

TEST REPORT

Applicant:	CUSTOM ACCESSORIES INC
Address of Applicant:	5900 AMI DRIVE, RICHMOND, Illinois 60071, United States
Manufacturer/Factory:	Aoedi Technology (Huizhou) Co., Ltd.
Address of Manufacturer/Factory:	The 2nd and 5th floor of the factory building in the Hanyabei area of Ganpi Village, Zhenlong Town, Huiyang District, Huizhou City, China
Equipment Under Test (E	EUT)
Product Name:	Car Bluetooth FM Transmitter
Model No.:	24642
Trade Mark:	GOXT
FCC ID:	2ADMQ-24642
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.239
Date of sample receipt:	July 24, 2023
Date of Test:	July 25, 2023-August 16, 2023
Date of report issued:	August 16, 2023
Test Result :	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 23

2 Version

Version No.	Date	Description
00	August 16, 2023	Original

Tested By:

handlu

Date:

August 16, 2023

Project Engineer

Check By:

oppinson lund

Date:

August 16, 2023

Reviewer

3 Contents

	F	Page
1	COVER PAGE	1
	VERGION	
2	VERSION	2
3	CONTENTS	3
	TEST SUMMARY	
4		
4.	.1 MEASUREMENT UNCERTAINTY	4
5	GENERAL INFORMATION	5
5.	.1 GENERAL DESCRIPTION OF EUT	5
5.		7
5.	.3 DESCRIPTION OF SUPPORT UNITS	7
5.		
5.		
5.		
6	TEST INSTRUMENTS LIST	8
7	TEST RESULTS AND MEASUREMENT DATA	10
7.		
7.	.2 RADIATED EMISSION METHOD	
	7.2.2 Radiated Spurious Emissions	. 13
7.	.3 20DB OCCUPY BANDWIDTH	20
8	TEST SETUP PHOTO	-
ð		23
9	EUT CONSTRUCTIONAL DETAILS	23

4 Test Summary

Test Item	Section	Result
Antenna requirement	47 CFR Part 15, Subpart C 15.203	Pass
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C 15.207	N/A
Field strength of the fundamental signal	47 CFR Part 15, Subpart C 15.239(b)	Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.209 & 15.239 (c)	Pass
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C 15.239(a)	Pass

Remarks:

- 1. Test according to ANSI C63.10:2013.
- 2. Pass: The EUT complies with the essential requirements in the standard.
- 3. N/A: Not applicable

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
Note (1): The measurement unc	ertainty is for coverage factor of k	=2 and a level of confidence of S	95%.

5 General Information

5.1 General Description of EUT

Product Name:	Car Bluetooth FM Transmitter
Model No.:	24642
Test sample(s) ID:	GTS2023070290-1
Sample(s) Status:	Engineer sample
S/N:	077341638131
Operation Frequency:	88.1MHz~107.9MHz
Channel numbers:	199
Channel Separation:	100KHz
Modulation Type:	FM
Antenna Type:	Integral antenna
Antenna Gain:	1dBi(declare by applicant)
Power Supply:	Input: 12V-24V DC 2A
	USB-A Output: 5V DC 2.1A

Remark:

1. Antenna gain information provided by the customer

2. The relevant information of the sample is provided by the entrusting company, and the laboratory is not responsible for its authenticity.

Operation F	Operation Frequency each of Channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	88.1MHz	46	92.6MHz	96	97.6MHz	146	102.6MHz
2	88.2MHz	47	92.7MHz	97	97.7MHz	147	102.7MHz
3	88.3MHz	48	92.8MHz	98	97.8MHz	148	102.8MHz
4	88.4MHz	49	92.9MHz	99	97.9MHz	149	102.9MHz
5	88.5MHz	50	93.0MHz	100	98.0MHz	150	103.0MHz
6	88.6MHz	51	93.1MHz	101	98.1MHz	151	103.1MHz
7	88.7MHz	52	93.2MHz	102	98.2MHz	152	103.2MHz
8	88.8MHz	53	93.3MHz	103	98.3MHz	153	103.3MHz
9	88.9MHz	54	93.4MHz	104	98.4MHz	154	103.4MHz
10	89.0MHz	55	93.5MHz	105	98.5MHz	155	103.5MHz
11	89.1MHz	56	93.6MHz	106	98.6MHz	156	103.6MHz
12	89.2MHz	57	93.7MHz	107	98.7MHz	157	103.7MHz
13	89.3MHz	58	93.8MHz	108	98.8MHz	158	103.8MHz
45	92.5MHz	95	97.5MHz	145	102.5MHz	199	107.9MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test Channel:

