CERTIFICATE OF CALIBRATION

ISSUED BY UL INTERNATIONAL (UK) LTD

DATE OF ISSUE: 29/Oct/2020 CERTIFICATE NUMBER: 13252590JD01A

UL INTERNATIONAL (UK) LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK

TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001

Email: LST.UK.Calibration@ul.com

Page 1 of 10

APPROVED SIGNATORY

Harmohan Sahota

Customer: UL VS Inc

47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description: Dipole Validation Kit Date of Receipt: 15/Oct/2020

Manufacturer: Speag

Type/Model Number: D900V2

Serial Number: 1d143

Calibration Date: 21/Oct/2020

Calibrated By: Kaan Corbacioglu

Laboratory Technician

Signature:

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) °C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025:2017 has been independently assessed.

CERTIFICATE NUMBER: 13252590JD01A

UKAS Accredited Calibration Laboratory No. 5772

Page 2 of 10

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- IEC 62209-2:2010: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. DASY5/6 System Handbook
- 6. Dipole Calibration Procedure V1.2: Calibration performed as per internal procedure

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0135115	Data Acquisition Electronics	SPEAG	DAE4	1438	14 Apr 2020	12
PRE0178314	Probe	SPEAG	EX3DV4	7496	24 Mar 2020	12
PRE0134199	Dipole	SPEAG	D900V2	035	11 Feb 2020	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	-
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	27 Mar 2020	12
PRE0151154	Vector Network Analyser	Rhode & Schwarz	ZNB 8	100151	15 Jun 2020	12
PRE0158684	Calibration Kit	Rhode & Schwarz	ZV-Z135	102144	27 May 2020	12
PRE0178154	Signal Generator	Rhode & Schwarz	SMB100A	175325	10 Jun 2020	12

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 13252590JD01A

Page 3 of 10

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L
Robot Serial Number:	F17/5ENYG1/A/01
DASY Version:	cDASY6.14.0.959
Phantom:	Flat section of SAM Twin Phantom
Distance Dipole Centre:	15 mm (with spacer)
Frequency:	900 MHz

Dielectric Property Measurements – Head Simulating Liquid (HSL)

							<u> </u>		
Simulant Liquid	Frequency	Room	Temp	Liqui	d Temp	Parameters	Target	Measured	Uncertainty
Simulant Liquid	(MHz)	Start	End	Start	End	i arameters	Value	Value	(%)
Head	900	20.1 °C	20.4 °C	20.0 °C	20.1 °C	εr	41.50	41.72	± 5%
пеац	900	20.1 C	20.4 C	20.0 C	20.1 C	σ	0.97	0.93	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	2.66 W/Kg	10.59 W/Kg	± 17.57%
пеаи	SAR averaged over 10g	1.74 W/Kg	6.93 W/Kg	± 17.32%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Heed	Impedance	50.05 Ω - 0.19j Ω	$\pm 0.28 \Omega \pm 0.044 j\Omega$
Head	Return Loss	53.99	± 2.03 dB

Page 4 of 10

CERTIFICATE NUMBER:

13252590JD01A

UKAS Accredited Calibration Laboratory No. 5772

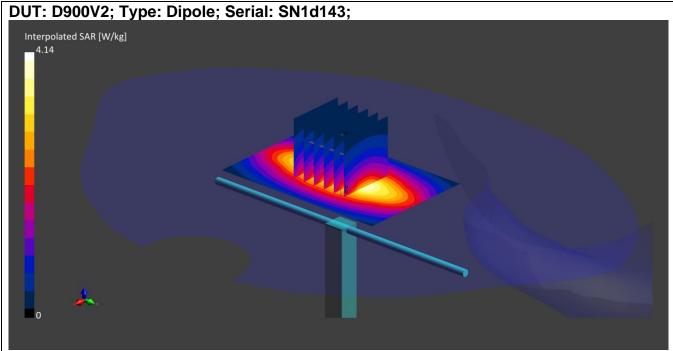
Dielectric Property Measurements – Body Simulating Liquid (MSL)

Simulant Liquid	Frequency	Room	Temp	Liquio	d Temp	Parameters	Target	Measured	Uncertainty
Simulant Liquid	(MHz)	Start	End	Start	End	i arameters	Value	Value	(%)
Body	900	19.4 °C	19.5 °C	19.9 ℃	20.1 °C	εr	55.00	55.49	± 5%
Бойу	900	19.4 C	19.5 C	19.9 C	20.1 C	σ	1.05	1.00	± 5%

