

CERTIFICATION TEST REPORT

Report Number. : 12150954-E1V2

- Applicant : ENERGOUS CORPORATION 3590 NORTH FIRST STREET SAN JOSE, CA 95134 U.S.A.
 - Model : NF-230
 - FCC ID : 2ADNG-NF230
- EUT Description : WIRELESS CHARGER
- Test Standard(s) : FCC 47 CFR PART 15 SUBPART C

Date Of Issue:

March 12, 2018

Prepared by:

UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

Revision History

Rev.	lssue Date	Revisions	Revised By
V1	3/6/2018	Initial Issue	
V2	3/12/2018	Updated Section 9.1 to address TCB's question	Tina Chu

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 2 of 51

TABLE OF CONTENTS

1.	AT٦	ESTATION OF TEST RESULTS	5
2.	TES	ST METHODOLOGY	7
3.	FAC	CILITIES AND ACCREDITATION	7
4.	CAI	LIBRATION AND UNCERTAINTY	8
4	¹ .1.	MEASURING INSTRUMENT CALIBRATION	8
4	.2.	SAMPLE CALCULATION	8
4	.3.	MEASUREMENT UNCERTAINTY	8
5.	EQI	UIPMENT UNDER TEST	9
5	5.1.	DESCRIPTION OF EUT	9
5	5.2.	MAXIMUM OUTPUT POWER	9
5	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	9
5	5.4.	SOFTWARE AND FIRMWARE	9
5	5.5.	WORST-CASE CONFIGURATION AND MODE1	0
5	5.6.	DESCRIPTION OF TEST SETUP1	1
6.	TES	ST AND MEASUREMENT EQUIPMENT1	5
7.	ME	ASUREMENT METHODS10	6
8.	AN	TENNA PORT TEST RESULTS	7
8	8.1.	ON TIME, DUTY CYCLE	
8	.2.	BLE	
	8.2.	1. 6 dB BANDWIDTH	9
	8.2.		
	8.2. 8.2.		
	-	5. POWER SPECTRAL DENSITY	5
	8.2.		7
9.	RAI	DIATED TEST RESULTS	1
g	0.1.	LIMITS AND PROCEDURE	1
ç	.2.	TRANSMITTER ABOVE 1GHZ	
	9.2.		
	9.2. 9.2.		
C	9.2. 9.3.	WORST-CASE BELOW 30MHz4	
-	9.3. 9.4.	WORST-CASE BELOW SOMHZ4. WORST-CASE 30MHz TO 1GHz	
5	.4.	Page 3 of 51	5
UL	VERI	FICATION SERVICES INC. FORM NO: CCSUP4701	<u>_</u>

9	.5.	WORST-CASE ABOVE 18 GHz	.45
10.	AC	POWER LINE CONDUCTED EMISSIONS	.47
11.	SET	ГИР РНОТОЅ	.50

Page 4 of 51

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	ENERGOUS CORPORATION 3590 NORTH FIRST STREET SAN JOSE, CA 95134 U.S.A.						
EUT DESCRIPTION:	WIRELESS CHARGER						
MODEL NUMBER:	NF-230						
SERIAL NUMBER:	DD017211400D						
DATE TESTED:	FEBRUARY 28, 2018 – MARCH 06, 2018	8					
APPLICABLE STANDARDS							
ST	ANDARD	TEST RESULTS					
CFR 47 P	art 15 Subpart C	Complies					

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of U.S. government.

Page 5 of 51

Approved & Released For UL Verification Services Inc. By: DATE: MARCH 12, 2018

Reviewed By:

FRANK IBRAHIM OPERATIONS LEAD UL Verification Services Inc. TINA CHU SENIOR PROJECT ENGINEER UL Verification Services Inc.

Prepared By: UL Verification Services Inc. By:

ERIC YU TEST ENGINEER UL Verification Services Inc.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 6 of 51

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, KDB 558074 D01 v04, ANSI C63.10-2013.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street
Chamber A (IC:2324B-1)	Chamber D (IC:22541-1)
Chamber B (IC:2324B-2)	Chamber E (IC:22541-2)
□ Chamber C (IC:2324B-3)	Chamber F (IC:22541-3)
	Chamber G (IC:22541-4)
	Chamber H (IC:22541-5)

The above test sites and facilities are covered under FCC Test Firm Registration # 208313.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

Page 7 of 51

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Conducted Disturbance, 9KHz to 0.15 MHz	3.84 dB
Conducted Disturbance, 0.15 to 30 MHz	3.65 dB
Radiated Disturbance, 9KHz to 30 MHz	3.15 dB
Radiated Disturbance, 30 to 1000 MHz	5.36 dB
Radiated Disturbance,1000 to 18000 MHz	4.32 dB
Radiated Disturbance,18000 to 26000 MHz	4.45 dB
Radiated Disturbance,26000 to 40000 MHz	5.24 dB
Occupied Channel Bandwidth	±0.39 %

Uncertainty figures are valid to a confidence level of 95%.

Page 8 of 51

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a single client RF near-field, contact charger that operates when a receiving device is placed on the charger pad's surface. The charger pad uses BLE to pair with the receiving device, and transmits a continuous carrier wave signal at 918 MHz frequency.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power	
(MHz)		(dBm)	(mW)	
2402 - 2480	BLE	-0.65	0.86	

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

Frequency Band	Antenna Peak Gain		
(GHz)	(dBi)		
2.4	0.53		

5.4. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was 3.0.1.64. The software installed in the EUT during testing was Direct Test Mode 1.23.0.0

Page 9 of 51

5.5. WORST-CASE CONFIGURATION AND MODE

Radiated band edge, harmonics, and spurious emissions from 1 GHz to 18GHz were performed with the EUT was set to transmit at the Low/Middle/High channels.

Radiated emission below 30MHz, below 1GHz, above 18GHz, and power line conducted emission were performed with the EUT was set to transmit at the channel with highest output power as worst-case scenario.

The EUT is a tabletop device. Therefore, all final radiated testing was performed with the EUT in tabletop orientation.

Worst-case data rate as provided by the client was:

BLE: 1 Mbps.

Page 10 of 51

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

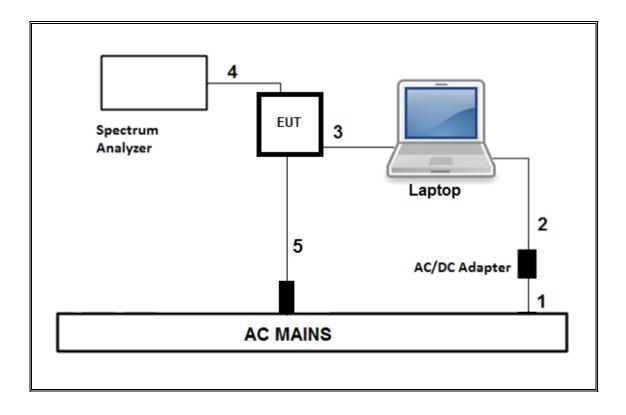
Support Equipment List								
Description Manufacturer Model Serial Number FCC ID								
Laptop AC/DC Adapter	Dell	LA130PM121	CN-0VJCH5-72438-66L-0D19-A03	NA				
Laptop	Dell	M4800	3074	NA				
AC/DC Adapter	CUI INC	SMI10-S	3517HB	NA				

I/O CABLES (CONDUCTED TEST)

