-16 Jun-16 Aug-16 Aug-16
Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards	101919 101547 SN 3617 SN 777	01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 28-Aug-15 (SPEAG,No.EX3-3617_Aug15) 26-Aug-15 (SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.)	Jun-16 Jun-16 Aug-16 Aug-16 Scheduled Calibration
Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	101919 101547 SN 3617 SN 777 ID# MY49071430	01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15 (SPEAG,No.EX3-3617_Aug15) 26-Aug-15 (SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729)	Jun-16 Jun-16 Aug-16 Aug-16 Scheduled Calibration Feb-16
Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards	101919 101547 SN 3617 SN 777 ID# MY49071430	01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 28-Aug-15 (SPEAG,No.EX3-3617_Aug15) 26-Aug-15 (SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.)	Jun-16 Jun-16 Aug-16 Aug-16 Scheduled Calibration
Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673	01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729) 03-Feb-15 (CTTL, No.J15X00728)	Jun-16 Jun-16 Aug-16 Aug-16 Scheduled Calibration Feb-16 Feb-16
Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673 Name	01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 28-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729) 03-Feb-15 (CTTL, No.J15X00728) Function	Jun-16 Jun-16 Aug-16 Aug-16 Scheduled Calibration Feb-16
Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673	01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729) 03-Feb-15 (CTTL, No.J15X00728)	Jun-16 Jun-16 Aug-16 Aug-16 Scheduled Calibration Feb-16 Feb-16
Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673 Name	01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729) 03-Feb-15 (CTTL, No.J15X00728) Function SAR Test Engineer	Jun-16 Jun-16 Aug-16 Aug-16 Scheduled Calibration Feb-16 Feb-16
Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C Calibrated by: Reviewed by:	101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673 Name Zhao Jing	01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 28-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729) 03-Feb-15 (CTTL, No.J15X00728) Function	Jun-16 Jun-16 Aug-16 Aug-16 Scheduled Calibration Feb-16 Feb-16
Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C Calibrated by: Reviewed by:	101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673 Name Zhao Jing	01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729) 03-Feb-15 (CTTL, No.J15X00728) Function SAR Test Engineer	Jun-16 Jun-16 Aug-16 Aug-16 Scheduled Calibration Feb-16 Feb-16
Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673 Name Zhao Jing Qi Dianyuan	01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 28-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729) 03-Feb-15 (CTTL, No.J15X00728) Function SAR Test Engineer SAR Project Leader Deputy Director of the laboratory	Jun-16 Jun-16 Aug-16 Aug-16 Scheduled Calibration Feb-16 Feb-16 Signature
Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C Calibrated by: Reviewed by:	101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673 Name Zhao Jing Qi Dianyuan Lu Bingsong	01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 28-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729) 03-Feb-15 (CTTL, No.J15X00728) Function SAR Test Engineer SAR Project Leader Deputy Director of the laboratory	Jun-16 Jun-16 Aug-16 Aug-16 Scheduled Calibration Feb-16 Feb-16 Signature
Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C Calibrated by: Reviewed by:	101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673 Name Zhao Jing Qi Dianyuan Lu Bingsong	01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729) 03-Feb-15 (CTTL, No.J15X00728) Function SAR Test Engineer SAR Project Leader Deputy Director of the laboratory Issued: Nove	Jun-16 Jun-16 Aug-16 Aug-16 Scheduled Calibration Feb-16 Feb-16 Signature

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Measurement Conditions

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

g

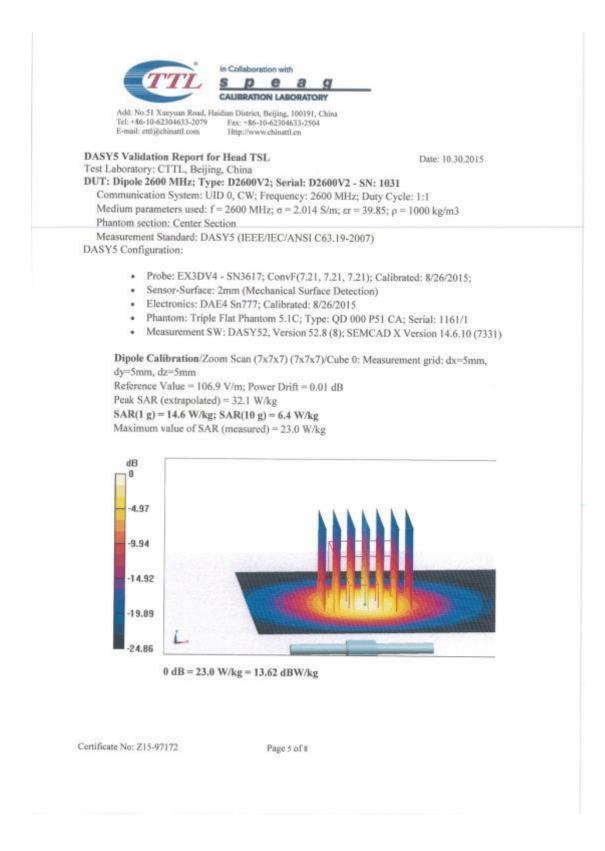
Head TSL parameters

The following parameters and calculations were applied.

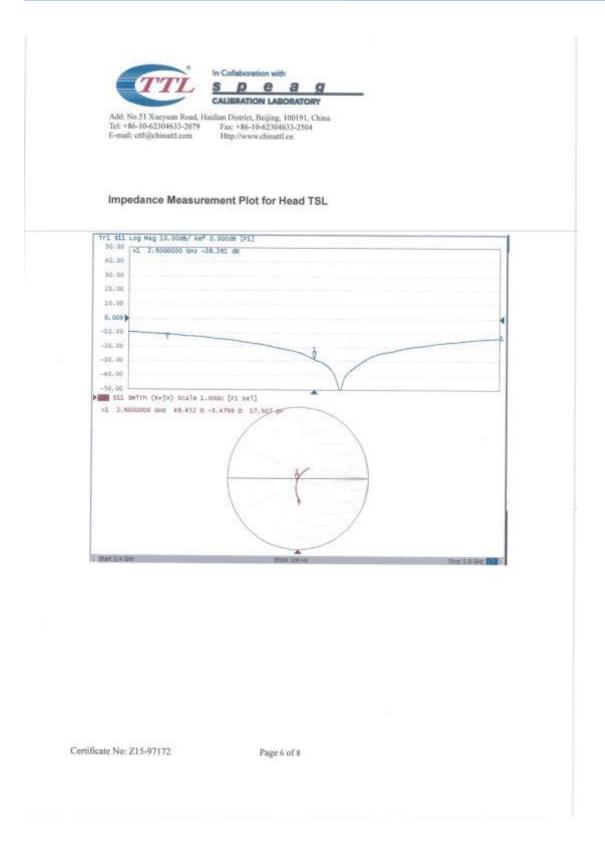
	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.9±6%	2.01 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

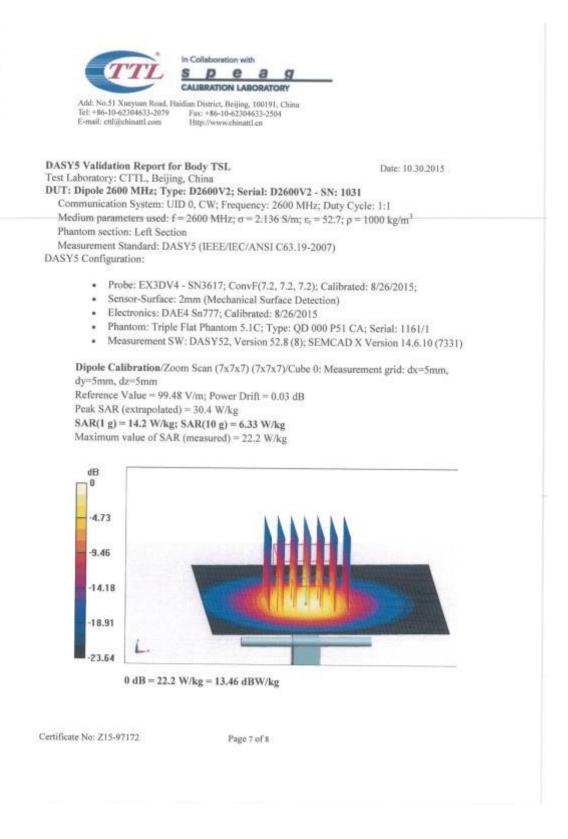
14.6 mW / g	
\$8.0 mW /g ± 20.8 % (k=2)	
6.40 mW / g	
25.5 mW /g ± 20.4 % (k=2)	
5	

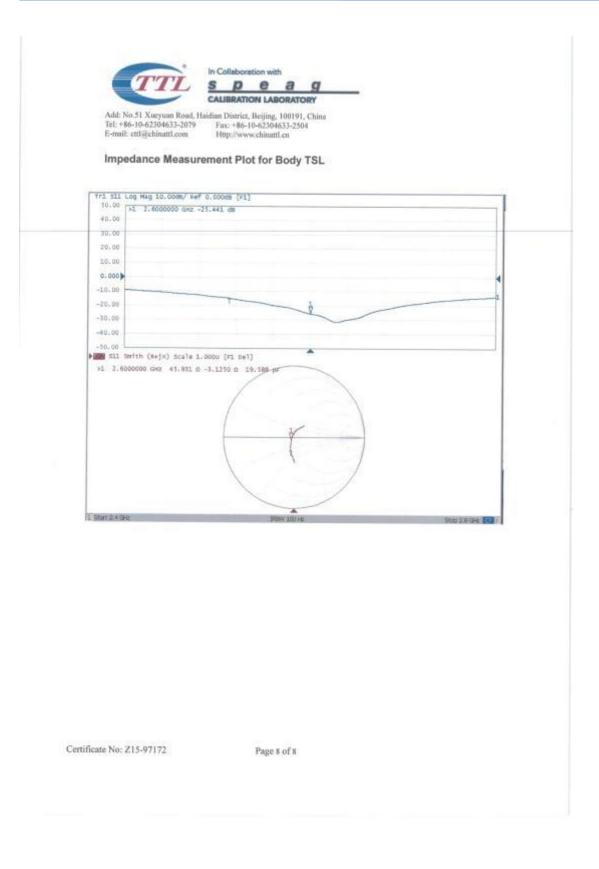

Body TSL parameters

	Tempe	orature	Permittivity		y Conductivity	
Nominal Body TSL parameters	22.0 °C		22.0 °C 52.5		2.16 mho/m	
Measured Body TSL parameters	(22.0 ± 0.2) *0		52.7 ± 6 %		2.14 mho/m ± 6 %	
Body TSL temperature change during test	<1.0	°C				
R result with Body TSL				_		
SAR averaged over 1 cm3 (1 g) of Body TSL		Condit	tion			
SAR measured		250 mW input power		14.2 mW / g		
SAR for nominal Body TSL parameters		normalized to 1W		57.1 mW /g ± 20.8 % (k=2		
SAR averaged over 10 cm ³ (10 g) of Body TSL		Condition				
SAR measured		250 mW input power		6.33 mW / g		
SAR for nominal Body TSL parameters		normalized to 1W		25.4 mW /g ± 20.4 % (k=2)		



Add: No.51 Xueyuan Rond, Hai Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com	dian District, Beljing, 100191, C Fax: +86-10-62304633-2504 Http://www.chinattl.cn	hina	
Appendix Antenna Parameters with	Head TSL		
Impedance, transformed to fee	d point	48.5Ω- 3.48jΩ	
Return Loss		- 28.3dB	1
Antenna Parameters with	Body TSL		
Impedance, transformed to fee	1 point	45.9Ω- 3.13jΩ	
Return Loss		- 25.4dB	
General Antenna Paramete	ers and Design		
		and the second sec	
The dipole is made of standard s connected to the second arm of of the dipoles, small end caps ar according to the position as expl affected by this change. The over	emirigid coaxial cable. T the dipole. The antenna i e added to the dipole arn ained in the "Measureme rail dipole lenath is still a	1.253 ns ht warming of the dipole near the feedpoint he center conductor of the feeding line is dir s therefore short-circuited for DC-signals. O ns in order to improve matching when loade nt Conditions" paragraph. The SAR data are coording to the Standard.	rectly n some
After long term use with 100W ra be measured. The dipole is made of standard s connected to the second arm of of the dipoles, small end caps ar according to the position as expl affected by this change. The over	emirigid coaxial cable. T the dipole. The antenna i e added to the dipole arm ained in the "Measureme rall dipole length is still a ied to the dipole arms, b	ht warming of the dipole near the feedpoint he center conductor of the feeding line is dir s therefore short-circuited for DC-signals. O is in order to improve matching when loader it Conditions" paragraph. The SAR data are	rectly n some
After long term use with 100W rabe measured. The dipole is made of standard sconnected to the second arm of of the dipoles, small end caps ar according to the position as expl affected by this change. The ove No excessive force must be appl connections near the feedpoint near the feedpoint of the second secon	emirigid coaxial cable. T the dipole. The antenna i e added to the dipole arm ained in the "Measureme rall dipole length is still a ied to the dipole arms, b	ht warming of the dipole near the feedpoint he center conductor of the feeding line is dir s therefore short-circuited for DC-signals. O is in order to improve matching when loader nt Conditions" paragraph. The SAR data are coording to the Standard	rectly n some
After long term use with 100W ra be measured. The dipole is made of standard econnected to the second arm of of the dipoles, small end caps ar according to the position as expl affected by this change. The ove No excessive force must be appl connections near the feedpoint of Additional EUT Data	emirigid coaxial cable. T the dipole. The antenna i e added to the dipole arm ained in the "Measureme rall dipole length is still a ied to the dipole arms, b	ht warming of the dipole near the feedpoint he center conductor of the feeding line is dir s therefore short-circuited for DC-signals. On is in order to improve matching when loader nt Conditions" paragraph. The SAR data are coording to the Standard. acause they might bend or the soldered	rectly n some



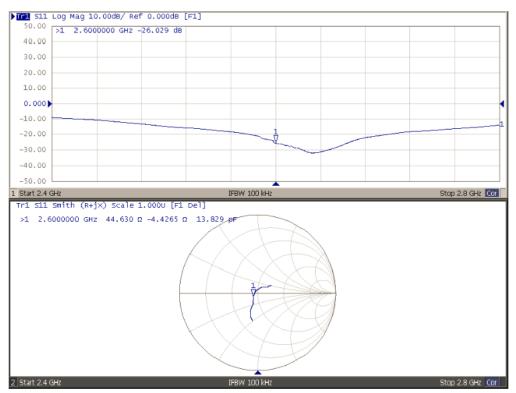


D2600V2, Serial No.1031 Extended Dipole Calibrations

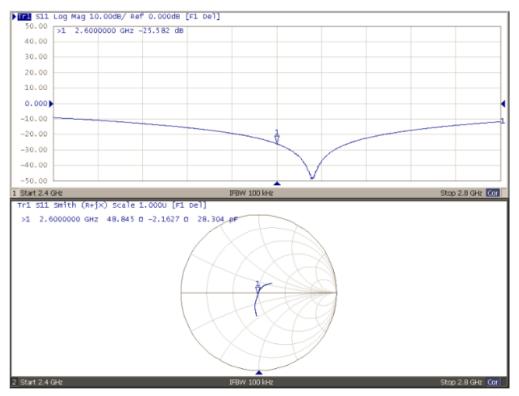
Per IEEE Std 1528-2013, the dipole should have a return loss better than -20dB at the test frequency to reduce uncertainty in the power measurement.

Per KDB 865664 D01, if dipoles are verified in return loss(<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

Justification of the extended calibration


D2600V2 Serial No.1031								
2600 Head								
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)		
10.30.2015	-28.261		48.452		-3.4766			
10.29.2016	-26.029	7.89	44.630	3.822	-4.4265	0.950		

D2600V2 Serial No.1031 2600 Body								
	2000 Body							
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)		
10.30.2015	-25.441		45.931		-3.125			
10.29.2016	-25.582	0.54	48.845	2.914	-2.163	0.962		


The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole Verification Data D2600V2 Serial No.1031 2600MHz-Head

2600MHz - Body

- 3) The SPEAG-TMC agreement includes specific protocols identified in the following to ensure the quality of calibration services provided by TMC under this SPEAG-TMC Dual-Logo calibration agreement are equivalent to the calibration services provided by SPEAG. TMC shall, upon request, provide copies of documentation to the FCC to substantiate program implementation.
 - the FCC to substantiate program implementation.
 a) The Inter-laboratory Calibration Evaluation (ILCE) stated in the TMC QA protocol shall be performed between SPEAG and TMC at least once every 12 months. The ILCE acceptance criteria defined in the TMC QA protocol shall be satisfied for the TMC, SPEAG and FCC agreements to remain valid.
 - b) Check of Calibration Certificate (CCC) shall be performed by SPEAG for all calibrations performed by TMC. Written confirmation from SPEAG is required for TMC to issue calibration certificates under the SPEAG-TMC Dual-Logo calibration program. Quarterly reports for all calibrations performed by TMC under the program are also issued by SPEAG.
 - c) The calibration equipment and measurement system used by TMC shall be verified before each calibration service according to the specific reference SAR probes, dipoles, and DAE calibrated by SPEAG. The results shall be reproducible and within the defined acceptance criteria specified in the TMC QA protocol before each actual calibration can commence. TMC shall maintain records of the measurement and calibration system verification results for all calibrations.
 - d) Quality Check of Calibration (QCC) certificates shall be performed by SPEAG at least once every 12 months. SPEAG shall visit TMC facilities to verify the laboratory, equipment, applied procedures and plausibility of randomly selected certificates.
- 4) A copy of this document, to be updated annually, shall be provided to TMC clients that accept calibration services according to the SPEAG-TMC Dual-Logo calibration program, which should be presented to a TCB (*Telecommunication Certification Body*), to facilitate FCC equipment approval.
- TMC shall address any questions raised by its clients or TCBs relating to the SPEAG-TMC Dual-Logo calibration program and inform the FCC and SPEAG of any critical issues.

Change Note: Revised on June 26 to clarify the applicability of PMR and Bundled probe calibrations according to the requirements of KDB 865664.

2

ANNEX H. Accreditation Certificate

Accredited Laboratory

A2LA has accredited

EAST CHINA INSTITUTE OF TELECOMMUNICATIONS

Shanghai, People's Republic of China

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Presented this 15th day of March 2017.

President and CEO For the Accreditation Council Certificate Number 3682.01 Valid to February 28, 2019

or the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

**********End The Report*********