SAR Results – Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Pody	SAR averaged over 1g	2.68 W/Kg	10.67 W/Kg	± 18.06%
Body	SAR averaged over 10g	1.77 W/Kg	7.05 W/Kg	± 17.44%

Antenna Parameters – Body Simulating Liquid (MSL)


Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Body	Impedance	55.14 Ω + 1.57j Ω	± 0.28 Ω ± 0.044 jΩ
Бойу	Return Loss	25.83	± 2.03 dB

CERTIFICATE NUMBER: 13252590JD01A

UKAS Accredited Calibration Laboratory No. 5772

Page 5 of 10

DASY Validation Scan for Head Stimulating Liquid (HSL)

Communication System: CW UID: 0; Frequency: 900.0 MHz; Duty Cycle: 1;

Medium: HSL; Site65_21Oct2020_085903_Head - 900 2300 5%; Medium parameters used: f = 900.0 MHz; σ = 0.93 S/m; ϵ_r = 41.7; ρ = 1000 kg/m3; $\Delta\epsilon_r$ = 0.53 %; $\Delta\sigma$ = -3.71 %; No correction Phantom section: Flat;

DASY 6 Configuration:

- Laboratory Name: Site65;

- Probe: EX3DV4 - SN7496; ConvF(9.65, 9.65, 9.65); Calibrated: 24 Mar 2020

- Sensor-Surface: 1.4 mm; VMS + 6p

- Electronics: DAE4 - SN1438; Calibrated: 14 Apr 2020

- Phantom: Twin-SAM V8.0 (30deg probe tilt); Serial: 1945

- Measurement SW: cDASY6.14.0.959

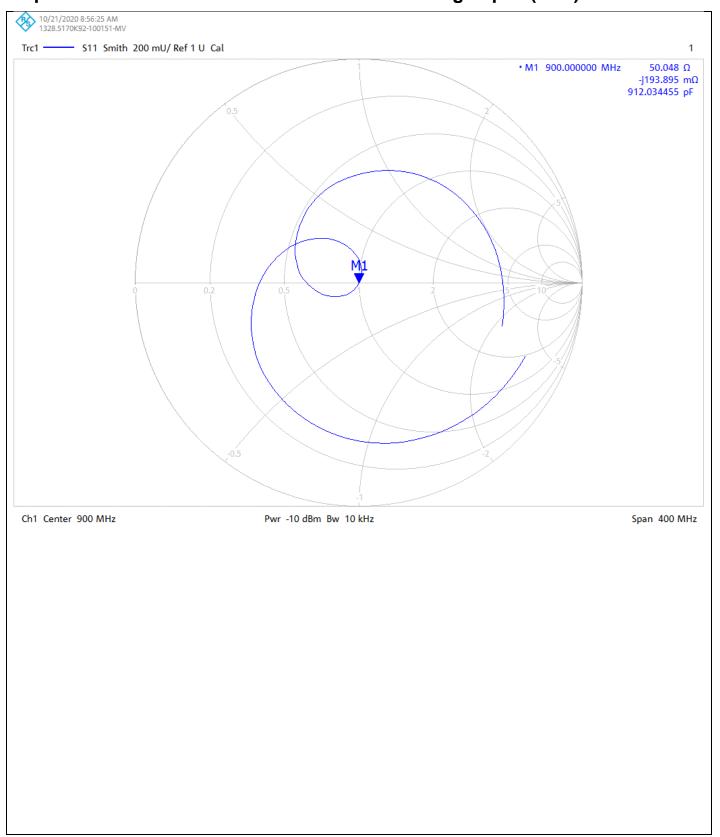
Area Scan (60x90):Interpolated grid: dx=15 mm, dy=15 mm

Zoom Scan1(30x30x30):Measurement grid: dx=6 mm, dy=6 mm, dz=1.5 mm; Grading Ratio:

1.5; Reference Value = 3.090 V/m; Power Drift = 0.00 dB

Minimum horizontal 3dB distance: 16.1 mm;

Vertical M2/M1 Ratio: 87.1 %;