	I/O Cable List								
Cable No	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks			
1	AC	1	AC	Unshielded	1	AC Mains to AC/DC Adapter			
2	DC	1	DC	Unshielded	1.5	AC/DC Adapter to Laptop			
3	USB	1	UART	Unshielded	2	EUT to Laptop			
4	Antenna	1	SMA	Unshielded	0.05	To spectrum analyzer			
5	USB	1	micro USB	Unshielded	1	EUT to AC/DC adapter			

I/O CABLES (RADIATED TEST)

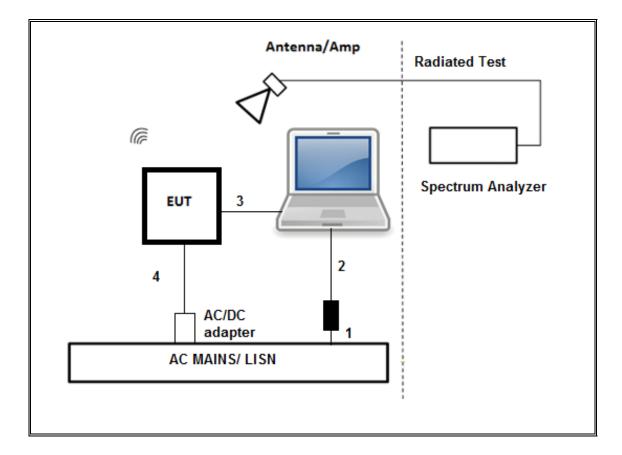
	I/O Cable List								
Cable No	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks			
1	AC	1	AC	Unshielded	1	AC Mains to AC/DC Adapter			
2	DC	1	DC	Unshielded	1.5	AC/DC Adapter to Laptop			
3	USB	1	UART	Unshielded	2	EUT to Laptop			
4	USB	1	micro USB	Unshielded	1	EUT to AC/DC adapter			


I/O CABLES (AC POWER CONDUCTED TEST)

	I/O Cable List							
Cable No	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks		
1	USB	1	micro USB	Unshielded	1	EUT to AC/DC adapter		

TEST SETUP-CONDUCTED TEST

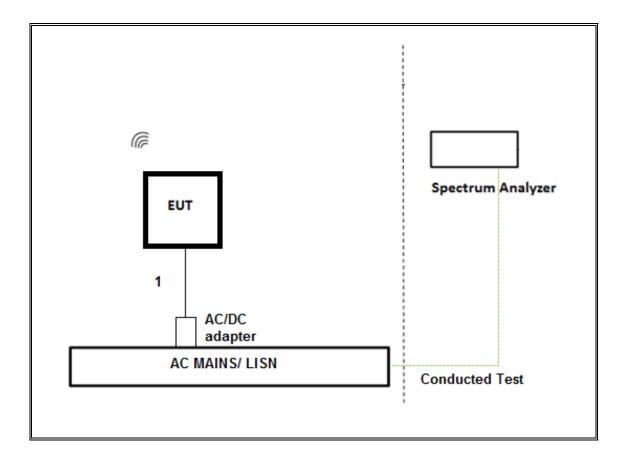
The EUT was connected to the test laptop via USB cable. Test software exercised the EUT.


SETUP DIAGRAM

TEST SETUP- RADIATED TEST

The EUT was powered by an AC/DC adapter via USB cable. Test software exercised the EUT.

SETUP DIAGRAM


UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701I FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 13 of 51

TEST SETUP- AC LINE CONDUCTED TEST

The EUT was powered by an AC/DC adapter via USB cable. Test software exercised the EUT.

SETUP DIAGRAM

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 14 of 51

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

	TEST EQUIPMENT	LIST			
Description	Manufacturer	Model	Asset	Cal Due	
Antenna, Active Loop 9KHz to 30MHz	COM-POWER	AL-130R	PRE0165308	12/18/2018	
Amplifier, 10KHz to 1GHz, 32dB	SONOMA INSTRUMENT	310N	T300	12/11/2018	
Spectrum Analyzer, PXA 3Hz to 44GHz	Keysight	N9030A	T1466	04/11/2018	
Antenna, Horn 1-18GHz	ETS Lindgren	3117	T863	06/09/2018	
Amplifier, 1 to 18GHz	Miteq	AFS42-00101800- 25-S-42	T493	12/16/2018	
Antenna, Broadband Hybrid, 30MHz to 2000MHz	Sunol Sciences	JB3	T899	06/15/2018	
Amplifier, 10KHz to 1GHz, 32dB	SONOMA INSTRUMENT	8447D	T10	02/14/2019	
Spectrum Analyzer, PXA 3Hz to 44GHz	Keysight	N9030A	T1454	01/08/2019	
Antenna Horn, 18 to 26GHz	ARA	MWH-1826/B	T449	06/12/2019	
Amplifier, 1 to 26.5GHz 23.5dB gain Minimum	Keysight	8449B	T404	07/23/2018	
Spectrum Analyzer, PXA, 3Hz to 44GHz	Keysight	N9030A-544	T1113	12/21/2018	
Power Meter, P-series single channel	Keysight	N1912A	T1245	05/12/2018	
Power Sensor	Keysight	N1921A	T413	06/22/2018	
AC Line Conducted					
EMI TEST RECEIVER 10Hz-26.5GHz	Rohde & Schwarz	ESCI7	PRE0176493	02/21/2019	
LISN for Conducted Emissions CISPR-16	Fischer	50/250-25-2-01	T1310	06/15/2018	
Power Cable, Line Conducted Emissions	UL	PG1	T861	08/31/2018	
UL AUTOMATION SOFTWARE					
Radiated Software	UL	UL EMC	Ver 9.5, De	ec 01, 2016	
Conducted Software	UL	UL EMC	Ver 8.0, Fe	b 15, 2018	
AC Line Conducted Software	UL	UL EMC	Ver 9.5, Ma	ay 26, 2015	

NOTES:

- 1. Equipment listed above that calibrated during the testing period was set for test after the calibration.
- 2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

Page 15 of 51

7. MEASUREMENT METHODS

On Time and Duty Cycle: KDB 558074 D01 v04, Section 6.

<u>6 dB BW</u>: KDB 558074 D01 v04, Section 8.1.

Occupied BW (99%): ANSI C63.10-2013 Section 6.9.3

Output Power: KDB 558074 D01 v04, Section 9.1.3.

Power Spectral Density: KDB 558074 D01 v04, Section 10.2.

Out-of-band emissions in non-restricted bands: KDB 558074 D01 v04, Section 11.0.

Out-of-band emissions in restricted bands: KDB 558074 D01 v04, Section 12.1.

Band-edge: KDB 558074 D01 v04, Section 12.1.

AC Power-line conducted emissions: ANSI C63.10-2013, Section 6.2.

Page 16 of 51

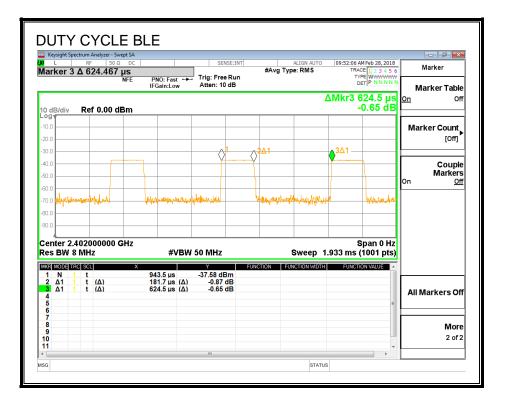
8. ANTENNA PORT TEST RESULTS

8.1. ON TIME, DUTY CYCLE

<u>LIMITS</u>

None; for reporting purposes only.

