

TEST REPORT

Report Number. : 13119172-E1V1

- Applicant : ENERGOUS CORPORATION 3590 NORTH FIRST STREET SAN JOSE, CA 95134, U.S.A.
 - Model : MS-550
 - FCC ID : 2ADNG-MS550
- **EUT Description :** OVER-THE-AIR, DISTANCE CHARGING TRANSMITTER
- Test Standard(s) : FCC 47 CFR PART 18 SUBPART C

Date Of Issue: December 18, 2019

Prepared by:

UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538, U.S.A. TEL: (510) 319-4000 FAX: (510) 661-0888

Revision History

Rev.	lssue Date	Revisions	Revised By
V1	12/18/2019	Initial Issue	

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 2 of 40

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	. 4
2.	TE	ST METHODOLOGY	. 6
3.	FA	CILITIES AND ACCREDITATION	. 6
4.	СА	LIBRATION AND UNCERTAINTY	. 7
	4.1.	MEASURING INSTRUMENT CALIBRATION	. 7
4	4.2.	SAMPLE CALCULATION	. 7
4	4.3.	MEASUREMENT UNCERTAINTY	. 7
5.	EQ	UIPMENT UNDER TEST	. 8
	5.1.	DESCRIPTION OF EUT	. 8
	5.2.	OPERATING FREQUENCY AND POWER	. 8
	5.3.	SOFTWARE AND FIRMWARE	. 8
	5.4.	CONFIGURATION	. 9
	5.5.	DESCRIPTION OF TEST SETUP	10
6.	TE	ST AND MEASUREMENT EQUIPMENT	11
7.	AP	PLICABLE LIMITS AND TEST RESULTS	12
	7.1.	RADIATED EMISSIONS	12
	7.1	.1. SPURIOUS EMISSIONS 9 kHz TO 30 MHz	14
	7.1 71	.2. SPURIOUS EMISSIONS 30 MHz TO 1000 MHz	18 26
	72		22
	7.2	2.1. STANDBY MODE	33
	7.2	2.2. CHARGING MODE	35
8.	SE	ТИР РНОТОЅ	37
ä	8.1.	STANDBY MODE	37
ä	8.2.	CHARGING MODE	39

Page 3 of 40

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	ENERGOUS CORPORAT 3590 NORTH FIRST STRI SAN JOSE, CA 95134, U.S	ION EET S.A.			
EUT DESCRIPTION:	OVER-THE-AIR, DISTAN	CE CHARGING TRANSMITTER			
MODEL NUMBER:	MS-550	MS-550			
SERIAL NUMBER:	2032 & 2029	2032 & 2029			
DATE TESTED:	NOVEMBER 25, 2019 – D	NOVEMBER 25, 2019 – DECEMBER 11, 2019			
APPLICABLE STANDARDS					
:	STANDARD	TEST RESULTS			
FCC PA	RT 18 SUBPART C	Complies			

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Page 4 of 40

Approved & Released For UL Verification Services Inc. By:

THU CHAN OPERATIONS LEAD UL Verification Services Inc.

Prepared By:

esus R. When

JOSE MARTINEZ TEST ENGINEER UL Verification Services Inc.

Reviewed By:

121

TINA CHU SENIOR PROJECT ENGINEER UL Verification Services Inc.

Page 5 of 40

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC / OST MP-5, "FCC Methods of Measurements of Radio Noise Emissions from Industrial, Scientific, and Medical Equipment."

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, and 47658 Kato Road, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street	47658 Kato Road
Chamber A	Chamber D	Chamber I
Chamber B	Chamber E	Chamber J
Chamber C	Chamber F	🛛 Chamber K
	Chamber G	Chamber L
	Chamber H	Chamber M

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers above are covered under Industry Canada company address and respective code: 2324A.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0

Page 6 of 40

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

RADIATED EMISSIONS

Where relevant, the following sample calculation is provided: Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

MAINS CONDUCTED EMISSIONS

Where relevant, the following sample calculation is provided: Final Voltage (dBuV) = Measured Voltage (dBuV) + Cable Loss (dB) + Limiter Factor (dB) + LISN Insertion Loss. 36.5 dBuV + 0 dB + 10.1 dB + 0 dB = 46.6 dBuV

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.39 dB
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.07 dB
Worst Case Radiated Disturbance, 9KHz to 30 MHz	2.52 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	4.88 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.24 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.37 dB
Worst Case Radiated Disturbance, 26000 to 40000 MHz	5.17 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an over-the-air, distance charging transmitter. Wireless power transfer is only transmitting a continuous carrier wave signal at 917.5 MHz frequency single channel when client device is positioned within the charging zone. The charging zone of the EUT is up to 40cm for client device placed in front of the EUT. The EUT can only charge one client device at a time. The EUT uses BLE to pair with the client device.

This report documents test results of the Wireless Power Transfer ISM portion of the wireless charger.

The WPT portion of the EUT incorporates one loop antenna with a peak gain of 6.5 dBi.

5.2. OPERATING FREQUENCY AND POWER

The EUT operates at 917.5 MHz.

The highest maximum measured conducted average power as follow:

Mode	Frequency (MHz)	Antenna Meas Power (dBm)
CW	917.5	37.40

5.3. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was Version: 4.0.1.255.

The software installed in the EUT during testing was WattUp app Version 4.0.0.

Page 8 of 40

5.4. CONFIGURATION

The EUT is a tabletop device and it has two ports, one is the USB type C port for power only, second port is for command line interface control, end user will not have access to it. Therefore, all final radiated testing was performed with the EUT in tabletop orientation powered by AC/DC adapter via USB cable.