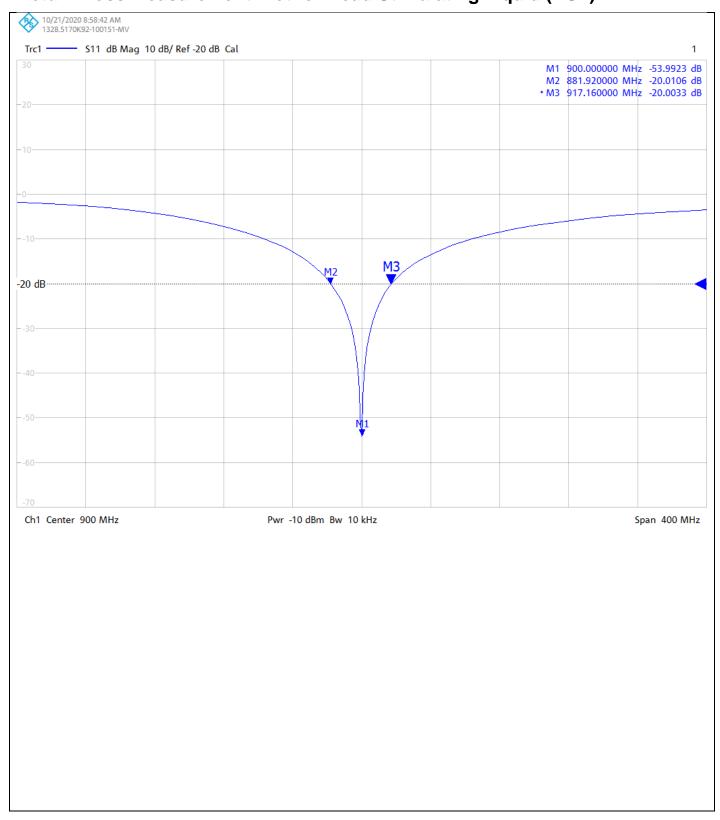

SAR(1 g) = 2.660 W/kg; SAR(10 g) = 1.740 W/kg

CERTIFICATE NUMBER: 13252590JD01A

UKAS Accredited Calibration Laboratory No. 5772

Page 6 of 10

Impedance Measurement Plot for Head Stimulating Liquid (HSL)

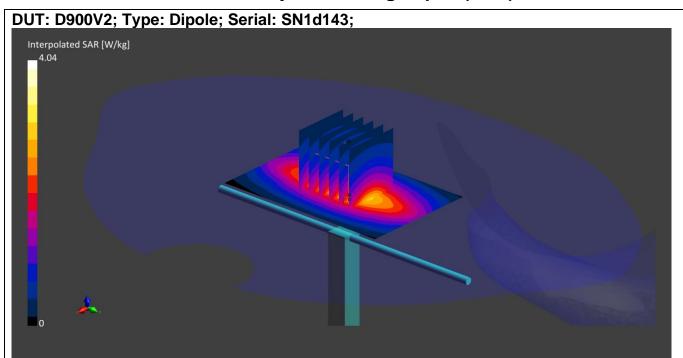


CERTIFICATE NUMBER: 13252590JD01A

Page 7 of 10

UKAS Accredited Calibration Laboratory No. 5772

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)



CERTIFICATE NUMBER: 13252590JD01A

UKAS Accredited Calibration Laboratory No. 5772

Page 8 of 10

DASY Validation Scan for Body Stimulating Liquid (MSL)

Communication System: CW UID: 0; Frequency: 900.0 MHz; Duty Cycle: 1;

Medium: MSL; Site65 19Oct2020 142913 Body - 900 5%; Medium parameters used: f = 900.0

MHz; $\sigma = 1$ S/m; $\varepsilon_r = 55.5$; $\rho = 1000$ kg/m3; $\Delta \varepsilon_r = 0.88$ %; $\Delta \sigma = -4.49$ %; No correction

Phantom section: Flat; DASY 6 Configuration:

- Laboratory Name: Site65;