PROCEDURE


KDB 558074 Zero-Span Spectrum Analyzer Method.

ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
BLE	0.182	0.625	0.291	29.10%	5.36	5.504

Page 17 of 51

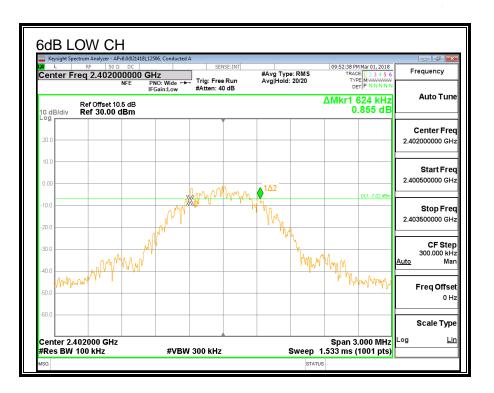
DUTY CYCLE PLOTS

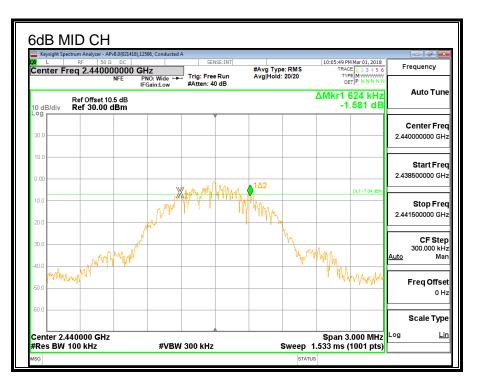
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

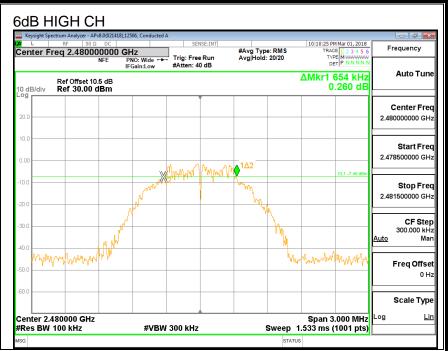
Page 18 of 51

8.2. BLE

8.2.1. 6 dB BANDWIDTH


LIMITS


FCC §15.247 (a) (2)


The minimum 6 dB bandwidth shall be at least 500 kHz.

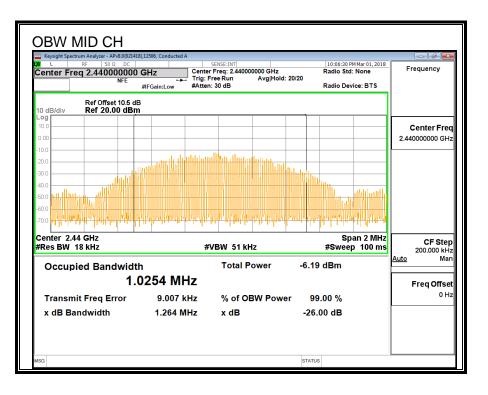
RESULTS

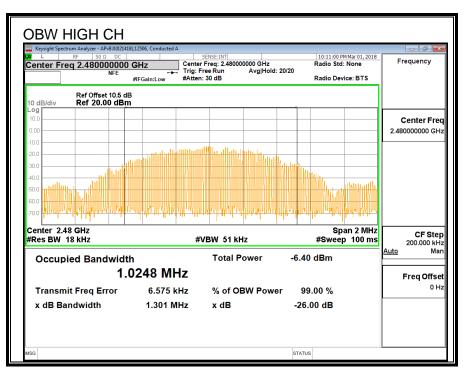
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.6240	0.5
Middle	2440	0.6240	0.5
High	2480	0.6540	0.5

Page 20 of 51

8.2.2. 99% BANDWIDTH

LIMITS


None; for reporting purposes only.


RESULTS

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2402	1.0229
Middle	2440	1.0254
High	2480	1.0248

Page 21 of 51

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 22 of 51

8.2.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

The cable assembly insertion loss of 10.3 dB (including 10 dB pad and 0.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

ID:	125	606	Date:	3/	/1/2018	
Chanr	nel	Fr	equency	'	AV powe	
			(MHz)		(dB	m)
Low			2402		-0.	.8
Middl	e		2440		-0.9	93
High			2480		-1.0	07

Page 23 of 51

8.2.4. OUTPUT POWER

LIMITS

FCC §15.247 (b)

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

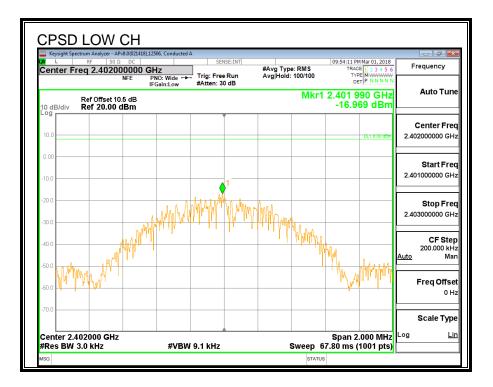
RESULTS

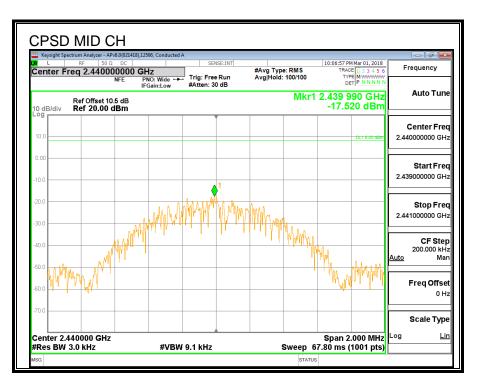
Channel	Frequency (MHz)	Peak Power Reading (dBm)	Limit (dBm)	Margin (dB)
Low	2402	-0.65	30	-30.65
Middle	2440	-0.72	30	-30.72
High	2480	-0.92	30	-30.92

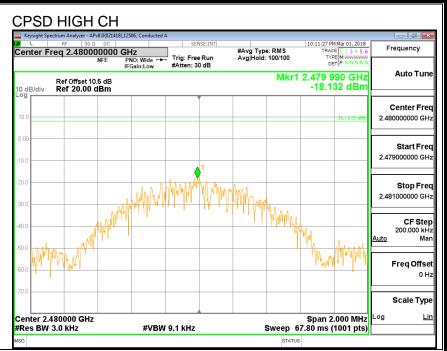
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 24 of 51

8.2.5. POWER SPECTRAL DENSITY


LIMITS


FCC §15.247 (e)


The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

RESULTS

Channel	Frequency (MHz)	PSD (dBm)	Limit (dBm)	Margin (dB)
Low	2402	-16.97	8	-24.97
Middle	2440	-17.52	8	-25.52
High	2480	-18.13	8	-26.13

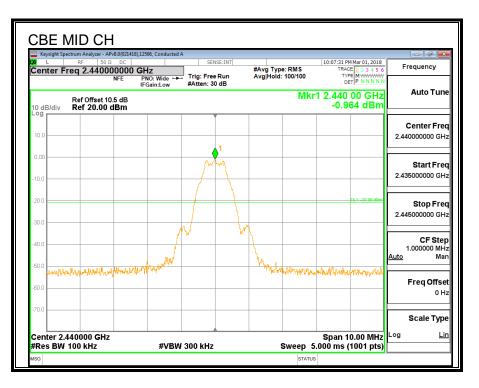
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

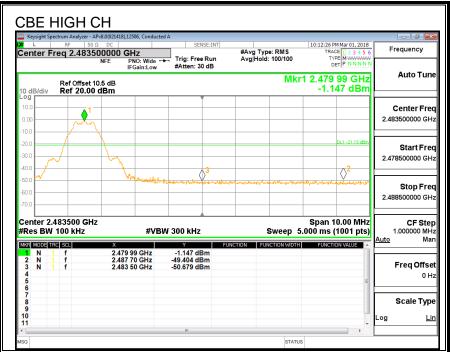
Page 26 of 51

8.2.6. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

LIMITS

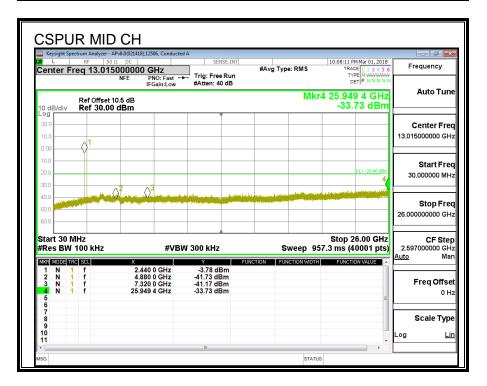
FCC §15.247 (d)


Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.


RESULTS

	OW CH	118) 12506. Conducter	10			
XU L	RF 50 Ω DC		SENSE:INT		09:54:48 PM Mar 01, 2018	Frequency
Center Fre	eq 2.40000000 NFE	0 GHz PNO: Wide ↔ IFGain:Low	⊢ Trig: Free Run #Atten: 30 dB	#Avg Type: RMS Avg Hold: 100/100	TYPE M WWWW DET P N N N N N	Trequency
	Ref Offset 10.5 dB Ref 20.00 dBm			Mkr	1 2.402 00 GHz -0.806 dBm	Auto Tun
10.0				1		Center Fre
-10.0				- Min		2.400000000 GH
-20.0				+ $+$ $+$ $+$ $+$ $+$ $+$	DL1 -20.81 dBm	Start Fre
-30.0			<u>^3 , -</u>	pol l		2.395000000 GH
-50.0 Northere JA	and the second	վերիայ ^ի ներերերերեն			Water and the dear the fragment	
-60.0						Stop Fre 2.405000000 GH
Center 2.40 #Res BW 1		#VBV	N 300 kHz	Sweep 5	Span 10.00 MHz .000 ms (1001 pts)	CF Ste 1.000000 MH Auto Ma
MKR MODE TRC		402 00 GHz	Y FU -0.806 dBm	NCTION FUNCTION WIDTH	FUNCTION VALUE	Nato Mia
2 N 1 3 N 1	f 2.	400 00 GHz 399 74 GHz	-51.121 dBm -48.442 dBm			Freq Offs 0 H
4 5 6 7 8 9					E	Scale Typ
9 10 11						Log <u>Li</u>
•	1		III	1	•	

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.


Page 27 of 51

Page 28 of 51

NFE PNO: Fast Trig: Free Run Trig: Free Run Trig: Free Run Au Ref Offset 10.5 dB Mkr4 25.812 4 GHz -33.25 dBm -33.2		8.0(021418),12506, Conducted DC 00000 GHz	SENSE:INT	#Avg Type: RMS	09:55:23 PM Mar 01, 2018 TRACE 1 2 3 4 5 6	Frequency
20 20 Cen 10.0 1<	Ref Offset 10.5	NFE PNO: Fast ↔ IFGain:Low	➡ Trig: Free Run #Atten: 40 dB	Mkr	4 25.812 4 GHz	Auto Tur
St St 300 30.000 300 31.000 400 33.000 500 31.000 500 31.000 500 50.000 500 50.000 500 50.0000 500 50.0000 500 50.0000 500 50.0000 500 50.00000 500 50.00000 500 50.00000 500 50.00000 500 50.00000 500 50.00000 500 50.00000 500 50.00000 500 50.00000 500 50.00000 500 50.00000 500 50.00000 500 50.00000 500 50.00000 500 50.00000 500 50.00000 500 50.00000 500 50.00000 500 50.000000 5	1					Center Fre 13.015000000 GH
Start 30 MHz Stop 26.00 GHz Stop 26.00 GHz Auto Start 30 MHz #VBW 300 kHz Sweep 957.3 ms (40001 pts) Auto I N 1 f 2.402 0 GHz -1.75 dBm Function Function <td< td=""><td></td><td></td><td></td><td></td><td>1</td><td>Start Fre 30.000000 MH</td></td<>					1	Start Fre 30.000000 MH
XMSR MODE FIRE SELL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE Auto 1 N 1 f 2.402.0 GHz -1.75 dBm 2.597000 2 N 1 f 2.402.0 GHz -4.027 dBm FUNCTION WIDTH FUNCTION VALUE Auto 3 N 1 f 7.206.0 GHz -4.237 dBm Free						Stop Fre 26.00000000 GH
2 N 1 f 4.804 0 GHz -40.27 dBm 3 N 1 f 7.206 0 GHz -42.34 dBm Fre	es BW 100 kHz	X	Y FL	•	7.3 ms (40001 pts)	CF Ste 2.597000000 GH <u>Auto</u> Ma
5 E	N 1 f N 1 f	4.804 0 GHz 7.206 0 GHz	-40.27 dBm -42.34 dBm		E	Freq Offs 0 H
7						Scale Typ

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701I TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 29 of 51

CSPUR HIG	GH CH APv8.0(021418),12506, Conducte	4.4			
	5000000 GHz	SENSE:INT	#Avg Type: RMS	10:13:27 PM Mar 01, 2018 TRACE 1 2 3 4 5 6 TYPE M WWWWW	Frequency
Ref Offset 10 dB/div Ref 30.00		#Atten: 40 dB	Mkr	4 24.162 0 GHz -33.87 dBm	Auto Tur
-og 20.0 10.0 0.00					Center Fre 13.015000000 G
20.0				DL1 -21.15 dBm	Start Fro 30.000000 M
40.0 50.0 60.0					Stop Fr 26.000000000 G
Start 30 MHz Res BW 100 kHz KKR MODE TRG SCL	x		Sweep 95	Stop 26.00 GHz 7.3 ms (40001 pts) FUNCTION VALUE	CF Ste 2.597000000 G <u>Auto</u> M
1 N 1 f 2 N 1 f 3 N 1 f 4 N 1 f 5 6	2.480 0 GHz 4.960 0 GHz 7.440 0 GHz 24.162 0 GHz	-1.87 dBm -42.11 dBm -42.84 dBm -33.87 dBm		E	Freq Offs 0
7 8 9 10					Scale Ty
		m		•	

Page 30 of 51

9. RADIATED TEST RESULTS

9.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

FCC §15.205 and §15.209

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

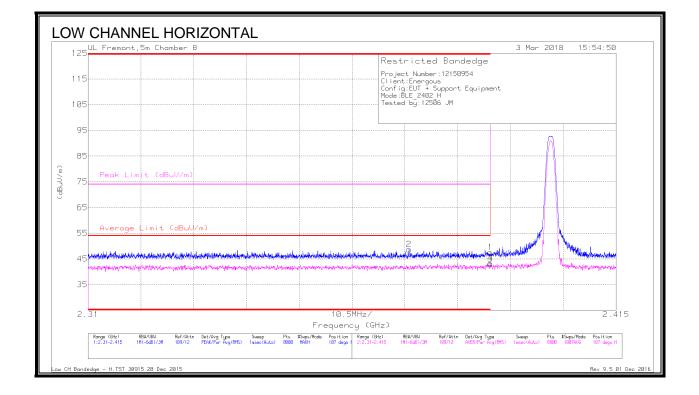
The EUT is placed on a non-conducting table 80 cm above the ground plane for measurement below 1GHz; 1.5 m above the ground plane for measurement above 1GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For pre-scans above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 30 KHz for peak measurements.

For final measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 3 MHz for peak measurements and as applicable for average measurements.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

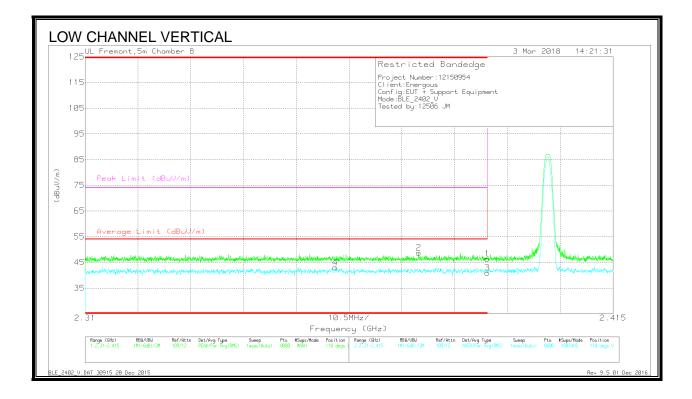

KDB 414788 OATS and Chamber Correlation Justification

Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

OATs and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

Page 31 of 51

9.2. TRANSMITTER ABOVE 1GHZ

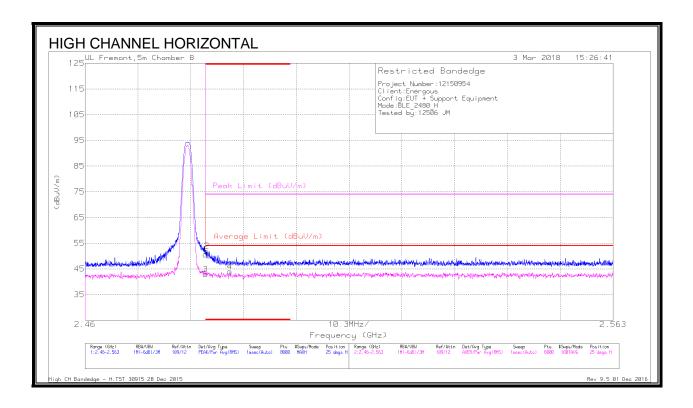

9.2.1. RESTRICTED BANDEDGE (LOW CHANNEL)

DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T863 (dB/m)	Amp/Cbl/Fltr/Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	* 2.374	38.09	Pk	31.9	-21.3	0	48.69	-	-	74	-25.31	107	380	Н
1	* 2.39	36.87	Pk	32	-21.3	0	47.57	-	-	74	-26.43	107	380	Н
3	* 2.39	27.02	RMS	32	-21.3	5.36	43.08	54	-10.92	-	-	107	380	Н
4	* 2.39	27.18	RMS	32	-21.3	5.36	43.24	54	-10.76	•	•	107	380	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector RMS - RMS detection

Page 32 of 51


DATA

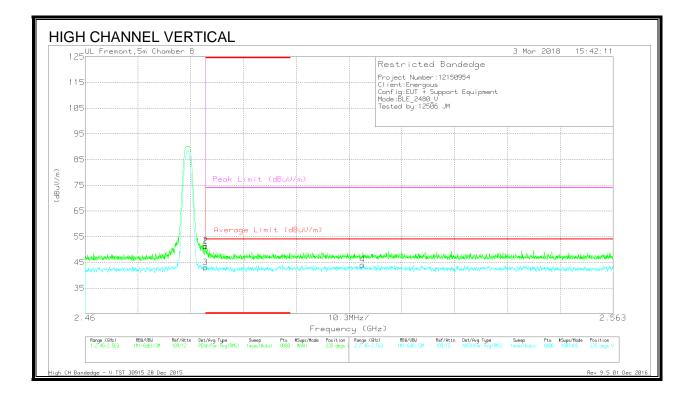
Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T863 (dB/m)	Amp/Cbl/Fltr/Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
4	* 2.36	27.05	RMS	31.9	-21.3	5.36	43.01	54	-10.99	-	-	110	129	V
2	* 2.376	38.16	Pk	31.9	-21.3	0	48.76	-	-	74	-25.24	110	129	V
1	* 2.39	35.65	Pk	32	-21.3	0	46.35	-	-	74	-27.65	110	129	V
3	* 2.39	24.92	RMS	32	-21.3	5.36	40.98	54	-13.02	-	-	110	129	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector

RMS - RMS detection

Page 33 of 51

9.2.2. AUTHORIZED BANDEDGE (HIGH CHANNEL)


<u>DATA</u>

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T863 (dB/m)	Amp/Cbl/Fltr/Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.484	39.44	Pk	32.5	-21.3	0	50.64	-	-	74	-23.36	25	266	н
2	* 2.484	40.62	Pk	32.5	-21.3	0	51.82	-	-	74	-22.18	25	266	Н
3	* 2.484	26.31	RMS	32.5	-21.3	5.36	42.87	54	-11.13	-	-	25	266	Н
4	* 2.488	27.39	RMS	32.5	-21.3	5.36	43.95	54	-10.05	-	•	25	266	Н

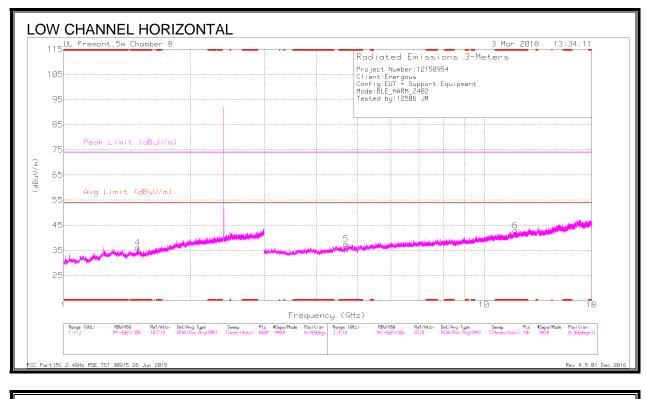
* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector

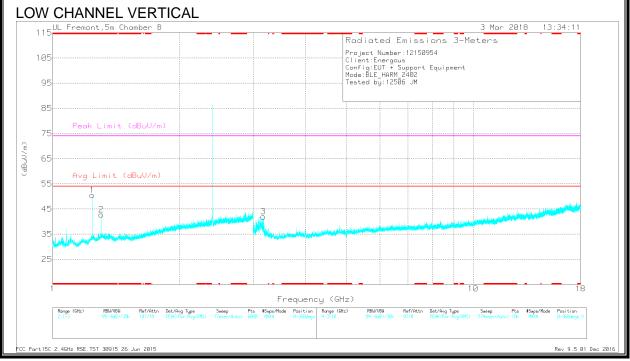
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 34 of 51

DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T863 (dB/m)	Amp/Cbl/Fltr/Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.484	40.02	Pk	32.5	-21.3	0	51.22	-	-	74	-22.78	235	382	V
2	* 2.484	40.17	Pk	32.5	-21.3	0	51.37	-	-	74	-22.63	235	382	V
3	* 2.484	26.49	RMS	32.5	-21.3	5.36	43.05	54	-10.95	-	•	235	382	V
4	2.514	27.18	RMS	32.6	-21.1	5.36	44.04	54	-9.96	-	-	235	382	V

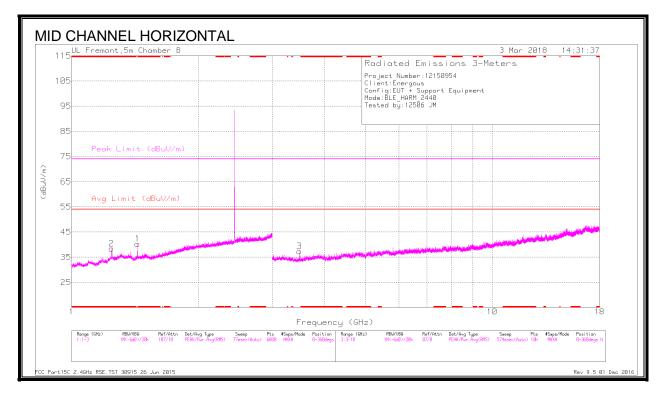

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector

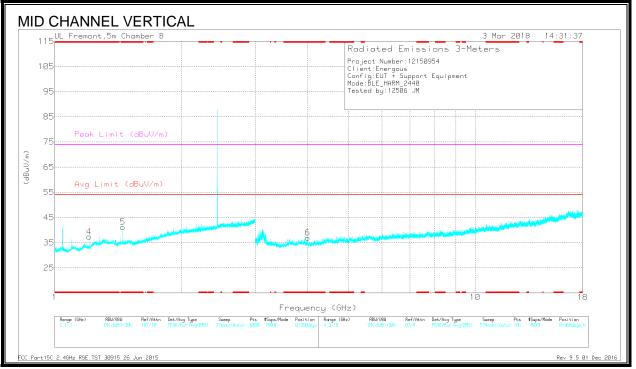

RMS - RMS detection

RIVIS - RIVIS detection

Page 35 of 51

Page 36 of 51


Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T863 (dB/m)	Amp/Cbl/Fltr/ Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
4	* 1.501	34.13	PK2	28.2	-21.2	0	41.13	-	-	74	-32.87	274	234	Н
	* 1.5	18.19	MAv1	28.2	-21.2	5.36	30.55	54	-23.45	-	-	274	234	Н
1	* 1.243	34.83	PK2	28.7	-22.3	0	41.23	-	-	74	-32.77	280	226	V
	* 1.242	23.77	MAv1	28.7	-22.3	5.36	35.53	54	-18.47	-	-	280	226	V
2	* 1.308	35.31	PK2	28.9	-21.9	0	42.31	-	-	74	-31.69	270	219	V
	* 1.308	23.81	MAv1	28.9	-21.9	5.36	36.17	54	-17.83	-	-	270	219	V
5	* 4.694	38.93	PK2	34.2	-30.4	0	42.73	-	-	74	-31.27	259	123	Н
	* 4.692	28.16	MAv1	34.2	-30.5	5.36	37.22	54	-16.78	-	-	259	123	Н
6	* 11.855	33.6	PK2	38.6	-24	0	48.2	-	-	74	-25.8	247	116	Н
	* 11.854	22.97	MAv1	38.6	-23.9	5.36	43.03	54	-10.97	-	-	247	116	H
3	3.167	40.01	PK2	33	-30.7	0	42.31	-	-	-	-	247	110	V

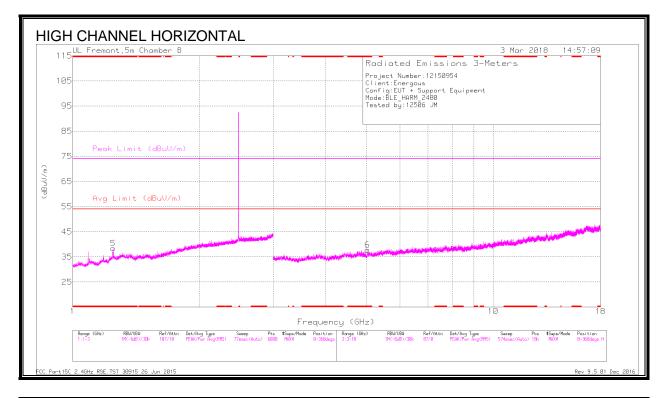

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK2 - KDB558074 Method: Maximum Peak

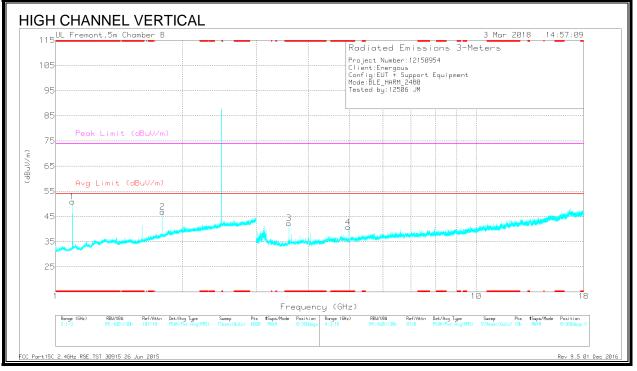
MAv1 - KDB558074 Option 1 Maximum RMS Average

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 37 of 51

Page 38 of 51


Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T863 (dB/m)	Amp/Cbl/Fltr/ Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	1.435	33.63	Pk	28.3	-21.6	0	40.33	-	-	-	-	0-360	103	Н
2	* 1.245	35.52	PK2	28.7	-22.3	0	41.92	-	-	74	-32.08	35	121	Н
	* 1.245	23.69	MAv1	28.7	-22.3	5.36	35.45	54	-18.55	-	-	35	121	Н
4	* 1.209	34.86	PK2	28.1	-22.6	0	40.36	-	-	74	-33.64	41	151	V
	* 1.211	23.02	MAv1	28.2	-22.8	5.36	33.78	54	-20.22	-	-	41	151	V
5	* 1.452	35.07	PK2	28.3	-21.6	0	41.77	-	-	74	-32.23	50	169	V
	* 1.452	23.5	MAv1	28.3	-21.6	5.36	35.56	54	-18.44	-	-	50	169	V
6	* 3.998	39.45	PK2	33.5	-31.5	0	41.45	-	-	74	-32.55	80	146	V
	* 3.997	28.75	MAv1	33.5	-31.5	5.36	36.11	54	-17.89	-	-	80	146	V
3	3.482	40.06	PK2	32.7	-31.5	0	41.26	-	-	-	-	53	117	Н


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK2 - KDB558074 Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

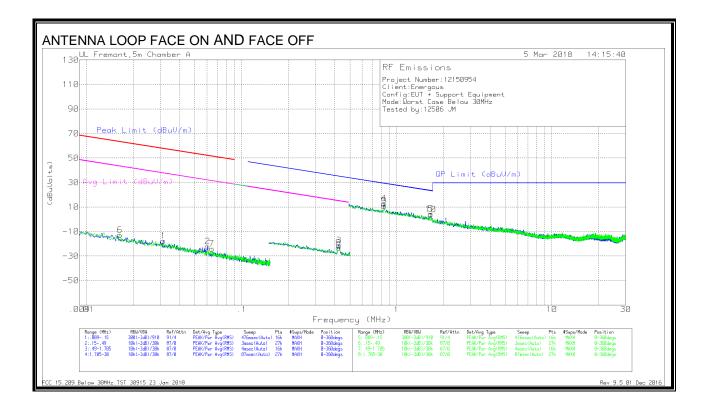
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 39 of 51

Page 40 of 51

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T863 (dB/m)	Amp/Cbl/Fltr/ Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
5	* 1.248	47.89	PK2	28.7	-22.1	0	54.49	-	-	74	-19.51	45	400	Н
	* 1.249	23.6	MAv1	28.8	-22.3	5.36	35.46	54	-18.54	-	-	45	400	Н
1	* 1.097	35.88	PK2	27.6	-23	0	40.48	-	-	74	-33.52	57	276	V
	* 1.098	23.84	MAv1	27.6	-23	5.36	33.8	54	-20.2	-	-	57	276	V
6	* 5.026	37.76	PK2	34.4	-29.4	0	42.76	-	-	74	-31.24	52	247	Н
	* 5.027	26.94	MAv1	34.4	-29.3	5.36	37.4	54	-16.6	-	-	52	247	Н
3	* 3.588	39.85	PK2	33.1	-31.7	0	41.25	-	-	74	-32.75	70	228	V
	* 3.588	28.71	MAv1	33.1	-31.7	5.36	35.47	54	-18.53	-	-	70	228	V
4	* 4.955	39.31	PK2	34.4	-30.9	0	42.81	-	-	74	-31.19	76	205	V
	* 4.954	28.51	MAv1	34.4	-30.9	5.36	37.37	54	-16.63	-	-	76	205	V
1	1.796	36.23	PK2	30.2	-21.2	0	45.23	-	-	-	-	62	270	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK2 - KDB558074 Method: Maximum Peak


MAv1 - KDB558074 Option 1 Maximum RMS Average

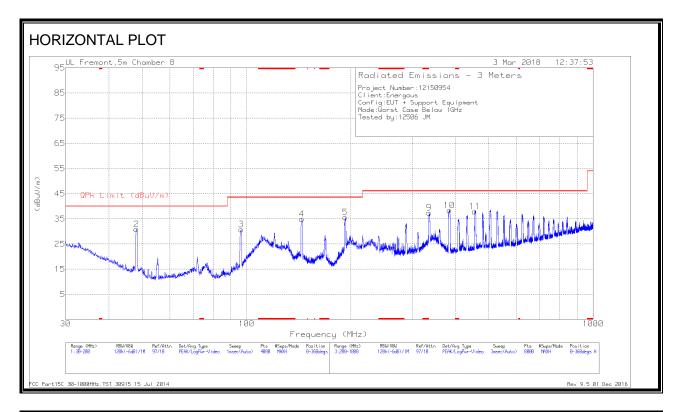
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 41 of 51

9.3. WORST-CASE BELOW 30MHz

SPURIOUS EMISSIONS BELOW 30 MHz (WORST-CASE CONFIGURATION)

DATA


Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (dB/m)	Cbl (dB)	Dist Corr 300m	Corrected Reading (dBuVolts)	Peak Limit (dBuV/m)	Margin (dB)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Avg Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)
6	.01643	52.37	Pk	14.7	.1	-80	-12.83	63.27	-76.1	43.27	-56.1	-	-	-	-	0-360
1	.03133	46.97	Pk	15.2	.1	-80	-17.73	57.67	-75.4	37.67	-55.4	-	-	-		0-360
2	.0604	43.4	Pk	14.3	.1	-80	-22.2	51.96	-74.16	31.96	-54.16	-	-	-		0-360
7	.0644	41.75	Pk	14.2	.1	-80	-23.95	51.41	-75.36	31.41	-55.36	-	-	-	-	0-360
8	.42387	43.02	Pk	13.7	.1	-80	-23.18	-	-	-	-	35.06	-58.24	15.06	-38.24	0-360
3	.42537	44.65	Pk	13.8	.1	-80	-21.45	-	-	-	-	35.03	-56.48	15.03	-36.48	0-360


Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (dB/m)	Cbl (dB)	Dist Corr 30m	Corrected Reading (dBuVolts)	QP Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)
4	.82907	38.93	Pk	13.9	.1	-40	12.93	29.24	-16.31	0-360
9	.83238	36.63	Pk	13.9	.1	-40	10.63	29.21	-18.58	0-360
10	1.65991	29.5	Pk	14.2	.2	-40	3.9	23.23	-19.33	0-360
5	1.65994	30.07	Pk	14.2	.2	-40	4.47	23.23	-18.76	0-360

Pk - Peak detector

9.4. WORST-CASE 30MHz TO 1GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

Page 43 of 51

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Marker	Frequency	Meter	Det	AF T899 (dB/m)	Amp/Cbl (dB)	Corrected	QPk Limit (dBuV/m)	Margin	Azimuth	Height	Polarity
	(MHz)	Reading (dBuV)				Reading (dBuV/m)		(dB)	(Degs)	(cm)	
2	48.0672	47.17	Pk	12.3	-28.6	30.87	40	-9.13	0-360	400	Н
1	48.0672	56.83	Pk	12.3	-28.6	40.53	40	.53	0-360	100	V
	48.1032	55.22	Qp	12.2	-28.6	38.82	40	-1.18	219	116	V
6	96.3597	41.54	Pk	13.2	-28	26.74	43.52	-16.78	0-360	100	V
3	96.4022	45.6	Pk	13.2	-28	30.8	43.52	-12.72	0-360	300	Н
4	144.2271	45.43	Pk	16.9	-27.4	34.93	43.52	-8.59	0-360	200	Н
7	144.2271	47.97	Pk	16.9	-27.4	37.47	43.52	-6.05	0-360	100	V
8	192.392	49.25	Pk	15.3	-26.9	37.65	43.52	-5.87	0-360	100	V
5	192.5621	47.15	Pk	15.4	-26.9	35.65	43.52	-7.87	0-360	200	Н
	192.3603	46.42	Qp	15.3	-26.9	34.82	43.52	-8.7	129	106	V
9	336.0177	45.51	Pk	17.8	-25.9	37.41	46.02	-8.61	0-360	100	Н
12	384.524	38.63	Pk	19.1	-26	31.73	46.02	-14.29	0-360	100	V
10	384.724	45.26	Pk	19.1	-26	38.36	46.02	-7.66	0-360	100	Н
11	455.3332	43.04	Pk	20.9	-26	37.94	46.02	-8.08	0-360	100	Н

Pk - Peak detector

Page 44 of 51

9.5. WORST-CASE ABOVE 18 GHz

SPURIOUS EMISSIONS 18 TO 26 GHz (WORST-CASE CONFIGURATION)

Fr Emissions Order Number: 12150954 Client:Energous Configuration:EUT + Support Equipment Mode:Borst Cose Above 18-260Hz Tested by / SN: 12506 JM Feak Limit (dBuU/m) Avg Limit (dBuU/m) Image: State of the st	(D)	6 Mar 2018 12:12:23
Sector Peak Limit (dBuU/m) Avg Limit (dBuU/m)	35 UL EMC	Onder Number 12158954
5 Avg Limit (dBuV/m) 5 5 5 12 6 12 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	5	Tested by / SN:12506 JM
5 Avg Limit (dBuV/m)	5 Peak Limit (dBuV/m)	
	5	
	5 Avg Limit (dBuV/m)	
	5	
5 	Later to a subalized at the second state of the second stat	
	5	
	5	
18 Frequency (GHz)	5	
Ronge (GHz) RBU/RBU Ref./Attn Det/Avg Type Sweep Pts #Swee/Mode Label 1:18-25 111(-345)/211 67/8 FE4K/Log/w-Video I4esac(Aubo SB01 W/011 Horizontal	18	

. L	JL EMC	6 Mar 2018 12:12:23
1		RF Emissions
5.		Orden Number:12150954 Client:Energous Configuration:EUT + Support Equipment Mode:Workt Cose Above 18-266Hz Tested by / SN:12506 JM
5		Tested by / SN:12506 JM
'5-	Peak Limit (dBuV/m)	
i5-		
55	Avg Limit (dBuV/m)	
5		
15-		
5		an sen an feine an fein an fein an fein an fein an fein an sean
_		
5		
18	3	26 Frequency (GHz)
Γ	Range (GHz) RBU/UBN Ref/Attn Det/Avg Type	Sweep Pts #Swps/Mode Label Range (GHz) RBW/UBW Ref/Attn Det/Avg Tupe Sweep Pts #Swps/Mode Label
		2:18-26 IM(-3x8)/3M 87/8 PEAK/LogPin-Uidea 14msec(Auto) 9881 MAXH Vertical

Page 45 of 51

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	T449 AF (dB/m)	Amp/Cbl (dB)	Dist Corr (dB)	Corrected Reading (dBuVolts)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)
1	19.471	32.45	Pk	32.7	-24.8	-9.5	30.85	54	-23.15	74	-43.15
2	19.549	32.6	Pk	32.7	-25.1	-9.5	30.7	54	-23.3	74	-43.3
3	23.548	34.87	Pk	33.9	-24.8	-9.5	34.47	54	-19.53	74	-39.53
4	22.152	33.74	Pk	33.4	-24.7	-9.5	32.94	54	-21.06	74	-41.06
5	22.825	34.43	Pk	33.5	-25.2	-9.5	33.23	54	-20.77	74	-40.77
6	24.927	34.17	Pk	34.3	-24.3	-9.5	34.67	54	-19.33	74	-39.33

Pk - Peak detector

Page 46 of 51

10. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

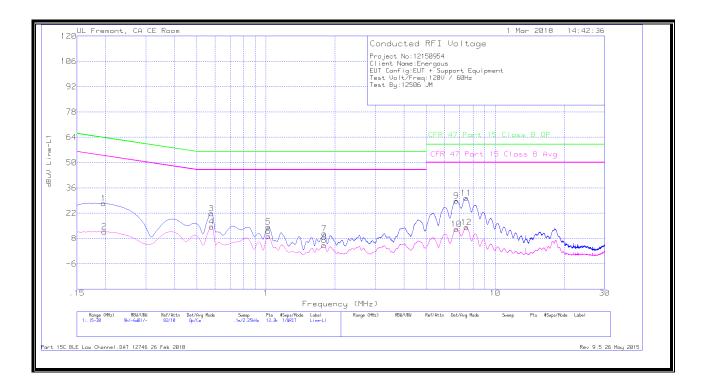
FCC §15.207 (a)

Frequency of Emission (MHz)	Conducted Limit (dBµV)						
Frequency of Emission (MHZ)	Quasi-peak	Average					
0.15-0.5	66 to 56 *	56 to 46 *					
0.5-5	56	46					
5-30	60	50					

*Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.10.


The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

<u>RESULTS</u>

Page 47 of 51

LINE 1 RESULTS


WORST EMISSIONS

Range	1: Line-L1 .1	5 - 30MHz								
Marker	Frequency	Meter	Det	LISN	LC	Corrected	CFR 47	Margin	CFR 47	Margin
	(MHz)	Reading		L1	Cables	Reading	Part 15	(dB)	Part 15	(dB)
		(dBuV)			C1&C3	dBuV	Class B		Class B	
							QP		Avg	
1	.19613	27.38	Qp	0	0	27.38	63.77	-36.39	-	-
2	.19725	11.71	Ca	0	0	11.71	-	-	53.73	-42.02
3	.5775	21.87	Qp	0	0	21.87	56	-34.13	-	-
4	.57975	14.61	Ca	0	0	14.61	-	-	46	-31.39
5	1.02525	14.21	Qp	0	.1	14.31	56	-41.69	-	-
6	1.02525	9	Ca	0	.1	9.1	-	-	46	-36.9
7	1.797	10.63	Qp	0	.1	10.73	56	-45.27	-	-
8	1.7925	4.14	Ca	0	.1	4.24	-	-	46	-41.76
9	6.77288	28.59	Qp	0	.2	28.79	60	-31.21	-	-
10	6.77288	12.9	Ca	0	.2	13.1	-	-	50	-36.9
11	7.476	30.15	Qp	0	.2	30.35	60	-29.65	-	-
12	7.48388	13.98	Ca	0	.2	14.18	-	-	50	-35.82

Qp - Quasi-Peak detector

Ca - CISPR average detection

LINE 2 RESULTS

WORST EMISSIONS

Range	2: Line-L2 .1	5 - 30MHz								
Marker	Frequency	Meter	Det	LISN	LC	Corrected	CFR 47	Margin	CFR 47	Margin
	(MHz)	Reading		L2	Cables	Reading	Part 15	(dB)	Part 15	(dB)
		(dBuV)			C2&C3	dBuV	Class B		Class B	
							QP		Avg	
13	.18825	27.98	Qp	0	0	27.98	64.11	-36.13	-	-
14	.20288	13.47	Ca	0	0	13.47	-	-	53.49	-40.02
15	.57975	27.21	Qp	0	0	27.21	56	-28.79	-	-
16	.58087	21.54	Ca	0	0	21.54	-	-	46	-24.46
17	1.02412	21.62	Qp	0	.1	21.72	56	-34.28	-	-
18	1.023	15.52	Ca	0	.1	15.62	-	-	46	-30.38
19	1.797	18.31	Qp	0	.1	18.41	56	-37.59	-	-
20	1.797	11.99	Ca	0	.1	12.09	-	-	46	-33.91
21	6.774	30.19	Qp	0	.2	30.39	60	-29.61	-	-
22	6.77288	17.83	Ca	0	.2	18.03	-	-	50	-31.97
23	7.51875	30.73	Qp	0	.2	30.93	60	-29.07	-	-
24	7.51875	19.92	Ca	0	.2	20.12	-	-	50	-29.88

Qp - Quasi-Peak detector

Ca - CISPR average detection