The worst case orientation and position of the client device was investigated by the applicant. The applicant determined that the operating condition for worst-case emissions is when the charger is operating at the maximum rated level and the maximum possible power (as adjusted by internal power control circuitry) is coupled to the client device. This condition occurs at the following orientation and position: the client device is directly centered on the tabletop, 5.5 inches in front of the EUT, with the wristband clasped. All of the charging mode final testing is performed using this configuration of charger and client.

Configuration	Description
Standby mode	EUT is powered by AC/DC adapter via USB cable. Wireless Power Transfer ISM portion is in standby mode, BLE is in normal operating mode as the worst case.
Charging mode	EUT is powered by AC/DC adapter via USB cable and client device receives maximum 917.5 MHz RF energy from EUT. Wireless Power Transfer ISM portion and BLE can transmit simultaneously. BLE is in normal operating mode as the worst case.

Page 9 of 40

5.5. DESCRIPTION OF TEST SETUP

SUPPORT TEST EQUIPMENT										
De	scription	Manufacturer	Model	Serial Number			FCC ID/ DoC			
1 Rec	ceiver (client device)	Energous	MS-550A	Nb44030			DoC			
EUT AC/DC Adapter		Anker	PD 30	AFZFD51915301545		915301545 DoC				
			I/O CABLES (RF R	ADIATED TEST)						
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type Cable Length (m)			Remarks			
1	USB	1	USB Type C	Shielded	1	EUT t	EUT to AC/DC adapter			

TEST SETUP- RADIATED TEST

The EUT is powered by AC/DC adapter via USB cable, client device wristband clasped, directly centered on the tabletop in front of the EUT. All of the charging mode final testing is performed at this configuration.

SETUP DIAGRAM

Page 10 of 40

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST									
Description	Manufacturer	Model	Asset	Cal Due					
Antenna, Passive Loop 30Hz to 1MHz	ELETRO METRICS	EM-6871	PRE0179466	05/31/2020					
Antenna, Passive Loop 100KHz to 30MHz	ELETRO METRICS	EM-6872	PRE0179468	05/31/2020					
Antenna, Horn 1-18GHz	ETS-Lindgren	3117	EMC4294	06/14/2020					
Amplifier, 1 to 18GHz, 35dB	AMPLICAL	AMP1G18-35	T1569	05/04/2020					
Amplifier, 9KHz to 1GHz, 32dB	SONOMA INSTRUMENT	310	PRE0186650	12/13/2019					
Antenna, BroadBand Hybrid, 30MHz to 3GHz	Sunol Sciences Corp.	JB3	PRE0181574	10/24/2020					
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	PRE0179372	10/14/2020					
Filter, BRF 902 to 928MHz	MICRO-TRONICS	BRC50722	T1847	07/29/2020					
Filter, HPF 1.5 to 18GHz	MICRO-TRONICS	HPM50114	T1853	10/30/2020					
	AC Line Conduct	ted							
EMI Receiver	Rohde & Schwarz	ESR	T1436	02/14/2020					
LISN for Conducted Emissions CISPR- 16	FCC INC.	FCC LISN 50/250	T1310	01/24/2020					
UL AUTOMATION SOFTWARE									
Radiated Software	UL	UL EMC	Rev 9.5, Septe	ember 24, 2019					
AC Line Conducted Software	UL	UL EMC	Rev 9.5, M	ay 26, 2015					

Page 11 of 40

7. APPLICABLE LIMITS AND TEST RESULTS

7.1. RADIATED EMISSIONS

<u>LIMIT</u>

§18.301 Operating frequencies

The EUT operates at 917.5MHz, within the tolerance of the ISM Frequency of 915 +/- 13MHz.

§18.305 Field Strength Limits

(b) The field strength levels of emissions which lie outside the bands specified in §18.301, unless otherwise indicated, shall not exceed the following:

Equipment	Operating frequency	RF Power generated by equipment (watts)	Field strength limit (µV/m)	Distance (meters)	
Any type unless otherwise	Any ISM	Below 500	25	300	
specified (miscellaneous)	frequency	500 or more	25 × SQRT(power/500)	¹ 300	

¹Field strength may not exceed 10μ V/m at 1600 meters. Consumer equipment operating below 1000 MHz is not permitted the increase in field strength otherwise permitted here for power over 500 watts.

The RF Power generated by the equipment is below 500 W therefore the field strength limit is 25uV/m at 300 m, equivalent to 28 dBuV/m at 300 m.

TEST PROCEDURE

Tested in accordance with FCC / OST MP-5

The frequency range was investigated from 9 kHz to 10 GHz.

For pre-scans above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 30 KHz for peak measurements.

For final measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 3 MHz for peak measurements and as applicable for average measurements.

For below 30MHz testing, investigation was done on three antenna orientations (parallel, perpendicular, and ground-parallel), parallel and perpendicular are the worst orientations, therefore final testing was performed on these two orientations only.

Radiated tests in the standby mode were performed with the EUT 80 cm above the ground plane.

Although the results will probably be only marginally different than with the 1 meter height specified in FCC/OST MP-5, the risk for discrepancies lies with the manufacturer.

Radiated tests in the charging mode were performed with the EUT 1 m above the ground plane.

Page 12 of 40

KDB 414788 Open Field Site(OFS) and Chamber Correlation Justification

For below 30MHz testing, based on KDB 414788, Clause 2, for Part 18 equipment, Section 2.1 of FCC Measurement Procedure MP-5 also permits the use of test sites other than an open-field test site only if it can be shown that the results obtained at such a location are correlated with those made at an open-field test site.

OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

Distance Correction Factor

Based on FCC 18.305, note 2. Testing for compliance with these limits may be made at closer distances, provided a sufficient number of measurements are taken to plot the radiation pattern, to determine the major lobes of radiation, and to determine the expected field strength level at 30, 300, or 1600 meters. Alternatively, if measurements are made at only one closer fixed distance, then the permissible field strength limits shall be adjusted using 1/d as an attenuation factor.