- Probe: EX3DV4 - SN7496; ConvF(9.7, 9.7, 9.7); Calibrated: 24 Mar 2020

- Sensor-Surface: 1.4 mm; VMS + 6p

- Electronics: DAE4 - SN1438; Calibrated: 14 Apr 2020

- Phantom: Twin-SAM V5.0 (30deg probe tilt); Serial: 1818

- Measurement SW: cDASY6.14.0.959

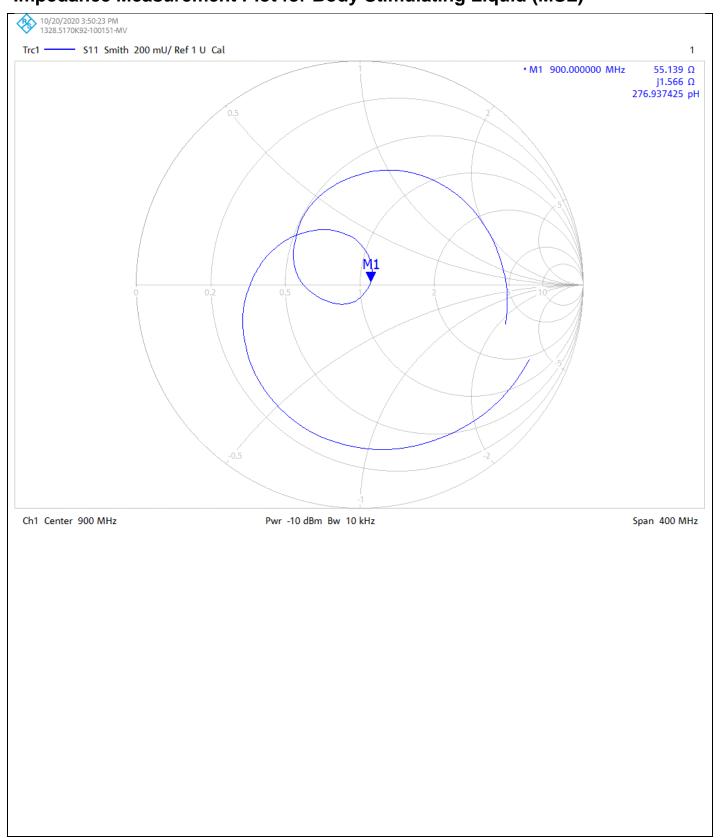
Area Scan (60x90):Interpolated grid: dx=15 mm, dy=15 mm

Zoom Scan1(30x30x30):Measurement grid: dx=6 mm, dy=6 mm, dz=1.5 mm; Grading Ratio:

1.5; Reference Value = 3.070 V/m; Power Drift = 0.01 dB

Minimum horizontal 3dB distance: 15.6 mm;

Vertical M2/M1 Ratio: 87.5 %;

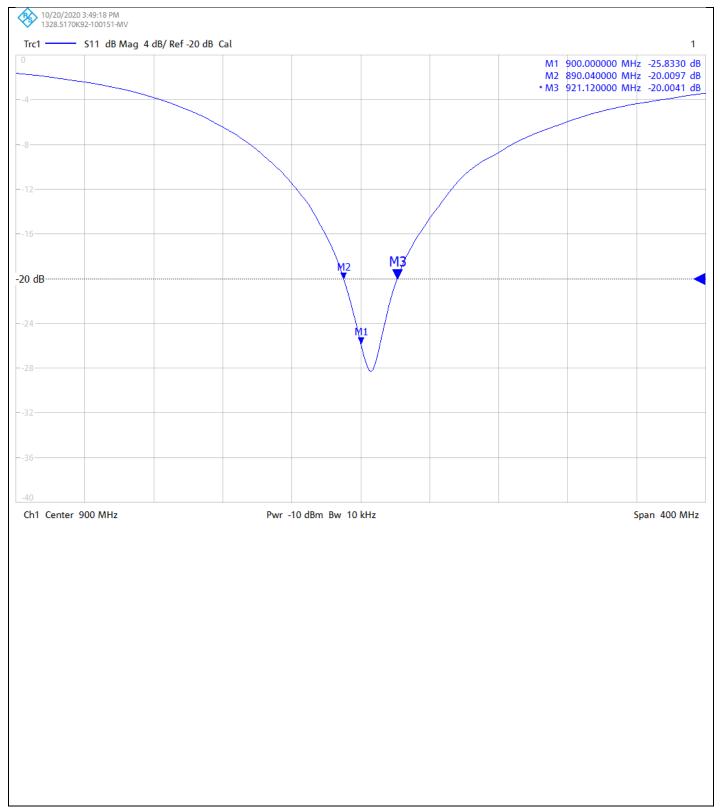

SAR(1 g) = 2.680 W/kg; SAR(10 g) = 1.770 W/kg

CERTIFICATE NUMBER: 13252590JD01A

UKAS Accredited Calibration Laboratory No. 5772

Page 9 of 10

Impedance Measurement Plot for Body Stimulating Liquid (MSL)



CERTIFICATE NUMBER: 13252590JD01A

UKAS Accredited Calibration Laboratory No. 5772

Page 10 of 10

Return Loss Measurement Plot for Body Stimulating Liquid (MSL)

Calibration Certificate Label:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312000

Certificate Number: 13252590JD01A

Instrument ID: 1d143

Calibration Date: 21/Oct/2020

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312000

Certificate Number: 13252590JD01A

Instrument ID: 1d143

Calibration Date: 21/Oct/2020

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312000

Certificate Number: 13252590JD01A

Instrument ID: 1d143

Calibration Date: 21/Oct/2020

Calibration Due Date: