CERTIFICATE OF CALIBRATION

ISSUED BY UL VS LTD

DATE OF ISSUE: 16/Oct/2018 CERTIFICATE NUMBER: 12134285JD01A

UL VS LTD UNIT 1 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK

TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001

Email: LST.UK.Calibration@ul.com

(UL)

Page 1 of 10

APPROVED SIGNATORY

M. Maseen

Naseer Mirza

Customer:

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description: Dipole Validation Kit Date of Receipt: 08/Oct/2018

Manufacturer: Speag

Type/Model Number: D900V2

Serial Number: 1d143

Calibration Date: 16/Oct/2018

Calibrated By: Chanthu Thevarajah

Senior Engineer

.....

Signature:

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) °C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025 has been independently assessed.

CERTIFICATE NUMBER: 12134285JD01A

UKAS Accredited Calibration Laboratory No. 5248

Page 2 of 10

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. SPEAG DASY4/ DASY5 System Handbook

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0178318	Data Acquisition Electronics	SPEAG	DAE4	1543	08 Mar 2018	12
PRE0178315	Probe	SPEAG	ES3DV3	3360	17 Aug 2018	12
A2201	Dipole	SPEAG	D900V2	035	07 Feb 2018	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	12
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	05 Feb 2018	12
PRE0151154	Network Analyser	Rhode & Schwarz	ZND8	100151	14 Dec 2017	12
PRE0151877	Calibration Kit	Rhode & Schwarz	ZV-Z135	102947-Bt	27 Apr 2018	12
PRE0178154	Signal Generator	Rhode & Schwarz	SMB 100A	175325	09 Apr 2018	12

CERTIFICATE NUMBER: 12134285JD01A

UKAS Accredited Calibration Laboratory No. 5248

Page 3 of 10

SAR System Specification

7 ii Cyclem Cyclemeanen				
Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L			
Robot Serial Number:	F17/5ENYG1/A/01			
DASY Version:	DASY 52 (v52.8.8.1258)			
Phantom:	Flat section of SAM Twin Phantom			
Distance Dipole Centre:	15 mm (with spacer)			
Frequency:	900 MHz			

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room	Temp	Liqui	d Temp	Parameters	Target	Measured	Uncertainty
Simulant Liquid	(MHz)	Start	End	Start	End	i arameters	Value	Value	(%)
Head	900	22.2 °C	22.5 °C	22.0°C	22.0°C	εr	41.50	41.28	± 5%
пеац	900	22.2 C	22.5 C	22.0 C	22.0 C	σ	0.97	0.99	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	2.82 W/Kg	11.22 W/Kg	± 17.57%
пеац	SAR averaged over 10g	1.80 W/Kg	7.16 W/Kg	± 17.32%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	47.832 Ω -1.93 jΩ	$\pm 0.28 \Omega \pm 0.044 j\Omega$
пеац	Return Loss	30.53	± 2.03 dB

CERTIFICATE NUMBER: 12134285JD01A

UKAS Accredited Calibration Laboratory No. 5248

Page 4 of 10

Dielectric Property Measurements – Body Simulating Liquid (MSL)

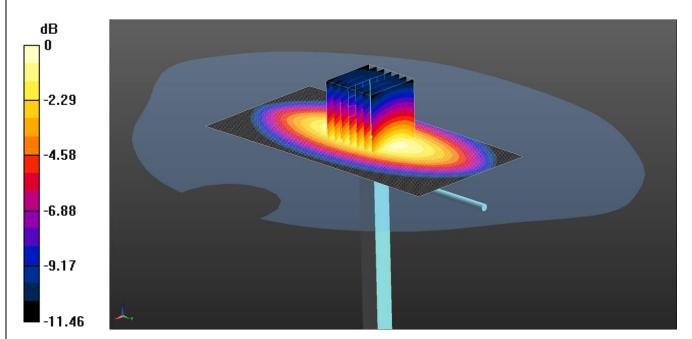
Simulant Liquid	Frequency	Room	Temp	Liquio	d Temp	Parameters Target		Measured	Uncertainty
Simulant Liquid	(MHz)	Start	End	Start End	i arameters	Value	Value	(%)	
Body	900	20.0 °C	21 5 ℃	19.9°C	20.1°C	εr	55.00	54.68	± 5%
Бойу	900	20.0 C	21.5 C	19.9 C	20.1 C	σ	1.05	1.01	± 5%

SAR Results – Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Rody	SAR averaged over 1g	2.83 W/Kg	11.26 W/Kg	± 18.06%
Body	SAR averaged over 10g	1.84 W/Kg	7.32 W/Kg	± 17.44%

Antenna Parameters – Body Simulating Liquid (MSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Body	Impedance	53.70 Ω 1.59 jΩ	± 0.28 Ω ± 0.044 jΩ
	Return Loss	28.20	± 2.03 dB


CERTIFICATE NUMBER: 12134285JD01A

UKAS Accredited Calibration Laboratory No. 5248

Page 5 of 10

DASY Validation Scan for Head Stimulating Liquid (HSL)

DUT: D900V2 - SN1d143; Type: D900V2; Serial: SN01d143

0 dB = 3.34 W/kg = 5.24 dBW/kg

Communication System: UID 0, CW (0); Frequency: 900 MHz; Duty Cycle: 1:1

Medium: 900, 1750, 1800, 2600 5% MHz HSL Medium parameters used: f = 900 MHz; $\sigma = 0.992$ S/m; $\epsilon_r = 41.281$; $\rho = 1000$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3360; ConvF(6.09, 6.09, 6.09); Calibrated: 17/08/2018;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1543; Calibrated: 08/03/2018
- Phantom: Twin SAM A (Site 65); Type: SAM 8.0; Serial: TP:1945
- -; SEMCAD X Version 14.6.10 (7417)

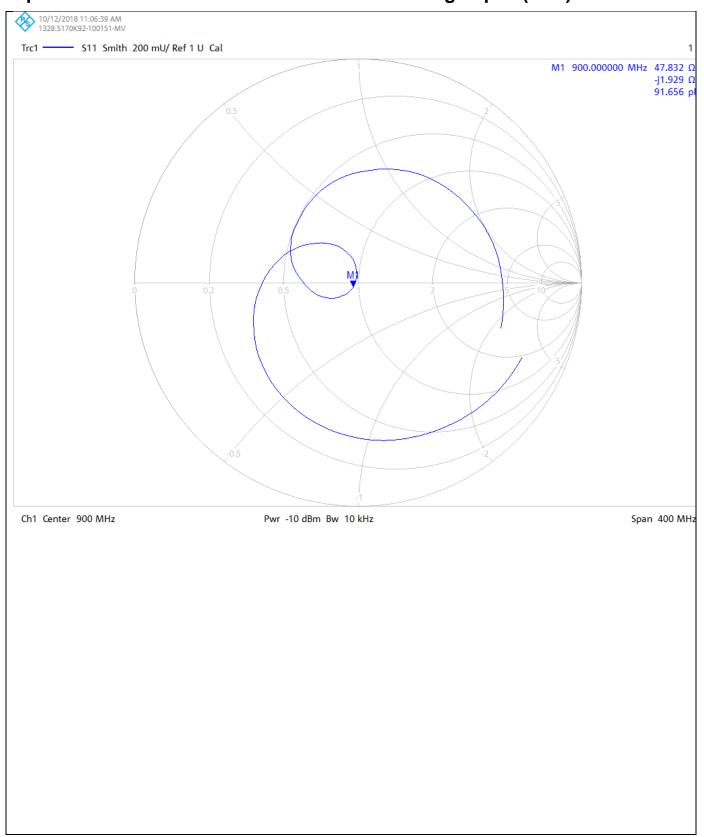
SAR/d=10mm, Pin=50 mW/Area Scan (61x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 3.30 W/kg

SAR/d=10mm, Pin=50 mW/Zoom Scan 2 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.90 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 4.34 W/kg