Distance factor from 3m to 300m = 20log (3/300) = -40dB

Page 13 of 40

REPORT NO: 13119172-E1V1 FCC ID: 2ADNG-MS550

RESULTS

7.1.1. SPURIOUS EMISSIONS 9 kHz TO 30 MHz

STANDBY MODE

Page 14 of 40

<u>DATA</u>

Marker	Frequency	Meter	Det	Loop Antenna	Cables w/	Dist Corr	Corrected Reading	AVG Limit	Margin	Azimuth
	(11172)	(dBuV)		(ACF)	FREUTO0050	30011	(dBuVolts)	(ubuv/iii)	(UB)	(Degs)
1	.00902	29.54	Pk	61.2	-31.8	-40	18.94	28	-9.06	0-360
2	.01191	19.84	Pk	59.9	-31.8	-40	7.94	28	-20.06	0-360
3	.03249	3.16	Pk	57.5	-32.2	-40	-11.54	28	-39.54	0-360
4	.04653	4.39	Pk	56.9	-32.2	-40	-10.91	28	-38.91	0-360
5	.07328	3.6	Pk	55.7	-32.2	-40	-12.9	28	-40.9	0-360
6	.01617	17.11	Pk	59.3	-31.9	-40	4.51	28	-23.49	0-360
7	.12743	1.1	Pk	55.6	-32.2	-40	-15.5	28	-43.5	0-360
8	.12916	6	Pk	55.6	-32.2	-40	-17.2	28	-45.2	0-360
9	.13726	.24	Pk	55.7	-32.2	-40	-16.26	28	-44.26	0-360
10	.14014	1.22	Pk	55.7	-32.2	-40	-15.28	28	-43.28	0-360
11	.2158	19.19	Pk	56.1	-32.1	-40	3.19	28	-24.81	0-360
12	.36236	18.98	Pk	56	-32.1	-40	2.88	28	-25.12	0-360
13	.00902	30.94	Pk	61.2	-31.8	-40	20.34	28	-7.66	0-360
14	.01183	21.63	Pk	59.9	-31.8	-40	9.73	28	-18.27	0-360
15	.04658	5.06	Pk	56.9	-32.2	-40	-10.24	28	-38.24	0-360
16	.07327	3.04	Pk	55.7	-32.2	-40	-13.46	28	-41.46	0-360
17	.0849	15.46	Pk	55.5	-32.2	-40	-1.24	28	-29.24	0-360
18	.12743	.73	Pk	55.6	-32.2	-40	-15.87	28	-43.87	0-360
19	.12916	.84	Pk	55.6	-32.2	-40	-15.76	28	-43.76	0-360
20	.13722	.73	Pk	55.7	-32.2	-40	-15.77	28	-43.77	0-360
21	.14012	.72	Pk	55.7	-32.2	-40	-15.78	28	-43.78	0-360
22	.14679	.8	Pk	55.7	-32.2	-40	-15.7	28	-43.7	0-360
23	.21682	19.69	Pk	56.1	-32.1	-40	3.69	28	-24.31	0-360
24	.361	18.67	Pk	56	-32.1	-40	2.57	28	-25.43	0-360
25	.41573	19.97	Pk	56	-32.1	-40	3.87	28	-24.13	0-360
26	.48968	19.04	Pk	56	-32.1	-40	2.94	28	-25.06	0-360
27	.7929	46.71	Pk	48.4	-32.1	-40	23.01	28	-4.99	0-360
28	1.7317	25.51	Pk	43	-32	-40	-3.49	28	-31.49	0-360
29	11.1983	26.64	Pk	34.4	-31.8	-40	-10.76	28	-38.76	0-360
30	26.6558	26.77	Pk	33.7	-31.6	-40	-11.13	28	-39.13	0-360
31	.7714	45.87	Pk	48.6	-32.1	-40	22.37	28	-5.63	0-360
32	1.76	26.18	Pk	42.8	-32	-40	-3.02	28	-31.02	0-360
33	9.0274	30.1	Pk	34.2	-31.8	-40	-7.5	28	-35.5	0-360
34	12.1918	27.83	Pk	34.3	-31.8	-40	-9.67	28	-37.67	0-360
35	26.0553	26.21	Pk	33.6	-31.6	-40	-11.79	28	-39.79	0-360

Pk - Peak detector

Note:

- Test was performed @ 3 meter distance.
- Distance factor from 3m to 300m = 20log (3/300) = -40dB

Page 15 of 40

CHARGING MODE

Page 16 of 40

<u>DATA</u>

Marker	Frequency (MHz)	Meter Reading	Det	Loop Antenna (ACE)	Cables w/ PRE0186650	Dist Corr 300m	Corrected Reading	AVG Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)
	((dBuV)		(701)	11120100000	ooom	(dBuVolts)	(abut/iii)	(42)	(Dogo)
1	.00977	28.53	Pk	60.4	-31.8	-40	17.13	28	-10.87	0-360
2	.01972	21.73	Pk	58.8	-32	-40	8.53	28	-19.47	0-360
3	.01614	16.45	Pk	59.3	-31.9	-40	3.85	28	-24.15	0-360
4	.02967	8.8	Pk	57.7	-32.2	-40	-5.7	28	-33.7	0-360
5	.05601	20.51	Pk	56.4	-32.2	-40	4.71	28	-23.29	0-360
6	.08598	11.15	Pk	55.6	-32.2	-40	-5.45	28	-33.45	0-360
7	.11188	13.28	Pk	55.5	-32.2	-40	-3.42	28	-31.42	0-360
8	.16013	20.38	Pk	55.8	-32.2	-40	3.98	28	-24.02	0-360
9	.00902	17.39	Pk	61.2	-31.8	-40	6.79	28	-21.21	0-360
10	.00977	17.63	Pk	60.4	-31.8	-40	6.23	28	-21.77	0-360
11	.01972	9.59	Pk	58.8	-32	-40	-3.61	28	-31.61	0-360
12	.05599	21	Pk	56.4	-32.2	-40	5.2	28	-22.8	0-360
13	.0849	3.45	Pk	55.5	-32.2	-40	-13.25	28	-41.25	0-360
14	.11214	13.5	Pk	55.5	-32.2	-40	-3.2	28	-31.2	0-360
15	.16397	20.83	Pk	55.8	-32.2	-40	4.43	28	-23.57	0-360
16	1.1294	46.92	Pk	46.1	-32.1	-40	20.92	28	-7.08	0-360
17	.4936	39.22	Pk	52.3	-32.1	-40	19.42	28	-8.58	0-360
18	28.1319	42.93	Pk	33.1	-31.6	-40	4.43	28	-23.57	0-360
19	24.9895	41.75	Pk	33.9	-31.6	-40	4.05	28	-23.95	0-360
20	21.8785	33.03	Pk	33.8	-31.6	-40	-4.77	28	-32.77	0-360
21	15.6266	34.47	Pk	34.2	-31.7	-40	-3.03	28	-31.03	0-360
22	12.5109	37.61	Pk	34.2	-31.8	-40	.01	28	-27.99	0-360
23	9.3748	36.32	Pk	34.3	-31.8	-40	-1.18	28	-29.18	0-360
24	6.2465	28.77	Pk	35	-31.9	-40	-8.13	28	-36.13	0-360
25	1.7081	32.23	Pk	43.1	-32	-40	3.33	28	-24.67	0-360
26	1.1313	42.24	Pk	46.1	-32.1	-40	16.24	28	-11.76	0-360
27	.4906	36.99	Pk	52.4	-32.1	-40	17.29	28	-10.71	0-360
28	28.1335	32.54	Pk	33.1	-31.6	-40	-5.96	28	-33.96	0-360
29	25.0115	35.07	Pk	33.9	-31.6	-40	-2.63	28	-30.63	0-360
30	21.8958	28.38	Pk	33.8	-31.6	-40	-9.42	28	-37.42	0-360
31	15.6314	30.71	Pk	34.2	-31.7	-40	-6.79	28	-34.79	0-360
32	10.4202	34.62	Pk	34.4	-31.8	-40	-2.78	28	-30.78	0-360
33	1.7176	29.22	Pk	43.1	-32	-40	.32	28	-27.68	0-360

Pk - Peak detector

Note:

- Test was performed @ 3 meter distance.
- Distance factor from 3m to 300m = 20log (3/300) = -40dB

Page 17 of 40

7.1.2. SPURIOUS EMISSIONS 30 MHz TO 1000 MHz

STANDBY MODE

Spurious Emissions 30 – 1000 MHz Without Notch Filter

Page 18 of 40

DATA

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF PRE0181574 (dB/m)	Amp/Cbl (dB)	Dist Corr (dB)	Corrected Reading (dBuV/m)	Part 18 Limit 300m (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	76.7669	50.31	Pk	13.8	-31.1	-40	-6.99	28	-34.99	257	231	Н
	76.7549	43.83	Qp	13.8	-31.1	-40	-13.47	28	-41.47	257	231	Н
2	74.748	45.85	Pk	13.9	-31.1	-40	-11.35	28	-39.35	0-360	95	V
5	48.1051	44.55	Pk	14.6	-31.4	-40	-12.25	28	-40.25	0-360	95	V
3	224.6223	50.14	Pk	16.8	-30.2	-40	-3.26	28	-31.26	0-360	99	Н
6	238.6667	47.64	Pk	17.4	-30.1	-40	-5.06	28	-33.06	0-360	99	Н
4	275.5557	39.9	Pk	19.2	-30	-40	-10.9	28	-38.9	0-360	99	V

Pk - Peak detector

Qp - Quasi-Peak detector

Note:

- Test was performed @ 3 meter distance.
- Distance factor from 3m to 300m = 20log (3/300) = -40dB

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 19 of 40

REPORT NO: 13119172-E1V1 FCC ID: 2ADNG-MS550

CHARGING MODE

Spurious Emissions 30 – 1000 MHz with a Notch Filter

Page 20 of 40

<u>DATA</u>

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF PRE0181574 (dB/m)	Amp/Cbl (dB)	Dist Corr (dB)	T1847 BRF (dB)	Corrected Reading (dBuV/m)	Part 18 Limit 300m (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	76.0223	47.5	Pk	13.9	-31.1	-40	.5	-9.2	28	-37.2	0-360	199	н
2	236.4705	42.89	Pk	17.3	-30.2	-40	.5	-9.51	28	-37.51	0-360	100	н
3	74.7627	48.5	Pk	13.9	-31.1	-40	.5	-8.2	28	-36.2	0-360	100	V
4	97.6285	45.6	Pk	15.5	-31	-40	.5	-9.4	28	-37.4	0-360	100	V

Pk - Peak detector

Note:

- Test was performed @ 3 meter distance.
- Distance factor from 3m to 300m = 20log (3/300) = -40dB
- Notch filter was used to prevent system overloading.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 21 of 40

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701I TEL: (510) 319-4000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 22 of 40

<u>DATA</u>

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF PRE0181574 (dB/m)	Amp/Cbl (dB)	Dist Corr (dB)	T1847 BRF (dB)	Corrected Reading (dBuV/m)	Part 18 Limit 300m (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	942.488	57.07	Pk	28.5	-26.7	-40	.5	19.37	28	-8.63	0-360	199	н
	942.489	61.83	Qp	28.5	-26.7	-40	.5	24.13	28	-3.87	99	117	Н
2	942.48	51.82	Pk	28.5	-26.7	-40	.5	14.12	28	-13.88	0-360	100	V

Pk - Peak detector

Qp - Quasi-Peak detector

Note:

- Test was performed @ 3 meter distance.
- Distance factor from 3m to 300m = 20log (3/300) = -40dB
- Notch filter was used to prevent system overloading.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 23 of 40

Spurious Emissions 800 – 1000 MHz without a Notch Filter and without amplifier

Tested By 1

19498 ER

MultiView	Spectrum	Re	ceiver 🔅						~
Ref Level 110 Att	.00 dBµV 10 dB • SW	• RB VT 100 ms • VB	W (CISPR) 120 W 1	kHz MHz Mode Au	to Sweep		Frequ	ency 900.0	000000 MH
Frequency Sv	veep	011 140	ten	Off		_			• 1Pk View
					×			M7[1]	34.29 dBµ\
o dBµV			├ ────┤	'	++	<u> </u>	<u> </u>		942.560 MH
			1					MILII	106.63 dBpv
i dBµV									917.300 884
A HEAVE									
, ophi -									
) dBµV			├ ────'	L	++	<u> </u>	<u> </u>	<u> </u>	+
i dBµV		<u> </u>	<u> </u>		<u> </u>		<u> </u>		+
1 GBHA									
o deuv			<u> </u> '	M0 ¹¹⁴ N5			147		
			1!	TIT	M2		ÎΫ		
) dBhA		1				M3			+
Levenner	moundmonad	have here for hald I	الالهادراد الماليه السال	A TANK AND AND	Althornow	~ White White	والمعالوها وبالمعالية العالمة	Antonion	annon maria
) dBhA									
E 000 0 MU-			1001 pt						200 0 MH
- 900.0 mmz			1001 pe	<u>s</u>		J.U MH2/			pan 200.0 MH.
Type Ref	Trc	X-Value		Y-Value		Function		Function R	esult
M1	1	917.5 MH	1 10)6.63 dBµV					
M2	1	902.0 MH2 928.0 MH		30.55 aBµV					
M4	1	886.21 MH	i 3	35.90 dBµV					
MS	1	892.43 MH7	4 7	35.58 dBµV					
M6 M7	1	942.56 MH	2 3	35.08 aBUV					
1417	<u> </u>	542102					06.12.2	019 Ref Leve	(RBW
	1				Measuring	j	14:5	7:30	

<u>DATA</u>

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF PRE0181574 (dB/m)	Cbl (dB)	Dist Corr (dB)	Corrected Reading (dBuV/m)	FCC PART18 300m LIMIT (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
M4	886.21	35.90	Pk	27.8	4.0	-40	27.7	28	-0.3	-	-	Н
	886.236	35.24	Qp	27.8	4.0	-40	27.04	28	-0.96	97	123	Н
	886.236	34.93	Av	27.8	4.0	-40	26.73	28	-1.27	97	123	Н
M7	942.56	34.29	Pk	28.5	4.1	-40	26.89	28	-1.11	-	-	Н
	942.496	32.62	Qp	28.5	4.1	-40	25.22	28	-2.78	94	118	Н
	942.496	31.51	Av	28.5	4.1	-40	24.11	28	-3.89	94	118	Н

Pk - Peak detector

Qp - Quasi-Peak detector

Av - Average detector

Note:

- Test was performed @ 3 meter distance.
- Distance factor from 3m to 300m = 20log (3/300) = -40dB

<u>DATA</u>

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF PRE0181574 (dB/m)	Cbl (dB)	Dist Corr (dB)	Corrected Reading (dBuV/m)	FCC PART18 300m LIMIT (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
M4	898.8	18.59	PK	27.8	3.9	-40	10.29	28	-17.71	-	-	V
	898.8	16.32	Qp	27.8	3.9	-40	8.02	28	-19.98	14	96	V
	898.8	15.24	Av	27.8	3.9	-40	6.94	28	-21.06	14	96	V
M5	933.17	18.13	PK	28.5	4.0	-40	10.63	28	-17.37	-	-	V
	933.119	22.57	Qp	28.5	4.0	-40	15.07	28	-12.93	8	95	V
	933.119	22.03	Av	28.5	4.0	-40	14.53	28	-13.47	8	95	V

Pk - Peak detector

Qp - Quasi-Peak detector

Av - Average detection

Note:

- Test was performed @ 3 meter distance.
- Distance factor from 3m to 300m = 20log (3/300) = -40dB

Page 25 of 40

7.1.3. SPURIOUS EMISSIONS 1 GHz TO 10 GHz

STANDBY MODE

Page 26 of 40

<u>DATA</u>

Marker	Frequency	Meter	Det	AF EMC4294	Amp/Cbl (dB)	Dist Corr (dB)	Corrected	Part 18 Limit	Margin	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)			Reading	300m (dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)					dBuV/m					
1	1.32324	29.14	ADR	29.2	-35.4	-40	-17.06	28	-45.06	225	135	Н
2	3.58483	27.44	ADR	34	-33	-40	-11.56	28	-39.56	142	183	Н
3	5.42447	24.96	ADR	34.5	-30.1	-40	-10.64	28	-38.64	115	292	Н
4	2.23052	29.46	ADR	31.4	-35.4	-40	-14.54	28	-42.54	54	255	V
5	4.56969	25.93	ADR	33.9	-31.2	-40	-11.37	28	-39.37	165	174	V
6	7.58708	21.99	ADR	35.7	-26.7	-40	-9.01	28	-37.01	110	133	V

ADR - AD primary method, RMS average

Note:

- Test was performed @ 3 meter distance.
- Distance factor from 3m to 300m = 20log (3/300) = -40dB

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 27 of 40

CHARGING MODE SPURIOUS EMISSION 1.6GHz to 10GHz with 1.5GHz HIGH PASS FILTER

Page 28 of 40

<u>DATA</u>

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF EMC4294 (dB/m)	Amp/Cbl (dB)	Fltr (dB)	Dist Corr (dB)	Corrected Reading (dBuV/m)	Part 18 Limit 300m (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	1.83455	66.03	Pk	30.7	-35.4	1	-40	22.33	28	-5.67	0-360	199	н
2	2.7526	58.99	Pk	32.5	-35	1	-40	17.49	28	-10.51	0-360	199	н
3	3.67015	48.8	Pk	32.9	-32.6	1	-40	10.1	28	-17.9	0-360	98	н
4	4.5872	49.88	Pk	33.9	-31.1	1	-40	13.68	28	-14.32	0-360	98	н
5	5.50525	39.79	Pk	34.6	-30	1	-40	5.39	28	-22.61	0-360	199	н
6	6.4223	39.72	Pk	35.7	-27.9	1	-40	8.52	28	-19.48	0-360	199	н
7	7.33986	36.96	Pk	35.6	-27	1	-40	6.56	28	-21.44	0-360	199	н
8	8.25741	32.56	Pk	35.9	-25.6	1	-40	3.86	28	-24.14	0-360	98	н
9	9.17496	28.48	Pk	36.4	-24	1	-40	1.88	28	-26.12	0-360	199	н
10	1.83505	62.75	Pk	30.7	-35.4	1	-40	19.05	28	-8.95	0-360	101	V
11	2.7521	56.48	Pk	32.5	-35	1	-40	14.98	28	-13.02	0-360	101	V
12	3.66965	52.46	Pk	32.9	-32.6	1	-40	13.76	28	-14.24	0-360	199	V
13	4.58745	50.35	Pk	33.9	-31.1	1	-40	14.15	28	-13.85	0-360	101	V
14	5.50475	43.71	Pk	34.6	-30	1	-40	9.31	28	-18.69	0-360	199	V
15	6.4223	44.02	Pk	35.7	-27.9	1	-40	12.82	28	-15.18	0-360	199	V
16	7.33986	43.53	Pk	35.6	-27	1	-40	13.13	28	-14.87	0-360	199	V
17	8.25741	37.27	Pk	35.9	-25.6	1	-40	8.57	28	-19.43	0-360	199	V
18	9.17496	32.16	Pk	36.4	-24	1	-40	5.56	28	-22.44	0-360	199	V
19	2.47958	54.01	Pk	32.4	-35.4	1	-40	12.01	28	-15.99	0-360	101	V

Marker	Frequency (GHz)	Meter Reading	Det	AF EMC4294 (dB/m)	Amp/Cbl (dB)	Fltr (dB)	Dist Corr (dB)	Corrected Reading	Part 18 Limit 300m (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
		(dBuV)						(dBuV/m)					
9	9.17494	29.18	ADR	36.4	-24	1	-40	2.58	28	-25.42	253	191	Н
8	8.25745	32.11	ADR	35.9	-25.6	1	-40	3.41	28	-24.59	44	96	Н
7	7.33994	37.56	ADR	35.6	-27	1	-40	7.16	28	-20.84	85	187	H
1	1.83499	67.84	ADR	30.7	-35.4	1	-40	24.14	28	-3.86	54	371	Н
2	2.75248	58.35	ADR	32.5	-35	1	-40	16.85	28	-11.15	352	199	Н
18	9.17493	31.28	ADR	36.4	-24	1	-40	4.68	28	-23.32	343	98	V
10	1.83499	62.55	ADR	30.7	-35.4	1	-40	18.85	28	-9.15	0	111	V
11	2.75248	56.45	ADR	32.5	-35	1	-40	14.95	28	-13.05	77	104	V
13	4.58747	50.91	ADR	33.9	-31.1	1	-40	14.71	28	-13.29	42	154	V
12	3.66997	53.5	ADR	32.9	-32.6	1	-40	14.8	28	-13.2	196	212	V

Pk - Peak detector ADR - AD primary method, RMS average

Note:

- Test was performed @ 3 meter distance.
- Distance factor from 3m to 300m = 20log (3/300) = -40dB
- Marker 19 is BLE signal
- Frequency Range 1GHz 1.6GHz was investigation using due to 1.5GHz high pass filter was used. See the following test result of frequency range 1G-1.6GHz.

Page 29 of 40

Spurious Emissions 1GHz – 1.6GHz without a Notch Filter, without 1.5 GHz HPF, and without amplifier

Tested By 19498 ER

MultiView 😁	Spectrum								∇
Ref Level 86.99 Att	dBµV 0 dB ● SWT	RBV 100 ms • VBV	V 1 MHz N 3 MHz Mod	e Auto Sweep			Fre	equency 1.3	3000000 GH
Input Frequency Sw	1 DC PS	Off Not	ch Off					reporter, and	• 1Pk View
rrequerey e	CP.		· · · · · ·	/				M1[1]	25.77 dBµ'
0 dBuV		<u> </u> '	Ļ'	L/	Ļ′	<u> </u>	ļ]		1.5983670 GH
		1	1 '	1 /	1 /	1 /	1 1		
Vueb 0		'	<u> </u>	[]	L/				
r sup.		1	1 '	1 /	1 /	1 /	1 1		
		l'	'	[]	[/	/	[]		
J dbµv			· ·	/					T
		1	1 2	1 /	1 /	1 /	1		
3 dBµV		· · · · · ·	· · · · · ·	(/	· · · · ·				+
		1	1 2	1 /	1 /				
0 dBµV			· · · · · ·	(+
		1	1 2	1 /	1 /				
0 dBµV		('	+'	<u> </u>	L				
adapted adapted	ويسر بيليند من	and the second stands	and strength and	Level and the second	he ben have a second	القصا ومعطويه	ومعادلة المتحدث والم	ton and the sho	A CONTRACTOR OF THE OWNER
0 dBµV	and the second second second second								+
		1	'	1 /	1 /	/	[]		
o daµv		<u> </u> '	└─── ′	<u> </u>	└─── ′	<u> </u>		<u> </u>	+
		1	'	1 /	1 /	/	[]		
dBµV		<u> </u> '	<u> </u>	└─── ′	↓ ′	<u> </u>	ļ]		
		1	'	1 /	1 /	/	[]		
10 dBµV		 '	<u> </u>	L'	Ļ'	L'	L	L	
.0 GHz		·	9001 pt	s	6/	0.0 MHz/	<u> </u>		1.6 GH
	(Measuring		# 11.12.2	019 Ref Levi	el RBW

DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF EMC4294 (dB/m)	Cable (dB)	Dist Corr (dB)	Corrected Reading (dBuV/m)	FCC PART18 300m LIMIT (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	1.598	25.77	Pk	27.97	5.89	-40	19.63	28	-8.37	0-360	200	Н

Pk - Peak detector

Note:

- Test was performed @ 3 meter distance.
- Distance factor from 3m to 300m = 20log (3/300) = -40dB

Page 30 of 40

MultiView 🖯	Spectrum	🖾 🛛 Re	ceiver	X					∇
Ref Level 86.5 Att	9 dBµV 0 dB • SWT	RBV 100 ms • VBV	V 1 MHz V 3 MHz	Mode Auto Sweep			Fre	equency 1.30	000000 GH
Input Erequency St	1 DC PS	Off Not	ch Off						10k View
rrequency of	reep							M1[1]	26.06 dBµ/
an deuv									.4070550 GH
и авру-									
50 dBµV									
0 dBµV									
10 dBuV									
no din con									
50 UBDV						M1			
والمريق والمراجع		مجفرة فيختر تنجدونا	think in the last	وأباده وتنازر وبالديد بأراده	and in the state of the state o	de trains de la sec	وأجاد والرجار فتراعط	and the state of the state	terio a contrata da contrata da contra d
20 dBµV									
.0 d8µV									
dBµV									
10 dBuV									
E 1.3 GHz			000)1 nts	6	0.0 MHz/		Sr	an 600.0 MHz
	Y		500	- p.s.	Measuring		11.12.2	019 Ref Level	RBW
	1				Pleasuring		13:39	9:32	

DATA

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF EMC4294 (dB/m)	Cable (dB)	Dist Corr (dB)	Corrected Reading (dBuV/m)	FCC PART18 300m LIMIT (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	1.407	26.06	Pk	28.77	5.56	-40	20.39	28	-7.61	0-360	200	V

Pk - Peak detector Note:

- Test was performed @ 3 meter distance.
- Distance factor from 3m to 300m = 20log (3/300) = -40dB

Page 31 of 40

7.2. AC POWER LINE CONDUCTED EMISSIONS

<u>LIMITS</u>

§ 18.307 For the following equipment, when designed to be connected to the public utility (AC) power line the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies shall not exceed the limits in the following table. Compliance with the provisions of this paragraph shall be based on the measurements of the radio frequency voltage between each power line and ground at the power terminal using a 50 μ H/50 ohms line impedance stabilization network (LISN).

§ 18.307 (b) All other Part 18 consumer devices:

Frequency of Emission (MHz)	Conducted Limit (dBµV)					
Frequency of Emission (MHZ)	Quasi-peak	Average				
0.15-0.5	66 to 56 *	56 to 46 *				
0.5-5	56	46				
5-30	60	50				

*Decreases with the logarithm of the frequency.

TEST PROCEDURE

Tested in accordance with FCC / OST MP-5

RESULTS

Page 32 of 40

7.2.1. STANDBY MODE

LINE 1 RESULTS

WORST EMISSIONS

Range 1: Line-L1 .15 - 30MHz											
Marker	Frequency	Meter	Det	LISN L1	LC Cables	Limiter	Corrected	CFR 47	QP Margin	CFR 47	Av(CISPR)
	(MHz)	Reading			C1&C3	(dB)	Reading	Part 18 QP	(dB)	Part 18 Avg	Margin
		(dBuV)					dBuV				(dB)
1	.15225	25.63	Qp	.1	0	10.1	35.83	65.88	-30.05	-	-
2	.15225	4.76	Ca	.1	0	10.1	14.96	-	-	55.88	-40.92
3	.429	14.74	Qp	0	0	10.1	24.84	57.27	-32.43	-	-
4	.43125	3.63	Ca	0	0	10.1	13.73	-	-	47.23	-33.5
5	.861	3.74	Qp	0	0	10.1	13.84	56	-42.16	-	-
6	.861	.03	Ca	0	0	10.1	10.13	-	-	46	-35.87
7	4.23825	7.61	Qp	0	.1	10.1	17.81	56	-38.19	-	-
8	4.26075	-1.41	Ca	0	.1	10.1	8.79	-	-	46	-37.21
9	9.39975	18.78	Qp	0	.2	10.2	29.18	60	-30.82	-	-
10	9.402	7.01	Ca	0	.2	10.2	17.41	-	-	50	-32.59
11	23.1315	58	Qp	.1	.3	10.4	10.22	60	-49.78	-	-
12	23.1315	-2.86	Ca	.1	.3	10.4	7.94	-	-	50	-42.06
13	13.56	27.97	Qp	.1	.2	10.2	38.47	60	-21.53	-	-
14	13.56	18.61	Ca	.1	.2	10.2	29.11	-	-	50	-20.89

Qp - Quasi-Peak detector

Ca - CISPR average detection

NOTE: Markers 13 and 14, 13.56MHz is an ambient signal.