Channel	Frequency
The lowest channel	88.1MHz
The middle channel	98.0MHz
The Highest channel	107.9MHz

5.2 Test mode

Mode 1	Keep transmit mode
Per-test mode:	

We have verified the construction and function in typical operation, The EUT was placed on three different polar directions; i.e. X axis, Y axis, Z axis. which was shown in this test report and defined as follows:

Axis	X	Y	Z
Field Strength(dBu	uV/m) 33.16	35.50	34.48

5.3 Description of Support Units

Manufacturer Description		Model	Serial Number	
GS	Lead-acid battery	S5D26R-MFZ	9442804454	
SanDisk	TF disk	16GB	N/A	

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC — Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• ISED—Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of ISED for radio equipment testing.

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd. Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480 Fax: 0755-27798960

5.6 Other Information Requested by the Customer

None.

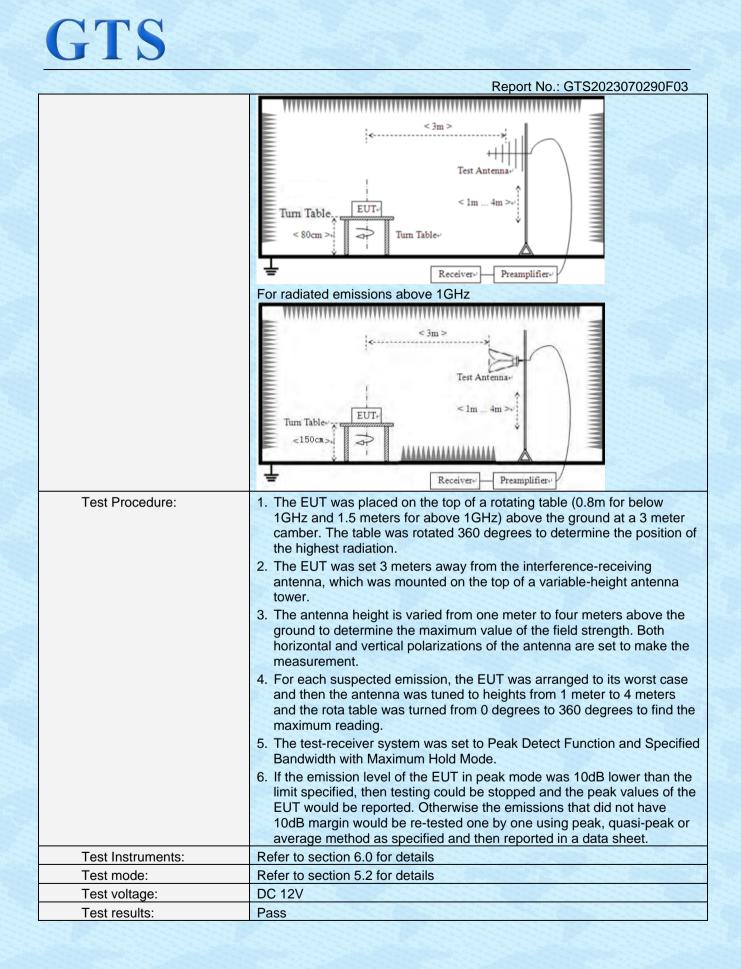
6 Test Instruments list

Radia	Radiated Emission:					
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	June 23, 2021	June 22, 2024
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	April 14, 2023	April 13, 2024
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9168	GTS640	March 19, 2023	March 18, 2025
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	April 17, 2023	April 16, 2025
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
7	Coaxial Cable	GTS	N/A	GTS213	April 21, 2023	April 20, 2024
8	Coaxial Cable	GTS	N/A	GTS211	April 21, 2023	April 20, 2024
9	Coaxial cable	GTS	N/A	GTS210	April 21, 2023	April 20, 2024
10	Coaxial Cable	GTS	N/A	GTS212	April 21, 2023	April 20, 2024
11	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	April 14, 2023	April 13, 2024
12	Loop Antenna	ZHINAN	ZN30900A	GTS534	Nov. 29, 2022	Nov. 28, 2023
13	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	April 14, 2023	April 13, 2024
14	Amplifier(1GHz-26.5GHz)	HP	8449B	GTS601	April 14, 2023	April 13, 2024
15	Horn Antenna (18- 26.5GHz)	1	UG-598A/U	GTS664	Oct. 30, 2022	Oct. 29, 2023
16	Horn Antenna (26.5-40GHz)	A.H Systems	SAS-573	GTS665	Oct. 30, 2022	Oct. 29, 2023
17	FSV·Signal Analyzer (10Hz-40GHz)	Keysight	FSV-40-N	GTS666	March 13, 2023	March 12, 2024
18	Amplifier	1	LNA-1000-30S	GTS650	April 14, 2023	April 13, 2024
19	CDNE M2+M3-16A	НСТ	30MHz-300MHz	GTS668	Dec. 20, 2022	Dec.19, 2023
20	Thermo meter	JINCHUANG	GSP-8A	GTS643	April 19, 2023	April 18, 2024

RF Co	RF Conducted Test:									
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)				
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	April 14, 2023	April 13, 2024				
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 14, 2023	April 13, 2024				
3	PSA Series Spectrum Analyzer	Agilent	E4440A	GTS536	April 14, 2023	April 13, 2024				
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	April 14, 2023	April 13, 2024				
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	April 14, 2023	April 13, 2024				
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	April 14, 2023	April 13, 2024				
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	April 14, 2023	April 13, 2024				
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	April 14, 2023	April 13, 2024				
9	Thermo meter	JINCHUANG	GSP-8A	GTS641	April 19, 2023	April 18, 2024				

Gen	eral used equipment:				121000000000000000000000000000000000000	
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Barometer	KUMAO	SF132	GTS647	April 19, 2023	April 18, 2024

7 Test results and Measurement Data


7.1 Antenna requirement

Standard requirement:	47 CFR Part 15, Subpart C 15.203					
responsible party shall be us intentional radiator, the man	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a antenna that uses a unique coupling to the ufacturer may design the unit permanently attached antenna or of an so that blaced by the user, but the use of a standard antenna jack or electrical					
E.U.T Antenna:						
The antenna is integral anter	nna, reference to the appendix II for details.					
	An intentional radiator shall be us responsible party shall be us intentional radiator, the man a broken antenna can be rep connector is prohibited. E.U.T Antenna:					

	Test Requirement:	47 CEP Port 15	Subpart C 1	5 200 8 15 23	20(c)				
	· · · · · · · · · · · · · · · · · · ·	47 CFR Part 15, Subpart C 15.209 & 15.239 (c) ANSI C63.10:2013							
	Test Method:	9kHz to 1000MHz							
	Test Frequency Range:	Frequency Detector RBW VBW Remark							
	Receiver setup:								
		9kHz- 150kHz	Quasi-peal	200Hz	300Hz	Quasi-peak Value			
		150kHz- 30MHz	Quasi-peal	k 9kHz	10kHz	Quasi-peak Value			
		30MHz- 1GHz	Quasi-peal	120KHz	300KHz	Quasi-peak Value			
		Above 1GHz	Peak Peak	1MHz 1MHz	3MHz 10Hz	Peak Value Average Value			
	1 inste	Freque		Limit (dBuV/		Remark			
	Limit:	Fieque	ency	48.0		Average Value			
	(Field strength of the fundamental signal)	88.1MHz-1	07.9MHz	68.0		Peak Value			
	Limit:	Freque		Limit (u	V/m)	Remark			
	(Spurious Emissions)	0.009MHz-0).490MHz	2400/F(kHz)) @300m	Quasi-peak Value			
	()	0.490MHz-1		24000/F(kH	z) @30m	Quasi-peak Value			
~		1.705MHz-		30 @ 3		Quasi-peak Value			
		30MHz-8	88MHz	100 @		Quasi-peak Value			
		88MHz-2		150 @		Quasi-peak Value			
		216MHz-9		200 @		Quasi-peak Value			
		960MHz	-1GHz	500 @		Quasi-peak Value			
2		Above 2	IGH7	500 @		Average Value			
-		1.0010		5000 @	23m	Peak Value			
	Limit: (band edge)	harmonics, sha	Il be attenua to the gener	ted by at lease al radiated er	st 50 dB b	cy bands, except for elow the level of the its in Section 15.209,			
	Test setup:	For radiated em	nissions from	9kHz to 30MH	lz				
		For radiated emissions from 9kHz to 30MHz							
		For radiated em	hissions from	30MHz to1GF	IZ	and the second second second			

7.2 Radiated Emission Method

Measurement data:

7.2.1 Field Strength of The Fundamental Signal

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
88.10	51.00	8.66	1.09	30.00	30.75	48.00	-17.25	Horizontal
88.10	49.26	8.66	1.09	30.00	29.01	48.00	-18.99	Vertical
98.10	47.89	9.50	1.18	30.00	28.57	48.00	-19.43	Horizontal
98.10	54.82	9.50	1.18	30.00	35.50	48.00	-12.50	Vertical
107.90	50.28	10.30	1.26	30.00	31.84	48.00	-16.16	Horizontal
107.90	49.51	10.32	1.26	30.00	31.09	48.00	-16.91	Vertical

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

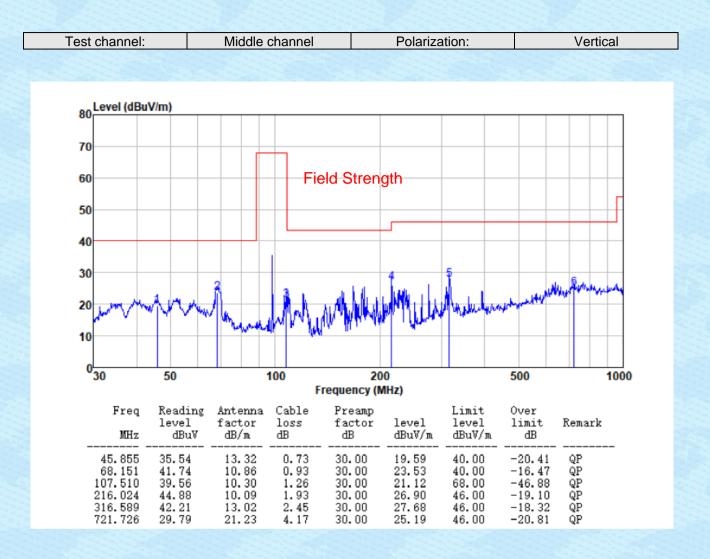
Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor PK Value under AV limit, then pass for AV value.

7.2.2 Radiated Spurious Emissions

9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

■ 30MHz~1GHz			
Test channel:	Lowest channel	Polarization:	Vertical



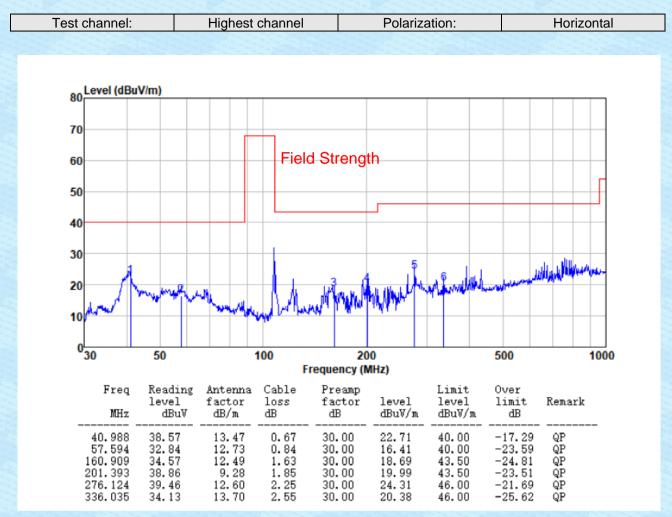
Report No.: GTS2023070290F03

est channel		Lowest	channel		Polariza	ation:		Horizontal
Laural (dD)	· / // /							
80 Level (dBu	IV/m)							
70			÷					
60				eld Stren	gth			
50								
40								
40								
30						. 5.		6
- A			2	.3.	Â.	1	mallionly	Li Jille Martin Star
30	mon		î h		Mula	Mundu	malitationary	ullik linger
20	mon	Mar and	r f h		W Luch	Mundon	minilitationaly	
- A	my	miles	r m	WINN	why well	Amila	millionuy	
20 10	50				Ma Lucha	And		
20	50		100	20 requency (N		Amila	,	1000
20 10	Reading	1 Antenna	100 Fi Cable	20 requency (N Preamp	IHz)	Limit	500 Over	1000
20 10 0 30		Antenna factor	100 F	20 requency (N Preamp factor	IH z) level	Limit level	500	
20 10 0 30 Freq MHz	Reading level dBuV	Antenna factor dB/m	100 F Cable loss dB	20 requency (N Preamp factor dB	HHZ) level dBu∛/m	Limit level dBuV/m	500 Over limit dB	1000 Remark
20 10 0 30 Freq <u>MHz</u> 40.135 108.267	Reading level dBuV 39.54 38.57	Antenna factor dB/m 13.50 10.35	100 F Cable loss dB 0.66 1.26	20 requency (N factor dB 30.00 30.00	level dBuV/m 23.70 20.18	Limit level dBuV/m 40.00 43.50	500 Over limit dB 16,30 -23,32	1000 Remark
20 10 0 30 Freq <u>MHz</u> 40.135 108.267 162.611	Reading level dBuV 39.54 38.57 36.62	Antenna factor dB/m 13.50 10.35 12.28	100 Fi Cable loss dB 0.66 1.26 1.65	20 requency (N Preamp factor dB 30.00 30.00 30.00 30.00	level dBuV/m 23.70 20.18 20.55	Limit level dBuV/m 40.00 43.50 43.50	500 Over limit dB 16.30 -23.32 -22.95	1000 Remark
20 10 0 30 Freq <u>MHz</u> 40.135 108.267	Reading level dBuV 39.54 38.57	Antenna factor dB/m 13.50 10.35	100 F Cable loss dB 0.66 1.26	20 requency (N factor dB 30.00 30.00	level dBuV/m 23.70 20.18	Limit level dBuV/m 40.00 43.50	500 Over limit dB 16,30 -23,32	1000 Remark

Report No.: GTS2023070290F03

Report No.: GTS2023070290F03

est channel:		Middle ch	nannel	-	Polarizati	on:		Horizontal
80 Level (dBu	V/m)							
70			÷	110				
60				eld Stren	igth			
50								
40								
30			1		4			
1					the star	d. da	un Sharan	MAN Marin
20	Mar Mar	M		walland	with matching	Myuntus	ALLA SALANA ALL	ANT NORMAL TO A STATE
1	mmuz	Muyacay	un aller	willia	n that have been	Myuntu	, and the second	AR MUNICIPAL COM
20 10	yung /	M. young		WIM		Myuntur		
20	50	M. Markeny	100 F	20 requency (N	0	ull granderes	500	
20 10	Reading	Antenna	F Cable	requency (N Preamp	0 NHz)	Limit	500 Over	1000
			F	requency (N	0		500	1000 Remark
20 10 0 30 Freq MHz 39.576	Reading level dBuV 36.20	Antenna factor dB/m 13.44	F Cable loss dB 	Preamp factor dB 	0 MHZ) 1evel dBuV/m 20.30	Limit level dBuV/m 40.00	500 Over limit dB -19.70	1000 Remark
20 10 0 30 Freq MHz	Reading level dBuV	Antenna factor dB/m	F Cable loss dB	requency(N Preamp factor dB 	0 MHz) level dBuV/m	Limit level dBuV/m	500 Over limit dB	1000 Remark



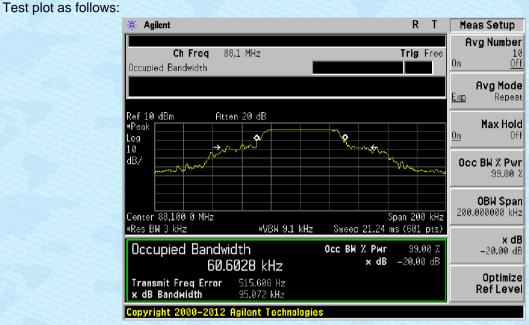
Report No.: GTS2023070290F03

est channel	:	Highes	t channe	el	Polari	zation:		Ve	rtical
80 Level (dBi 70 60 50 40 30 20 Jun 4 Jun 4 10	IV/m)		Fie	eld Streng			A Contraction of the second se		
0 <mark></mark>	50		100 F	20 requency (N			500		1000
Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBu∛/m	Limit level dBuV/m	Over limit dB	Remark	
40.988 71.832 120.277 239.147 317.701 768.748	35.97 36.60 40.76 43.23 42.75 29.59	13.47 10.19 11.22 11.55 13.06 22.13	0.67 0.96 1.36 2.06 2.45 4.35	30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00	20.11 17.75 23.34 26.84 28.26 26.07	40.00 40.00 43.50 46.00 46.00 46.00	-19.89 -22.25 -20.16 -19.16 -17.74 -19.93	QP QP QP QP QP QP	-

Report No.: GTS2023070290F03

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor


no Loub Cooupy Bunann						
Test Requirement:	47 CFR Part 15, Subpart C 15.239(a)					
Test Method:	ANSI C63.10:2013					
Receiver setup:	RBW=1KHz, VBW=3KHz, detector: Peak					
Limit:	<200 kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

7.3 20dB Occupy Bandwidth

Measurement Data:

Test channel	20dB bandwidth(kHz)	Limit(kHz)
Lowest	95.072	
Middle	79.696	200
Highest	99.977	

Middle channel

GTS

Highest channel

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

----- End -----