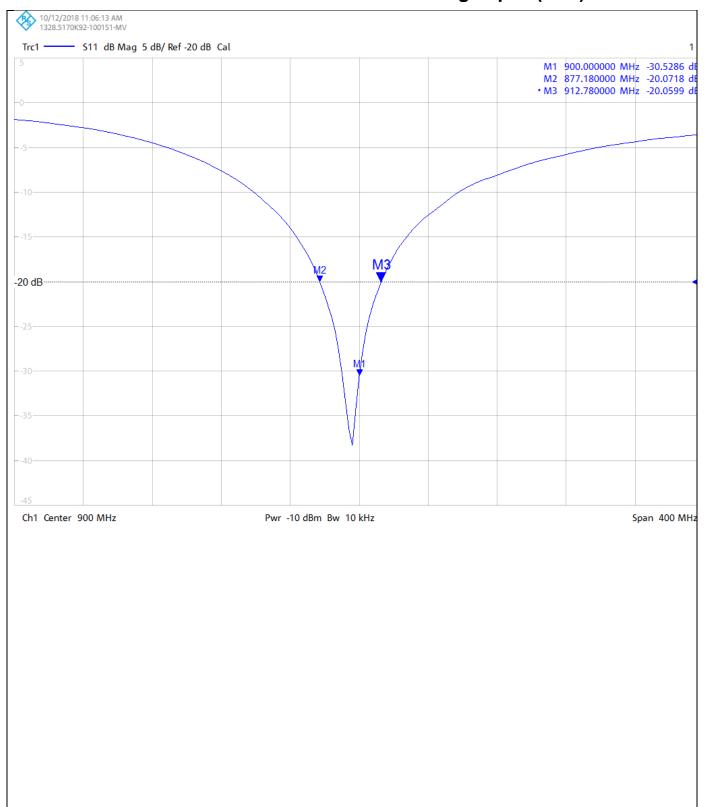

SAR(1 g) = 2.82 W/kg; SAR(10 g) = 1.8 W/kg Maximum value of SAR (measured) = 3.34 W/kg

CERTIFICATE NUMBER: 12134285JD01A

UKAS Accredited Calibration Laboratory No. 5248

Page 6 of 10

Impedance Measurement Plot for Head Stimulating Liquid (HSL)

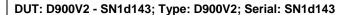


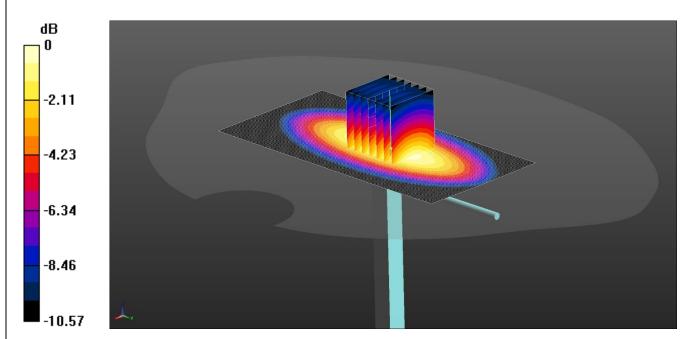
CERTIFICATE NUMBER: 12134285JD01A

UKAS Accredited Calibration Laboratory No. 5248

Page 7 of 10

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)




CERTIFICATE NUMBER: 12134285JD01A

UKAS Accredited Calibration Laboratory No. 5248

Page 8 of 10

DASY Validation Scan for Body Stimulating Liquid (MSL)

0 dB = 3.32 W/kg = 5.21 dBW/kg

Communication System: UID 0, CW (0); Frequency: 900 MHz; Duty Cycle: 1:1

 $Medi\underline{u}m:~900,~1750,~1800,~1900~5\%~MHz~MSL~Medium~parameters~used:~f=900~MHz;~\sigma=1.007~S/m;~\epsilon_r=54.679;~\rho=1000~S/m;~\epsilon_r=1000~S$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3360; ConvF(6.25, 6.25, 6.25); Calibrated: 17/08/2018;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1543; Calibrated: 08/03/2018
- Phantom: Twin SAM A (Site 65); Type: SAM 5.0; Serial: TP:1836
- -; SEMCAD X Version 14.6.10 (7417)