Page 33 of 40

LINE 2 RESULTS

WORST EMISSIONS

Range	Range 2: Line-L2 .15 - 30MHz											
Marker	Frequency	Meter	Det	LISN L2	LC Cables	Limiter	Corrected	CFR 47	QP Margin	CFR 47	Av(CISPR)	
	(MHz)	Reading			C2&C3	(dB)	Reading	Part 18 QP	(dB)	Part 18 Avg	Margin	
		(dBuV)					dBuV				(dB)	
15	.15225	25.9	Qp	.1	0	10.1	36.1	65.88	-29.78	-	-	
16	.15225	5.49	Ca	.1	0	10.1	15.69	-	-	55.88	-40.19	
17	.43125	14.6	Qp	0	0	10.1	24.7	57.23	-32.53	-	-	
18	.43125	2.93	Ca	0	0	10.1	13.03	-	-	47.23	-34.2	
19	.861	9.85	Qp	0	0	10.1	19.95	56	-36.05	-	-	
20	.861	7.01	Ca	0	0	10.1	17.11	-	-	46	-28.89	
21	1.16925	7.55	Qp	0	.1	10.1	17.75	56	-38.25	-	-	
22	1.16925	3.78	Ca	0	.1	10.1	13.98	-	-	46	-32.02	
23	4.3395	8.93	Qp	0	.1	10.1	19.13	56	-36.87	-	-	
24	4.34175	81	Ca	0	.1	10.1	9.39	-	-	46	-36.61	
25	9.348	18.42	Qp	0	.2	10.2	28.82	60	-31.18	-	-	
26	9.35025	6.19	Ca	0	.2	10.2	16.59	-	-	50	-33.41	
27	13.56	28.13	Qp	.1	.2	10.2	38.63	60	-21.37	-	-	
28	13.56	18.84	Ca	.1	.2	10.2	29.34	-	-	50	-20.66	

Qp - Quasi-Peak detector

Ca - CISPR average detection

NOTE: Markers 27 and 28, 13.56MHz is an ambient signal.

Page 34 of 40

7.2.2. CHARGING MODE

LINE 1 RESULTS

WORST EMISSIONS

Range 1: Line-L1 .15 - 30MHz												
Marker	Frequency	Meter	Det	LISN L1	LC Cables	Limiter	Corrected	CFR 47	QP Margin	CFR 47	Av(CISPR)	
	(MHz)	Reading			C1&C3	(dB)	Reading	Part 15	(dB)	Part 15	Margin	
		(dBuV)					dBuV	Class B QP		Class B Avg	(dB)	
1	.15675	47.58	Qp	.1	0	10.1	57.78	65.63	-7.85	-	-	
2	.15675	28.63	Ca	.1	0	10.1	38.83	-	-	55.63	-16.8	
3	.186	44.25	Qp	0	0	10.1	54.35	64.21	-9.86	-	-	
4	.186	28.24	Ca	0	0	10.1	38.34	-	-	54.21	-15.87	
5	4.2765	17.55	Qp	0	.1	10.1	27.75	56	-28.25	-	-	
6	4.272	6.57	Ca	0	.1	10.1	16.77	-	-	46	-29.23	
7	9.6945	24.53	Qp	0	.2	10.2	34.93	60	-25.07	-	-	
8	9.69	17.93	Ca	0	.2	10.2	28.33	-	-	50	-21.67	
9	11.3955	24.4	Qp	.1	.2	10.2	34.9	60	-25.1	-	-	
10	11.39775	18.35	Ca	.1	.2	10.2	28.85	-	-	50	-21.15	
11	.20625	40.68	Qp	0	0	10.1	50.78	63.35	-12.57	-	-	
12	.2085	21.43	Ca	0	0	10.1	31.53	-	-	53.26	-21.73	
13	13.56	28	Qp	.1	.2	10.2	38.5	60	-21.5	-	-	
14	13.56	19.17	Ca	.1	.2	10.2	29.67	-	-	50	-20.33	

Qp - Quasi-Peak detector

Ca - CISPR average detection

NOTE: Markers 13 and 14, 13.56MHz is an ambient signal.

Page 35 of 40

LINE 2 RESULTS

WORST EMISSIONS

Range 2: Line-L2 .15 - 30MHz											
Marker	Frequency	Meter	Det	LISN L2	LC Cables	Limiter	Corrected	CFR 47	QP Margin	CFR 47	Av(CISPR)
	(MHz)	Reading			C2&C3	(dB)	Reading	Part 15	(dB)	Part 15	Margin
		(dBuV)					dBuV	Class B QP		Class B Avg	(dB)
15	.1545	46.41	Qp	.1	0	10.1	56.61	65.75	-9.14	-	-
16	.15675	27.78	Ca	.1	0	10.1	37.98	-	-	55.63	-17.65
17	.186	44.44	Qp	0	0	10.1	54.54	64.21	-9.67	-	-
18	.186	29.6	Ca	0	0	10.1	39.7	-	-	54.21	-14.51
19	.20625	39.41	Qp	0	0	10.1	49.51	63.35	-13.84	-	-
20	.2085	21.85	Ca	0	0	10.1	31.95	-	-	53.26	-21.31
21	4.272	21	Qp	0	.1	10.1	31.2	56	-24.8	-	-
22	4.263	11.53	Ca	0	.1	10.1	21.73	-	-	46	-24.27
23	9.56625	26.53	Qp	0	.2	10.2	36.93	60	-23.07	-	-
24	9.483	19.6	Ca	0	.2	10.2	30	-	-	50	-20
25	11.32575	26.15	Qp	.1	.2	10.2	36.65	60	-23.35	-	-
26	11.31	19.52	Ca	.1	.2	10.2	30.02	-	-	50	-19.98
27	13.56	29.24	Qp	.1	.2	10.2	39.74	60	-20.26	-	-
28	13.56	19.59	Ca	.1	.2	10.2	30.09	-	-	50	-19.91

Qp - Quasi-Peak detector

Ca - CISPR average detection

NOTE: Markers 27 and 28, 13.56MHz is an ambient signal.

Page 36 of 40