

Date : 2017-10-17 No. : HM170990	100(1)	Page 1 of 67	
Applicant:	CUSTOM ACCESSORIES INC 5900 AMI DRIVE, RICHMOND IL 60071		
Manufacturer:	HaiKe Plastic & Electronic Co., LTD. 4.F Build 3th, ShangHengLang, East Technology Park, Dalang Street, LongHua District, ShenZhen, China		
Description of Sample(s):	Product: Brand Name: Model Number: FCC ID:	Bluetooth Receiver / Transmitter GOXT 18845 2ADMQ-18845	
Date Sample(s) Received:	2017-09-25		
Date Tested:	2017-10-13 to 2017-10-17		
Investigation Requested:	Perform ElectroMagnetic Interference measurement in accordance with FCC 47 CFR [Codes of Federal Regulations] Part 15: 2015 and ANSI C63.10: 2013 for FCC Certification.		
Conclusion(s):	The submitted product <u>COMPLIED</u> with the requirements of Federal Communications Commission [FCC] Rules and Regulations Part 15. The tests were performed in accordance with the standards described above and on Section 2.2 in this Test Report.		
Remark(s):	Bluetooth FHSS (GFSK/ π/4-DQPSK/ 8DPSK) only	

Dr. LEE Kam Chiten an US Authorized Signatory ElectroMagnetic Compatibility Department For and on behalf of The Hong Kong Standards and Testing Centre Ltd.

Date : 2017-10-17 No. : HM170990 CONTENT:

Page 2 of 67

CONT		
	Cover Content	Page 1 of 67 Page 2 of 67
<u>1.0</u>	General Details	
1.1	Test Laboratory	Page 3 of 67
1.2	Equipment Under Test [EUT] Description of EUT operation	Page 3 of 67
1.3	Date of Order	Page 3 of 67
1.4	Submitted Sample	Page 3 of 67
1.5	Test Duration	Page 3 of 67
1.6	Country of Origin	Page 3 of 67
1.7	Antenna Details	Page 4 of 67
1.8	Channel List	Page 4 of 67
<u>2.0</u>	Technical Details	
2.1	Investigations Requested	Page 5 of 67
2.2	Test Standards and Results Summary	Page 5 of 67
2.3	Table for Test Modes	Page 6 of 67
<u>3.0</u>	Test Results	
3.1	Emission	Page 7 - 60 of 67
	<u>Appendix A</u>	
	List of Measurement Equipment	Page 61 of 67
	Appendix B	
	Photographs	Page 62- 67 of 67

The Hong Kong Standards and Testing Centre Limited

Date : 2017-10-17

No. : HM170990

<u>1.0</u> General Details

1.1 Test Laboratory

The Hong Kong Standards and Testing Centre Ltd. EMC Laboratory 10 Dai Wang Street, Taipo Industrial Estate

Telephone:(852) 26661888Fax:(852) 26644353

1.2 Equipment Under Test [EUT] Description of Sample(s)

Product:	Bluetooth Receiver / Transmitter
Manufacturer:	HaiKe Plastic & Electronic Co., LTD.
	4.F Build 3th, ShangHengLang, East Technology Park,
	Dalang Street, LongHua District, ShenZhen, China
Brand Name:	GOXT
Model Number:	18845
Additional Model Number:	HK011, HK105, TX80, HK100, HK201, HK202, HK203,
	HK205, HK009, TX70
Rating:	3.7Vd.c (Li-ion rechargeable battery x 1)

1.2.1 Description of EUT Operation

The Equipment Under Test (EUT) is Bluetooth Receiver / Transmitter. The transmission signal is digital modulated with channel frequency range 2402-2480MHz. The R.F. signal was modulated by IC; the type of modulation used was frequency hopping spread spectrum Modulation.

1.3 Date of Order

2017-09-25

1.4 Submitted Sample(s):

2 Samples

1.5 Test Duration

2017-10-13 to 2017-10-17

1.6 Country of Origin

China

The Hong Kong Standards and Testing Centre Limited

Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited. For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.

Page 3 of 67

Date : 2017-10-17 No. : HM170990 Page 4 of 67

1.7 Antenna Details

Antenna Type (Bluetooth): Antenna Gain (Bluetooth): Circuit board printed meander line antenna 0.0dBi

1.8 Channel List

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	42	2444
1	2403	43	2445
2	2404	44	2446
3	2405	45	2447
4	2406	46	2448
5	2407	47	2449
6	2408	48	2450
7	2409	•••	
8	2410	67	2469
9	2411	68	2470
		69	2471
33	2435	70	2472
34	2436	71	2473
35	2437	72	2474
36	2438	73	2475
37	2439	74	2476
38	2440	75	2477
39	2441	76	2478
40	2442	77	2479
41	2443	78	2480

Date : 2017-10-17

No. : HM170990

2.0 <u>Technical Details</u>

2.1 Investigations Requested

Perform Electromagnetic Interference measurements in accordance with FCC 47CFR [Codes of Federal Regulations] Part 15: 2016 Regulations. ANSI C63.10:2013 for FCC Certification.

2.2 Test Standards and Results Summary Tables

EMISSION (BLUETOOTH) Results Summary						
Test Condition Test Requirement Test Method Class / Test Result			lt			
			Severity	Pass	Fail	N/A
Maximum Peak Conducted Output Power	FCC 47CFR 15.247(b)(1)	ANSI C63.10:2013	N/A	\boxtimes		
Radiated Spurious Emissions	FCC 47CFR 15.209	ANSI C63.10:2013	N/A	\boxtimes		
AC Mains Conducted Emissions	FCC 47CFR 15.207	ANSI C63.10:2013	N/A			\boxtimes
Number of Hopping Frequency	FCC 47CFR 15.247 (b)(1)	ANSI C63.10:2013	N/A	\boxtimes		
20dB Bandwidth	FCC 47CFR 15.247(a)(2)	ANSI C63.10: 2013	N/A	\boxtimes		
Hopping Channel Separation	FCC 47CFR 15.247(a)(1)	ANSI C63.10: 2013	N/A	\boxtimes		
Band-edge measurement (Radiated)	FCC 47CFR 15.247(d)	ANSI C63.10: 2013	N/A	\boxtimes		
Pseudorandom Hopping Algorithm	FCC 47CFR 15.247(a)(1)	N/A	N/A	\boxtimes		
Time of Occupancy (Dwell Time)	FCC 47CFR 15.247(a)(1)(iii)	ANSI C63.10: 2013	N/A	\boxtimes		
Antenna requirement	FCC 47CFR 15.203	N/A	N/A	\boxtimes		
RF Exposure	FCC 47CFR 15.247(i)	N/A	N/A			\square

Note: N/A - Not Applicable

The Hong Kong Standards and Testing Centre Limited

Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited. For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.

Page 5 of 67

Page 6 of 67

Date : 2017-10-17 : HM170990 No.

2.3 Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate in the table below is the worst case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items		
Maximum Peak Conducted Output Power	GFSK / π/4-DQPSK/ 8DPSK	
Hopping Channel Separation	GFSK / π/4-DQPSK/ 8DPSK	
Number of Hopping Frequency	GFSK / π/4-DQPSK/ 8DPSK	
Time of Occupancy(Dwell Time)	8DPSK (DH1 / DH3 / DH5)	
Radiated Spurious Emissions	GFSK / π/4-DQPSK/ 8DPSK	

Date : 2017-10-17

No. : HM170990

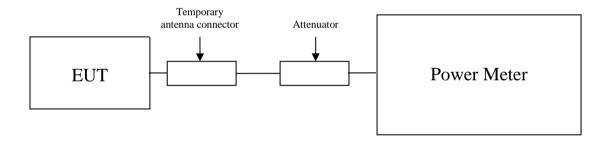
3.0 Test Results

3.1 Emission

3.1.1 Maximum Peak Conducted Output Power

 Test Requirement:
 FCC 47CFR 15.247(b)(2)

 Test Method:
 ANSI C63.10:2013


 Test Date:
 2017-10-17

 Mode of Operation:
 Tx mode :GFSK/π/4-DQPSK/ 8DPSK

Test Method:

The RF output of the EUT was connected to the Power Meter. All the attenuation or cable loss will be added to the measured maximum output power. The results are recorded in dBm.

Test Setup:

The Hong Kong Standards and Testing Centre Limited Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited. For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.

Page 7 of 67

Date : 2017-10-17 No. : HM170990 Page 8 of 67

Limits for Maximum Peak Conducted Output Power [FCC 47CFR 15.247]:

2400-2483.5 MHz band:

The maximum peak output power shall not exceeded the following limits: For frequency hopping systems employing at least 75 hopping channels: 1 Watt For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 Watts For Digital Transmission systems in 2400-2483.5 MHz Band: 1 Watt

Results of Bluetooth Communication mode (GFSK) (Fundamental Power): Pass Maximum conducted output power

Channel	Frequency(MHz)	Output Power(Watt)
0	2402	0.00031
39	2441	0.00027
78	2480	0.00034

Results of Bluetooth Communication mode (π /4-DQPSK) (Fundamental Power): Pass Maximum conducted output power

Channel	Frequency(MHz)	Output Power(Watt)
0	2402	0.00021
39	2441	0.00019
78	2480	0.00024

Results of Bluetooth Communication mode (8DPSK) (Fundamental Power): Pass Maximum conducted output power			
Channel	Frequency(MHz)	Output Power(Watt)	
0	2402	0.00023	
39	2441	0.00021	
78	2480	0.00024	
	: 30MHz to 1GHz	1.7dB	
alculated measurement uncertainty	1GHz to 18GHz	1 7dB	

Calculated measurement uncertainty

1.7dB 1GHz to 18GHz

Remark:

1. All test data for each data rate were verified, but only the worst case was reported.

2. The EUT is programmed to transmit signals continuously for all testing.

The Hong Kong Standards and Testing Centre Limited

Date : 2017-10-17 No. : HM170990

Page 9 of 67

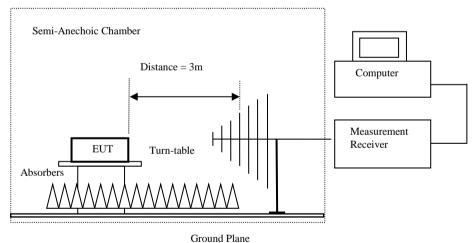
3.1.2 Radiated Spurious Emissions

Test Requirement:	FCC 47CFR 15.209
Test Method:	ANSI C63.10:2013
Test Date:	2017-10-17
Mode of Operation:	Tx mode :GFSK/π/4-DQPSK/8DPSK

Test Method:

For emission measurements at or below 1 GHz, the sample was placed 0.8m above the ground plane of semianechoic Chamber*. For emission measurements above 1 GHz, the sample was placed 1.5m above the ground plane of semi-anechoic Chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

* Semi-anechoic chamber located on the G/F of "The Hong Kong Standards and Testing Centre Ltd." with a metal ground plane filed with the FCC pursuant to section 2.948 of the FCC rules, with Registration Number: 607756.



