

FCC Test Report FCC ID: 2ADMQ-18867

Product: Wireless charging Trade Name: Goxt Model Number: 18867 Serial Model: WP03 Report No.: SER180421023001E

Prepared for

CUSTOM ACCESSORIES INC 5900 AMI DRIVE RICHMOND IL 60071

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen P.R. China Tel.: +86-0755-61156588 Fax.: +86-0755-61156599 Website: www.ntek.org.cn

TEST RESULT CERTIFICATION

	CUSTON	ACCESSORIES INC			
Address:	5900 AMI DRIVE RICHMOND IL 60071				
Manufacturer's Name	SHENZHEN GOODWIN TECHNOLOGY CO., LTD				
Address	. 4/F,Buiding A, Huayuan Industrial park, Fenghuang No.1 Industrial Area, Fuyong, Baoan Dist., Shenzhen, China				
Product description					
Product name:	Wireless	charging			
Model and/or type reference :					
This device described above has be	en tested	15C:2018 3.10:2013 by Shenzhen NTEK Testing Technology Co., Ltd., and the test EUT) is in compliance with the FCC requirements. And it is			
applicable only to the tested sample This report shall not be reproduced	e identified except in t may be a	I in the report. full, without the written approval of Shenzhen NTEK Testing altered or revised by Shenzhen NTEK Testing Technology Co.,			
•		e tested sample identified in this report.			
Date of Test		$21 \text{ Apr } 2018 \sim 18 \text{ May } 2018$			
Date (s) of performance of tests .		21 Apr.2018 ~ 18 May.2018			
Date of Issue		18 May.2018			
Test Result	:	Pass			
Testing Engine	er :	Susan			
		(Susan Su)			
Technical Mana	ager :				
Technical Mana	ager :	(Susan Su) Jusen chen (Jason Chen)			
Technical Mana Authorized Sig	-	(Susan Su) Jason chen			
	-	(Susan Su) Jusen chen (Jason Chen)			
	-	(Susan Su) Juson chen (Jason Chen) Sam. Cha:W			
	-	(Susan Su) Juson chen (Jason Chen) Sam. Cha:W			
	-	(Susan Su) Juson chen (Jason Chen) Sam. Cha:W			
	-	(Susan Su) Juson chen (Jason Chen) Sam. Cha:W			
	-	(Susan Su) Juson chen (Jason Chen) Sam. Cha:W			

Table of Contents	Page
1. TEST SUMMARY	4
1.1 FACILITIES AND ACCREDITATIONS	5
1.2 LABORATORY ACCREDITATIONS AND LISTINGS	5
1.3 MEASUREMENT UNCERTAINTY	5
2 . GENERAL INFORMATION	7
2.1 GENERAL DESCRIPTION OF EUT	7
2.2 DESCRIPTION OF TEST SETUP	9
2.3 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL	10
2.4 MEASUREMENT INSTRUMENTS LIST	11
3 . EMC EMISSION TEST	12
3.1 CONDUCTED EMISSION MEASUREMENT	12
3.1.1 POWER LINE CONDUCTED EMISSION	12
3.1.2 TEST PROCEDURE 3.1.3 TEST SETUP	13 13
3.1.4 EUT OPERATING CONDITIONS	13
3.1.5 TEST RESULTS	14
3.2 RADIATED EMISSION MEASUREMENT	18
3.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT	18
3.2.2 TEST PROCEDURE	19
3.2.3 TEST SETUP	20
3.2.4 TEST RESULTS	21
4. ANTENNA APPLICATION	31
4.1 Antenna Requirement 4.2 Result	31 31
	51

1. TEST SUMMARY

Test procedures according to the technical standards:

EMC Emission					
Standard	Test Item	FCC Rules	Limit	Judgment	Remark
	Conducted Emission	§15.207	Class B	PASS	
FCC part 15C:2018 ANSI C63.10:2013	Radiated Emission	§15.209	Class B	PASS	
	ANTENNA APPLICATION	§15.203	/	PASS	

NOTE:

(1) 'N/A' denotes test is not applicable in this Test Report

(2) For client's request and manual description, the test will not be executed.

1.1 FACILITIES AND ACCREDITATIONS

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

1.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description		
CNAS-Lab.	The Laboratory has been assessed and proved to be in	compliance with
	CNAS-CL01:2006 (identical to ISO/IEC 17025:2005)	
	The Certificate Registration Number is L5516.	
IC-Registration	The Certificate Registration Number is 9270A-1.	
FCC- Accredited	Test Firm Registration Number: 463705.	
	Designation Number: CN1184	
A2LA-Lab.	The Certificate Registration Number is 4298.01	
	This laboratory is accredited in accordance with the re- International Standard ISO/IEC 17025:2005 General re- the competence of testing and calibration laboratories. This accreditation demonstrates technical competence scope and the operation of a laboratory quality manage (refer to joint ISO-ILAC-IAF Communiqué dated 8 January	equirements for for a defined ement system
Name of Firm	Shenzhen NTEK Testing Technology Co., Ltd.	
Site Location	1/F, Building E, Fenda Science Park, Sanwei Commun	ity, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.	

1.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95** %.

A. Conducted Measurement :

Test Site	Method	Measurement Frequency Range	U, (dB)	NOTE
NTEKC01	ANSI	150 KHz ~ 30MHz	3.2	

B. Radiated Measurement :

Test Site	Method	Measurement Frequency Range	U, (dB)	NOTE
NTEKA01	ANSI	30MHz ~ 1000MHz	4.7	
		1GHz ~12.4GHz	5.0	

Report No.: SER180421023001E

Revision History

Report No.	Version	Description	Issued Date
SER180421023001E	Rev.01	Initial issue of report	18 May. 2018
	1	ļ	ļ

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

	Product Feature and Specification			
Equipment	Wireless charging			
Trade Name	Goxt			
FCC ID	2ADMQ-18867			
Model No.	18867			
Serial Model	WP03			
Model Difference	All the model are the same circuit and RF module, except the model name.			
Operating Frequency	110KHz~205KHz			
Modulation Technique	Induction			
Antenna Type	Induction coil			
Power supply	DC supply: DC 5V/2.0 A from USB Port. Or DC 9V /1.7A from USB Port.			
Output	DC 5V/1A			
HW Version	GW-WP01-01 180505 REV:01			
SW Version	WP03_V1.0			

2.1.1 DESCRIPTION OF TEST MODES

EUT Configuration

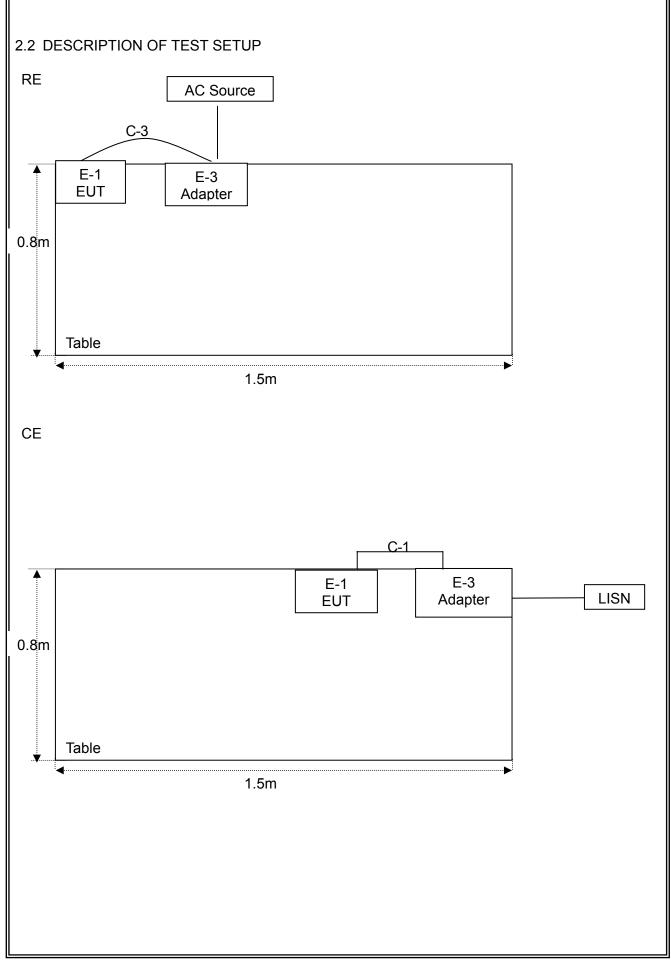
The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

EUT Exercise

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Test Cases		
Test Item	Data Rate/ Modulation	
AC Conducted Emission	Mode 1: Max load*	
Radiated Test Cases	Mode 1: Max load	


(*)EUT can only access the specified load, can not adjust the size of the load

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
1	0.110
2	0.157
3	0.205

The EUT supports two voltage inputs. The EUT performs two voltage mode pretests. Only the worst case of the two voltage modes is recorded in the report.

2.3 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Brand	Model/Type No.	Series No.	Note
E-1	Wireless charging	SIMTEL	18867	N/A	EUT
E-2	Adapter	N/A	AUNA5001	N/A	
E-3	Load	N/A	N/A	N/A	Note 4

Item	Cable Type	Shielded Type	Ferrite Core	Length	Note
C-1	USB Cable	unshielded	NO	1.2m	

Note:

(1) The support equipment was authorized by Declaration of Confirmation.

(2) For detachable type I/O cable should be specified the length in cm in $\[$ Length $\]$ column.

(3) "YES" means "shielded" "with core"; "NO" means "unshielded" "without core".

2.4 MEASUREMENT INSTRUMENTS LIST

Radiation Test equipment

	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2017.06.06	2018.06.05	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2017.10.26	2018.10.25	1 year
4	Test Receiver	R&S	ESPI	101318	2017.06.06	2018.06.05	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2017.04.09	2018.04.08	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2017.06.06	2018.06.05	1 year
7	Amplifier	EMC	EMC051835 SE	980246	2017.08.09	2018.08.08	1 year
8	Amplifier	MITEQ	TTA1840-35- HG	177156	2017.06.06	2018.06.05	1 year
9	Loop Antenna	ARA	PLA-1030/B	1029	2017.06.06	2018.06.05	1 year
10	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2017.04.21	2020.04.20	3 year
11	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2017.04.21	2020.04.20	3 year

Conduction Test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2017.06.06	2018.06.05	1 year
2	LISN	R&S	ENV216	101313	2017.04.19	2018.04.18	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2017.06.06	2018.06.05	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2017.06.06	2018.06.05	1 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2017.04.21	2020.04.20	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2017.04.21	2020.04.20	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2017.04.21	2020.04.20	3 year

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION (Frequency Range 150KHz-30MHz)

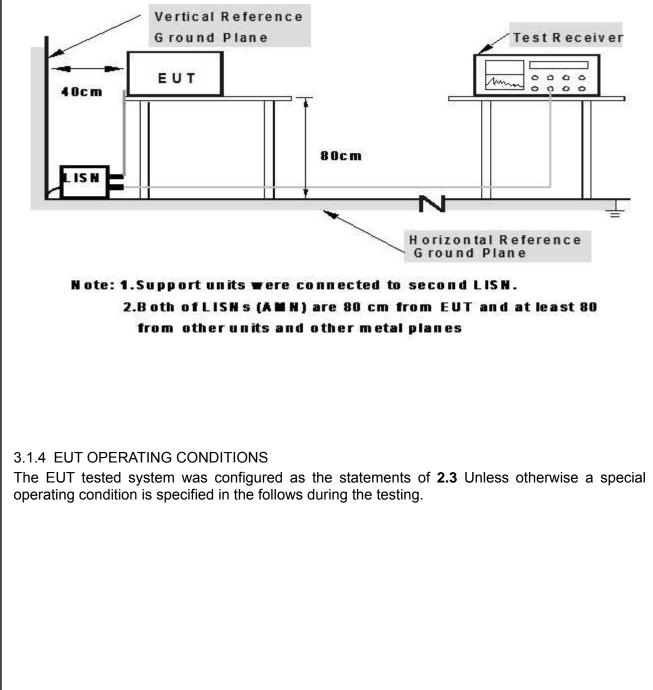
	limit		
FREQUENCY (MHz)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Note:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

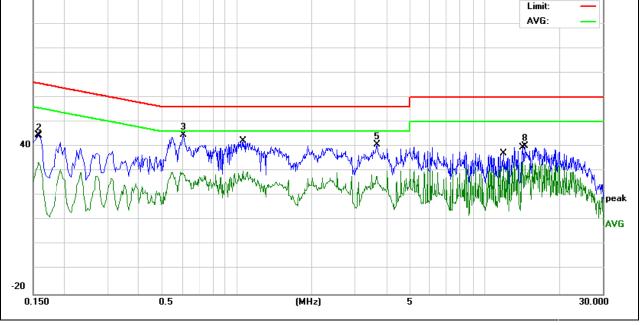

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

3.1.3 TEST SETUP

3.1.5 TEST RESULTS


	Mid frequency) From Adapter /	Test I Phas AC 120V/60H	e :	54% 2018-4-16 L	
Mode 1(N USB 9V F Reading Level	Mid frequency) From Adapter /	Test I Phas AC 120V/60H	Date: e :		
USB 9V I	From Adapter	AC 120V/60H		L	
Reading Level	1		Z		
-	Correct Factor	1			
(dBµV)		Measure-ment	Limits	Margin	Remark
	(dB)	(dBµV)	(dBµV)	(dB)	Reliaik
32.72	9.83	42.55	56.00	-13.45	QP
22.02	9.83	31.85	46.00	-14.15	AVG
31.07	9.92	40.99	56.00	-15.01	QP
21.53	10.05	31.58	50.00	-18.42	AVG
31.35	10.22	41.57	60.00	-18.43	QP
23.50	10.23	33.73	50.00	-16.27	AVG
A A wat have V		may whom y			pea
	21.53 31.35 23.50 Quasi-Peak an on Loss + Cable	21.53 10.05 31.35 10.22 23.50 10.23 Quasi-Peak and Average values on Loss + Cable Loss.	21.53 10.05 31.58 31.35 10.22 41.57 23.50 10.23 33.73 Quasi-Peak and Average values. on Loss + Cable Loss. Image: Cable Loss in Loss + Cable Los + Cab	21.53 10.05 31.58 50.00 31.35 10.22 41.57 60.00 23.50 10.23 33.73 50.00 Quasi-Peak and Average values. on Loss + Cable Loss.	21.53 10.05 31.58 50.00 -18.42 31.35 10.22 41.57 60.00 -18.43 23.50 10.23 33.73 50.00 -16.27 Quasi-Peak and Average values. on Loss + Cable Loss.

EUT:	Wireless	charging	Mode	I Name. :	18867	
emperature:	26 ℃		Relati	ve Humidity:	54%	
Pressure:	ressure: 1010hPa		Test D	Date:	2018-4-16	
Test Mode:	Test Mode: Mode 1(Mid frequency)				N	
Fest Voltage:	USB 9V I	From Adapter	AC 120V/60Hz	2		
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1500	20.06	9.92	29.98	55.99	-26.01	AVG
0.5180	34.17	9.93	44.10	56.00	-11.90	QK
0.5220	26.17	9.93	36.10	46.00	-9.90	AVG
1.0859	26.73	9.93	36.66	56.00	-19.34	QK
14.4620	23.43	10.23	33.66	50.00	-16.34	AVG
16.2780	28.79	10.25	39.04	60.00	-20.96	QK
40	1997 - 199	Walty Marine Marine Walty Marine M Marine Marine M	polyon for a far and the farmer of the farme	- malaan Maraha Maraha Maraha Malaa a sa da		pea
-20 0.150	0.5		(MHz)	5		30.000

EUT:	Wireless	charging	Mode	I Name. :	18867	
Temperature:	26 ℃		Relati	ive Humidity:	54%	
Pressure:	ressure: 1010hPa		Test D	Date:	2018-4-16	
est Mode: Mode 1(Mid frequency)) Phase	Phase : L			
Test Voltage:	USB 9V	From Adapter	AC 240V/60Hz	2		
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1580	23.67	9.82	33.49	55.56	-22.07	AVG
0.1582	34.44	9.82	44.26	65.55	-21.29	QP
0.6060	34.74	9.83	44.57	56.00	-11.43	QP
1.0580	19.97	9.92	29.89	46.00	-16.11	AVG
3.6620	30.57	10.05	40.62	56.00	-15.38	QP
11.9700	22.36	10.08	32.44	50.00	-17.56	AVG
14.2340	23.66	10.19	33.85	50.00	-16.15	AVG
14.5580	29.91	10.20	40.11	60.00	-19.89	QP

ISB 9V Fr ng Level C BμV) 5.37 5.36 3.77 9.09 2.61 7.21	(dB) 9.92 9.93 9.93 9.94 10.25 10.26 Average values.	AC 240V Measure- (dBµ 35.2 46.2 33.7 39.0 32.8 37.4	Test Dat Phase : //60Hz ment V) 29 70 33 36	E Humidity: te: Limits (dBµV) 55.78 56.00 46.00 56.00 50.00 60.00	54% 2018-4-16 N Margin (dB) -20.49 -9.71 -12.30 -16.97 -17.14 -22.53	Remark AVG QP AVG QP AVG QP
Iode 1(Mi ISB 9V Fr Ing Level C BμV) 5.37 5.36 3.77 9.09 2.61 7.21 i-Peak and J	rom Adapter A Correct Factor (dB) 9.92 9.93 9.93 9.94 10.25 10.26 Average values.	AC 240V Measure- (dBµ 35.2 46.2 33.7 39.0 32.8 37.4	Phase : //60Hz ment V) 29 29 70 03 36	Limits (dBµV) 55.78 56.00 46.00 56.00 50.00	N Margin (dB) -20.49 -9.71 -12.30 -16.97 -17.14	AVG QP AVG QP AVG
ISB 9V Fr ng Level C BμV) 5.37 5.36 3.77 9.09 2.61 7.21	rom Adapter A Correct Factor (dB) 9.92 9.93 9.93 9.94 10.25 10.26 Average values.	AC 240V Measure- (dBµ 35.2 46.2 33.7 39.0 32.8 37.4	//60Hz ment V) 29 29 70 03 36	(dBµV) 55.78 56.00 46.00 56.00 50.00	Margin (dB) -20.49 -9.71 -12.30 -16.97 -17.14	AVG QP AVG QP AVG
ng Level C BµV) 5.37 5.36 3.77 9.09 2.61 7.21	Correct Factor (dB) 9.92 9.93 9.93 9.94 10.25 10.26 Average values.	Measure- (dBµ 35.2 46.2 33.7 39.0 32.8 37.4	ment V) 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	(dBµV) 55.78 56.00 46.00 56.00 50.00	(dB) -20.49 -9.71 -12.30 -16.97 -17.14	AVG QP AVG QP AVG
BμV) 5.37 5.36 3.77 9.09 2.61 7.21	(dB) 9.92 9.93 9.93 9.94 10.25 10.26 Average values.	(dBµ 35.2 46.2 33.7 39.0 32.8 37.4	V) 29 70 33 36	(dBµV) 55.78 56.00 46.00 56.00 50.00	(dB) -20.49 -9.71 -12.30 -16.97 -17.14	AVG QP AVG QP AVG
5.37 5.36 3.77 9.09 2.61 7.21	9.92 9.93 9.93 9.94 10.25 10.26 Average values.	35.2 46.2 33.7 39.0 32.8 37.4	29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	55.78 56.00 46.00 56.00 50.00	-20.49 -9.71 -12.30 -16.97 -17.14	AVG QP AVG QP AVG
5.36 3.77 9.09 2.61 7.21	9.93 9.93 9.94 10.25 10.26 Average values.	46.2 33.7 39.0 32.8 37.4	29 70 03 36	56.00 46.00 56.00 50.00	-9.71 -12.30 -16.97 -17.14	QP AVG QP AVG
3.77 9.09 2.61 7.21	9.93 9.94 10.25 10.26 Average values.	33.7 39.0 32.8 37.4	r0 03 36	46.00 56.00 50.00	-12.30 -16.97 -17.14	AVG QP AVG
9.09 2.61 7.21	9.94 10.25 10.26 Average values.	39.0 32.8 37.4)3 36	56.00 50.00	-16.97 -17.14	QP AVG
2.61 7.21	10.25 10.26 Average values.	32.8 37.4	36	50.00	-17.14	AVG
7.21	10.26 Average values.	37.4				
i-Peak and a	Average values.		7	60.00	-22.53	QP
						<u> </u>
				, l. J. K. M. H. L'L.	. Vol ^{en} ting in the st ation	
		V V		ry the advocted for	ar that he highly has a.	AVG
0.5		(MHz)		5		30.000
	0.5	0.5	0.5 (MHz)	0.5 (MHz)		0.5 (MHz) 5

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

The emissions from an intentional radiator shall not exceed the field strength levels specified in the following table 15.209(a):

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

15.205 Restricted bands of operation

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

Notes:

- (1) Measurement was performed at an antenna to the closed point of EUT distance of meters.
- (2) Emission level (dBuV/m)=20log Emission level (uV/m).
- (3) Only spurious frequency is permitted to locate within the Restricted Bands specified in provision of 15.205, and the emissions located in restricted bands also comply with 15.209 limit.
- (4) The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector

3.2.2 TEST PROCEDURE

Test Arrangement for Radiated Emissions up to 1 GHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at an accredited test facility. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna(Blow 30M, use loop antenna), and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

Note: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for quasi-peak detection (QP) at frequency below 1GHz.

Test Arrangement for Radiated Emissions above 1 GHz.

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at an accredited chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna can be varied from one meter to four meters, the height of adjustment depends on the EUT height and the antenna 3dB beamwidth both, to detect the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

Note: The EUT should be measured for all 3 axes and only the worst case is recorded in the report.