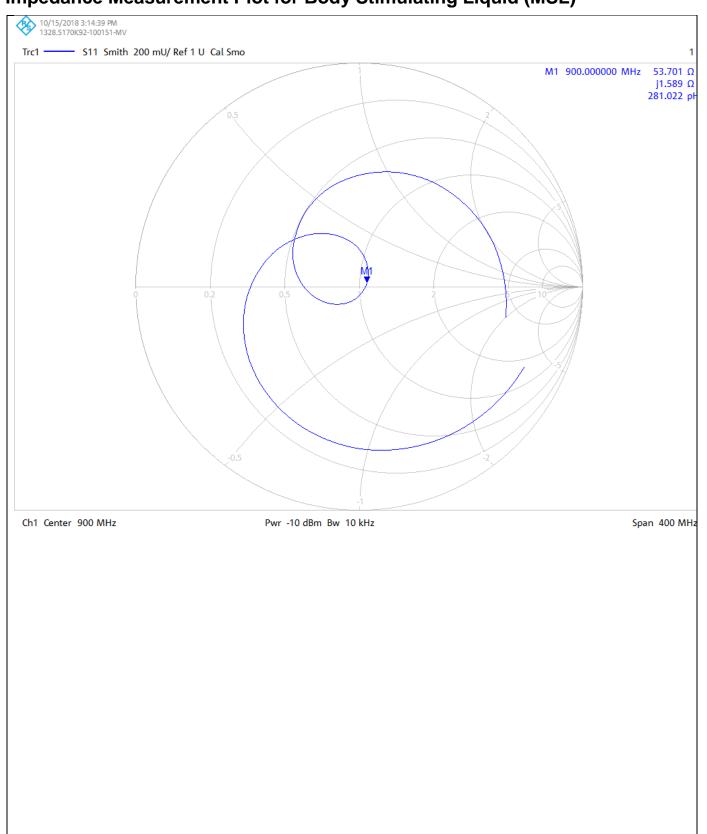
SAR/d=10mm, Pin=50 mW 2/Area Scan (61x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 3.30 W/kg

SAR/d=10mm, Pin=50 mW 2/Zoom Scan 2 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.07 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 4.26 W/kg

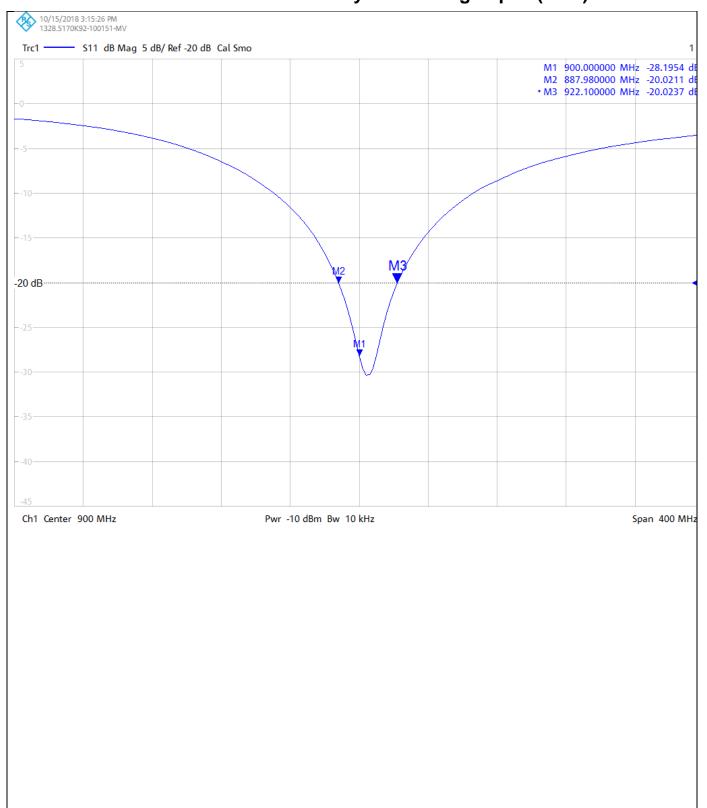

SAR(1 g) = 2.83 W/kg; SAR(10 g) = 1.84 W/kg Maximum value of SAR (measured) = 3.32 W/kg

CERTIFICATE NUMBER: 12134285JD01A

UKAS Accredited Calibration Laboratory No. 5248

Page 9 of 10

Impedance Measurement Plot for Body Stimulating Liquid (MSL)



CERTIFICATE NUMBER: 12134285JD01A

UKAS Accredited Calibration Laboratory No. 5248

Page 10 of 10

Return Loss Measurement Plot for Body Stimulating Liquid (MSL)

Calibration Certificate Label:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 12134285JD01A

Instrument ID: 1d143

Calibration Date: 16/Oct/2018

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 12134285JD01A

Instrument ID: 1d143

Calibration Date: 16/Oct/2018

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 12134285JD01A

Instrument ID: 1d143

Calibration Date: 16/Oct/2018

Calibration Due Date: