

16. Measurement Uncertainty

Error Description	Unc.	Prob.	Div.	Ci	Ci	Std.Unc	Std.Unc	Vi
•	value,	Dist.		1g	10g			v _{eff}
	±%					±%,1g	±%,10g	
Measurement System								
Probe Calibration	6.0	N	1	1	1	6.0	6.0	∞
Axial Isotropy	0.5	R	$\sqrt{3}$	0.7	0.7	0.2	0.2	∞
Hemispherical Isotropy	2.6	R	$\sqrt{3}$	0.7	0.7	1.1	1.1	∞
Boundary Effects	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
Linearity	0.6	R	$\sqrt{3}$	1	1	0.3	0.3	∞
System Detection Limits	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Readout Electronics	0.7	N	1	1	1	0.7	0.7	∞
Response Time	0	R	$\sqrt{3}$	1	1	0	0	∞
Integration Time	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
RF Ambient Noise	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
RF Ambient Reflections	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Probe Positioner	1.5	R	$\sqrt{3}$	1	1	0.9	0.9	∞
Probe Positioning	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	_∞
Max. SAR Eval.	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	_∞
Test Sample Related								
Device Positioning	2.9	N	1	1	1	2.9	2.9	145
Device Holder	3.6	N	1	1	1	3.6	3.6	5
Diople								
Power Drift	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
Dipole Positioning	2.0	N	1	1	1	2.0	2.0	8
Dipole Input Power	5.0	N	1	1	1	5.0	5.0	8
Phantom and Setup								
Phantom Uncertainty	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
Liquid Conductivity	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
(target)								
Liquid Conductivity	2.5	N	1	0.64	0.43	1.6	1.1	∞
(meas.)								
Liquid Permittivity (target)	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (meas.)	2.5	N	1	0.6	0.49	1.5	1.2	∞
Combined Std						±11.2%	±10.9%	387
Uncertainty								307
Expanded Std						±22.4	±21.8	
Uncertainty	1					%	%	

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number : 75 of 217 Report Issued Date : Feb 15, 2017

17. Main Test Instrument

Table 17.1: List of Main Instruments

Report No.: I17D00009-SAR

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	N5242A	MY51221755	Jan 18, 2016	One year
02	Power meter	NRVD	102257		One year
03 Power senso	Dower concer	NRV-Z5	100241	May 12, 2016	
	Power sensor	NHV-Z3	100644		
04	Signal Generator	E4438C	MY49072044	Jan 22, 2016	One Year
05	Amplifier	NTWPA-0086010F	12023024	No Calibration Ro	equested
06	Coupler	778D	MY4825551	May 12, 2016	One year
07	BTS	E5515C	MY50266468	Jan 18, 2016	One year
08	E-field Probe	EX3DV4	7375	Dec 8, 2016	One year
09	DAE	SPEAG DAE4	360	Nov 8, 2016	One year
10 [Dipole Validation Kit	SPEAG D835V2	4d112	Oct 22, 2015	Two year
		SPEAG D1750V2	1044	Nov 3,2015	Two year
		SPEAG D1900V2	5d134	Nov 4,2015	Two year
		SPEAG D2450V2	858	Oct 30,2015	Two year
		SPEAG D2600V2	1031	Oct 30,2015	Two year

East China Institute of Telecommunications Page Number : 76 of 217
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Feb 15, 2017

ANNEX A. GRAPH RESULTS

GSM 850MHz Right Cheek High

Date/Time: 2017/1/22 Electronics: DAE3 Sn360 Medium: Head 835MHz

Medium parameters used: f = 849 MHz; $\sigma = 0.927$ S/m; $\varepsilon_r = 40.807$; $\rho = 1000$ kg/m³

Ambient Temperature:22°C Liquid Temperature:22°C

Communication System: GSM Professional 835MHz; Frequency: 848.8 MHz; Duty Cycle:

1:8.3

Probe: EX3DV4 - SN7375ConvF(9.73, 9.73, 9.73); Calibrated: 12/8/2016

GSM 850MHz Right Cheek High/Area Scan (121x71x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.330 W/kg

GSM 850MHz Right Cheek High/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.367 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.388 W/kg

SAR(1 g) = 0.306 W/kg; SAR(10 g) = 0.235 W/kgMaximum of SAR (measured) = 0.323 W/kg

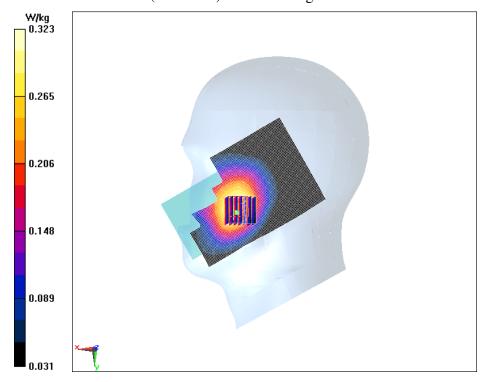


Fig.1 GSM 850MHz Right Cheek High

GSM 1900MHz Left Cheek High

Date/Time: 2016/12/31 Electronics: DAE3 Sn360 Medium: Head 1900MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.393 \text{ S/m}$; $\varepsilon_r = 39.622$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22°C Liquid Temperature:22°C

Communication System: GSM Professional 1900MHz; Frequency: 1909.8 MHz; Duty

Report No.: I17D00009-SAR

: 78 of 217

: Feb 15, 2017

Page Number

Report Issued Date

Cycle: 1:8.3

Probe: EX3DV4 - SN7375ConvF(7.92, 7.92, 7.92); Calibrated: 12/8/2016

GSM 1900MHz Left Cheek High/Area Scan (121x71x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.206 W/kg

GSM 1900MHz Left Cheek High/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.333 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.288 W/kg

SAR(1 g) = 0.189 W/kg; SAR(10 g) = 0.118 W/kgMaximum value of SAR (measured) = 0.208 W/kg

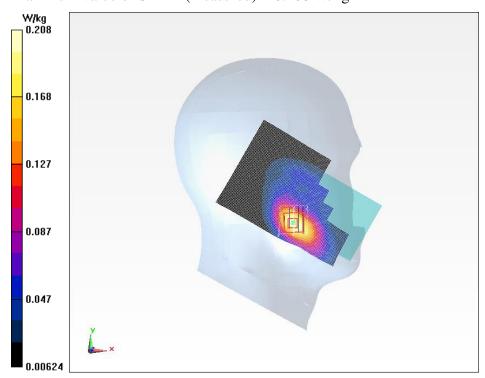


Fig.2 GSM 1900MHz Left Cheek High

WCDMA Band 2 Left Cheek Middle

Date/Time: 2016/12/31 Electronics: DAE3 Sn360 Medium: Head 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.379 \text{ S/m}$; $\varepsilon_r = 39.867$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22°C Liquid Temperature:22°C

Communication System: WCDMA Professional Band II; Frequency: 1880 MHz; Duty

Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF(7.92, 7.92, 7.92); Calibrated: 12/8/2016

WCDMA Band 2 Left Cheek Middle/Area Scan (121x71x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.144 W/kg

WCDMA Band 2 Left Cheek Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.604 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.171 W/kg

SAR(1 g) = 0.112 W/kg; SAR(10 g) = 0.071 W/kgMaximum value of SAR (measured) = 0.121 W/kg

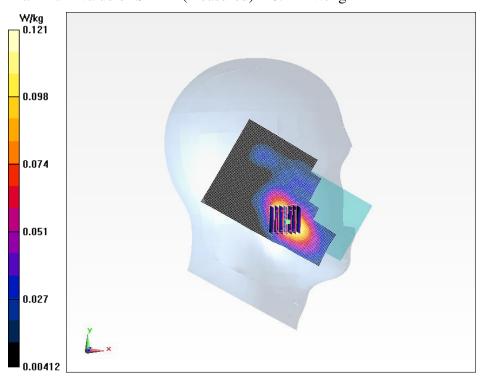


Fig.3 WCDMA Band 2 Left Cheek Middle

WCDMA Band 4 Left Cheek Low

Date/Time: 2016/12/30 Electronics: DAE3 Sn360 Medium: Head 1800MHz

Medium parameters used: f = 1712.4 MHz; $\sigma = 1.35 \text{ S/m}$; $\varepsilon_r = 38.917$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22°C Liquid Temperature:22°C

Communication System: WCDMA Professional Band II; Frequency: 1712.4 MHz; Duty

Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF(8.31, 8.31, 8.31); Calibrated: 12/8/2016

WCDMA Band 4 Left Cheek Low/Area Scan (121x71x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.276 W/kg

WCDMA Band 4 Left Cheek Low/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.730 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.383 W/kg

SAR(1 g) = 0.260 W/kg; SAR(10 g) = 0.170 W/kgMaximum of SAR (measured) = 0.281 W/kg

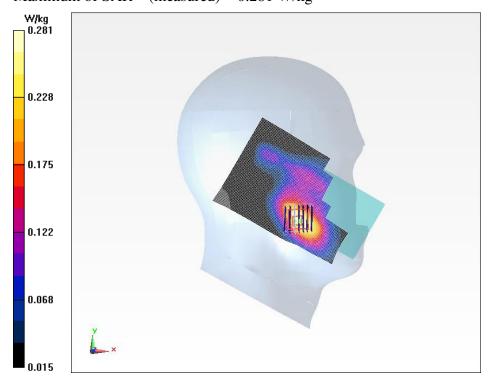


Fig.4 WCDMA Band 4 Left Cheek Low

WCDMA Band5 Right Cheek High

Date/Time: 2017/1/22 Electronics: DAE3 Sn360 Medium: Head 835MHz

Medium parameters used: f = 847 MHz; $\sigma = 0.927$ S/m; $\varepsilon_r = 40.808$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WCDMA Professional 835MHz; Frequency: 846.6 MHz; Duty

Report No.: I17D00009-SAR

Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF(9.73, 9.73, 9.73); Calibrated: 12/8/2016

WCDMA Band5 Right Cheek High/Area Scan (121x71x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.182 W/kg

WCDMA Band5 Right Cheek High/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.642 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.189 W/kg

SAR(1 g) = 0.154 W/kg; SAR(10 g) = 0.118 W/kgMaximum of SAR (measured) = 0.161 W/kg

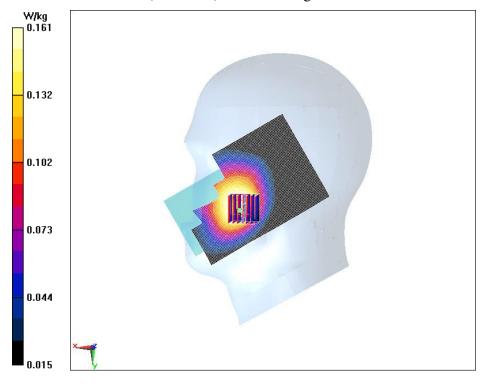


Fig.5 WCDMA Band5 Right Cheek High

LTE Band 2 Left Cheek Middle

Date/Time: 2017/1/23 Electronics: DAE3 Sn360 Medium: Head 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.378 \text{ S/m}$; $\varepsilon_r = 39.868$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22°C Liquid Temperature:22°C

Communication System: LTE Band 2 Professional 1900MHz; Frequency: 1880 MHz; Duty

Report No.: I17D00009-SAR

: 82 of 217

: Feb 15, 2017

Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF(7.92, 7.92, 7.92); Calibrated: 12/8/2016

LTE Band 2 Left Cheek Middle/Area Scan (121x71x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.315 W/kg

LTE Band 2 Left Cheek Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.430 V/m; Power Drift = 1.48 dB

Peak SAR (extrapolated) = 0.435 W/kg

SAR(1 g) = 0.274 W/kg; SAR(10 g) = 0.165 W/kg Maximum of SAR (measured) = 0.299 W/kg

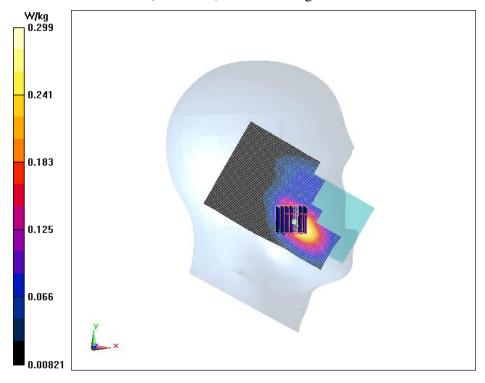


Fig.6 LTE Band 2 Left Cheek Middle

LTE Band 2 Left Cheek Middle 50 RB

Date/Time: 2016/12/31 Electronics: DAE3 Sn360 Medium: Head 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.379 \text{ S/m}$; $\varepsilon_r = 39.867$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22°C Liquid Temperature:22°C

Communication System: LTE Band 2 Professional 1900MHz; Frequency: 1880 MHz; Duty

Report No.: I17D00009-SAR

: 83 of 217

: Feb 15, 2017

Page Number

Report Issued Date

Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF(7.92, 7.92, 7.92); Calibrated: 12/8/2016

LTE Band 2 Left Cheek Middle 50 RB/Area Scan (121x71x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.195 W/kg

LTE Band 2 Left Cheek Middle 50 RB/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.460 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.305 W/kg

SAR(1 g) = 0.186 W/kg; SAR(10 g) = 0.113 W/kgMaximum value of SAR (measured) = 0.214 W/kg

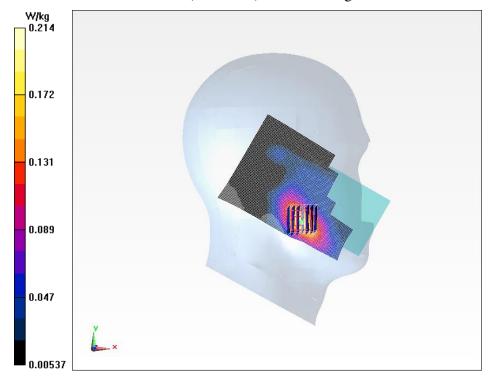


Fig.7 LTE Band 2 Left Cheek Middle 50 RB

: 84 of 217

: Feb 15, 2017

LTE Band 4 Left Cheek High

Date/Time: 2016/12/30 Electronics: DAE3 Sn360 Medium: Head 1800MHz

Medium parameters used: f = 1745 MHz; $\sigma = 1.38 \text{ S/m}$; $\varepsilon_r = 38.839$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22°C Liquid Temperature:22°C

Communication System: LTE Band 4 Professional 1800MHz; Frequency: 1745 MHz; Duty

Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF(8.31, 8.31, 8.31); Calibrated: 12/8/2016

LTE Band 4 Left Cheek High/Area Scan (121x71x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.468 W/kg

LTE Band 4 Left Cheek High/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.087 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.609 W/kg

SAR(1 g) = 0.404 W/kg; SAR(10 g) = 0.260 W/kgMaximum of SAR (measured) = 0.432 W/kg

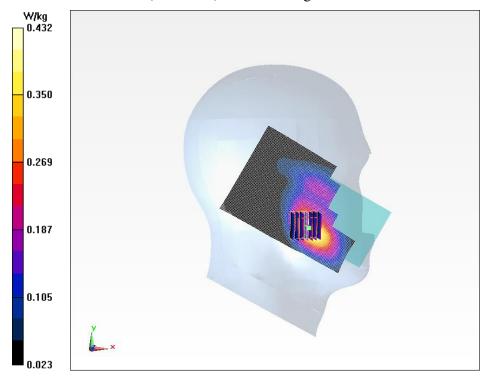


Fig.8 LTE Band 4 Left Cheek High

LTE Band 4 Left Cheek High 50RB

Date/Time: 2016/12/30 Electronics: DAE3 Sn360 Medium: Head 1800MHz

Medium parameters used: f = 1745 MHz; $\sigma = 1.38 \text{ S/m}$; $\varepsilon_r = 38.839$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22°C Liquid Temperature:22°C

Communication System: LTE Band 4 Professional 1800MHz; Frequency: 1745 MHz; Duty

Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF(8.31, 8.31, 8.31); Calibrated: 12/8/2016

LTE Band 4 Left Cheek High 50RB/Area Scan (121x71x1):

Measurement grid: dx=10 mm, dy=10 mm

Warning: Interpolation/extrapolation of medium parameters failed. Please check that there are at least two entries in your medium table within 50 MHz of your DUT frequency, or that there is a single entry for 1745 MHz. Maximum value of SAR (Measurement) = 0.264 W/kg

LTE Band 4 Left Cheek High 50RB/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.174 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.380 W/kg

SAR(1 g) = 0.255 W/kg; SAR(10 g) = 0.164 W/kgMaximum of SAR (measured) = 0.274 W/kg

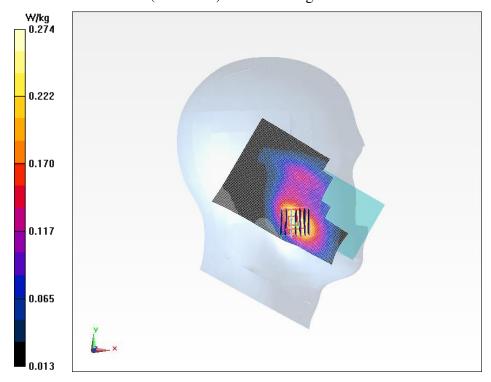


Fig.9 LTE Band 4 Left Cheek High 50RB

LTE Band 5 Right Cheek High

Date/Time: 2017/1/22 Electronics: DAE3 Sn360 Medium: Head 835MHz

Medium parameters used: f = 844 MHz; $\sigma = 0.923$ S/m; $\varepsilon_r = 40.847$; $\rho = 1000$ kg/m³

Ambient Temperature:22°C Liquid Temperature:22°C

Communication System: LTE Band 5 Professional 835MHz; Frequency: 844 MHz; Duty

Report No.: I17D00009-SAR

: 86 of 217

: Feb 15, 2017

Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF(9.73, 9.73, 9.73); Calibrated: 12/8/2016

LTE Band 5 Right Cheek High/Area Scan (121x71x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.235 W/kg

LTE Band 5 Right Cheek High/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.802 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.261 W/kg

SAR(1 g) = 0.212 W/kg; SAR(10 g) = 0.165 W/kgMaximum value of SAR (measured) = 0.224 W/kg

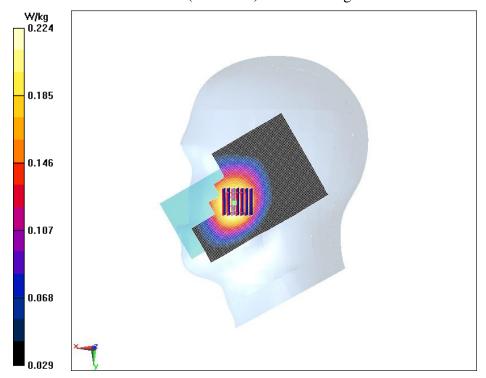


Fig.10 LTE Band 5 Right Cheek High

LTE Band 5 Right Cheek Middle 25RB

Date/Time: 2016/12/29 Electronics: DAE3 Sn360 Medium: Head 835MHz

Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 0.919$ S/m; $\varepsilon_r = 41$; $\rho = 1000$

kg/m³

Ambient Temperature:22°C Liquid Temperature:22°C

Communication System: LTE Band 5 Professional 835MHz; Frequency: 836.5 MHz; Duty

Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF(9.73, 9.73, 9.73); Calibrated: 12/8/2016

LTE Band 5 Right Cheek Middle 25RB/Area Scan (121x71x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.282 W/kg

LTE Band 5 Right Cheek Middle 25RB/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.213 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.241 W/kg

SAR(1 g) = 0.190 W/kg; SAR(10 g) = 0.146 W/kgMaximum value of SAR (measured) = 0.199 W/kg

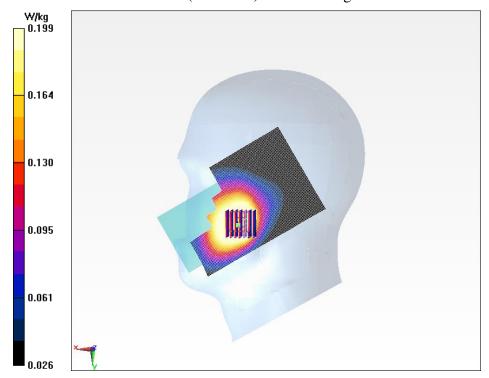


Fig.11 LTE Band 5 Right Cheek Middle 25RB

East China Institute of Telecommunications Page Number : 87 of 217
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Feb 15, 2017

LTE Band 7 Left Cheek High

Date/Time: 2017/1/2 Electronics: DAE3 Sn360 Medium: Head 2550MHz

Medium parameters used: f = 2560 MHz; $\sigma = 1.915 \text{ S/m}$; $\varepsilon_r = 39.069$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22°C Liquid Temperature:22°C

Communication System: LTE Band 7 Professional 2550MHz; Frequency: 2560 MHz; Duty

Report No.: I17D00009-SAR

: 88 of 217

: Feb 15, 2017

Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF(7.25, 7.25, 7.25); Calibrated: 12/8/2016

LTE Band 7 Left Cheek High/Area Scan (121x71x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.211 W/kg

LTE Band 7 Left Cheek High/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.047 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.263 W/kg

SAR(1 g) = 0.138 W/kg; SAR(10 g) = 0.035 W/kgMaximum of SAR (measured) = 0.155 W/kg

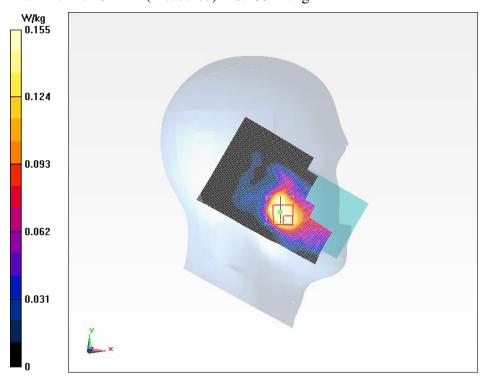


Fig.12 LTE Band 7 Left Cheek High

LTE Band 7 Left Cheek High 50RB

Date/Time: 2017/1/2 Electronics: DAE3 Sn360 Medium: Head 2550MHz

Medium parameters used: f = 2560 MHz; $\sigma = 1.915 \text{ S/m}$; $\varepsilon_r = 39.069$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22°C Liquid Temperature:22°C

Communication System: LTE Band 7 Professional 2550MHz; Frequency: 2560 MHz; Duty

Report No.: I17D00009-SAR

Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF(7.25, 7.25, 7.25); Calibrated: 12/8/2016

LTE Band 7 Left Cheek High 50RB/Area Scan (121x71x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.119 W/kg

LTE Band 7 Left Cheek High 50RB/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.636 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.187 W/kg

SAR(1 g) = 0.099 W/kg; SAR(10 g) = 0.049 W/kgMaximum of SAR (measured) = 0.113 W/kg

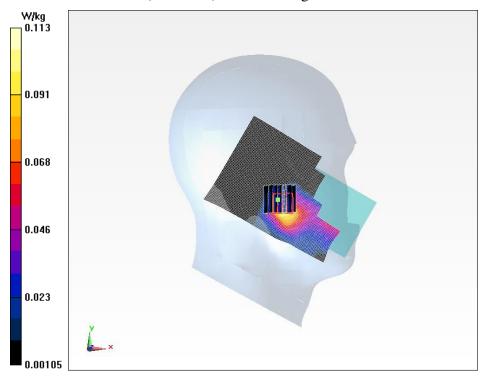


Fig.13 LTE Band 7 Left Cheek High 50RB

WiFi 802.11b Right Cheek Middle

Date/Time: 2017/1/23 Electronics: DAE3 Sn360 Medium: Head 2450MHz

Medium parameters used: f = 2437 MHz; $\sigma = 1.798$ S/m; $\varepsilon_r = 39.162$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: Wifi 2450 2450MHz; Frequency: 2437 MHz; Duty Cycle: 1:1

Report No.: I17D00009-SAR

Probe: EX3DV4 - SN3754ConvF(7.26, 7.26, 7.26); Calibrated: 1/13/2017

WiFi 802.11b Right Cheek Middle/Area Scan (131x81x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.520 W/kg

WiFi 802.11b Right Cheek Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.710 V/m; Power Drift = 0.01 dB

Peak SAR = 0.910 W/kg

SAR(1 g) = 0.420 W/kg; SAR(10 g) = 0.202 W/kgMaximum value of SAR (measured) = 0.465 W/kg

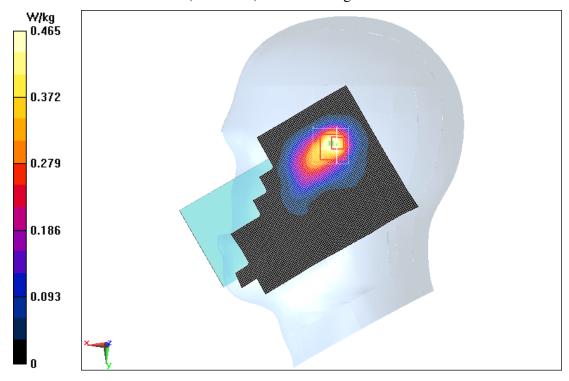


Fig.14 WiFi 802.11b Right Cheek Middle

GPRS 850MHz 4TS Ground Mode High

Date/Time: 2017/1/22 Electronics: DAE3 Sn360 Medium: Body 850MHz

Medium parameters used: f = 849 MHz; $\sigma = 1.014$ S/m; $\varepsilon_r = 55.206$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: GSM 850MHz GPRS 4TS (0); Frequency: 848.8 MHz; Duty

Report No.: I17D00009-SAR

: 91 of 217

Cycle: 1:2

Probe: EX3DV4 - SN7375ConvF (9.94, 9.94, 9.94);

GPRS 850MHz 4TS Ground Mode High/Area Scan (61x111x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.387 W/kg

GPRS 850MHz 4TS Ground Mode High/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 15.51 V/m; Power Drift = 0.04 dB

Peak SAR = 0.559 W/kg

SAR(1 g) = 0.379 W/kg; SAR(10 g) = 0.256 W/kgMaximum of SAR (measured) = 0.406 W/kg

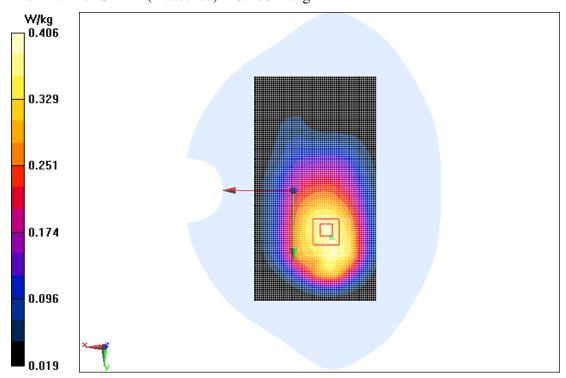


Fig.15 GPRS 850MHz 4TS Ground Mode High

GPRS 1900MHz 4TS Ground Mode High

Date/Time: 2017/1/23 Electronics: DAE3 Sn360 Medium: Body 1900MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.535 \text{ S/m}$; $\varepsilon_r = 53.185$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: GSM 1900MHz GPRS 4TS (0); Frequency: 1909.8 MHz; Duty

Report No.: I17D00009-SAR

: 92 of 217

Cycle: 1:2

Probe: EX3DV4 - SN7375ConvF (7.62, 7.62, 7.62);

GPRS 1900MHz 4TS Ground Mode High /Area Scan (71x141x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.500 W/kg

GPRS 1900MHz 4TS Ground Mode High /Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.464 V/m; Power Drift = 0.10 dB

Peak SAR = 0.887 W/kg

SAR(1 g) = 0.478 W/kg; SAR(10 g) = 0.250 W/kgMaximum value of SAR (measured) = 0.528 W/kg

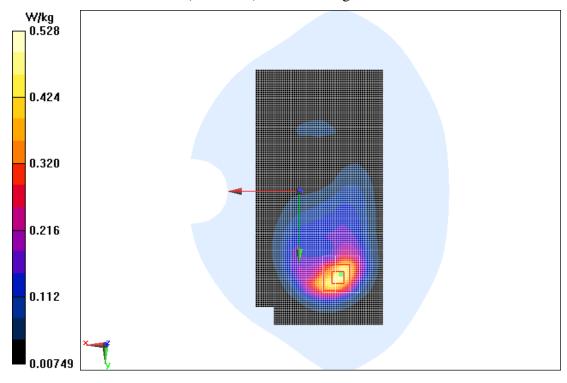


Fig.16 GPRS 1900MHz 4TS Ground Mode High

WCDMA Band 2 Ground Mode High

Date/Time: 2017/1/23 Electronics: DAE3 Sn360 Medium: Body 1950MHz

Medium parameters used: f = 1908 MHz; $\sigma = 1.533$ S/m; $\varepsilon_r = 53.198$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WCDMA Professional Band I; Frequency: 1907.6 MHz; Duty

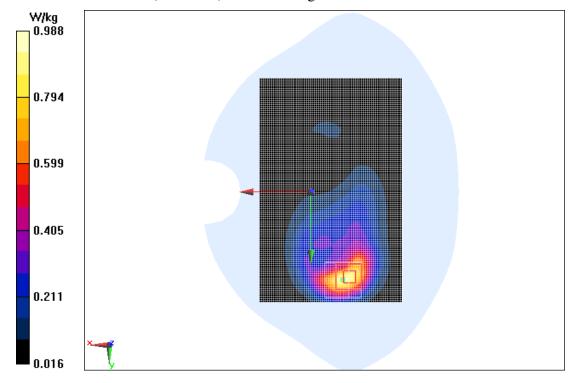
Report No.: I17D00009-SAR

Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF (7.62, 7.62, 7.62);

WCDMA Band 2 Ground Mode High /Area Scan (71x111x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.949 W/kg

WCDMA Band 2 Ground Mode High /Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.886 V/m; Power Drift = 0.13 dB

Peak SAR = 1.65 W/kg

SAR(1 g) = 0.899 W/kg; SAR(10 g) = 0.472 W/kgMaximum of SAR (measured) = 0.988 W/kg

Page Number

Report Issued Date

: 93 of 217

: Feb 15, 2017

Fig.17 WCDMA Band 2 Ground Mode High

WCDMA Band 2 Ground Mode High repeated

Date/Time: 2017/1/23 Electronics: DAE3 Sn360 Medium: Body 1950MHz

Medium parameters used: f = 1908 MHz; $\sigma = 1.533$ S/m; $\varepsilon_r = 53.198$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WCDMA Professional Band I; Frequency: 1907.6 MHz; Duty

Report No.: I17D00009-SAR

Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF (7.62, 7.62, 7.62);

WCDMA Band 2 Ground Mode High repeated/Area Scan (71x111x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.958 W/kg

WCDMA Band 2 Ground Mode High repeated/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.908 V/m; Power Drift = 0.11 dB

Peak SAR = 1.66 W/kg

SAR(1 g) = 0.906 W/kg; SAR(10 g) = 0.475 W/kgMaximum of SAR (measured) = 0.999 W/kg

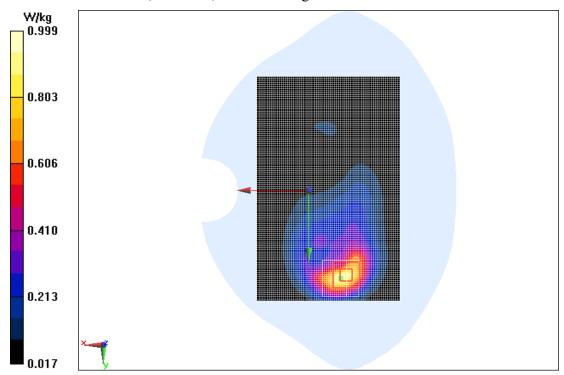


Fig.29 WCDMA Band 2 Ground Mode High repeated

WCDMA Band 4 Ground Mode Middle

Date/Time: 2017/1/22 Electronics: DAE3 Sn360 Medium: Body 1800MHz

Medium parameters used: f = 1733 MHz; $\sigma = 1.422$ S/m; $\varepsilon_r = 52.306$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WCDMA Professional 1800MHz; Frequency: 1732.6 MHz; Duty

Report No.: I17D00009-SAR

: 95 of 217

: Feb 15, 2017

Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF (8.22, 8.22, 8.22);

WCDMA Band 4 Ground Mode Middle /Area Scan (71x121x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.502 W/kg

WCDMA Band 4 Ground Mode Middle /Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.11 V/m; Power Drift = 0.18 dB

Peak SAR = 0.706 W/kg

SAR(1 g) = 0.425 W/kg; SAR(10 g) = 0.274 W/kgMaximum of SAR (measured) = 0.458 W/kg

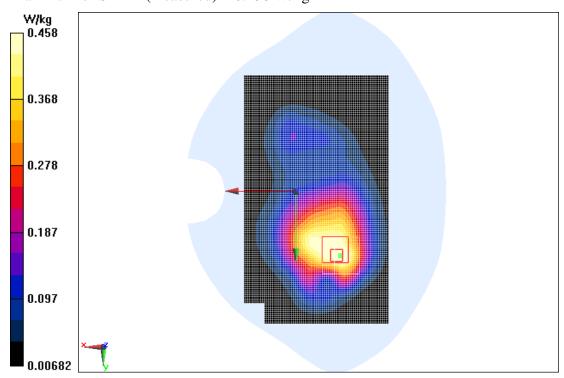


Fig.18 WCDMA Band 4 Ground Mode Middle

WCDMA Band5 Ground Mode High

Date/Time: 2017/1/22 Electronics: DAE3 Sn360 Medium: Body 850MHz

Medium parameters used: f = 847 MHz; $\sigma = 1.013$ S/m; $\varepsilon_r = 55.215$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WCDMA Professional Band V; Frequency: 846.6 MHz; Duty

Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF (9.94, 9.94, 9.94);

WCDMA Band5 Ground Mode High /Area Scan (71x121x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.358 W/kg

WCDMA Band5 Ground Mode High /Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.09 V/m; Power Drift = -0.02 dB

Peak SAR = 0.581 W/kg

SAR(1 g) = 0.324 W/kg; SAR(10 g) = 0.189 W/kgMaximum value of SAR (measured) = 0.352 W/kg

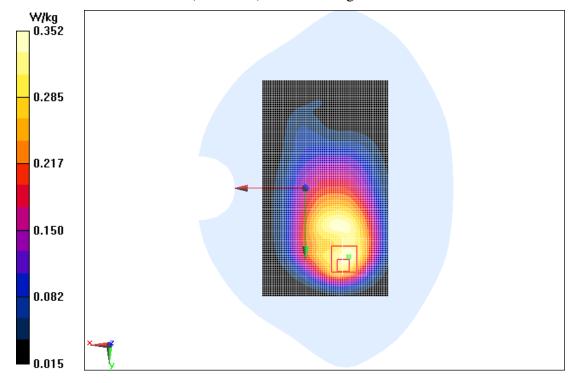


Fig.19 WCDMA Band5 Ground Mode High

LTE Band 2 Ground Mode Middle

Date/Time: 2016/12/31 Electronics: DAE3 Sn360 Medium: Body 1950MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504 \text{ S/m}$; $\varepsilon_r = 53.319$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22°C Liquid Temperature:22°C

Communication System: LTE Band 2 Professional 1950MHz; Frequency: 1880 MHz; Duty

Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF(7.62, 7.62, 7.62); Calibrated: 12/8/2016

LTE Band 2 Ground Mode Middle/Area Scan (71x111x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.656 W/kg

LTE Band 2 Ground Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.007 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 1.20 W/kg

SAR(1 g) = 0.667 W/kg; SAR(10 g) = 0.351 W/kgMaximum of SAR (measured) = 0.737 W/kg

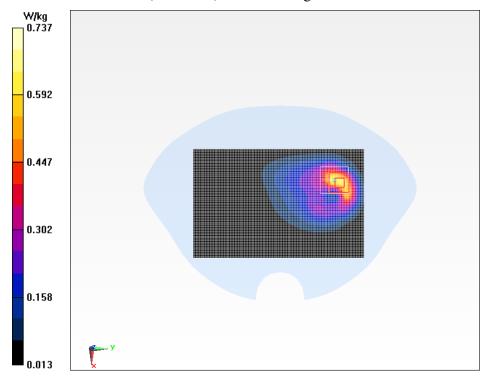


Fig.20 LTE Band 2 Ground Mode Middle

LTE Band 2 Ground Mode High 50RB

Date/Time: 2017/1/23 Electronics: DAE3 Sn360 Medium: Body 1950MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.524 \text{ S/m}$; $\varepsilon_r = 53.236$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: LTE Band 2 Professional 1950MHz; Frequency: 1900 MHz; Duty

Report No.: I17D00009-SAR

: 98 of 217

: Feb 15, 2017

Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF (7.62, 7.62, 7.62);

LTE Band 2 Ground Mode High 50RB/Area Scan (71x121x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.572 W/kg

LTE Band 2 Ground Mode High 50RB/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.388 V/m; Power Drift = -0.14 dB

Peak SAR = 1.02 W/kg

SAR(1 g) = 0.562 W/kg; SAR(10 g) = 0.299 W/kgMaximum value of SAR (measured) = 0.630 W/kg

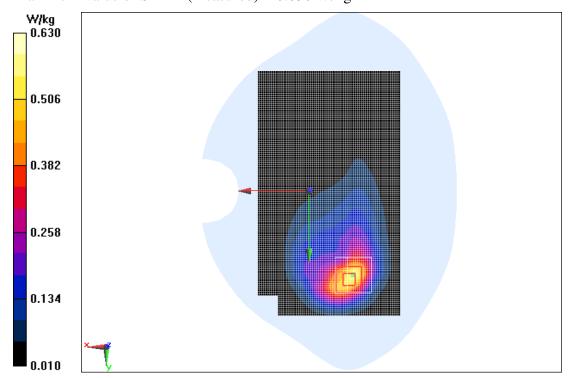


Fig.21 LTE Band 2 Ground Mode High 50RB

LTE Band 4 Ground Mode Low

Date/Time: 2017/1/22 Electronics: DAE3 Sn360 Medium: Body 1800MHz

Medium parameters used: f = 1720 MHz; $\sigma = 1.412 \text{ S/m}$; $\varepsilon_r = 52.303$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: LTE Band 4 Professional 1800MHz; Frequency: 1720 MHz; Duty

Report No.: I17D00009-SAR

: 99 of 217

: Feb 15, 2017

Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF (8.22, 8.22, 8.22);

LTE Band 4 Ground Mode Low/Area Scan (81x131x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.420 W/kg

LTE Band 4 Ground Mode Low/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.140 V/m; Power Drift = 0.05 dB

Peak SAR = 0.669 W/kg

SAR(1 g) = 0.385 W/kg; SAR(10 g) = 0.250 W/kgMaximum of SAR (measured) = 0.415 W/kg

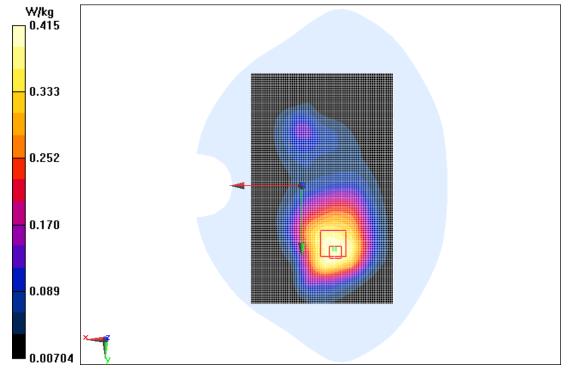


Fig.22 LTE Band 4 Ground Mode Low

LTE Band 4 Ground Mode High 50RB

Date/Time: 2016/12/30 Electronics: DAE3 Sn360 Medium: Body 1800MHz

Medium parameters used: f = 1745 MHz; $\sigma = 1.511 \text{ S/m}$; $\varepsilon_r = 53.23$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22°C Liquid Temperature:22°C

Communication System: LTE Band 4 Professional 1800MHz; Frequency: 1745 MHz; Duty

Report No.: I17D00009-SAR

: 100 of 217

: Feb 15, 2017

Page Number

Report Issued Date

Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF(8.22, 8.22, 8.22); Calibrated: 12/8/2016

LTE Band 4 Ground Mode High 50RB/Area Scan (71x111x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.328 W/kg

LTE Band 4 Ground Mode High 50RB/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.757 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.465 W/kg

SAR(1 g) = 0.289 W/kg; SAR(10 g) = 0.182 W/kgMaximum of SAR (measured) = 0.311 W/kg

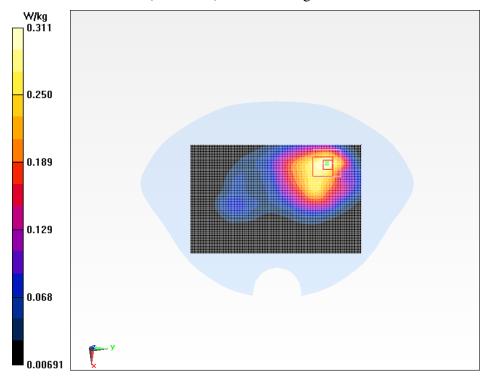


Fig.23 LTE Band 4 Ground Mode High 50RB

LTE Band 5 Ground Mode High

Date/Time: 2017/1/22 Electronics: DAE3 Sn360 Medium: Body 850MHz

Medium parameters used: f = 844 MHz; $\sigma = 1.009$ S/m; $\varepsilon_r = 55.202$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: LTE Band 5 Professional 850MHz; Frequency: 844 MHz; Duty

Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF (9.94, 9.94, 9.94);

LTE Band 5 Ground Mode High /Area Scan (71x111x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.365 W/kg

LTE Band 5 Ground Mode High /Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.35 V/m; Power Drift = -0.17 dB

Peak SAR = 0.524 W/kg

SAR(1 g) = 0.344 W/kg; SAR(10 g) = 0.225 W/kgMaximum of SAR (measured) = 0.368 W/kg

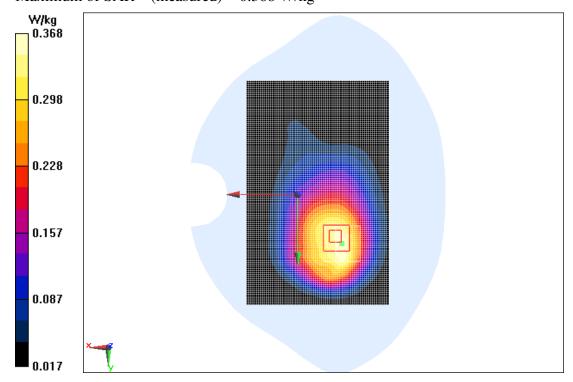


Fig.24 LTE Band 5 Ground Mode High

LTE Band 5 Ground Mode High 25RB

Date/Time: 2016/12/29 Electronics: DAE3 Sn360 Medium: Body 850MHz

Medium parameters used: f = 844 MHz; $\sigma = 1.008$ S/m; $\varepsilon_r = 55.203$; $\rho = 1000$ kg/m³

Ambient Temperature:22°C Liquid Temperature:22°C

Communication System: LTE Band 5 Professional 850MHz; Frequency: 844 MHz; Duty

Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF(9.94, 9.94, 9.94); Calibrated: 12/8/2016

LTE Band 5 Ground Mode High 25RB/Area Scan (71x111x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.497 W/kg

LTE Band 5 Ground Mode High 25RB/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 15.05 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.808 W/kg

SAR(1 g) = 0.451 W/kg; SAR(10 g) = 0.262 W/kgMaximum of SAR (measured) = 0.503 W/kg

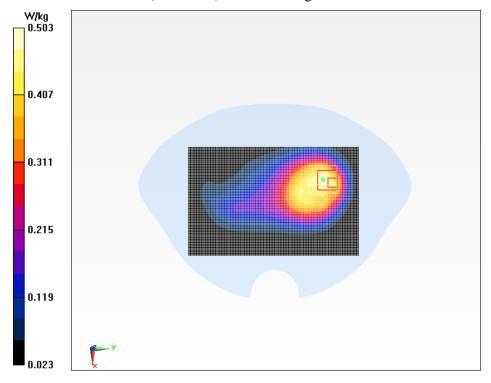


Fig.25 LTE Band 5 Ground Mode High 25RB

LTE Band 7 Ground Mode High

Date/Time: 2017/1/22 Electronics: DAE3 Sn360 Medium: Body 2600MHz

Medium parameters used : f = 2560 MHz; $\sigma = 2.031$ S/m; $\varepsilon_r = 53.659$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: LTE Band 7 Professional 2450MHz; Frequency: 2560 MHz; Duty

Report No.: I17D00009-SAR

: 103 of 217

: Feb 15, 2017

Page Number

Report Issued Date

Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF (7.16, 7.16, 7.16);

LTE Band 7 Ground Mode High /Area Scan (71x111x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 1.16 W/kg

LTE Band 7 Ground Mode High /Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.888 V/m; Power Drift = -0.03 dB

Peak SAR = 2.20 W/kg

SAR(1 g) = 1.06 W/kg; SAR(10 g) = 0.504 W/kgMaximum value of SAR (measured) = 1.15 W/kg

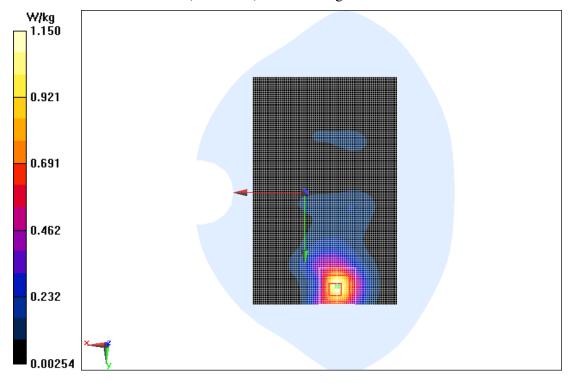


Fig.26 LTE Band 7 Ground Mode High

LTE Band 7 Ground Mode High repeated

Date/Time: 2017/1/22 Electronics: DAE3 Sn360 Medium: Body 2600MHz

Medium parameters used : f = 2560 MHz; $\sigma = 2.031$ S/m; $\varepsilon_r = 53.659$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: LTE Band 7 Professional 2450MHz; Frequency: 2560 MHz; Duty

Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF (7.16, 7.16, 7.16);

LTE Band 7 Ground Mode High repeated/Area Scan (71x111x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 1.22 W/kg

LTE Band 7 Ground Mode High repeated/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.120 V/m; Power Drift =0.11 dB

Peak SAR = 2.26 W/kg

SAR(1 g) = 1.08 W/kg; SAR(10 g) = 0.512 W/kgMaximum value of SAR (measured) = 1.18 W/kg

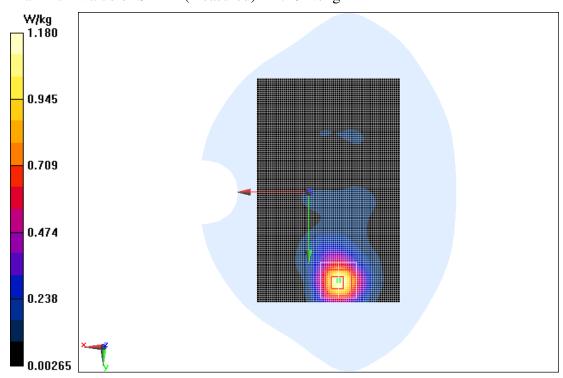


Fig.30 LTE Band 7 Ground Mode High repeated

LTE Band 7 Ground Mode Middle 50RB

Date/Time: 2017/1/2 Electronics: DAE3 Sn360 Medium: Body 2450MHz

Medium parameters used: f = 2535 MHz; $\sigma = 2.004$ S/m; $\varepsilon_r = 53.723$; $\rho = 1000$ kg/m³

Ambient Temperature:22°C Liquid Temperature:22°C

Communication System: LTE Band 7 Professional 2450MHz; Frequency: 2535 MHz; Duty

Report No.: I17D00009-SAR

: 105 of 217

: Feb 15, 2017

Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF(7.16, 7.16, 7.16); Calibrated: 12/8/2016 LTE Band 7 Ground Mode Middle 50RB/Area Scan (71x111x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.458 W/kg

LTE Band 7 Ground Mode Middle 50RB/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.451 V/m; Power Drift = 0.41 dB

Peak SAR (extrapolated) = 0.880 W/kg

SAR(1 g) = 0.433 W/kg; SAR(10 g) = 0.204 W/kgMaximum value of SAR (measured) = 0.479 W/kg

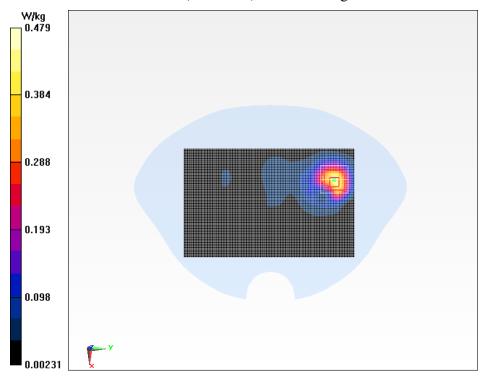


Fig.27 LTE Band 7 Ground Mode Middle 50RB

WiFi 802.11b Ground Mode Low

Date/Time: 2017/1/23 Electronics: DAE3 Sn360 Medium: Body 2450MHz

Medium parameters used: f = 2412 MHz; $\sigma = 1.868$ S/m; $\varepsilon_r = 53.924$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: Wifi 2450 2450MHz; Frequency: 2412 MHz; Duty Cycle: 1:1

Report No.: I17D00009-SAR

: 106 of 217

: Feb 15, 2017

Page Number

Report Issued Date

Probe: EX3DV4 - SN7375ConvF (7.33, 7.33, 7.33);

WiFi 802.11b Ground Mode Low/Area Scan (71x111x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.253 W/kg

WiFi 802.11b Ground Mode Low/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.755 V/m; Power Drift = 0.08 dB

Peak SAR = 0.599 W/kg

SAR(1 g) = 0.252 W/kg; SAR(10 g) = 0.114 W/kgMaximum value of SAR (measured) = 0.287 W/kg

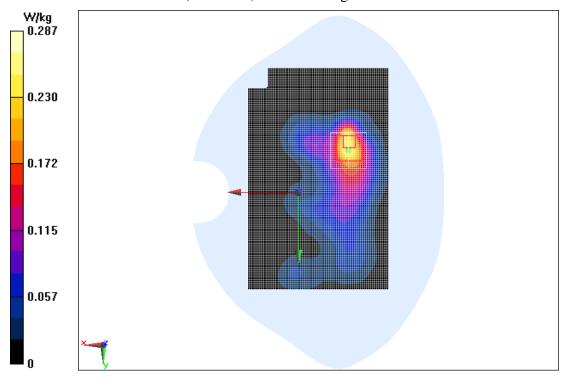


Fig.28 WiFi 802.11b Ground Mode Low

: 107 of 217

: Feb 15, 2017

Page Number

Report Issued Date

ANNEX B. SYSTEM VALIDATION RESULTS

835 MHz

Date/Time: 2016/12/29 Electronics: DAE3 Sn360 Medium: Head 835MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.925$ S/m; $\varepsilon_r = 40.942$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

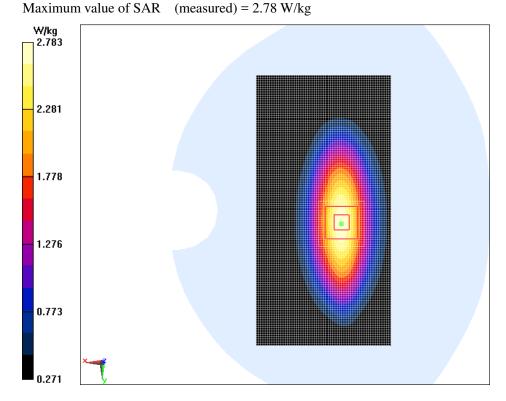
Communication System: CW 835MHz; Frequency: 835 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF(9.73, 9.73, 9.73);

System Validation / Area Scan (60x120x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 2.77 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.32 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 3.28 W/kg

SAR(1 g) = 2.34W/kg; SAR(10 g) = 1.53 W/kg

1750 MHz

Date/Time: 2016/12/30 Electronics: DAE3 Sn360 Medium: Head 1800MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.383$ S/m; $\varepsilon_r = 38.833$; $\rho = 1000$ kg/m³

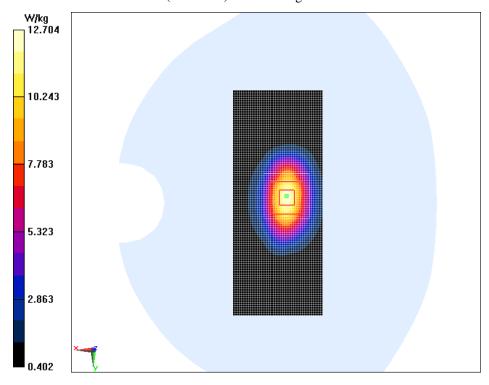
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: CW 1800MHz; Frequency: 1750 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF(8.31, 8.31, 8.31);

System validation /Area Scan (40x100x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 12.6 W/kg

System validation /Zoom Scan (7x7x7) /Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.69 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 15.6 W/kg

SAR(1 g) = 9.55 W/kg; SAR(10 g) = 5.16W/kgMaximum value of SAR (measured) = 12.7 W/kg

Page Number

Report Issued Date

: 108 of 217

: Feb 15, 2017

: 109 of 217

: Feb 15, 2017

Page Number

Report Issued Date

1900MHz

Date/Time: 2016/12/31 Electronics: DAE3 Sn360 Medium: Head 1900MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.387$ S/m; $\varepsilon_r = 39.634$; $\rho = 1000$ kg/m³

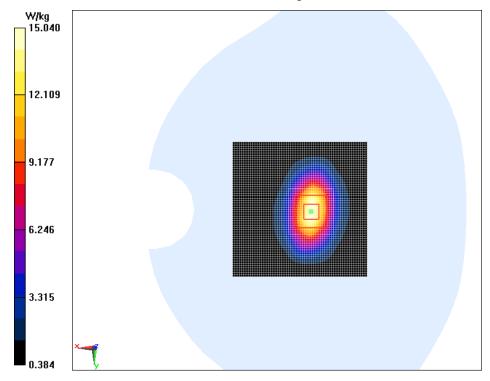
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: CW 1900MHz; Frequency: 1900 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF (7.92, 7.92, 7.92); System check Validation /Area Scan (60x60x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 15.1 W/kg


System check Validation /Zoom Scan (7x7x7) /Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 104.0 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 19.1 W/kg

SAR(1 g) = 9.89 W/kg; SAR(10 g) = 5.16 W/kgMaximum value of SAR (measured) = 15.0 W/kg

: 110 of 217

: Feb 15, 2017

Page Number

Report Issued Date

2450MHz

Date/Time: 2017/1/2 Electronics: DAE3 Sn360 Medium: Head 2450MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.801$ S/m; $\varepsilon_r = 40.083$; $\rho = 1000$ kg/m³

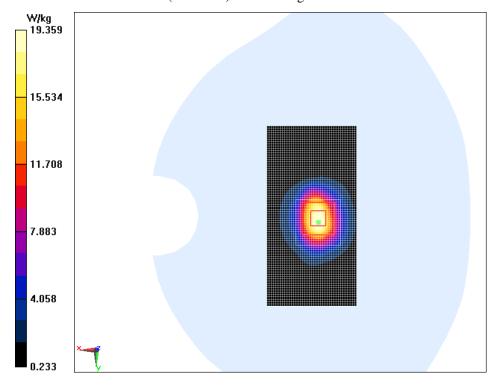
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: CW 2450MHz; Frequency: 2450 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF(7.27, 7.27, 7.27);

System Validation /Area Scan (40x80x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 20.4 W/kg

System Validation/Zoom Scan (7x7x7) /Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.92 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 26.7 W/kg

SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.12 W/kgMaximum value of SAR (measured) = 19.4 W/kg

: 111 of 217

: Feb 15, 2017

Page Number

Report Issued Date

2600 MHz

Date/Time: 2017/1/2 Electronics: DAE3 Sn360 Medium: Head 2550MHz

Medium parameters used: f = 2600 MHz; $\sigma = 1.946 \text{ S/m}$; $\varepsilon_r = 38.961$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

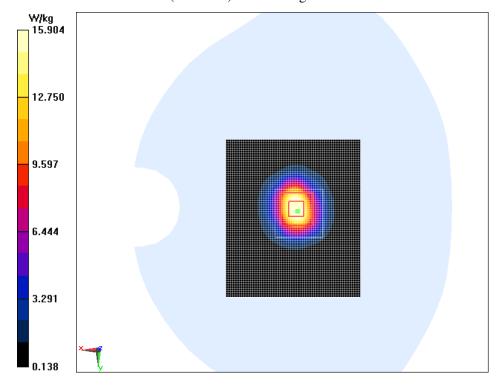
Communication System: CW 2550MHz; Frequency: 2600 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF (7.25, 7.25, 7.25);

System Validation/Area Scan (60x70x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 16.8 W/kg


System Validation/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 91.29 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 33.4 W/kg

SAR(1 g) = 14.8 W/kg; SAR(10 g) = 6.57 W/kgMaximum value of SAR (measured) = 15.9 W/kg

: 112 of 217

: Feb 15, 2017

Page Number

Report Issued Date

835 MHz Body

Date/Time: 2016/12/29 Electronics: DAE3 Sn360 Medium: Body 835MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.002$ S/m; $\varepsilon_r = 55.092$; $\rho = 1000$ kg/m³

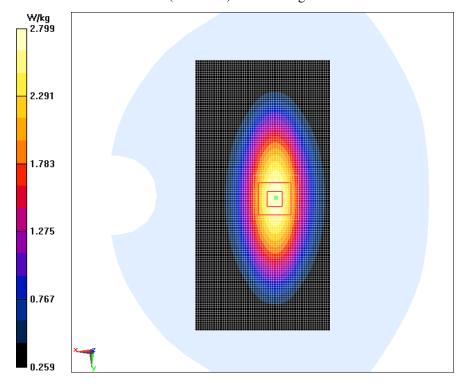
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: CW 850MHz; Frequency: 835 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF (9.94, 9.94, 9.94);

System Validation/Area Scan (60x120x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 2.77 W/kg

System Validation/Zoom Scan(7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.23 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 3.54 W/kg

SAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.59 W/kgMaximum value of SAR (measured) = 2.80 W/kg

: 113 of 217

: Feb 15, 2017

Page Number

Report Issued Date

1750MHz Body

Date/Time: 2016/12/30 Electronics: DAE3 Sn360 Medium: Body 1800MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.512$ S/m; $\varepsilon_r = 53.219$; $\rho = 1000$ kg/m³

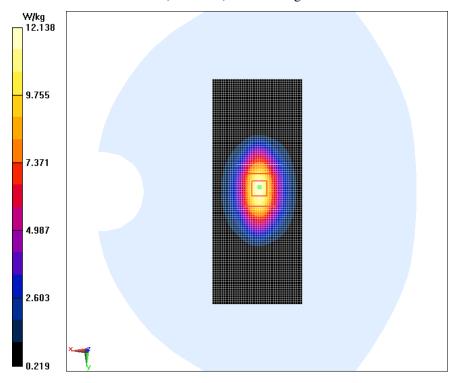
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: CW (0); Frequency: 1750 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF (8.22, 8.22, 8.22);

System Validation/Area Scan (40x100x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 11.8 W/kg

System Validation/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.89 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 16.9 W/kg

SAR(1 g) = 9.38 W/kg; SAR(10 g) = 5.09 W/kgMaximum value of SAR (measured) = 12.1 W/kg

: 114 of 217

: Feb 15, 2017

Page Number

Report Issued Date

1900MHz Body

Date/Time: 2016/12/31 Electronics: DAE3 Sn360 Medium: Body 1900MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.527$ S/m; $\varepsilon_r = 53.259$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

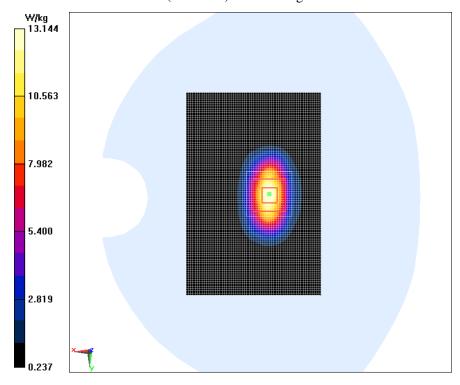
Communication System: CW 1900MHz; Frequency: 1900 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF (7.62, 7.62, 7.62);

System Validation/Area Scan (60x90x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 14.0 W/kg


System Validation/Zoom Scan(7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 88.14 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 18.7 W/kg

SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.21 W/kgMaximum value of SAR (measured) = 13.1 W/kg

: 115 of 217

: Feb 15, 2017

Page Number

Report Issued Date

2450MHz Body

Date/Time: 2017/1/2 Electronics: DAE3 Sn360 Medium: Body 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.921 \text{ S/m}$; $\epsilon r = 53.942$; $\rho = 1000 \text{ kg/m}3$

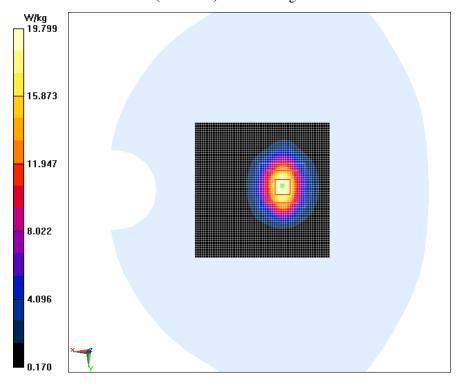
Ambien Temperature:22.5° C Liquid Temperature:22.5° C Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF (7.33, 7.33, 7.33);

System Validation/ Area Scan (100x100x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 22.94 mW/g


System Validation/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 104.86 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 28.36 mW/g

SAR(1 g) = 13.1 mW/g; SAR(10 g) = 6.13 mW/gMaximum value of SAR (measured) = 19.8 mW/g

: 116 of 217

: Feb 15, 2017

Page Number

Report Issued Date

2600MHz Body

Date/Time: 2017/1/2 Electronics: DAE3 Sn360 Medium: Body 2600MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.082$ S/m; $\varepsilon_r = 53.623$; $\rho = 1000$ kg/m³

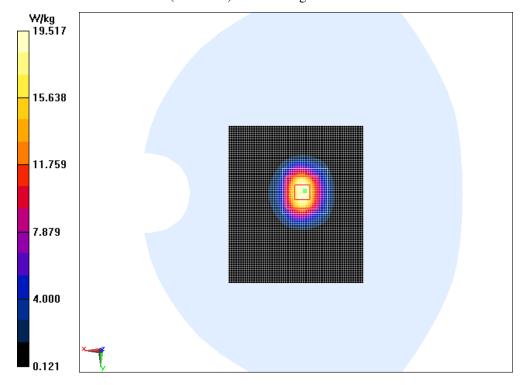
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: CW (0); Frequency: 2600 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF (7.16, 7.16, 7.16);

System Validation/Area Scan (60x70x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 20.5 W/kg

System Validation/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.2V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 31.5 W/kg

SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.18 W/kgMaximum value of SAR (measured) = 19.5 W/kg

: 117 of 217

: Feb 15, 2017

Page Number

Report Issued Date

835 MHz

Date/Time: 2017/01/22 Electronics: DAE3 Sn360 Medium: Head 835MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.928$ S/m; $\varepsilon_r = 40.853$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

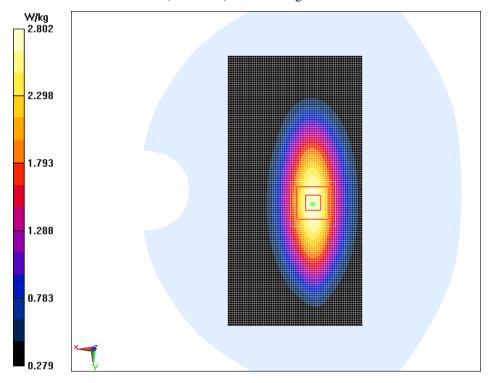
Communication System: CW 835MHz; Frequency: 835 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF(9.73, 9.73, 9.73);

System Validation / Area Scan (60x120x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 2.78 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.55 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 3.28 W/kg

SAR(1 g) = 2.33W/kg; SAR(10 g) = 1.52 W/kgMaximum value of SAR (measured) = 2.80 W/kg

: 118 of 217

: Feb 15, 2017

Page Number

Report Issued Date

1900MHz

Date/Time: 2017/1/23 Electronics: DAE3 Sn360 Medium: Head 1900MHz

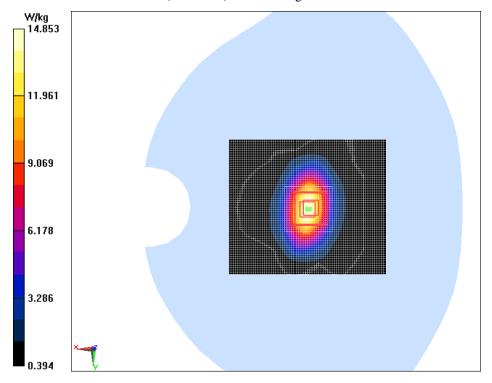
Medium parameters used: f = 1900 MHz; $\sigma = 1.424$ S/m; $\varepsilon_r = 38.814$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: CW 1900MHz; Frequency: 1900 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF (7.92, 7.92, 7.92); System check Validation /Area Scan (60x60x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 15.2 W/kg

System check Validation /Zoom Scan (7x7x7) /Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 104.5 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 19.2 W/kg

SAR(1 g) = 9.86 W/kg; SAR(10 g) = 5.12 W/kgMaximum value of SAR (measured) = 14.9 W/kg

: 119 of 217

: Feb 15, 2017

Page Number

Report Issued Date

2450MHz

Date/Time: 2017/1/23 Electronics: DAE3 Sn360 Medium: Head 2450MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.811$ S/m; $\varepsilon_r = 39.862$; $\rho = 1000$ kg/m³

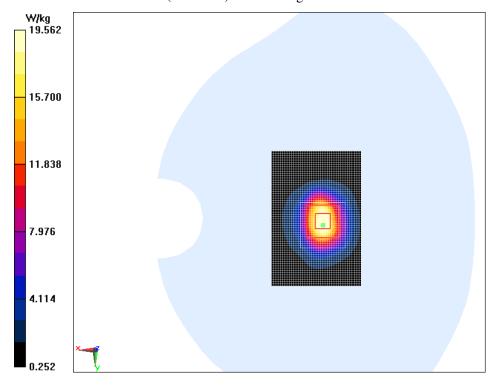
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: CW 2450MHz; Frequency: 2450 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF(7.27, 7.27, 7.27);

System Validation /Area Scan (40x80x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 21.1 W/kg

System Validation/Zoom Scan (7x7x7) /Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.2 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 26.5 W/kg

SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.16 W/kgMaximum value of SAR (measured) = 19.6 W/kg

: 120 of 217

: Feb 15, 2017

Page Number

Report Issued Date

835 MHz Body

Date/Time: 2017/1/22 Electronics: DAE3 Sn360 Medium: Body 835MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.999$ S/m; $\varepsilon_r = 55.152$; $\rho = 1000$ kg/m³

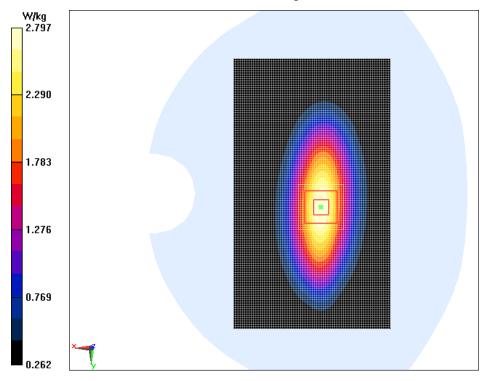
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: CW 850MHz; Frequency: 835 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF (9.94, 9.94, 9.94);

System Validation/Area Scan (60x120x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 2.78 W/kg

System Validation/Zoom Scan(7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.16 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 3.53 W/kg

SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.58 W/kgMaximum value of SAR (measured) = 2.80 W/kg

: 121 of 217

: Feb 15, 2017

Page Number

Report Issued Date

1750MHz Body

Date/Time: 2017/1/22 Electronics: DAE3 Sn360 Medium: Body 1800MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.569$ S/m; $\varepsilon_r = 52.814$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

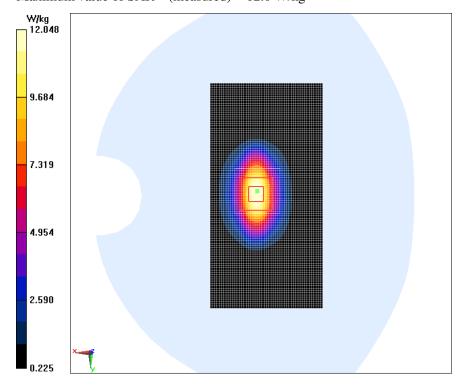
Communication System: CW (0); Frequency: 1750 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF (8.22, 8.22, 8.22);

System Validation/Area Scan (40x100x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 11.9 W/kg


System Validation/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.13 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 16.7 W/kg

SAR(1 g) = 9.35 W/kg; SAR(10 g) = 5.12 W/kgMaximum value of SAR (measured) = 12.0 W/kg

: 122 of 217

: Feb 15, 2017

Page Number

Report Issued Date

1900MHz Body

Date/Time: 2017/1/23 Electronics: DAE3 Sn360 Medium: Body 1900MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.525$ S/m; $\varepsilon_r = 53.313$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

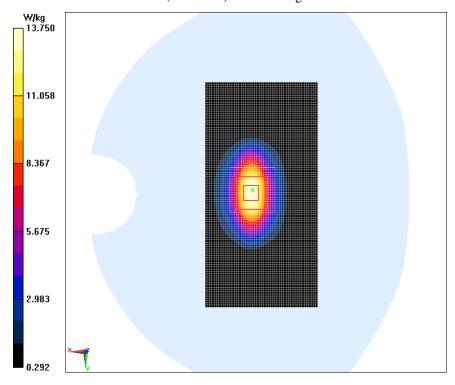
Communication System: CW 1900MHz; Frequency: 1900 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF (7.62, 7.62, 7.62);

System Validation/Area Scan (60x90x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 13.9 W/kg


System Validation/Zoom Scan(7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 88.21 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 18.5 W/kg

SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.23 W/kgMaximum value of SAR (measured) = 13.8 W/kg

: 123 of 217

: Feb 15, 2017

Page Number

Report Issued Date

2450MHz Body

Date/Time: 2017/1/23 Electronics: DAE3 Sn360 Medium: Body 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.924 \text{ S/m}$; $\epsilon r = 53.848$; $\rho = 1000 \text{ kg/m}3$

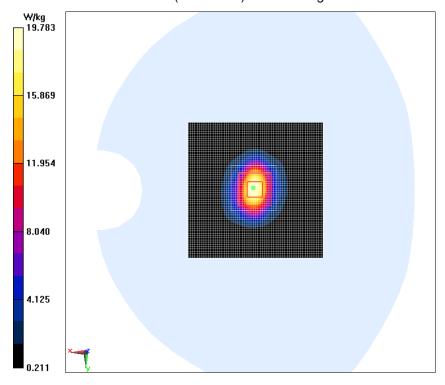
Ambien Temperature:22.5° C Liquid Temperature:22.5° C Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF (7.33, 7.33, 7.33);

System Validation/ Area Scan (100x100x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 22.71 W/kg


System Validation/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 104.7 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 28.34 W/kg

SAR(1 g) = 12.9 W/kg; SAR(10 g) = 6.09 W/kg

Maximum value of SAR (measured) = 19.8 W/kg

: 124 of 217

: Feb 15, 2017

Page Number

Report Issued Date

2600MHz Body

Date/Time: 2017/1/22 Electronics: DAE3 Sn360 Medium: Body 2600MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.079$ S/m; $\varepsilon_r = 53.687$; $\rho = 1000$ kg/m³

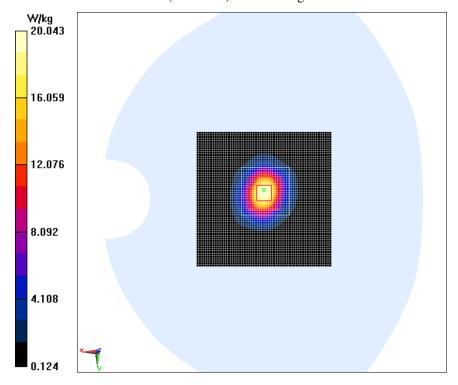
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: CW (0); Frequency: 2600 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN7375ConvF (7.16, 7.16, 7.16);

System Validation/Area Scan (60x70x1):

Measurement grid: dx=10 mm, dy=10 mm

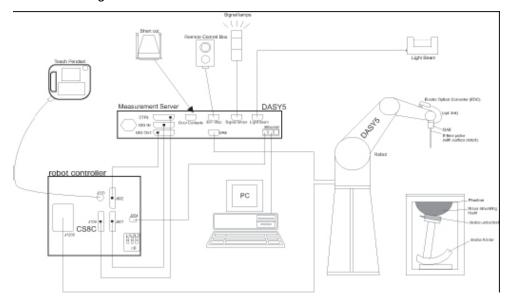

Maximum value of SAR (Measurement) = 20.7 W/kg

System Validation/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.5V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 31.8 W/kg

SAR(1 g) = 13.9 W/kg; SAR(10 g) = 6.21 W/kgMaximum value of SAR (measured) = 20.0 W/kg



ANNEX C. SAR Measurement Setup

C.1. Measurement Set-up

The DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1 SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal
 multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision
 detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal
 is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals
 for the digital communication to the DAE. To use optical surface detection, a special version of
 the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as

East China Institute of Telecommunications Page Number : 125 of 217 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Feb 15, 2017

- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

Report No.: I17D00009-SAR

East China Institute of Telecommunications Page Number : 126 of 217 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Feb 15, 2017

C.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection durning a software approach and looks for the maximum using 2ndord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

Model: ES3DV3, EX3DV4

Frequency

Range: 700MHz — 2.6GHz(ES3DV3)

Calibration: In head and body simulating tissue at

Frequencies from 835 up to 2450MHz

Linearity:

± 0.2 dB(700MHz — 2.0GHz) for ES3DV3

Dynamic Range: 10 mW/kg — 100W/kg

Probe Length: 330 mm

Probe Tip

Length: 20 mm Body Diameter: 12 mm

Tip Diameter: 2.5 mm (3.9 mm for ES3DV3)

Tip-Center: 1 mm (2.0mm for ES3DV3)

Application:SAR Dosimetry Testing
Compliance tests of mobile phones
Dosimetry in strong gradient fields

Report No.: I17D00009-SAR

Picture C.2 Near-field Probe

Picture C.3 E-field Probe

East China Institute of Telecommunications Page Number : 127 of 217 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Feb 15, 2017

C.3. E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

Report No.: I17D00009-SAR

: 128 of 217

: Feb 15, 2017

Page Number

Report Issued Date

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/ cm².

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 $\Delta t = \text{Exposure time (30 seconds)},$

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

C.4. Other Test Equipment

C.4.1. Data Acquisition Electronics(DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for

commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

Report No.: I17D00009-SAR

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

PictureC.4: DAE

East China Institute of Telecommunications Page Number : 129 of 217 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Feb 15, 2017

C.4.2. Robot

The SPEAG DASY system uses the high precision robots (DASY5: RX90L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchron motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture C.5 DASY 5

C.4.3. Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128MB), RAM (DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

East China Institute of Telecommunications Page Number : 130 of 217 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Feb 15, 2017

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

Report No.: I17D00009-SAR

Picture C.6 Server for DASY 5

C.4.4. Device Holder for Phantom

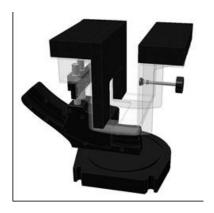
The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ±0.5mm would produce a SAR uncertainty of ±20%. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with


East China Institute of Telecommunications Page Number : 131 of 217 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Feb 15, 2017

the Twin-SAM and ELI phantoms.

Picture C.7: Device Holder

Picture C.8: Laptop Extension Kit

Page Number

Report Issued Date

: 132 of 217

: Feb 15, 2017

C.4.5. PhantomThe SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape

Report No.: I17D00009-SAR

of the shell is based on data from an anatomical study designed to Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined

shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases

phantom positions and measurement grids by manually teaching three points in the robot. The

to 6 mm).

Shell Thickness: 2 ± 0. 2 mm

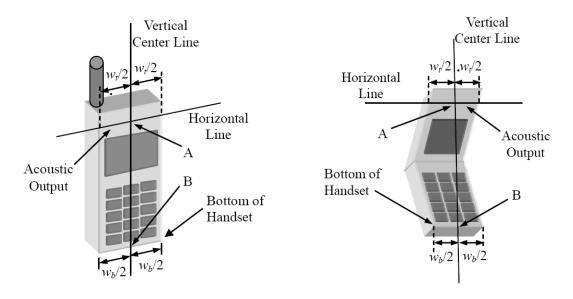
Filling Volume: Approx. 25 liters

Dimensions: 810 x 1000 x 500 mm (H x L x W)

Available: Special

Picture C.9: SAM Twin Phantom

East China Institute of Telecommunications Page Number : 133 of 217 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Feb 15, 2017

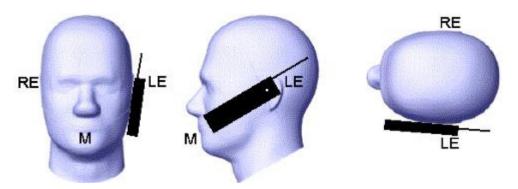


ANNEX D. Position of the wireless device in relation to the phantom

Report No.: I17D00009-SAR

D.1. General considerations

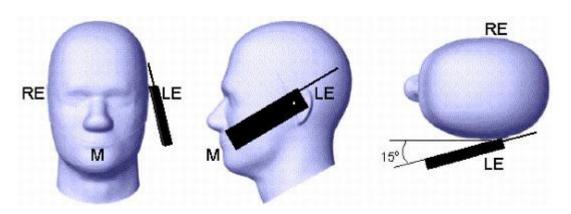
This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.


 W_t Width of the handset at the level of the acoustic

 W_b Width of the bottom of the handset

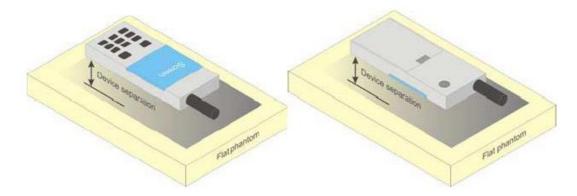
A Midpoint of the width w_i , of the handset at the level of the acoustic output

B Midpoint of the width W_b of the bottom of the handset


Picture D.1-a Typical "fixed" case handset Picture D.1-b Typical "clam-shell" case handset

Picture D.2 Cheek position of the wireless device on the left side of SAM

East China Institute of Telecommunications Page Number : 134 of 217
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Feb 15, 2017

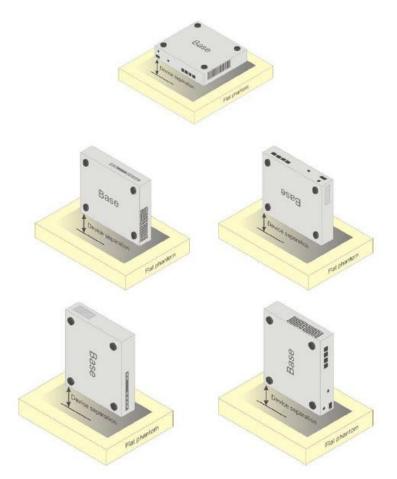

: 135 of 217

: Feb 15, 2017

Picture D.3 Tilt position of the wireless device on the left side of SAM

D.2. Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.


Picture D.4Test positions for body-worn devices

D.3. Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.

Picture D.5 Test positions for desktop devices

Page Number Report Issued Date

: 136 of 217 : Feb 15, 2017

D.4. DUT Setup Photos

Picture D.6 DSY5 system Set-up

Note:

The photos of test sample and test positions show in additional document.

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number : 137 of 217

Report Issued Date : Feb 15, 2017

ANNEX E. **Equivalent Media Recipes**

The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

Table E.1: Composition of the Tissue Equivalent Matter

Fragues av (MIII)	835	835	1900	1900	2450	2450			
Frequency (MHz)	Head	Body	Head	Body	Head	Body			
Ingredients (% by weight)									
Water	41.45	52.5	55.242	69.91	58.79	72.60			
Sugar	56.0	45.0	\	\	\	\			
Salt	1.45	1.4	0.306	0.13	0.06	0.18			
Preventol	0.1	0.1	\	\	\	\			
Cellulose	1.0	1.0	\	\	\	\			
Glycol Monobutyl	\	\	44.452	29.96	41.15	27.22			
Dielectric	c=41 E	c=EE 0	s=40.0	c=E0.0	c=20.2	c=50.7			
Parameters	ε=41.5	ε=55.2	ε=40.0	ε=53.3	ε=39.2	ε=52.7			
Target Value	σ=0.90	σ=0.97	σ=1.40	σ=1.52	σ=1.80	σ=1.95			

East China Institute of Telecommunications Page Number TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date

: 138 of 217 : Feb 15, 2017

Report No.: I17D00009-SAR

ANNEX F. System Validation

The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components.

Report No.: I17D00009-SAR

Table F.1: System Validation Part 1

System	Probe SN.	Liquid name	Validation	Frequenc	Permittivity	Conductivity
No.	FIODE SIN.	Liquid Hame	date	y point	3	σ (S/m)
1	7375	Head 835MHz	Dec 29, 2016	835MHz	40.942	0.925
2	7375	Head 1750MHz	Dec 30, 2016	1750MHz	38.833	1.383
3	7375	Head 1900MHz	Dec 31, 2016	1900MHz	39.634	1.387
4	7375	Head 2450MHz	Jan 2, 2017	2450MHz	40.083	1.801
5	7375	Head 2600MHz	Jan 2, 2017	2600MHz	38.961	1.946
6	7375	Body 835MHz	Dec 29, 2016	835MHz	55.092	1.002
7	7375	Body 1750MHz	Dec 30, 2016	1750MHz	53.219	1.512
8	7375	Body 1900MHz	Dec 31, 2016	1900MHz	53.259	1.527
9	7375	Body 2450MHz	Jan 2, 2017	2450MHz	53.942	1.921
10	7375	Body 2600MHz	Jan 2, 2017	2600MHz	53.623	2.082
11	7375	Head 835MHz	Jan 22, 2017	835MHz	40.85	0.928
12	7375	Head 1900MHz	Jan 23, 2017	1900MHz	38.81	1.424
13	7375	Head 2450MHz	Jan 23, 2017	2450MHz	39.86	1.811
14	7375	Body 835MHz	Jan 22, 2017	835MHz	55.15	0.999
15	7375	Body 1750MHz	Jan 22, 2017	1750MHz	52.81	1.569
16	7375	Body 1900MHz	Jan 23, 2017	1900MHz	53.31	1.525
17	7375	Body 2450MHz	Jan 23, 2017	2450MHz	53.85	1.924
18	7375	Body 2600MHz	Jan 22, 2017	2600MHz	53.69	2.079

East China Institute of Telecommunications Page Number : 139 of 217 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Feb 15, 2017

Table F.2: System Validation Part 2

CW Validation	Sensitivity	PASS	PASS
	Probe linearity	PASS	PASS
	Probe Isotropy	PASS	PASS
Mod Validation	MOD.type	GMSK	GMSK
	MOD.type	OFDM	OFDM
	Duty factor	PASS	PASS
	PAR	PASS	PASS

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number : 140 of 217

Report Issued Date : Feb 15, 2017

ANNEX G. Probe and DAE Calibration Certificate

In Collaboration with

S P E A G

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

AC MRA

Client:

Auden

Certificate No: Z16-97204

CALIBRATION CERTIFICATE

Object

DAE3 - SN: 360

Calibration Procedure(s)

FD-Z11-002-01

Calibration Procedure for the Data Acquisition Electronics

(DAEx)

Calibration date:

November 08, 2016

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards ID# Cal Date(Calibrated by, Certificate No.)

Scheduled Calibration

Process Calibrator 753

1971018

Name

27-June-16 (CTTL, No:J16X04778)

June-17

Calibrated by:

Function

Signature

Calibrated by.

Yu Zongying

SAR Test Engineer

Reviewed by:

Qi Dianyuan

SAR Project Leader

Approved by:

Lu Bingsong

Deputy Director of the laboratory

Issued: November 09, 2016

: 141 of 217

: Feb 15, 2017

Page Number

Report Issued Date

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z16-97204

Page 1 of 3

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 Http://www.chinattl.cn

Glossary:

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X

Report No.: I17D00009-SAR

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z16-97204

Page 2 of 3

Page Number

Report Issued Date

: 142 of 217

: Feb 15, 2017

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DC Voltage Measurement

A/D - Converter Resolution nominal

Calibration Factors	х	Y	z
High Range	404.141 ± 0.15% (k=2)	404.039 ± 0.15% (k=2)	404.054 ± 0.15% (k=2)
Low Range	3.93503 ± 0.7% (k=2)	3.93694 ± 0.7% (k=2)	3.97213 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	37.5° ± 1 °
---	-------------

Certificate No: Z16-97204

Page 3 of 3

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number

: 143 of 217

Report No.: I17D00009-SAR

Report Issued Date

: Feb 15, 2017

Report No.: I17D00009-SAR

e CALIBRATION LABORATORY

Auden

Certificate No: Z16-97206

CALIBRATION CERTIFICATE

EX3DV4 - SN:7375

Calibration Procedure(s)

FD-Z11-004-01

Calibration Procedures for Dosimetric E-field Probes

Calibration date: December 08, 2016

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and

Calibration Equipment used (M&TE critical for calibration)

Primary Standard	is	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter	NRP2	101919	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Power sensor	NRP-Z91	101547	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Power sensor	NRP-Z91	101548	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Reference10dB	Attenuator	18N50W-10dB	13-Mar-16(CTTL,No.J16X01547)	Mar-18
Reference20dB	Attenuator	18N50W-20dB	13-Mar-16(CTTL, No.J16X01548)	Mar-18
Reference Prob	e EX3DV4	SN 7307	19-Feb-16(SPEAG,No.EX3-7307_Feb16)	Feb-17
DAE4		SN 1331	21-Jan-16(SPEAG, No.DAE4-1331_Jan16)	Jan -17
Secondary Stan	dards	1D#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGenerato	rMG3700A	6201052605	27-Jun-16 (CTTL, No.J16X04776)	Jun-17
Network Analyze	er E5071C	MY46110673	26-Jan-16 (CTTL, No.J16X00894)	Jan -17
			State Original and	VANDO S W

	Name	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	Ando
Reviewed by:	Qi Dianyuan	SAR Project Leader	39
Approved by:	Lu Bingsong	Deputy Director of the laboratory	Jan 15
		Januari Dan	200 2016

Issued: December 09, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z16-97206

Page 1 of 11

East China Institute of Telecommunications Page Number : 144 of 217 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Feb 15, 2017

Add: No.51 Xueyuan Road, Haidian District, Bcijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary:

tissue simulating liquid NORMx,y,z sensitivity in free space ConvF DCP CF sensitivity in TSL / NORMx,y,z diode compression point

crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ Φ rotation around probe axis

θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i Polarization θ

Report No.: I17D00009-SAR

 θ =0 is normal to probe axis

Onnector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in the specific to the procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used

in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z^*$ frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax, y, z; Bx, y, z; Cx, y, z; VRx, y, z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature
- Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Page Number

Report Issued Date

: 145 of 217

: Feb 15, 2017

Certificate No: Z16-97206 Page 2 of 11

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301

Probe EX3DV4

Report No.: I17D00009-SAR

SN: 7375

Calibrated: December 08, 2016

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: Z16-97206

Page 3 of 11

Page Number

Report Issued Date

: 146 of 217

: Feb 15, 2017

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7375

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	0.52	0.42	0.46	±10.8%
DCP(mV) ^B	99.7	98.3	100.7	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)	
0 CW	CW	X	0.0	0.0	1.0	0.00	195.6	±2.4%	
			Y	0.0	0.0	1.0		177.1	
		Z	0.0	0.0	1.0		187.8		

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Page 4 of 11

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date

Page Number : 147 of 217 : Feb 15, 2017

Report No.: I17D00009-SAR

 $^{^{\}rm A}$ The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6). Numerical linearization parameter: uncertainty not required. $^{\rm E}$ Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: ettl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7375

Report No.: I17D00009-SAR

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.90	9.90	9.90	0.40	0.75	±12%
835	41.5	0.90	9.73	9.73	9.73	0.15	1.41	±12%
900	41.5	0.97	9.78	9.78	9.78	0.15	1.43	±12%
1750	40.1	1.37	8.31	8.31	8.31	0.30	0.95	±12%
1900	40.0	1.40	7.92	7.92	7.92	0.25	1.04	±12%
2000	40.0	1.40	7.99	7.99	7.99	0.26	1.04	±12%
2100	39.8	1.49	8.30	8.30	8.30	0.32	0.92	±12%
2300	39.5	1.67	7.57	7.57	7.57	0.32	1.02	±12%
2450	39.2	1.80	7.27	7.27	7.27	0.38	1.01	±12%
2600	39.0	1.96	7.25	7.25	7.25	0.49	0.81	±12%
3500	37.9	2.91	7.01	7.01	7.01	0.38	1.22	±13%
5200	36.0	4.66	5.58	5.58	5.58	0.36	1.55	±13%
5300	35.9	4.76	5.31	5.31	5.31	0.36	1.55	±13%
5500	35.6	4.96	5.09	5.09	5.09	0.36	1.55	±13%
5600	35.5	5.07	4.79	4.79	4.79	0.36	1.68	±13%
5800	35.3	5.27	4.78	4.78	4.78	0.40	1.65	±13%

 $^{^{\}rm C}$ Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10 , 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Page 5 of 11

East China Institute of Telecommunications Page Number : 148 of 217
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Feb 15, 2017

 $^{^{\}text{F}}$ At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7375

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	9.94	9.94	9.94	0.30	0.85	±12%
835	55.2	0.97	9.94	9.94	9.94	0.15	1.50	±12%
900	55.0	1.05	9.89	9.89	9.89	0.21	1.22	±12%
1750	53.4	1.49	8.22	8.22	8.22	0.23	1.12	±12%
1900	53.3	1.52	7.62	7.62	7.62	0.19	1.24	±12%
2000	53.3	1.52	7.90	7.90	7.90	0.16	1.62	±12%
2100	53.2	1.62	8.17	8.17	8.17	0.17	1.75	±12%
2300	52.9	1.81	7.43	7.43	7.43	0.45	0.95	±12%
2450	52.7	1.95	7.33	7.33	7.33	0.33	1.22	±12%
2600	52.5	2.16	7.16	7.16	7.16	0.48	0.92	±12%
3500	51.3	3.31	6.52	6.52	6.52	0.44	1.33	±13%
5200	49.0	5.30	4.82	4.82	4.82	0.45	1.50	±13%
5300	48.9	5.42	4.57	4.57	4.57	0.45	1.50	±13%
5500	48.6	5.65	4.20	4.20	4.20	0.48	1.60	±13%
5600	48.5	5.77	3.99	3.99	3.99	0.50	1.65	±13%
5800	48.2	6.00	4.08	4.08	4.08	0.55	1.95	±13%

^C Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z16-97206

Page 6 of 11

Page Number

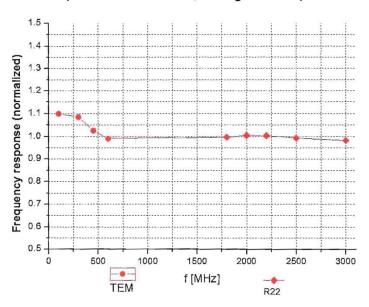
Report Issued Date

: 149 of 217

: Feb 15, 2017

FAt frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

GAIPha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: ettl@chinattl.com Http://www.chinattl.cn

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

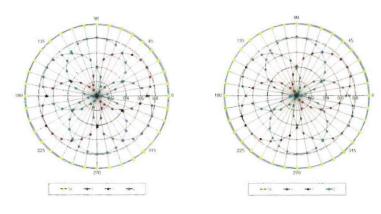
Report No.: I17D00009-SAR

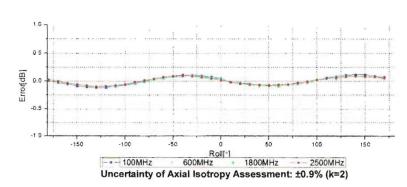
Uncertainty of Frequency Response of E-field: ±7.5% (k=2)

Certificate No: Z16-97206

Page 7 of 11

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number : 150 of 217 Report Issued Date : Feb 15, 2017




Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22

Report No.: I17D00009-SAR

Page Number

Report Issued Date

: 151 of 217

: Feb 15, 2017