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

```
Use the following receiver/spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

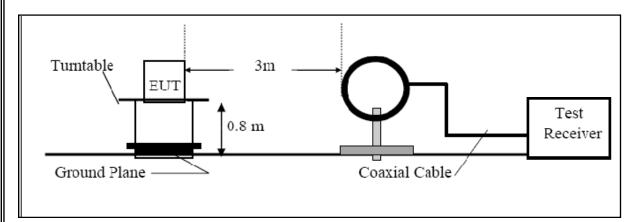
RBW=200Hz for 9KHz to 150KHz,

RBW=9kHz for 150KHz to 30MHz,

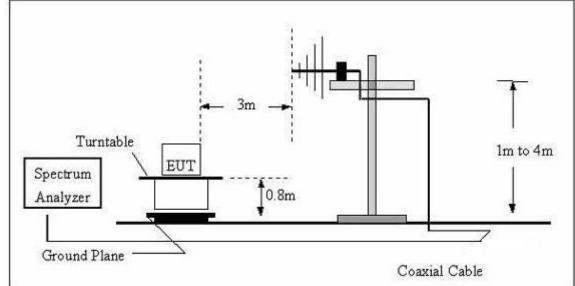
RBW=120KHz for 30MHz to 1GHz

VBW \geq 3*RBW

Sweep = auto


Detector function = QP

Trace = max hold
```



3.2.3 TEST SETUP

For Radiated Emission Test Set-Up, Frequency Below 30MHz

For Radiated Emission 30~1000MHz

3.2.4 TEST RESULTS

TEST RESULTS (9KHz~30MHz)

	/						
EUT:	Wireless charging	Model Name. :	18867				
Temperature:	24 ℃	Relative Humidity:	54%				
Pressure:	1010 hPa	Test Date :	2018-4-17				
Test Mode :	Low frequency/Max Load	Low frequency/Max Load Polarization : X					
Test Power :	USB 5V From Adapter AC 120V/60Hz						

Frequency	Ant.Pol.	Emissio	Limits	Margin	Remark
		n Level			
(MHz)		(dBuV/	(dBuV/m	(dB)	
		m))		
0.043	Х	45.84	114.935	-69.09	Avg
0.110	х	71.281	106.776	-35.50	Avg(fundamenta
0.110	~	11.201	100.770	-33.30	l frequency)
0.732	Х	43.620	70.314	-26.69	QP
4.556	Х	36.830	54.433	-17.60	QP
6.482	Х	42.940	69.542	-26.60	QP
21.663	Х	37.520	69.542	-32.02	QP

Note:

Below 30MHz, Pre-test the X, Y, Z axis to find X axis is worst case, so only record X axis test data. X: Field strength which this device generates since the position of the charging coil and loop antenna differ by 0 degrees.

Y: Field strength which this device generates since the position of the charging coil and loop antenna differ by 90 degrees.

EUT:	Wireless charging	Model Name. :	18867		
Temperature:	24 °C	Relative Humidity:	54%		
Pressure:	1010 hPa	Test Date :	2018-4-17		
Test Mode :	Mid frequency/Max Load Polarization : X				
Test Power :	USB 5V From Adapter AC 120V/60Hz				

Frequency	Ant.Pol.	Emission	Limits	Margin	Remark	
		Level				
(MHz)		(dBuV/m)	(dBuV/m)	(dB)		
0.035	Х	41.841	116.7229	-74.88	Avg	
0.157	×	76.472	103.6862	-27.21	Avg(fundamental	
0.157	Χ	10.472	103.0002	-27.21	frequency)	
0.552	Х	41.636	72.765	-31.13	QP	
0.947	Х	33.732	68.077	-34.35	QP	
2.646	Х	31.552	69.542	-37.99	QP	
7.837	Х	44.742	69.542	-24.80	QP	

Below 30MHz, Pre-test the X, Y, Z axis to find X axis is worst case, so only record X axis test data. X: Field strength which this device generates since the position of the charging coil and loop antenna differ by 0 degrees.

Y: Field strength which this device generates since the position of the charging coil and loop antenna differ by 90 degrees.

EUT:	Wireless charging	Model Name. :	18867			
Temperature:	24 °C	Relative Humidity:	54%			
Pressure:	1010 hPa	Test Date :	2018-4-17			
Test Mode :	High frequency/Max Load Polarization : X					
Test Power :	st Power : USB 5V From Adapter AC 120V/60Hz					

Frequenc v	Ant.Pol.	Emission Level	Limits	Margin	Remark
(MHz)			(dBuV/m)	(dB)	
0.039	Х	45.73	115.7829	-70.05	Avg
0.205	×	76.16	101.3691	-25.21	Avg(fundamental frequency)
0.628	Х	42.644	71.645	-29.00	QP
2.663	Х	43.746	59.097	-15.35	QP
6.773	X	35.715	69.542	-33.83	QP
10.664	Х	37.689	69.542	-31.85	QP

Below 30MHz, Pre-test the X, Y, Z axis to find X axis is worst case, so only record X axis test data. X: Field strength which this device generates since the position of the charging coil and loop antenna differ by 0 degrees.

Y: Field strength which this device generates since the position of the charging coil and loop antenna differ by 90 degrees.

EUT:	Wireless charging	Model Name. :	18867		
Temperature:	24 ℃	Relative Humidity:	54%		
Pressure:	1010 hPa	Test Date :	2018-4-17		
Test Mode :	Low frequency/Max Load Polarization : X				
Test Power :	USB 9V From Adapter AC 120V/60Hz				

Frequency	Ant.Pol.	Emissio	Limits	Margin	Remark
		n Level			
(MHz)		(dBuV/	(dBuV/m	(dB)	
		m))		
0.033	Х	46.772	117.313	-70.54	Avg
0.110	х	72.389	106.776	-34.39	Avg(fundamenta
0.110	~	72.509	100.770	-04.09	l frequency)
0.668	Х	40.178	71.109	-30.93	QP
3.281	Х	41.687	57.284	-15.60	QP
5.794	Х	42.665	69.542	-26.88	QP
10.557	Х	37.662	69.542	-31.88	QP

Below 30MHz, Pre-test the X, Y, Z axis to find X axis is worst case, so only record X axis test data. X: Field strength which this device generates since the position of the charging coil and loop antenna differ by 0 degrees.

Y: Field strength which this device generates since the position of the charging coil and loop antenna differ by 90 degrees.

EUT:	Wireless charging	Model Name. :	18867			
Temperature:	24 ℃	Relative Humidity:	54%			
Pressure:	1010 hPa	Test Date :	2018-4-17			
Test Mode :	Mid frequency/Max Load Polarization : X					
Test Power :	er : USB 9V From Adapter AC 120V/60Hz					

Frequency	Ant.Pol.	Emission	Limits	Margin	Remark
		Level			
(MHz)		(dBuV/m)	(dBuV/m)	(dB)	
0.036	Х	43.725	116.5266	-72.80	Avg
0.157	×	76.05	103.6862	-27.64	Avg(fundamental
0.157	Χ	70.00	103.0002	-27.04	frequency)
0.837	Х	41.553	69.150	-27.60	QP
1.572	Х	39.578	63.675	-24.10	QP
5.668	Х	40.533	69.542	-29.01	QP
10.578	Х	41.528	69.542	-28.01	QP

Below 30MHz, Pre-test the X, Y, Z axis to find X axis is worst case, so only record X axis test data. X: Field strength which this device generates since the position of the charging coil and loop antenna differ by 0 degrees.

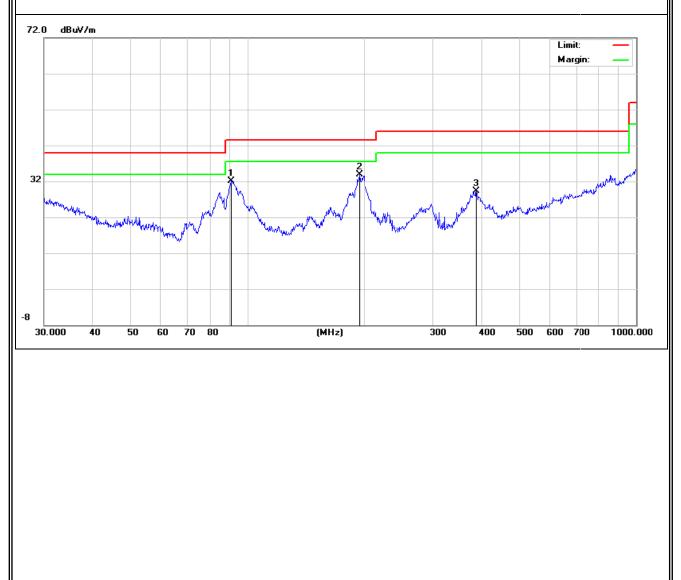
Y: Field strength which this device generates since the position of the charging coil and loop antenna differ by 90 degrees.

EUT:	Wireless charging	Model Name. :	18867			
Temperature:	24 ℃	Relative Humidity:	54%			
Pressure:	1010 hPa	Test Date :	2018-4-17			
Test Mode :	High frequency/Max Load Polarization : X					
Test Power :	st Power : USB 9V From Adapter AC 120V/60Hz					

Frequenc y	Ant.Pol.	Emission Level	Limits	Margin	Remark
(MHz)		(dBuV/m)	(dBuV/m)	(dB)	
0.038	Х	43.73	116.0086	-72.28	Avg
0.205	×	80.536	101.3691	-20.83	Avg(fundamental frequency)
0.583	X	42.885	72.291	-29.41	Avg
0.893	X	39.062	68.587	-29.53	QP
1.659	X	38.460	69.542	-31.08	QP
6.773	X	38.560	69.542	-30.98	QP

Below 30MHz, Pre-test the X, Y, Z axis to find X axis is worst case, so only record X axis test data. X: Field strength which this device generates since the position of the charging coil and loop antenna differ by 0 degrees.

Y: Field strength which this device generates since the position of the charging coil and loop antenna differ by 90 degrees.


TEST RESULTS (30MHz ~1000MHz)

EUT:	Wireless charging	Model Name. :	18867		
Temperature:	24 ℃	Relative Humidity:	54%		
Pressure:	1010 hPa	Test Date :	2018-4-17		
Test Mode :	High frequency/Max Load Polarization : Horizontal				
Test Power :	USB 5V From Adapter AC 120V/60Hz				

Polar (H/V) H H H	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Kennark
Н	91.1746	20.24	11.85	32.09	43.50	-11.41	QP
Н	194.4534	20.35	13.63	33.98	43.50	-9.52	QP
Н	387.9920	14.24	15.02	29.26	46.00	-16.74	QP

Remark:

Factor = Antenna Factor + Cable Loss - Amplifier.

Report No.: SER180421023001E

-9.34

-2.80

-3.47

QP

QP

QP

EUT:		Wirel	ess charging		Model Nam	e.:	18867	7	
Tempera	ature:	24 °C	2		Relative Hu	midity:	54%		
Pressur	e:	1010	hPa		Test Date :		2018-	4-17	
Test Mo	de :	High	frequency/Ma	ax Load	Polarization	1:	Vertic	al	
Test Po	wer :	USB	5V From Ada	pter AC 12	0V/60Hz				
Polar (H/V) V	Frequer	ncy	Meter Reading	Factor	Emission Level	Limi	ts	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV	//m)	(dB)	Kennark
V	84.999	95	23.11	11.24	34.35	40.0	00	-5.65	QP

34.16

37.20

36.53

43.50

40.00

40.00

13.74

13.34

20.32

Remark:

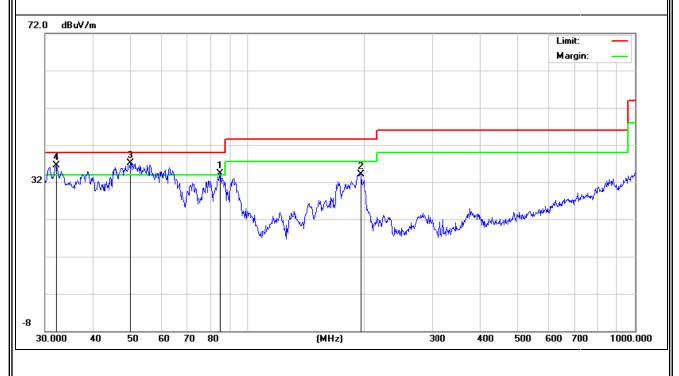
V

V

V

Factor = Antenna Factor + Cable Loss - Amplifier.

20.42


23.86

16.21

195.8220

49.8813

32.0668

EUT:			Wire	less	s ch	argi	ng		N	lodel Na	ame	.:	188	67					
Temper	rature:		° 24	С					R	elative H	Hum	nidity:	54%	6					
Pressu	re:		1010) hP	а				Т	est Date	e :		201	8-4-	17				
Test Mo	ode :		High	free	que	ency/	′Ма	ax Load	Р	olarizati	on :		Hor	izon	tal				
Test Po	wer :		-		-	-		pter AC	120V/	60Hz									
								•											
Polar (H/V)	Fre	quen	су			ter ding		Factor	E	nission Level		Lim	its		Mar	gin		Rem	ark
	-	MHz)		(-	uV)		(dB)	-	BuV/m)		(dBu			(d	-			
H).2110			5.			21.11		26.29		40.			-13			Q	
Н		8.162		<u> </u>	8.		-+	13.38		21.97		40.			-18		_		
<u>н</u> Н		8.266				.70	+	<u>10.27</u> 13.81		27.97	-+	43.				.53	_		
<u>н</u> Н		2.100 3.931			<u>17.</u> 15.	.85	+	13.81		31.66 29.95	-+	<u>43</u> . 46.				.84 .05	-	Q Q	
<u>н</u>		3.056			<u>15</u> .		+	25.93		29.95 32.08	-+	40.				.05 .92	-	Q	
72.0 d	BuV/m															Limit: Margin			
32										 								6	
	Muunn	2	worny	Myrre ⁿⁿ	VPHU	/hy.phile	3	high warman	normal Marcal	Winhed	www	Warneyman		all when the	h. deg	sthere's			
-8	40	50	60	70	80)			(MHz)		3	300	400	500	60	0 70	0	1000.	000

Report No.: SER180421023001E

	Remark
Pressure: 1010 hPa Test Date : 2018-4-17 Test Mode : High frequency/Max Load Polarization : Vertical Test Mode : USB 9V From Adapter AC 120V/60Hz Polar (HVV) Frequency Meter Reading Factor Emission Level Limits Margi V 31.6202 15.28 20.51 35.79 40.00 -4.21 V 59.8588 24.61 11.51 36.12 40.00 -3.86 V 108.6470 24.74 10.25 34.99 43.50 -8.57 V 203.5228 20.75 13.85 34.60 43.50 -8.90 V 379.9141 12.35 14.86 27.21 46.00 -18.7 V 44.5867 23.21 13.99 37.20 40.00 -2.80 Remark: Factor = Antenna Factor + Cable Loss - Amplifier. Image: Amplifier. Image: Amplifier. Image: Amplifier. 72.0 dBuV/m Image: Amplifier. Image: Amplifier. Image: Amplifier. Image: Amplifier.	Remark
Test Mode : High frequency/Max Load Polarization : Vertical Test Power : USB 9V From Adapter AC 120V/60Hz Limits Marginal Polar (H/V) Frequency Meter Reading Factor Emission Level Limits Marginal V 31.6202 15.28 20.51 35.79 40.00 -4.27 V 59.8588 24.61 11.51 36.12 40.00 -3.86 V 108.6470 24.74 10.25 34.99 43.50 -8.51 V 203.5228 20.75 13.85 34.60 43.50 -8.90 V 379.9141 12.35 14.86 27.21 46.00 -18.7 V 44.5867 23.21 13.99 37.20 40.00 -2.80 Remark: Factor = Antenna Factor + Cable Loss - Amplifier. Immunol Immunol Immunol J Max J J J J J J J J <thj< th=""> J J J</thj<>	Remark
Test Power : USB 9V From Adapter AC 120V/60Hz Polar (H/V) Frequency Meter Reading Factor Emission Level Limits Margi (dBuV/m) V 31.6202 15.28 20.51 35.79 40.00 -4.27 V 59.8588 24.61 11.51 36.12 40.00 -3.86 V 108.6470 24.74 10.25 34.99 43.50 -8.57 V 203.5228 20.75 13.85 34.60 43.50 -8.97 V 379.9141 12.35 14.86 27.21 46.00 -18.7 V 44.5867 23.21 13.99 37.20 40.00 -2.80 Remark: Factor + Cable Loss - Amplifier. Z.0 Limits 40.00 -2.80 Amplifier. Amplifier.	Remark
Polar (H/V) Frequency Meter Reading Factor Emission Level Limits Margi V 31.6202 15.28 20.51 35.79 40.00 -4.21 V 59.8588 24.61 11.51 36.12 40.00 -3.86 V 108.6470 24.74 10.25 34.99 43.50 -8.51 V 203.5228 20.75 13.85 34.60 43.50 -8.90 V 379.9141 12.35 14.86 27.21 46.00 -18.7 V 44.5867 23.21 13.99 37.20 40.00 -2.80 Remark: Factor = Antenna Factor + Cable Loss - Amplifier.	Remark
Polar (H/V) Prequency Reading Pactor Level Linns Margin V 31.6202 15.28 20.51 35.79 40.00 -4.21 V 59.8588 24.61 11.51 36.12 40.00 -3.86 V 108.6470 24.74 10.25 34.99 43.50 -8.51 V 203.5228 20.75 13.85 34.60 43.50 -8.90 V 379.9141 12.35 14.86 27.21 46.00 -18.7 V 44.5867 23.21 13.99 37.20 40.00 -2.80	Remark
Polar (H/V) Prequency Reading Pactor Level Linns Margin V 31.6202 15.28 20.51 35.79 40.00 -4.21 V 59.8588 24.61 11.51 36.12 40.00 -3.86 V 108.6470 24.74 10.25 34.99 43.50 -8.51 V 203.5228 20.75 13.85 34.60 43.50 -8.90 V 379.9141 12.35 14.86 27.21 46.00 -18.7 V 44.5867 23.21 13.99 37.20 40.00 -2.80 Remark: Factor = Antenna Factor + Cable Loss - Amplifier. -40.00 -2.80 -2.80 V 48.0V/m -44.5867 -40.00 -2.80 -2.80 Pactor = Antenna Factor + Cable Loss - Amplifier. -40.00 -2.80 -40.00 -2.80 1 -40.00 -40.00 -40.00 -40.00 -2.80 -40.00 -2.80 1 -40.00	Remark
(H/V) (MHz) (dBuV) (dB) (dBuV/m) (dBuV/m) (dB) V 31.6202 15.28 20.51 35.79 40.00 -4.21 V 59.8588 24.61 11.51 36.12 40.00 -3.86 V 108.6470 24.74 10.25 34.99 43.50 -8.51 V 203.5228 20.75 13.85 34.60 43.50 -8.90 V 379.9141 12.35 14.86 27.21 46.00 -18.7 V 44.5867 23.21 13.99 37.20 40.00 -2.80	QP QP QP QP QP QP 9 QP
V 59.8588 24.61 11.51 36.12 40.00 -3.88 V 108.6470 24.74 10.25 34.99 43.50 -8.51 V 203.5228 20.75 13.85 34.60 43.50 -8.90 V 379.9141 12.35 14.86 27.21 46.00 -18.7 V 44.5867 23.21 13.99 37.20 40.00 -2.80 Remark: Factor = Antenna Factor + Cable Loss - Amplifier.	QP QP
V 108.6470 24.74 10.25 34.99 43.50 -8.51 V 203.5228 20.75 13.85 34.60 43.50 -8.90 V 379.9141 12.35 14.86 27.21 46.00 -18.7 V 44.5867 23.21 13.99 37.20 40.00 -2.80 Remark: Factor = Antenna Factor + Cable Loss - Amplifier. Image: Comparison of the second of t	QP QP 9 QP
V 203.5228 20.75 13.85 34.60 43.50 -8.90 V 379.9141 12.35 14.86 27.21 46.00 -18.7 V 44.5867 23.21 13.99 37.20 40.00 -2.80 Remark: Factor = Antenna Factor + Cable Loss - Amplifier. Image: Comparison of the second o) QP 9 QP
V 379.9141 12.35 14.86 27.21 46.00 -18.7 V 44.5867 23.21 13.99 37.20 40.00 -2.80 Remark: Factor = Antenna Factor + Cable Loss - Amplifier. 72.0 dBuV/m Lin Main Sector + Cable Loss - Amplifier.	9 QP
V 44.5867 23.21 13.99 37.20 40.00 -2.80 Remark: Factor = Antenna Factor + Cable Loss - Amplifier. 72.0 dBuV/m Lin Ma Antenna Factor + Cable Loss - Amplifier. 72.0 dBuV/m Lin Lin Antenna Factor + Cable Loss - Amplifier. 72.0 dBuV/m Lin Lin Antenna Factor + Cable Loss - Amplifier. Intent colspan="3">Lin Antenna Factor + Cable Loss - Amplifier. Intent colspan="3">Lin Antenna Factor + Cable Loss - Amplifier. Intent colspan="3">Intent colspan="3" Intent colspan="3" Intent colspan="3" Intent colspan="3" Intent colspan="3" Intent colspan="3" Intent colspan="3"	
Remark: Factor = Antenna Factor + Cable Loss - Amplifier. 72.0 dBuV/m) QP
Factor = Antenna Factor + Cable Loss - Amplifier.	
	iit: <u>—</u> rgin: <u>—</u>
32 0 WWW WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	al Markon And Standing
-8 30.000 40 50 60 70 80 (MHz) 300 400 500 600	700 1000.000

4. ANTENNA APPLICATION **4.1 Antenna Requirement**

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible partyshall be used with the device. **4.2 Result**

The EUT antenna is permanent attached antenna. It comply with the standard requirement.

END REPORT