Date : 2017-10-17 No. : HM170990 Page 10 of 67

Spectrum Analyzer Setting:

9KHz – 30MHz (Pk & Av)	RBW: VBW: Sweep: Span: Trace:	10kHz 30kHz Auto Fully capture the emissions being measured Max. hold
30MHz – 1GHz (QP)	RBW: VBW: Sweep: Span: Trace:	120kHz 120kHz Auto Fully capture the emissions being measured Max. hold
Above 1GHz (Pk & Av)	RBW: VBW: Sweep: Span: Trace:	1MHz 3MHz Auto Fully capture the emissions being measured Max. hold

Test Setup:

- Absorbers placed on top of the ground plane are for measurements above 1000MHz only.

- Measurements between 30MHz to 1000MHz made with Bi-log antennas, above 1000MHz horn antennas are used, 9kHz to 30MHz loop antennas are used.

Date : 2017-10-17 No. : HM170990 Page 11 of 67

Limits for Radiated Emissions [FCC 47 CFR 15.209 Class B]:

Frequency Range	Quasi-Peak Limits
[MHz]	$[\mu V/m]$
0.009-0.490	2400/F (kHz)
0.490-1.705	24000/F (kHz)
1.705-30	30
30-88	100
88-216	150
216-960	200
Above960	500

The emission limits shown in the above table are based on measurement employing a CISPR quasi-peak detector and above 1000MHz are based on measurements employing an average detector.

Date : 2017-10-17 No. : HM170990 Page 12 of 67

Result of Tx mode (GFSK: 2402.0 MHz) (9kHz – 30MHz): Pass

Field Strength of Spurious Emissions							
Peak Value							
Frequency	Measured	Correction	Field	Field	Limit	E-Field	
	Level	Factor	Strength	Strength		Polarity	
MHz	dBuV	dB/m	dBuV/m	uV/m	uV/m		
	Emissions	detected are r	nore than 20	dB below the	FCC Limits		

Result of Tx mode (GFSK: 2402.0 MHz) (30MHz - 1GHz): Pass

	Field Strength of Spurious Emissions								
Quasi-Peak Value									
Frequency	Measured	Correction	Field	Field	Limit	E-Field			
	Level	Factor	Strength	Strength		Polarity			
MHz	dBuV	dB/m	dBuV/m	uV/m	uV/m				
	Emissions	detected are r	nore than 20	dB below the	FCC Limits				

Result of Tx mode (GFSK: 2402.0 MHz) (Above 1GHz): Pass

	Field Strength of Spurious Emissions								
Peak Value									
Frequency	Measured	Correction	Field	Limit	Margin	E-Field			
	Level @3m	Factor	Strength	@3m		Polarity			
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB				
4804.0	7.1	42.4	49.5	74.0	24.5	Vertical			
7206.0	2.9	46.7	49.6	74.0	24.4	Vertical			
9608.0	2.7	48.4	51.1	74.0	22.9	Vertical			
12010.0	1.9	53.1	55.0	74.0	19.0	Vertical			

Result of Tx mode (GFSK: 2402.0 MHz) (Above 1GHz): Pass

Field Strength of Spurious Emissions Average Value							
Frequency	Measured	Correction	Field	Limit	Margin	E-Field	
	Level @3m	Factor	Strength	@3m		Polarity	
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		
4804.0	-6.7	42.4	35.7	54.0	18.3	Vertical	
7206.0	-10.9	46.7	35.8	54.0	18.2	Vertical	
9608.0	-11.9	48.4	36.5	54.0	17.5	Vertical	
12010.0	-12.5	53.1	40.6	54.0	13.4	Vertical	

The Hong Kong Standards and Testing Centre Limited

Date : 2017-10-17 No. : HM170990 Page 13 of 67

Result of Tx mode (GFSK: 2441.0 MHz) (9kHz - 30MHz): Pass

	Field Strength of Spurious Emissions								
Peak Value									
Frequency	Measured	Correction	Field	Field	Limit	E-Field			
	Level	Factor	Strength	Strength		Polarity			
MHz	dBuV	dB/m	dBuV/m	uV/m	uV/m				
	Emissions	detected are r	nore than 20	dB below the	FCC Limits				

Results of Tx mode (GFSK: 2441.0 MHz) (30MHz - 1000MHz): PASS

	Field Strength of Spurious Emissions							
Quasi-Peak Value								
Frequency	Measured	Correction	Field	Field	Limit	E-Field		
	Level	Factor	Strength	Strength		Polarity		
MHz	dBuV	dB/m	dBuV/m	uV/m	uV/m			
	Emissions detected are more than 20 dB below the FCC Limits							

Result of Tx mode (GFSK: 2441.0 MHz) (Above 1GHz): Pass

	Field Strength of Spurious Emissions								
	Peak Value								
Frequency	Measured	Correction	Field	Limit	Margin	E-Field			
	Level @3m	Factor	Strength	@3m		Polarity			
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB				
4882.0	6.4	42.5	48.9	74.0	25.1	Vertical			
7323.0	2.9	47.1	50.0	74.0	24.0	Vertical			
9764.0	2.1	49.3	51.4	74.0	22.6	Vertical			
12205.0	1.4	53.1	54.5	74.0	19.5	Vertical			

Result of Tx mode (GFSK: 2441.0 MHz) (Above 1GHz): Pass

Field Strength of Spurious Emissions Average Value							
Frequency	Measured	Correction	Field	Limit	Margin	E-Field	
	Level @3m	Factor	Strength	@3m		Polarity	
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		
4882.0	-6.9	42.5	35.6	54.0	18.4	Vertical	
7323.0	-10.9	47.1	36.2	54.0	17.8	Vertical	
9764.0	-11.3	49.3	38.0	54.0	16.0	Vertical	
12205.0	-12.4	53.1	40.7	54.0	13.3	Vertical	

The Hong Kong Standards and Testing Centre Limited

Date : 2017-10-17 No. : HM170990 Page 14 of 67

Result of Tx mode (GFSK: 2480.0 MHz) (9kHz - 30MHz): Pass

	Field Strength of Spurious Emissions							
Peak Value								
Frequency	Measured	Correction	Field	Field	Limit	E-Field		
	Level	Factor	Strength	Strength		Polarity		
MHz	dBuV	dB/m	dBuV/m	uV/m	uV/m			
	Emissions detected are more than 20 dB below the FCC Limits							

Results of Tx mode (GFSK: 2480.0 MHz) (30MHz - 1000MHz): PASS

	Field Strength of Spurious Emissions							
Quasi-Peak Value								
Frequency	Measured	Correction	Field	Field	Limit	E-Field		
	Level	Factor	Strength	Strength		Polarity		
MHz	dBuV	dB/m	dBuV/m	uV/m	uV/m			
Emissions detected are more than 20 dB below the FCC Limits								

Result of Tx mode (GFSK: 2480.0 MHz) (Above 1GHz): Pass

	Field Strength of Spurious Emissions Peak Value							
Frequency	Measured	Correction	Field	Limit	Margin	E-Field		
	Level @3m	Factor	Strength	@3m		Polarity		
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB			
4960.0	6.9	43.2	50.1	74.0	23.9	Vertical		
7440.0	2.9	46.2	49.1	74.0	24.9	Vertical		
9920.0	1.9	50.9	52.8	74.0	21.2	Vertical		
12400.0	1.7	54.3	56.0	74.0	18.0	Vertical		

Result of Tx mode (GFSK: 2480.0 MHz) (Above 1GHz): Pass

Field Strength of Spurious Emissions Average Value							
Frequency	Measured	Correction	Field	Limit	Margin	E-Field	
	Level @3m	Factor	Strength	@3m		Polarity	
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		
4944.0	-8.4	43.2	34.8	54.0	19.2	Vertical	
7416.0	-10.9	46.2	35.3	54.0	18.7	Vertical	
9888.0	-11.8	50.9	39.1	54.0	14.9	Vertical	
12360.0	-12.3	54.3	42.0	54.0	12.0	Vertical	

The Hong Kong Standards and Testing Centre Limited

Date : 2017-10-17 No. : HM170990 Page 15 of 67

Result of Tx mode (π/4-DQPSK: 2402.0 MHz) (9kHz – 30MHz): Pass

Field Strength of Spurious Emissions								
Peak Value								
Frequency	Measured	Correction	Field	Field	Limit	E-Field		
	Level	Factor	Strength	Strength		Polarity		
MHz	dBuV	dB/m	dBuV/m	uV/m	uV/m			
	Emissions detected are more than 20 dB below the FCC Limits							

Result of Tx mode (π/4-DQPSK: 2402.0 MHz) (30MHz – 1GHz): Pass

	Field Strength of Spurious Emissions								
Quasi-Peak Value									
Frequency	Measured	Correction	Field	Field	Limit	E-Field			
	Level	Factor	Strength	Strength		Polarity			
MHz	dBuV	dB/m	dBuV/m	uV/m	uV/m				
	Emissions	detected are r	nore than 20	dB below the	FCC Limits				

Result of Tx mode (*π*/4-DQPSK: 2402.0 MHz) (Above 1GHz): Pass

	Field Strength of Spurious Emissions								
Peak Value									
Frequency	Measured	Correction	Field	Limit	Margin	E-Field			
	Level @3m	Factor	Strength	@3m		Polarity			
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB				
4804.0	6.7	42.4	49.1	74.0	24.9	Vertical			
7206.0	2.9	46.7	49.6	74.0	24.4	Vertical			
9608.0	1.9	48.4	50.3	74.0	23.7	Vertical			
12010.0	1.3	53.1	54.4	74.0	19.6	Vertical			

Result of Tx mode (*π*/4-DQPSK: 2402.0 MHz) (Above 1GHz): Pass

Field Strength of Spurious Emissions Average Value							
Frequency	Measured	Correction	Field	Limit	Margin	E-Field	
	Level @3m	Factor	Strength	@3m		Polarity	
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		
4804.0	-6.9	42.4	35.5	54.0	18.5	Vertical	
7206.0	-11.7	46.7	35.0	54.0	19.0	Vertical	
9608.0	-12.1	48.4	36.3	54.0	17.7	Vertical	
12010.0	-12.6	53.1	40.5	54.0	13.5	Vertical	

The Hong Kong Standards and Testing Centre Limited

Date : 2017-10-17 No. : HM170990 Page 16 of 67

Result of Tx mode (π/4-DQPSK: 2441.0 MHz) (9kHz – 30MHz): Pass

	Field Strength of Spurious Emissions							
Peak Value								
Frequency	Measured	Correction	Field	Field	Limit	E-Field		
	Level	Factor	Strength	Strength		Polarity		
MHz	dBuV	dB/m	dBuV/m	uV/m	uV/m			
	Emissions	detected are r	nore than 20	dB below the	FCC Limits			

Results of Tx mode (π/4-DQPSK: 2441.0 MHz) (30MHz – 1000MHz): PASS

	Field Strength of Spurious Emissions								
Quasi-Peak Value									
Frequency	Measured	Correction	Field	Field	Limit	E-Field			
	Level	Factor	Strength	Strength		Polarity			
MHz	dBuV	dB/m	dBuV/m	uV/m	uV/m				
	Emissions detected are more than 20 dB below the FCC Limits								

Result of Tx mode (*π*/4-DQPSK: 2441.0 MHz) (Above 1GHz): Pass

	Field Strength of Spurious Emissions								
			Peak Value						
Frequency	Measured	Correction	Field	Limit	Margin	E-Field			
	Level @3m	Factor	Strength	@3m		Polarity			
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB				
4882.0	6.4	42.5	48.9	74.0	25.1	Vertical			
7323.0	2.9	47.1	50.0	74.0	24.0	Vertical			
9764.0	2.1	49.3	51.4	74.0	22.6	Vertical			
12205.0	1.7	53.1	54.8	74.0	19.2	Vertical			

Result of Tx mode (π/4-DQPSK: 2441.0 MHz) (Above 1GHz): Pass

	Field Strength of Spurious Emissions Average Value							
Frequency	Measured	Correction	Field	Limit	Margin	E-Field		
	Level @3m	Factor	Strength	@3m		Polarity		
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB			
4882.0	-6.9	42.5	35.6	54.0	18.4	Vertical		
7323.0	-9.7	47.1	37.4	54.0	16.6	Vertical		
9764.0	-11.3	49.3	38.0	54.0	16.0	Vertical		
12205.0	-12.7	53.1	40.4	54.0	13.6	Vertical		

The Hong Kong Standards and Testing Centre Limited

Date : 2017-10-17 No. : HM170990 Page 17 of 67

Result of Tx mode (π /4-DQPSK: 2480.0 MHz) (9kHz – 30MHz): Pass

	Field Strength of Spurious Emissions							
Peak Value								
Frequency	Measured	Correction	Field	Field	Limit	E-Field		
	Level	Factor	Strength	Strength		Polarity		
MHz	dBuV	dB/m	dBuV/m	uV/m	uV/m			
	Emissions	detected are r	nore than 20	dB below the	FCC Limits			

Results of Tx mode (π/4-DQPSK: 2480.0 MHz) (30MHz – 1000MHz): PASS

	Field Strength of Spurious Emissions								
Quasi-Peak Value									
Frequency	Measured	Correction	Field	Field	Limit	E-Field			
	Level	Factor	Strength	Strength		Polarity			
MHz	dBuV	dB/m	dBuV/m	uV/m	uV/m				
	Emissions detected are more than 20 dB below the FCC Limits								

Result of Tx mode (*π*/4-DQPSK: 2480.0 MHz) (Above 1GHz): Pass

Field Strength of Spurious Emissions Peak Value							
Frequency	Measured	Correction	Field	Limit	Margin	E-Field	
	Level @3m	Factor	Strength	@3m	-	Polarity	
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		
4960.0	6.7	43.2	49.9	74.0	24.1	Vertical	
7440.0	2.7	46.2	48.9	74.0	25.1	Vertical	
9920.0	1.9	50.9	52.8	74.0	21.2	Vertical	
12400.0	1.5	54.3	55.8	74.0	18.2	Vertical	

Result of Tx mode (*π*/4-DQPSK: 2480.0 MHz) (Above 1GHz): Pass

Field Strength of Spurious Emissions Average Value							
Frequency	Measured	Correction	Field	Limit	Margin	E-Field	
	Level @3m	Factor	Strength	@3m		Polarity	
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		
4960.0	-6.7	43.2	36.5	54.0	17.5	Vertical	
7440.0	-10.3	46.2	35.9	54.0	18.1	Vertical	
9920.0	-10.9	50.9	40.0	54.0	14.0	Vertical	
12400.0	-11.9	54.3	42.4	54.0	11.6	Vertical	

The Hong Kong Standards and Testing Centre Limited

Date : 2017-10-17 No. : HM170990 Page 18 of 67

Result of Tx mode (8DPSK: 2402.0 MHz) (9kHz - 30MHz): Pass

Field Strength of Spurious Emissions								
Peak Value								
Frequency	Measured	Correction	Field	Field	Limit	E-Field		
	Level	Factor	Strength	Strength		Polarity		
MHz	dBuV	dB/m	dBuV/m	uV/m	uV/m			
	Emissions	detected are r	nore than 20	dB below the	FCC Limits			

Result of Tx mode (8DPSK: 2402.0 MHz) (30MHz - 1GHz): Pass

	Field Strength of Spurious Emissions								
Quasi-Peak Value									
Frequency	Measured	Correction	Field	Field	Limit	E-Field			
	Level	Factor	Strength	Strength		Polarity			
MHz	dBuV	dB/m	dBuV/m	uV/m	uV/m				
	Emissions	detected are r	nore than 20	dB below the	FCC Limits				

Result of Tx mode (8DPSK: 2402.0 MHz) (Above 1GHz): Pass

	Field Strength of Spurious Emissions								
Peak Value									
Frequency	Measured	Correction	Field	Limit	Margin	E-Field			
	Level @3m	Factor	Strength	@3m		Polarity			
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB				
4804.0	6.5	42.4	48.9	74.0	25.1	Vertical			
7206.0	2.9	46.7	49.6	74.0	24.4	Vertical			
9608.0	2.3	48.4	50.7	74.0	23.3	Vertical			
12010.0	1.4	53.1	54.5	74.0	19.5	Vertical			

Result of Tx mode (8DPSK: 2402.0 MHz) (Above 1GHz): Pass

Field Strength of Spurious Emissions Average Value							
Frequency	Measured	Correction	Field	Limit	Margin	E-Field	
	Level @3m	Factor	Strength	@3m		Polarity	
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		
4804.0	-7.1	42.4	35.3	54.0	18.7	Vertical	
7206.0	-9.8	46.7	36.9	54.0	17.1	Vertical	
9608.0	-11.9	48.4	36.5	54.0	17.5	Vertical	
12010.0	-12.4	53.1	40.7	54.0	13.3	Vertical	

The Hong Kong Standards and Testing Centre Limited

Date : 2017-10-17 No. : HM170990 Page 19 of 67

Result of Tx mode (8DPSK: 2441.0 MHz) (9kHz - 30MHz): Pass

	Field Strength of Spurious Emissions							
Peak Value								
Frequency	Measured	Correction	Field	Field	Limit	E-Field		
	Level	Factor	Strength	Strength		Polarity		
MHz	dBuV	dB/m	dBuV/m	uV/m	uV/m			
	Emissions	detected are r	nore than 20	dB below the	FCC Limits			

Results of Tx mode (8DPSK: 2441.0 MHz) (30MHz – 1000MHz): PASS

	Field Strength of Spurious Emissions							
Quasi-Peak Value								
Frequency	Measured	Correction	Field	Field	Limit	E-Field		
	Level	Factor	Strength	Strength		Polarity		
MHz	dBuV	dB/m	dBuV/m	uV/m	uV/m			
	Emissions detected are more than 20 dB below the FCC Limits							

Result of Tx mode (8DPSK: 2441.0 MHz) (Above 1GHz): Pass

	Field Strength of Spurious Emissions								
			Peak Value						
Frequency	Measured	Correction	Field	Limit	Margin	E-Field			
	Level @3m	Factor	Strength	@3m		Polarity			
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB				
4882.0	6.5	42.5	49.0	74.0	25.0	Vertical			
7323.0	3.1	47.1	50.2	74.0	23.8	Vertical			
9764.0	2.3	49.3	51.6	74.0	22.4	Vertical			
12205.0	1.7	53.1	54.8	74.0	19.2	Vertical			

Result of Tx mode (8DPSK: 2441.0 MHz) (Above 1GHz): Pass

Field Strength of Spurious Emissions Average Value							
Frequency	Measured	Correction	Field	Limit	Margin	E-Field	
	Level @3m	Factor	Strength	@3m		Polarity	
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		
4882.0	-6.7	42.5	35.8	54.0	18.2	Vertical	
7323.0	-9.9	47.1	37.2	54.0	16.8	Vertical	
9764.0	-11.7	49.3	37.6	54.0	16.4	Vertical	
12205.0	-12.3	53.1	40.8	54.0	13.2	Vertical	

The Hong Kong Standards and Testing Centre Limited

Date : 2017-10-17 No. : HM170990 Page 20 of 67

Result of Tx mode (8DPSK: 2480.0 MHz) (9kHz - 30MHz): Pass

	Field Strength of Spurious Emissions							
Peak Value								
Frequency	Measured	Correction	Field	Field	Limit	E-Field		
	Level	Factor	Strength	Strength		Polarity		
MHz	dBuV	dB/m	dBuV/m	uV/m	uV/m			
	Emissions detected are more than 20 dB below the FCC Limits							

Results of Tx mode (8DPSK: 2480.0 MHz) (30MHz - 1000MHz): PASS

	Field Strength of Spurious Emissions								
Quasi-Peak Value									
Frequency	Measured	Correction	Field	Field	Limit	E-Field			
	Level	Factor	Strength	Strength		Polarity			
MHz	dBuV	dB/m	dBuV/m	uV/m	uV/m				
	Emissions detected are more than 20 dB below the FCC Limits								

Result of Tx mode (8DPSK: 2480.0 MHz) (Above 1GHz): Pass

Field Strength of Spurious Emissions Peak Value							
Frequency	Measured	Correction	Field	Limit	Margin	E-Field	
	Level @3m	Factor	Strength	@3m	_	Polarity	
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		
4960.0	6.7	43.2	49.9	74.0	24.1	Vertical	
7440.0	2.9	46.2	49.1	74.0	24.9	Vertical	
9920.0	2.3	50.9	53.2	74.0	20.8	Vertical	
12400.0	1.1	54.3	55.4	74.0	18.6	Vertical	

Result of Tx mode (8DPSK: 2480.0 MHz) (Above 1GHz): Pass

Field Strength of Spurious Emissions Average Value							
Frequency	Measured	Correction	Field	Limit	Margin	E-Field	
	Level @3m	Factor	Strength	@3m		Polarity	
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		
4960.0	-6.9	43.2	36.3	54.0	17.7	Vertical	
7440.0	-9.9	46.2	36.3	54.0	17.7	Vertical	
9920.0	-11.7	50.9	39.2	54.0	14.8	Vertical	
12400.0	-12.3	54.3	42.0	54.0	12.0	Vertical	

The Hong Kong Standards and Testing Centre Limited

Date : 2017-10-17 No. : HM170990 Page 21 of 67

Limits for Radiated Emissions [FCC 47 CFR 15.209 Class B]:

Frequency Range [MHz]	Quasi-Peak Limits [µV/m]
0.009-0.490	2400/F (kHz)
0.490-1.705	24000/F (kHz)
1.705-30	30
30-88	100
88-216	150
216-960	200
Above960	500

The emission limits shown in the above table are based on measurement employing a CISPR quasi-peak detector and above 1000MHz are based on measurements employing an average detector.

Result of TX mode, (9kHz - 30MHz): PASS

Emissions detected are more than 20 dB below the FCC Limits

Result of TX mode, (30MHz - 1GHz): PASS

	Field Strength of Fundamental and Harmonics Emissions					
		Qu	asi-Peak Va	lue		
Frequency	Measured	Correction	Field	Field	Limit @3m	E-Field
	Level @3m	Factor	Strength	Strength		Polarity
MHz	dBµV/m	dBµV/m	dBµV/m	$\mu V/m$	$\mu V/m$	
63.2	6.5	10.0	16.5	6.7	100	Vertical
75.4	9.7	7.2	16.9	7.0	150	Vertical
119.7	6.3	8.7	15.0	5.6	150	Horizontal
177.4	7.1	10.0	17.1	7.2	200	Horizontal
257.3	3.5	13.9	17.4	7.4	200	Horizontal
433.7	6.8	20.0	26.8	21.9	200	Horizontal

Result of TX mode, (1GHz - 26GHz): PASS

Emissions detected are more than 20 dB below the FCC Limits

Remarks:

Denotes restricted band of operation.

Calculated measurement uncertainty:

Measurements were made using a peak detector. Any emission less than 1000MHz and falling within the restricted bands of FCC Rules Part 15 Section 15.205 and the limits of FCC Rules Part 15 Section 15.209 were applied.

Correction Factor included Antenna Factor and Cable Attenuation.

(9kHz - 30MHz): 2.4dB

(30MHz - 18GHz): 5.0dB

(18GHz - 26GHz): 5.24dB

Emissions in the vertical and horizontal polarizations have been investigated and the worst-case test results are recorded in this report.

The Hong Kong Standards and Testing Centre Limited

Page 22 of 67

Date : 2017-10-17 No. : HM170990

3.1.4 Number of Hopping Frequency

Limit of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels

Test Method:

The RF output of the EUT was connected to the spectrum analyzer by a low loss cable.

Spectrum Analyzer Setting:

RBW = 300kHz, $VBW \ge RBW$, Sweep = Auto, Span = the frequency band of operation Detector = Peak, Trace = Max. hold

Test Setup:

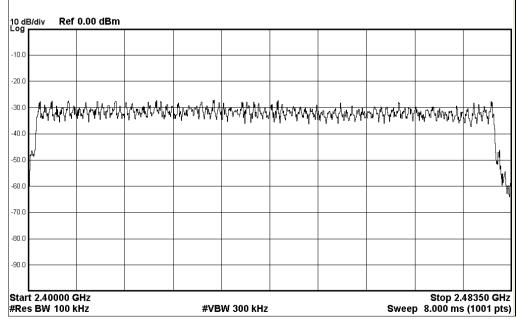
As Test Setup of clause 3.1.1 in this test report.

Measurement Data:

GFSK: 79 of 79 Channel

° ^ª [/div Ref	0.00 dBm						
0.0								
.0								
.0 -								
0			•		1	 		
0	ļ							
0 0								
0			 					
	2.40000 C			W 300 kHz			Stop 2. 8.000 ms	48350 G

The Hong Kong Standards and Testing Centre Limited



Date : 2017-10-17 No. : HM170990

Page 23 of 67

$\pi/4$ -DQPSK: 79 of 79 Channel 10 dB/div Log Ref 0.00 dBm -10.0 -20.0 xilionada.willowallowed water for a farmer and a farmer and a farmer and a farmer and the farmer and the farmer -30.0 -40.0 -50.0 -60.0 -70.0 -80.0 -90.0 Start 2.40000 GHz Stop 2.48350 GHz #Res BW 100 kHz #V/B)A(300 kHz Sweep 8.000 ms (1001 pts)

8DPSK: 79 of 79 Channel

The Hong Kong Standards and Testing Centre Limited

Date : 2017-10-17 No. : HM170990 3.1.5 20dB Bandwidth

Page 24 of 67

Test Requirement:	FCC 47CFR 1
Test Method:	ANSI C63.10:
Test Date:	2017-10-17
Mode of Operation:	Tx mode :GFS

FCC 47CFR 15.247(a)(1) ANSI C63.10:2013 2017-10-17 Tx mode :GFSK/π/4-DQPSK/8DPSK

Remark:

The result has been done on all the possible configurations for searching the worst cases.

Test Method:

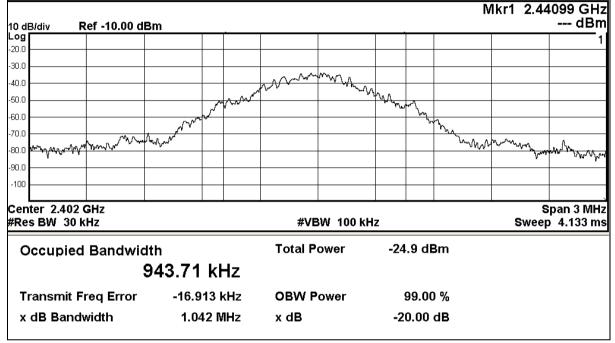
The bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.

Spectrum Analyzer Setting:

RBW = 30kHz, $VBW \ge RBW$, Sweep = Auto, Span = two times and five times the OBW Detector = Peak, Trace = Max. hold

Test Setup:

As Test Setup of clause 3.1.1 in this test report.

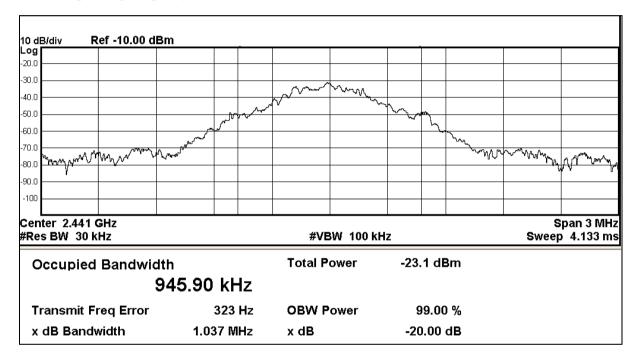


Page 25 of 67

Date : 2017-10-17 No. : HM170990

Fundamental Frequency	20dB Bandwidth	FCC Limits
[MHz]	[MHz]	[MHz]
2402	1.04	Within 2400-2483.5

(Lowest Operating Frequency) - (GFSK)

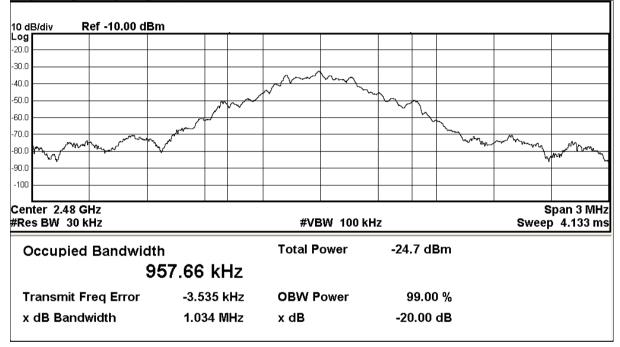


Page 26 of 67

No. : HM170990		
Fundamental Frequency	20dB Bandwidth	FCC Limits
[MHz]	[MHz]	[MHz]
2441	1.04	Within 2400-2483.5

(Middle Operating Frequency) - (GFSK)

Date : 2017-10-17



Page 27 of 67

Date : 2017-10-17 No. : HM170990

Fundamental Frequency	20dB Bandwidth	FCC Limits
[MHz]	[KHz]	[MHz]
2480	1.03	Within 2400-2483.5

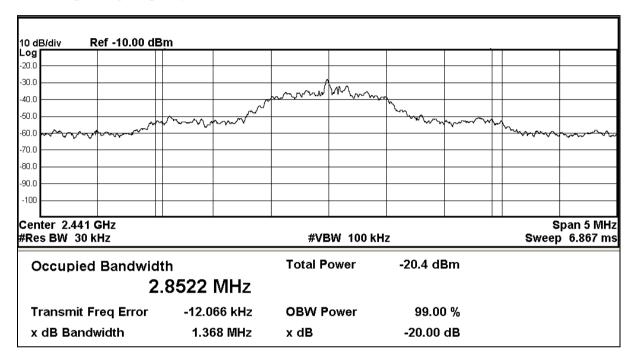
(Highest Operating Frequency) - (GFSK)

Page 28 of 67

Date : 2017-10-17 No. : HM170990

Fundamental Frequency	20dB Bandwidth	FCC Limits
[MHz]	[MHz]	[MHz]
2402	1.37	Within 2400-2483.5

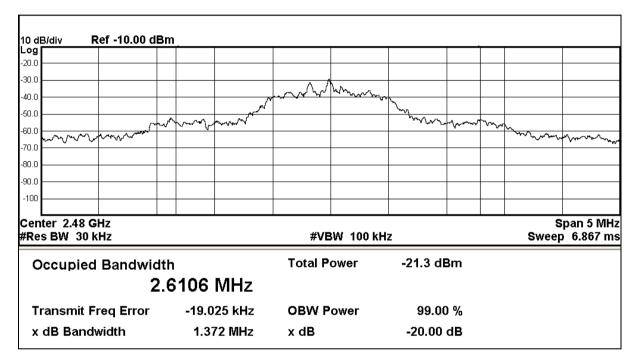
(Lowest Operating Frequency) - ($\pi/4$ DQPSK) Mkr1 2.44099 GHz ---- dBm Ref -10.00 dBm 10 dB/div Log -20.0 -30.0 what when -40.0 -50.0 L -60.0 -70.0 -80.0 -90.0 -100 Center 2.402 GHz Span 5 MHz #Res BW 30 kHz #VBW 100 kHz Sweep 6.867 ms **Total Power Occupied Bandwidth** -25.0 dBm 2.7351 MHz **Transmit Freq Error** -21.494 kHz **OBW Power** 99.00 % x dB Bandwidth 1.366 MHz x dB -20.00 dB



Page 29 of 67

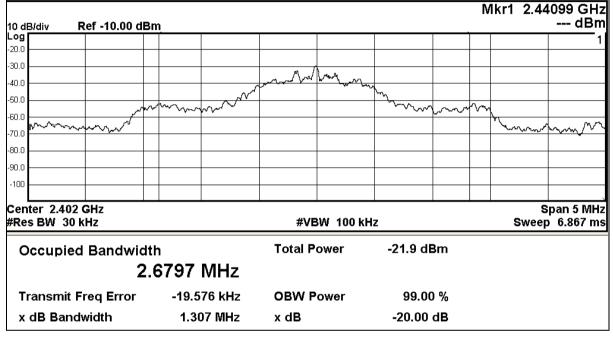
No.	: HM170990		
	Fundamental Frequency	20dB Bandwidth	FCC Limits
	[MHz]	[MHz]	[MHz]
	2441	1.37	Within 2400-2483.5

(Middle Operating Frequency) - ($\pi/4$ DQPSK)


Date : 2017-10-17

Date : 2017-10-17		Page 30 of 67
No. : HM170990		
Fundamental Frequency [MHz]	20dB Bandwidth [MHz]	FCC Limits [MHz]
2480	1.37	Within 2400-2483.5

(Highest Operating Frequency) - ($\pi/4$ DQPSK)

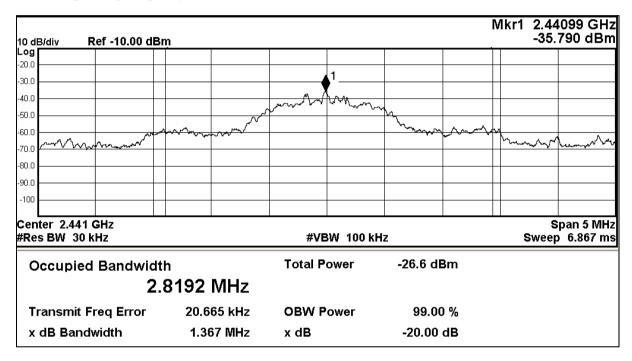


Page 31 of 67

Date : 2017-10-17 No. : HM170990

Fundamental Frequency	20dB Bandwidth	FCC Limits
[MHz]	[MHz]	[MHz]
2402	1.31	Within 2400-2483.5

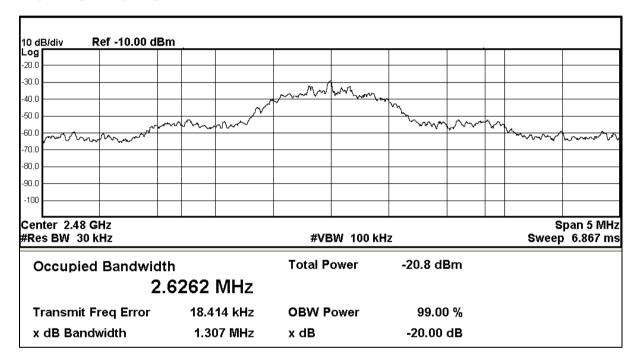
(Lowest Operating Frequency) - (8DPSK)



Page 32 of 67

Date : 2017-10-17 No. : HM170990

Fundamental Frequency	20dB Bandwidth	FCC Limits
[MHz]	[MHz]	[MHz]
2441	1.37	Within 2400-2483.5


(Middle Operating Frequency) - (8DPSK)

Date : 2017-10-17		Page 33 of 67
No. : HM170990		
Fundamental Frequency [MHz]	20dB Bandwidth [MHz]	FCC Limits [MHz]
2480	1.31	Within 2400-2483.5

(Highest Operating Frequency) - (8DPSK)

Date : 2017-10-17 No. : HM170990

Page 34 of 67

3.1.6 Hopping Channel Separation

Requirements:

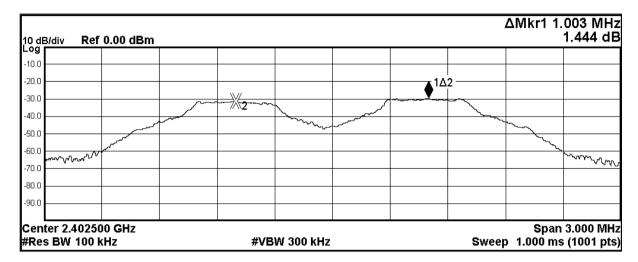
Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Spectrum Analyzer Setting:

RBW = 300kHz, $VBW \ge RBW$, Sweep = Auto, Span = Wide enough to captur the peaks of two adjacent channels Detector = Peak, Trace = Max. hold

Limit:

GFSK: The measured maximum bandwidth* 2/3 =1.04MHz * 2/3 = 693.3kHz


 $\pi/4$ DQPSK: The measured maximum bandwidth * 2/3 = 1.37MHz * 2/3 = 913.3kHz

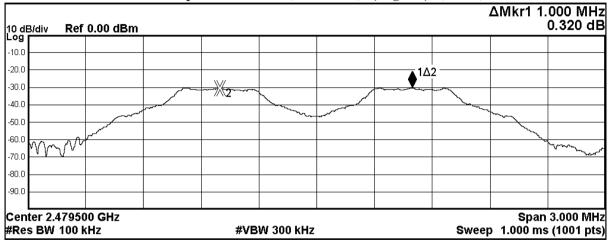
8DPSK: The measured maximum bandwidth * 2/3 = 1.37MHz * 2/3 = 913.3kHz

Date : 2017-10-17 No. : HM170990 Page 35 of 67

Channel separation = 1MHz (>2/3 of BW) (Lowest) (GFSK)

0 dB/div	Ref 0.00 dBr	n					L	∆Mkr1 -1.	.009 MH 0.394 d
°g									
0.0									
0.0			<u></u> 1Δ2 −						
80.0									
0.0				have		////2			
0.0	~			کسیر ا	www			fund	
	Same							- Way	
0.0 	m							<u> </u>	www
0.0									1004
0.0									
0.0									
	440500 GHz 100 kHz		#VB	W 300 kHz			Swee		3.000 Mi \$ (1001 pt

Channel separation = 1MHz (>2/3 of BW) (Mid) (GFSK)


The Hong Kong Standards and Testing Centre Limited

Page 36 of 67

Date : 2017-10-17 No. : HM170990

Channel separation = 1MHz (>2/3 of BW) (Highest) (GFSK)

Channel separation = 1MHz (>2/3 of BW) (Lowest) ($\pi/4$ DQPSK)

0 dB/div	Ref 0.00 dBn	ı				1	∆Mkr1 -1.	.003 MF 1.663 d
og 10.0								
10.0			<u></u> 1Δ2 −					
0.0								
0.0				harmon harmon	 - mr Mgr	- non	- Marine Contraction	
0.0								h-mm
0.0								
D.0								
0.0								
	402500 GHz 100 kHz		/#VB	W 300 kHz		Swee	Span 9 1.000 ms	 3.000 M s (1001 p

The Hong Kong Standards and Testing Centre Limited

Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.

Date : 2017-10-17 No. : HM170990 Page 37 of 67

0 dB/div	Ref 0.00 dE		∆Mkr1 1.003 MH: -0.137 dE					
og								
10.0								
20.0					<u></u> 1Δ	2		
30.0				~		~~~		
0.0	_~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- mar MZ m	Jumme		• ``		
	a server and the						~~~~	
50.0								
50.0								
70.0								
30.0								
90.0								
50.0								

Channel separation = 1MHz (>2/3 of BW) (Highest) ($\pi/4$ DQPSK)

)		<u></u> 1Δ2 –						
)					mm #2~			
	 		James	mm	mm 7/2~	and production	-	
							- vor	have

The Hong Kong Standards and Testing Centre Limited

Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.

Page 38 of 67

Date : 2017-10-17 No. : HM170990

Channel separation = 1MHz (>2/3 of BW) (Lowest) (8DPSK)

dB/div	Ref 0.00 dB	m						∆Mkr1 1.	0.625
						1∆	2		
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	h	mon	$\sim$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~	
)	and a second and a second and a second							" Warning	
,	~~								× ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
)									
)									
)									
)									
	02500 GHz 100 kHz			W 300 kHz	1		Sweep		3.000 P

10 dB/div	Ref 0.00 dBm	I						∆Mkr1 1. -	000 MHz 0.569 dE
- <b>og</b> -10.0									
20.0									
30.0						1∆	2		
40.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~7/12~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm	v	$\sim$	m	
50.0									···
~~~~									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
50.0									
70.0									
80.0									
90.0									
enter 2.4 Res BW	440500 GHz 100 kHz		#VB	W 300 kHz			Swee		3.000 MH 6 (1001 pts

Channel separation = 1MHz (>2/3 of BW) (Mid) (8DPSK)

The Hong Kong Standards and Testing Centre Limited

Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.

Date : 2017-10-17 No. : HM170990 Page 39 of 67

Channel separation = 1MHz (>2/3 of BW) (Highest) (8DPSK)

10 dB/div	Ref 0.0	00 dBm						ΔMkr1 1.	.003 MHz 0.016 dE
-10.0									
-20.0				W		●1∆	2		
-30.0			\sim		hammen	 ~~~*~	~~~~~	and the second	
.50.0	سرمر								have a
50.0 60.0	~~~								
70.0									
80.0									
90.0									
-30.0									
	.479500 100 kHz			#VB	W 300 kHz		Swee	Span p 1.000 ms	3.000 MH 6 (1001 pts

Date : 2017-10-17 No. : HM170990 Page 40 of 67

3.1.7 Band-edge Compliance of RF Conducted Emissions Measurement:

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

Page 41 of 67

Date : 2017-10-17 No. : HM170990

Frequency Range [MHz]	Radiated Emission Attenuated below the Fundamental [dB]
2400 – Lowest Fundamental (2402)	37.8

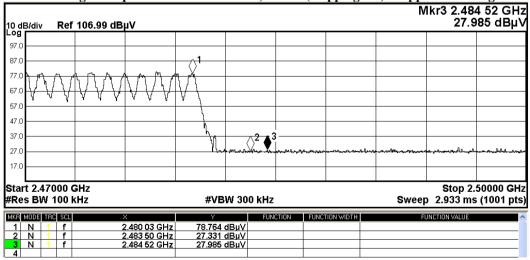
Band-ee	lge Com	pliance of	RF Emi	ssions, G	FSK (I	Hopping	Off) – Low	er Band	Edge
/div Re f	106.99 dE	iμV					N	1kr3 2.39 39.2	8 90 GH: 64 dBµ∖
									_∧1
									X
									- 2
									1 <u>~</u>
	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	++++++++++++++++++++++++++++++++++++++	and the second		and the second	warder and the second second		for manual the	W
			#VB	W 300 kHz	:		Swee		41000 GH (1001 pts
ode tro sol		X	Y		ICTION FL	JNCTION WIDTH	F	UNCTION VALUE	
N 1 f									
	/div Ref	/div Ref 106.99 dB	/div Ref 106.99 dBµV	/div Ref 106.99 dBμV /div Ref 106.99 dBμV	/div Ref 106.99 dBμV //div Ref 106.99 dBμV	/div Ref 106.99 dBμV //div Ref 106.99 dBμV	Vdiv Ref 106.99 dBμV //div Ref 106.99 dBμV	N N I FUNCTION FUNCTION	Image: Stop 2. Image: Stop 2. Image: Stop 2. Image: Stop 2

Frequency Range	Radiated Emission Attenuated below the Fundamental
[MHz]	[dB]
2400 – Lowest Fundamental (2402)	41.0

Band-edge Compliance of RF Emissions, GFSK (Hopping On) - Lower Band Edge

10 dB/div	Ref 10)6.99 dBµ	v							Mkr3 2.3 28	397 03 GH 8.968 dBµ'
- og 97.0											
87.0											1
77.0											
67.0											
											1 1 1 1 1 1 1
57.0											
47.0											1/2
37.0											♦ ³ \{
27.0 		*	warmen from the second	and the second	๚ ๖๖๗๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		ĸ₩ <u>₩</u> ₽₩₽₩₽₩₽₽₽₽₩₽₩₽₽₽₽₽₩₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	***		<u>م آمہ</u> یم آ
17.0											
	t 2.30000 GHz Stop 2.41000 GHz s BW 100 kHz #VBW 300 kHz Sweep 10.53 ms (1001 pts										
IKR MODE 1	IRC SCL	×		Y		FUNCTION	FUNC	ION WIDTH		FUNCTION VAL	UE
1 N 2 N	1 f	2.	401 97 GHz 400 00 GHz	78.094							
2 N 3 N	1 f		397 03 GHz	28.968							

The Hong Kong Standards and Testing Centre Limited


Date : 2017-10-17 No. : HM170990 Page 42 of 67

Frequency Range [MHz]	Radiated Emission Attenuated below the Fundamental [dB]
2483.5 - Highest Fundamental (2480)	51.4

dB/div R	lef 106.99 di	ЗμV						Mkr3 2.48 30.	84 04 GH 133 dBµ\
g									
.0			4						
.0			()						
.0			(
.0			_/ \						
n			$\{ \}$						
-			$\{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$						
.0		_ , ^^	Y WW						
.0		ALV V	· · · · · · · · · · · · · · · · · · ·	Max Do					
0		and the second		""Mm Las	-	**************************************	-		same
.0									
art 2.4700							_		2.50000 GH
es BW 10	O KHZ		#VB	W 300 kHz			Swee	ep 2.933 m	is (1001 pt
MODE TRC :	6CL	×	Y		ICTION	FUNCTION WIDTH		FUNCTION VALUE	
N 1	f	2.480 17 GHz	80.251						
N 1	f	2.483 50 GHz 2.484 04 GHz	28.889 30.133						
			20.100						

Frequency Range	Radiated Emission Attenuated below the Fundamental
[MHz]	[dB]
2483.5 - Highest Fundamental (2480)	51.4

Band-edge Compliance of RF Emissions, GFSK (Hopping On) – Upper Band Edge

Date : 2017-10-17

No. : HM170990

Band-edge Compliance of RF Conducted Emissions Measurement:

Result: RF Radiated Emissions - GFSK

	Field Strength of Band-edge Compliance										
Peak Value											
Frequency	Measured	Correction	Field	Limit	Margin	E-Field					
	Level @3m	Factor	Strength	@3m		Polarity					
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB						
2398.9	14.3	36.8	51.1	74.0	22.9	Vertical					
2397.0	10.3	36.8	47.1	74.0	26.9	Vertical					
2484.0	7.5	36.9	44.4	74.0	29.6	Vertical					
2484.5	6.4	36.9	43.3	74.0	30.7	Vertical					

Field Strength of Band-edge Compliance AverageValue										
Frequency	Measured	Correction	Field	Limit	Margin	E-Field				
	Level @3m	Factor	Strength	@3m		Polarity				
MHz	MHz dBuV dB/m dBuV/m dBuV/m dB									
2398.9	2.3	36.8	39.1	54.0	14.9	Vertical				
2397.0	1.9	36.8	38.7	54.0	15.3	Vertical				
2484.0	0.5	36.9	37.4	54.0	16.6	Vertical				
2484.5	0.1	36.9	37.0	54.0	17.0	Vertical				

The Hong Kong Standards and Testing Centre Limited Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited. For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.

Page 43 of 67

Page 44 of 67

Date : 2017-10-17 No. : HM170990

Frequency Range [MHz]	Radiated Emission Attenuated below the Fundamental [dB]
2400 – Lowest Fundamental (2402)	30.0

10 dE	3/div Ref	106.99 dE	βµV						N	1kr3 2.399 52.4	9 56 GH: 36 dBµ∖
.0g 97.0											
87.0											1
77.0											γ
											Λ
67.0											▲ 3 'n
57.0) <u> </u>
47.0										r N	
37.0										14 ¹	
27.0	معدمونه والألم وروادات		**************************************	^{an} nos and an and an				aller and the		- man www.	
17.0											
	t 2.30000 (s BW 100			#VB	W 300 kHz	2			Sweej	2.4 Stop 10.53 ms	1000 GH (1001 pts
IKR M	IODE TRC SCL		Х	Y		NCTION	FUNCT	ION WIDTH	1	UNCTION VALUE	
	N 1 f N 1 f		2.401 97 GHz 2.400 00 GHz	79.837 49.482							
-	N 1 f		2.399 56 GHz	52.436							

Frequency Range [MHz]	Radiated Emission Attenuated below the Fundamental [dB]
2400 – Lowest Fundamental (2402)	33.6

Dand adap Compliance of DE I	Emissions -// DODSK	(Uanning On) I awar Dand Edd	70
Danu-euge Compnance of Kr 1	L_{1111}	(Hopping On) – Lower Band Edg	20

0 dB/div Ref 106.99) dBµV			~~~~~ ~~		1kr3 2.39 44.2	8 57 GH 72 dBµ
og 97.0							
37.0							
7.0							
7.0							1. Minny
7.0							, <u> </u>
7.0							3 ²
						l l	r~
7.0						المليل والم	
7.0 <mark></mark>	*****		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	₩ <u>₽₽</u> ₩₽₽₩₽₽₽₽₽₽₩₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽		an marandal series	
7.0							
tart 2.30000 GHz Res BW 100 kHz		#VBW 30	0 kHz		Swee	Stop 2. 0 10.53 ms	41000 GI (1001 pi
KR MODE TRC SCL	X	Y	FUNCTION	FUNCTION WIDTH	F	UNCTION VALUE	
1 N 1 f 2 N 1 f	2.401 97 GHz	75.852 dBµV					
2 N 1 F 3 N 1 F	2.400 00 GHz 2.398 57 GHz	46.355 dBµV 44.272 dBµV					
4							

The Hong Kong Standards and Testing Centre Limited

Date : 2017-10-17 No. : HM170990 Page 45 of 67

Frequency Range	Radiated Emission Attenuated below the Fundamental
[MHz]	[dB]
2483.5 - Highest Fundamental (2480)	51.7

0 dB/c	div	Ref	106.99	dBµ∖	ſ			1				1		1		3	7.86′	1 dBµ
97.0																		
37.0							$\overline{0}$											
7.0						-	- Mu											
7.0						_	$ \longrightarrow $											
7.0						m/	- hype											
7.0					~~~~	[]	, y	n /	2									
					م ^{مر} مہ م			w	•									
7.0				and the					- \~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	un,								
هي 7.0	مەركەنتىن	لعمر ومالي	and the start								when	allow the	᠕ᡀᢦᡃᢘᢞᢘ	Levenser		ᡧᠬᢛᠴᠻᡰᡔᢑᠵ	****	-بەحتامايە
7.0						_												
L																		
	2.470													_	_			000 G
Resi	BW 1	100 1	(HZ				#VB	W 300	KHZ					2	weep	2.933	ms (1	1001 p
	DE TRO			×			Y		FUN	CTION	FUNC	FION WID	тн		FU	NCTION VAL	.UE	
<u>1 N</u>		f			79 99 G		76.864						_					
2 N 3 N		F			<u>83 50 G</u> 84 40 G		42.862 37.861						_					-

Frequency Range [MHz]	Radiated Emission Attenuated below the Fundamental [dB]
2483.5 - Highest Fundamental (2480)	46.9

Band-edge Compliance of RF Emissions, π/4 DQPSK (Hopping On) – Upper Band Edge Mkr3 2.484 25 GHz

dB/div Ref 106.9	9 dBµV					36.7	79 dBµ
pg							
7.0							
7.0		1					
7.0		∇					
Mar word Man	Mugarly	WW I					
7.0							
7.0							
7.0		\s/h	^2 o				
		Նոր	$\sqrt{3}$				
7.0							
7.0			What where	Succession and the second	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		and and the second s
7.0							
7.0							
tart 2.47000 GHz Res BW 100 kHz		#VBW 31)0 kHz		Swee	Stop 2. 2.933 ms	50000 G (1001 p
KR MODE TRC SCL	×	Y	FUNCTION	FUNCTION WIDTH	F	JNCTION VALUE	
1 N 1 f	2.479 99 GHz	77.062 dBµV					
2 N 1 f 3 N 1 f	2.483 50 GHz 2.484 25 GHz	<u>39.804 dBµ∨</u> 36.779 dBµ∨		+			
	Z.404 ZO GEZI	30.779 0607					

The Hong Kong Standards and Testing Centre Limited

Date : 2017-10-17

No. : HM170990

Band-edge Compliance of RF Conducted Emissions Measurement:

Result: RF Radiated Emissions $-\pi/4$ DQPSK

	Field Strength of Band-edge Compliance										
Peak Value											
Frequency	Measured	Correction	Field	Limit	Margin	E-Field					
	Level @3m	Factor	Strength	@3m		Polarity					
MHz	MHz dBuV dB/m dBuV/m dBuV/m dB										
2399.6	19.7	36.8	56.5	74.0	17.5	Vertical					
2399.6	18.3	36.8	55.1	74.0	18.9	Vertical					
2484.4	14.7	36.9	51.6	74.0	22.4	Vertical					
2484.3	13.7	36.9	50.6	74.0	23.4	Vertical					

	Field Strength of Band-edge Compliance AverageValue										
Frequency Measured Correction Field Limit Margin E-Field											
	Level @3m	Factor	Strength	@3m		Polarity					
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB						
2399.6	6.4	36.8	43.2	54.0	10.8	Vertical					
2399.6	6.1	36.8	42.9	54.0	11.1	Vertical					
2484.4	4.5	36.9	41.4	54.0	12.6	Vertical					
2484.3	3.7	36.9	40.6	54.0	13.4	Vertical					

The Hong Kong Standards and Testing Centre Limited Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited. For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.

Page 46 of 67

Page 47 of 67

Date : 2017-10-17 No. : HM170990

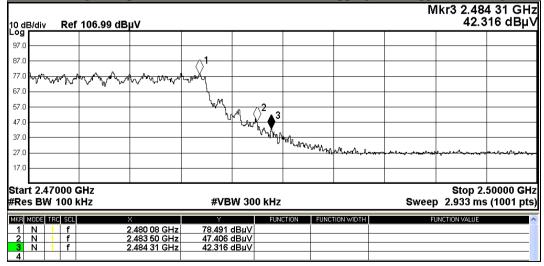
Frequency Range [MHz]	Radiated Emission Attenuated below the Fundamental [dB]
2400 – Lowest Fundamental (2402)	30.2

	3/div Rei	f 106.99 dB	βµV						М	kr3 2.397 43.3	7 46 GH: 01 dBµ\
og											
97.0											. 1
37.0											-
77.0											_Ä
67.0											
57.0											15 M
										▲ 3	8.0T li.
17.0											l M.
7.0											
7.0	ward high shakes	the states and a second	~~~~ ¹ ~~~~	and the second secon	ليورون موجود ومعاولية					All All	
7.0											
	t 2.30000 s BW 100			#VB	W 300 kHz				Sweep	Stop 2.4 10.53 ms	41000 GH (1001 pts
KR N	IODE TRC SCL		x	Y	FUN	CTION	FUNCTI	ON WIDTH	FU	NCTION VALUE	
	N 1 f		2.402 00 GHz	81.002 c							
	N 1 f N 1 f		2.400 00 GHz 2.397 46 GHz	<u>49.141 c</u> 43.301 c							
<u> </u>			2.007 40 0112	-0.001 0							

Frequency Range	Radiated Emission Attenuated below the Fundamental
[MHz]	[dB]
2400 – Lowest Fundamental (2402)	31.9

Band-edge Compliance of RF Emissions, 8DPSK (Hopping On) – Lower Band Edge

10 dB/	/div	Ref	106.99 (dBµV							Μ	kr3 2.39 45.	97 46 GH 791 dBµ
97.0													
													1
87.0													V
77.0					_								Autra
67.0											 		
57.0													2
47.0													,3∦/ ∭//
37.0												Į.	۲ ا
27 0									.		 	l a malt	
27.0 P								******				apage	
17.0													
	2.300 BW 1				#VE	SW 300) kHz				Sweep		.41000 GH s (1001 pt
MKR MO	DDE TRO	SCL		×	Y		FUNC	TION	FUNCTIO	N WIDTH	FU	NCTION VALUE	
	N 1	f		2.402 00 GH	z <u>82.057</u>	dBµV							
	N 1 N 1	f		2.400 00 GH; 2.397 46 GH;									
		1		2.397 46 GH	45.791	ασμν							


Date : 2017-10-17 No. : HM170990 Page 48 of 67

Frequency Range [MHz]	Radiated Emission Attenuate below the Fundamental [dB]
2483.5 - Highest Fundamental (2480)	50.8

0 dB/div Ref 106.9)9 dBµV					М	kr3 2.48 45.3	4 28 GH 304 dBµ`
pg								
7.0								
7.0		1						
7.0		, M						
		/						
7.0		1 m						
7.0			<u>^2</u> 3					
7.0		~~~	`\vX ♥`					
7.0 7.0 Walk water and the mark	a ver		` \v\ \v	~				
- Mar and Mar Mar and	· ·			- Wally July of Jar	MUWAR MARCEL			
7.0					•~••••••••••••••••••••••••••••••••••••	hourse a constant	متر محجم المعصور	travesoure-re-
7.0								
art 2.47000 GHz								50000 GH
Res BW 100 kHz		#VBV	V 300 kHz			Sweep	2.933 ms	; (1001 pt
R MODE TRC SCL	×	Y	FUNC	TION FUNC	TION WIDTH	FUI	NCTION VALUE	
1 N 1 f	2.479 99 GHz	80.697 d						
2 N 1 F 3 N 1 F	2.483 50 GHz 2.484 28 GHz	<u>47.776 d</u> 45.304 d						

Frequency Range	Radiated Emission Attenuated below the Fundamental
[MHz]	[dB]
2483.5 - Highest Fundamental (2480)	46.7

Band-edge Compliance of RF Emissions, 8DPSK (Hopping On) – Upper Band Edge

The Hong Kong Standards and Testing Centre Limited

Date : 2017-10-17

No. : HM170990

Band-edge Compliance of RF Conducted Emissions Measurement:

Result: RF Radiated Emissions – 8DPSK

	Field Strength of Band-edge Compliance									
Peak Value										
Frequency	Frequency Measured Correction Field Limit Margin E-Field									
	Level @3m	Factor	Strength	@3m		Polarity				
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB					
2397.5	17.6	36.8	54.4	74.0	19.6	Vertical				
2397.5	17.3	36.8	54.1	74.0	19.9	Vertical				
2484.3	13.4	36.9	50.3	74.0	23.7	Vertical				
2484.3	13.1	36.9	50.0	74.0	24.0	Vertical				

	Field Strength of Band-edge Compliance AverageValue										
Frequency	Frequency Measured Correction Field Limit Margin E-Field										
	Level @3m	Factor	Strength	@3m		Polarity					
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB						
2353.9	4.3	36.8	41.1	54.0	12.9	Vertical					
2392.6	3.4	36.8	40.2	54.0	13.8	Vertical					
2493.6	2.3	36.9	39.2	54.0	14.8	Vertical					
2488.9	2.1	36.9	39.0	54.0	15.0	Vertical					

The Hong Kong Standards and Testing Centre Limited Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited. For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.

Page 49 of 67

Date : 2017-10-17 No. : HM170990 Page 50 of 67

1

3.1.8 Time of Occupancy (Dwell Time)

Requirements:

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channel employed. No requirements for Digital Transmission System.

Spectrum Analyzer Setting:

RBW = 300kHz, VBW≥RBW, Sweep = A longer sweep time to show two successive hops on a channel, Span = Zero, Detector = Peak, Trace = Max. hold

Dwell Time = Pulse Duration * hop rate / number of channel * observation duration Observed duration: $0.4s \ge 79 = 31.6s$

Measurement Data: Channel Occupied in 8DPSK: 79 of 79 Channel

10 dE Log	3/div Ref	⁷ 0.00 dBm								
-10.0										
-20.0										
-30.0	Mylipph		γ	₽₩₩₽₽₽₽₽	γ	Wowwy	wy, wy why hy hy hy	ՠՠՠՠՠ	hav havid	11444
-40.0 -50.0	N									
-60.0										<u> </u>
-70.0										
-80.0										
-90.0										
	t 2.40000 s BW 100			#VB	W 300 kHz			Sweep	Stop 2. 8.000 ms	48350 GHz (1001 pts)

The Hong Kong Standards and Testing Centre Limited

Date : 2017-10-17 No. : HM170990

Page 51 of 67

DH5 Packet:

DH5 Packet permit maximum 1600/79/6 = 3.37 hops per second in each channel (5 time slots RX, 1 time slot TX). The Dwell time is the time duration of the pulse times $3.37 \times 31.6 = 106.6$ within 31.6 seconds

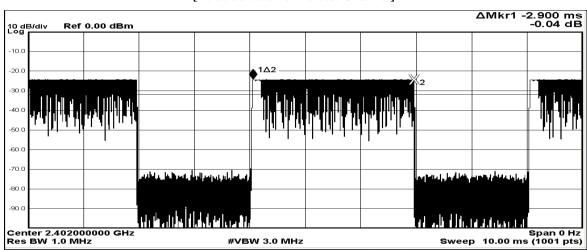
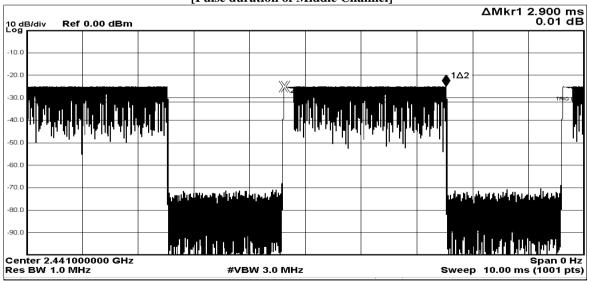



Fig. A [Pulse duration of Lowest Channel]

Fig. B [Pulse duration of Middle Channel]

The Hong Kong Standards and Testing Centre Limited

Date : 2017-10-17 No. : HM170990 Page 52 of 67

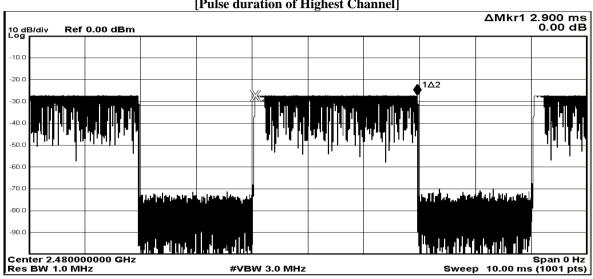


Fig. C [Pulse duration of Highest Channel]

Date : 2017-10-17 No. : HM170990

Page 53 of 67

DH3 Packet:

DH3 Packet permit maximum 1600/79/4 = 5.06 hops per second in each channel (3 time slots RX, 1 time slot TX). The Dwell time is the time duration of the pulse times $5.06 \times 31.6 = 160$ within 31.6 seconds

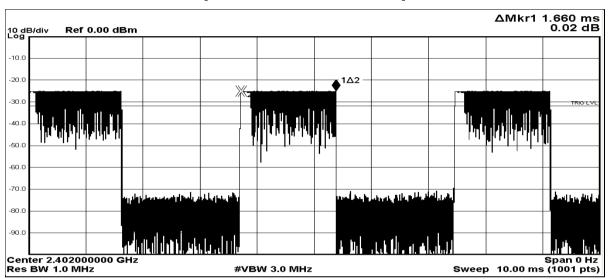
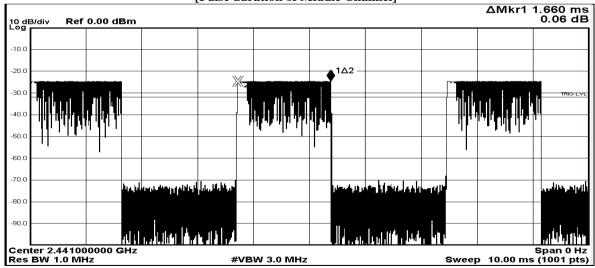
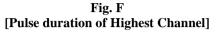
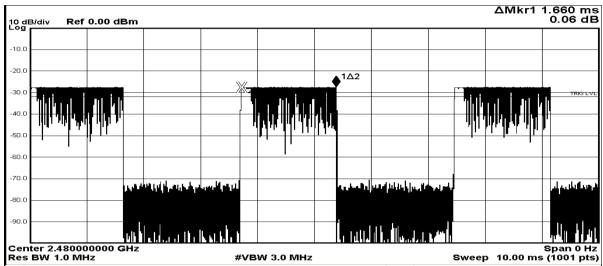



Fig. D [Pulse duration of Lowest Channel]

Fig. E [Pulse duration of Middle Channel]




The Hong Kong Standards and Testing Centre Limited Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.

Date : 2017-10-17 No. : HM170990 Page 54 of 67

Date : 2017-10-17 No. : HM170990

Page 55 of 67

DH1 Packet:

DH1 Packet permit maximum 1600/79/2 = 10.12 hops per second in each channel (3 time slots RX, 1 time slot TX). The Dwell time is the time duration of the pulse times $10.12 \times 31.6 = 320$ within 31.6 seconds

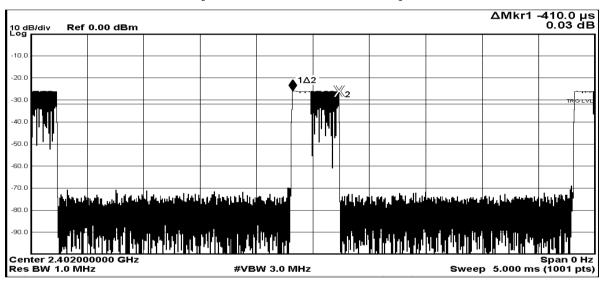
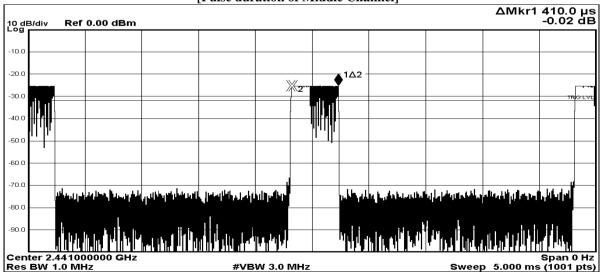
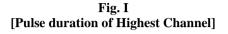
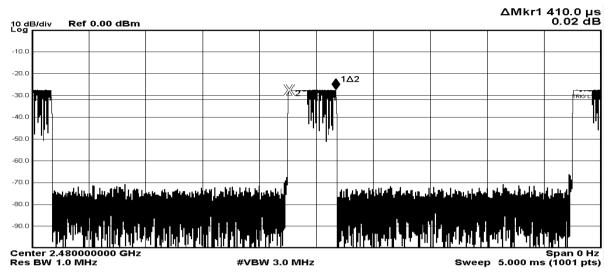



Fig. G [Pulse duration of Lowest Channel]


Fig. H [Pulse duration of Middle Channel]



The Hong Kong Standards and Testing Centre Limited

Date : 2017-10-17 No. : HM170990 Page 56 of 67

Time of occupancy (Dwell Time):

Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time	Limits	Test Results
	· /	· · /	(s)	(s)	_
DH5	2402	2.900	0.309	0.400	Complies
DH5	2441	2.900	0.309	0.400	Complies
DH5	2480	2.900	0.309	0.400	Complies
DH3	2402	1.660	0.266	0.400	Complies
DH3	2441	1.660	0.266	0.400	Complies
DH3	2480	1.660	0.266	0.400	Complies
DH1	2402	0.410	0.131	0.400	Complies
DH1	2441	0.410	0.131	0.400	Complies
DH1	2480	0.410	0.131	0.400	Complies

The Hong Kong Standards and Testing Centre Limited

Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.

Date : 2017-10-17 No. : HM170990 Page 57 of 67

3.1.9 Channel Centre Frequency

Requirements:

Frequency hopping system in the 2400-2483.5MHz band shall use at least 79 (Channel 1 to 79) non-overlapping channels.

The EUT operates in according with the Bluetooth system specification within the 2400 - 2483.5 MHz frequency band.

RF channels for Bluetooth systems are spaced 1 MHz and are ordered in channel number k. In order to comply with out-of-band regulations, a lower frequency guard band of 2.0 MHz and a higher frequency guard band of 3.5MHz is used.

The operating frequencies of each channel are as follows:

First RF channel start from 2400MHz + 2MHz guard band = 2402MHz Frequency of RF Channel = 2402+k MHz, k = 1,...,79 (Channel separation = 1MHz)

Date : 2017-10-17 No. : HM170990 Page 58 of 67

3.1.10 Pseudorandom Hopping Algorithm

Requirements:

The channel frequencies shall be selected from a pseudorandom ordered list of hopping frequencies. Each frequency must be used equally by the transmitter.

EUT Pseudorandom Hopping Algorithm

The EUT is a Bluetooth device, the Pseudo-random hopping pattern; hopping characteristics and algorithm are based on the Bluetooth specification.

Date : 2017-10-17 No. : HM170990

Page 59 of 67

3.1.11 Antenna Requirement

Test Requirements: § 15.203

Test Specification:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Test Results:

This is Circuit printed meander line antenna. There is no external antenna, the antenna gain = 0dBi. User is unable to remove or changed the Antenna.

Date : 2017-10-17 No. : HM170990 3.1.12 RF Exposure

Test Requirement: Test Date: Mode of Operation: FCC 47CFR 15.247(i) 2017-10-17 Tx mode (GFSK)

Test Method:

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines.

Test Results:

N/A, exemption according to KDB 447498, peak power <1mW

The Hong Kong Standards and Testing Centre Limited Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited. For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.

Page 60 of 67

Date : 2017-10-17 No. : HM170990 Page 61 of 67

Appendix A

List of Measurement Equipment

LIST OF MEASUREMENT EQUIPMENT

Radiated Emission

EQP NO.	DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CAL	DUE CAL
EM215	MULTIDEVICE CONTROLLER	EMCO	2090	00024676	N/A	N/A
EM217	ELECTRIC POWERED TURNTABLE	EMCO	2088	00029144	N/A	N/A
EM218	ANECHOIC CHAMBER	ETS-LINDGREN	FACT-3		2017/04/24	2018/04/24
EM356	ANTENNA POSITIONING TOWER	ETS-LINDGREN	2171B	00150346	N/A	N/A
EM354	BICONILOG ANTENNA	ETS-LINDGREN	3143B	00142073	2016/02/29	2018/02/29
EM229	EMI TEST RECEIVER	R&S	ESIB40	100248	2017/06/01	2018/06/01
EM299	DOUBLE-RIDGED WAVEGUIDE HORN ANTENNA	ETS-LINDGREN	3115	00114120	2016/04/27	2018/04/27
EM300	PYRAMIDAL STANDARD GAIN HORN ANTENNA	ETS-LINDGREN	3160-09	00130130	2016/05/13	2018/05/13
EM301	PYRAMIDAL STANDARD GAIN HORN ANTENNA	ETS-LINDGREN	3160-10	00130988	2016/05/13	2018/05/13
EM302	PRECISION OMNIDIRECTIONAL DIPOLE (1 – 6GHZ)	SEIBERSDORF LABORATORIES	POD 16	161806/L	2016/05/11	2018/05/11
EM303	PRECISION OMNIDIRECTIONAL DIPOLE (6 – 18GHZ)	SEIBERSDORF LABORATORIES	POD 618	6181908/L	2016/05/11	2018/05/11
EM318	USB WIDEBAND POWER SENSOR	AGILENT	U2022XA	MY53470001	2017/03/23	2019/03/23
EM353	LOOP ANTENNA	ETS_LINDGREN	6502	00206533	2016/03/16	2018/03/16

Remarks:-

- CM Corrective Maintenance
- N/A Not Applicable or Not Available

TBD To Be Determined

The Hong Kong Standards and Testing Centre Limited

Date : 2017-10-17 No. : HM170990 Page 62 of 67

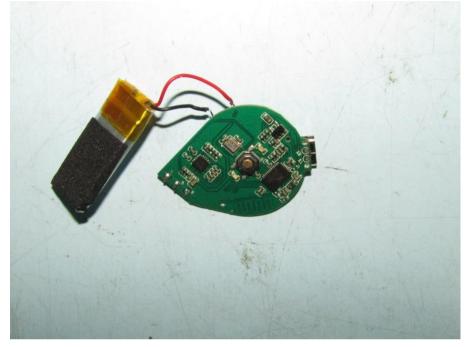
Appendix B

Photographs of EUT Front View of the product

Rear View of the product

Date : 2017-10-17 No. : HM170990 Page 63 of 67

Photographs of EUT


Inner Circuit Top View

Date : 2017-10-17 No. : HM170990 Page 64 of 67

Inner Circuit Bottom View

Date : 2017-10-17 No. : HM170990

Photographs of EUT

Measurement of Radiated Emission Test Set Up

The Hong Kong Standards and Testing Centre Limited Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited. For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.

Page 65 of 67

Date : 2017-10-17 No. : HM170990 Page 66 of 67

Measurement of Radiated Emission Test Set Up

Page 67 of 67

Date : 2017-10-17 No. : HM170990

Photographs of EUT

Measurement of Radiated Emission Test Set Up

***** End of Test Report *****

Conditions of Issuance of Test Reports

- 1. All samples and goods are accepted by The Hong Kong Standards & Testing Centre Limited (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The Company provides its services on the basis that such terms and conditions constitute express agreement between the Company and any person, firm or company requesting its services (the "Clients").
- 2. Any report issued by the Company as a result of this application for testing service (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to his customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.
- 3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.
- 4. The Report refers only to the sample tested and does not apply to the bulk, unless the sampling has been carried out by the Company and is stated as such in the Report.
- 5. In the event of the improper use the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.
- 6. Sample submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.
- 7. The Company will not be liable for or accept responsibility for any loss or damage howsoever arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.
- 8. Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.
- 9. Subject to the variable length of retention time for test data and report stored hereinto as to otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of this test report for a period of three years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after the retention period. Under no circumstances shall we be liable for damages of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.
- 10. Issuance records of the Report are available on the internet at www.stc-group.org. Further enquiry of validity or verification of the Reports should be addressed to the Company.