

TEST REPORT

APPLICANT	: CUSTOM ACCESSORIES INC
PRODUCT NAME	: Bluetooth FM Transmitter & Car charger
MODEL NAME	: 18843(C30S)/BT70/BT719S/BT74
BRAND NAME	: GOXT
FCC ID	: 2ADMQ-18843
STANDARD(S)	: 47 CFR Part 15 Subpart C
TEST DATE	: 2017-09-24 to 2017-11-08
ISSUE DATE	: 2017-11-10

Tested by:

Hang

Su Hang (Test Engineer)

Approved by:

Peng Huarui (Supervisor)

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

DIRECTORY

1. Technical Information4
1.1. Manufacturer and Factory Information4
1.2. Equipment Under Test (EUT) Description4
1.3. Test Standards and Results5
1.4. Environmental Conditions5
2. 47 CFR Part 15C Requirements6
2.1. Antenna requirement
2.2. Number of Hopping Frequency6
2.3. Peak Output Power9
2.4. 20dB Bandwidth 11
2.5. Carried Frequency Separation16
2.6. Time of Occupancy (Dwell time) 19
2.7. Conducted Spurious Emissions 28
2.8. Restricted Frequency Bands
2.9. Conducted Emission 44
2.10. Radiated Emission 46
Annex A Test Uncertainty56
Annex B Testing Laboratory Information57

Change History				
Issue Date Reason for change				
1.0	2017-11-10	First edition		

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

1. Technical Information

Note: Provide by applicant.

1.1. Applicant and Manufacturer Information

Applicant:	CUSTOM ACCESSORIES INC
Applicant Address:	5900 AMI DRIVE RICHMOND IL 60071
Manufacturer:	SAGE HUMAN ELECTRONICS INTERNATIONAL CO., LTD
Manufacturer Address:	401RM, 4th FLR, A Bld, Rongli Industrial Park, Miaoxi Industrial
	Zone, Xinhua Community, Guanlan Town, Longhua New District,
	Shenzhen, China 51800

1.2. Equipment Under Test (EUT) Description

Product Name:	Bluetooth FM Transmitter & Car charger
Serial No:	(N/A, marked #1 by test site)
Hardware Version:	N/A
Software Version:	N/A
Modulation Type:	Bluetooth: FHSS (GFSK(1Mbps), π/4-DQPSK(EDR 2Mbps))
	The frequency range used is 2402MHz – 2480MHz
Operating Frequency Range:	(79 channels, at intervals of 1MHz);
	The frequency block is 2400MHz to 2483.5MHz.
Bluetooth Version:	Bluetooth 2.1+ EDR
Antenna Type:	PCB Antenna
Antenna Gain:	-0.68 dBi

Note 1: The EUT contains Bluetooth Module operating at 2.4GHz ISM band; the frequencies is F(MHz)=2402+1*n (0<=n<=78). The lowest, middle, highest channel numbers of the Bluetooth Module used and tested in this report are separately 0 (2402MHz), 39 (2441MHz) and 78 (2480MHz).

Note 2: The terminal product 18843(C30S) /BT70 /BT719S /BT74 has the same hardware and software, the same Bluetooth module. The main differences are that they have different model number.

Note 3: The EUT connected to the serial port of the computer with a serial communication cable, we use the dedicated software to control the EUT into the test mode, and then use MT8852B base station to control the EUT continuous transmission.

Note 4: For a more detailed description, please refer to Specification or User's Manual supplied by

the applicant and/or manufacturer.

1.3. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C (Bluetooth, 2.4GHz ISM band radiators) for the EUT FCC ID Certification:

	No	Identity	Document Title
ſ	1	47 CFR Part 15 (10-1-15 Edition)	Radio Frequency Devices

Test detailed items/section required by FCC rules and results are as below:

No.	Section in CFR 47	Description	Test Date	Test Engineer	Result
1	15.203	Antenna Requirement	N/A	N/A	PASS
2	15.247(a)	Number of Hopping Frequency	Sep 24, 2017	Tu Ya'nan	PASS
3	15.247(b)	Peak Output Power	Sep 24, 2017	Tu Ya'nan	PASS
4	15.247(a)	20dB Bandwidth	Sep 24, 2017	Tu Ya'nan	PASS
5	15.247(a)	Carrier Frequency Separation	Sep 24, 2017	Tu Ya'nan	PASS
6	15.247(a)	Time of Occupancy (Dwell time)	Sep 24, 2017	Tu Ya'nan	PASS
7	15.247(d)	Conducted Spurious Emission	Sep 24, 2017	Tu Ya'nan	PASS
8	15.247(d)	Restricted Frequency Bands	Nov 08, 2017	Wang Dalong	PASS
9	15.209, 15.247(d)	Radiated Emission	Nov 08, 2017	Wang Dalong	PASS
10	15.207	Conducted Emission	N/A	N/A	N/A Note1

Note 1: Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. **Note 2:** The tests were performed according to the method of measurements prescribed in ANSI C63.10-2013.

1.4. Environmental Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86-106

2. 47 CFR Part 15C Requirements

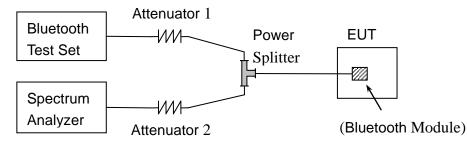
2.1. Antenna requirement

2.1.1. Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1.2. Result: Compliant

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.


2.2. Number of Hopping Frequency

2.2.1. Requirement

According to FCC §15.247(a)(1)(iii), frequency hopping systems operating in the 2400MHz to 2483.5MHz bands shall use at least 15 hopping frequencies.

2.2.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please reference ANNEX A(1.5).

2.2.3. Test Procedure

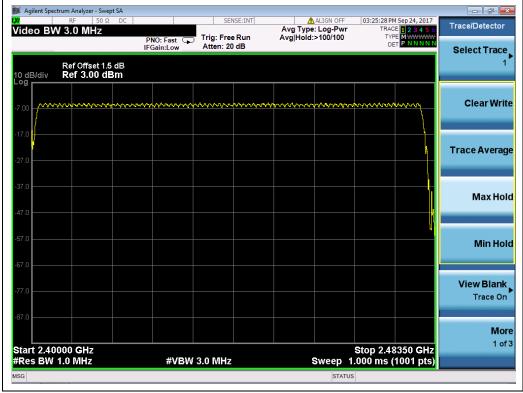
The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW \geq 1% of the span VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize

2.2.4. Test Result

The Bluetooth Module operates at hopping-on test mode; the frequencies number employed is counted to verify the Module's using the number of hopping frequency.

Test Mode	Frequency Block (MHz)	Measured Channel Numbers	I Min. Limit		Verdict
GFSK	2400 - 2483.5	79	15	Plot A	PASS
π/4-DQPSK	2400 - 2483.5	79	15	Plot B	PASS

A. Test Verdict:



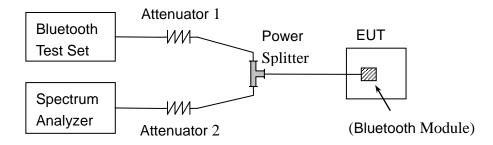
B. Test Plots:

📕 Agilent Spectrum Analyzer - Swept SA Avg Type: Log-Pwr Avg|Hold:>100/100 03:22:11 PM Sep 24, 2017 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N вw Video BW 3.0 MHz Trig: Free Run Atten: 20 dB PNO: Fast IFGain:Low **Res BW** 1.0 MHz Ref Offset 1.5 dB Ref 3.00 dBm Man Auto 0 dB/div Video BW 3.0 MHz Auto <u>Man</u> VBW:3dB RBW 10.0 Man Auto Span:3dB RBW 106 Man <u>Auto</u> **RBW** Control [Gaussian.-3 dB] Start 2.40000 GHz #Res BW 1.0 MHz Stop 2.48350 GHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz STATUS

(Plot A: GFSK)

(Plot B: $\pi/4$ -DQPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


2.3. Peak Output Power

2.3.1. Requirement

According to FCC §15.247(b)(1), for frequency hopping systems that operates in the 2400MHz to 2483.5MHz band employing at least 75 hopping channels, the maximum peak output power of the intentional radiator shall not exceed 1Watt. For all other frequency hopping systems in the 2400MHz to 2483.5MHz band, it is 0.125Watts.

2.3.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please reference ANNEX A(1.5).

2.3.3. Test Result

The Bluetooth Module operates at hopping-off test mode. The lowest, middle and highest channels are selected to perform testing to verify the conducted RF output peak power of the module. The lowest, middle and highest channel were tested by USB Wideband Power Sensor.

2.3.3.1 GFSK Mode

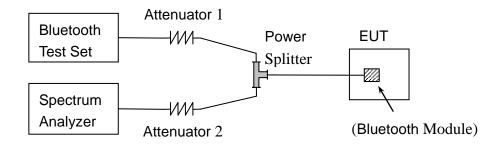
A. Test Verdict:

Channel	Frequency (MHz)	Measured Output Peak Power		Limit		Verdict
		dBm	W	dBm	W	
0	2402	-6.42	0.00023			PASS
39	2441	-6.37	0.00023	30	1	PASS
78	2480	-5.81	0.00026			PASS

2.3.3.2 π /4-DQPSK Mode

B. Test Verdict:

Channel	Frequency (MHz)	Measured Output Peak Power		Limit		Verdict
		dBm	W	dBm	W	
0	2402	-5.78	0.00026			PASS
39	2441	-5.68	0.00027	20.97	0.125	PASS
78	2480	-5.44	0.00029			PASS



2.4.1. Definition

According to FCC 15.247(a)(1), the 20dB bandwidth is known as the 99% emission bandwidth, or 20dB bandwidth (10*log1% = 20dB) taking the total RF output power.

2.4.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

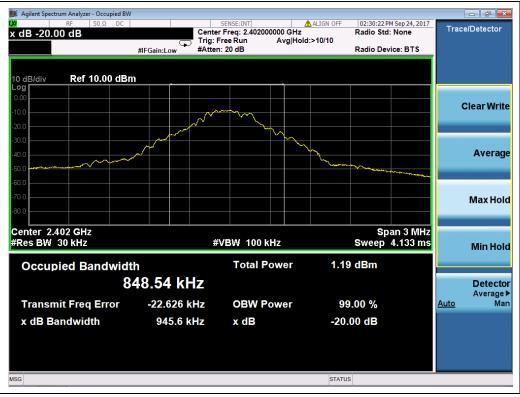
Please reference ANNEX A(1.5).

2.4.3. Test Procedure

Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

2.4.4. Test Result

The Bluetooth Module operates at hopping-off test mode. The lowest, middle and highest channels are selected to perform testing to record the 20dB bandwidth of the Module.

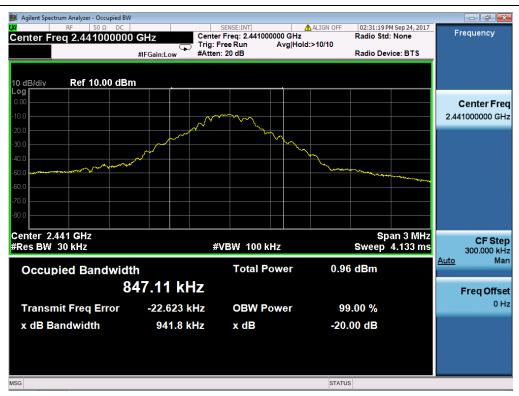

2.4.4.1 GFSK Mode

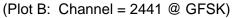
A. Test Verdict:

The maximum 20dB bandwidth measured is 0.9461 MHz according to the table below.

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot
0	2402	0.9456	Plot A
39	2441	0.9418	Plot B
78	2480	0.9461	Plot C

B. Test Plots:




(Plot A: Channel = 2402 @ GFSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Plot C: Channel = 2480 @ GFSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


2.4.4.2 π/4-DQPSK Mode

A. Test Verdict:

The maximum 20dB bandwidth measured is 1.306 MHz according to the table below.

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot
0	2402	1.305	Plot D
39	2441	1.303	Plot E
78	2480	1.306	Plot F

B. Test Plots:

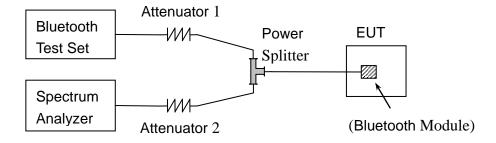

(Plot D: Channel = 2402 @ $\pi/4$ -DQPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Plot F: Channel = 2480 @ $\pi/4$ -DQPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn


2.5. Carried Frequency Separation

2.5.1. Definition

According to FCC §15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

2.5.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please reference ANNEX A(1.5).

2.5.3. Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

Span = wide enough to capture the peaks of two adjacent channels

Resolution (or IF) Bandwidth (RBW) \geq 1% of the span

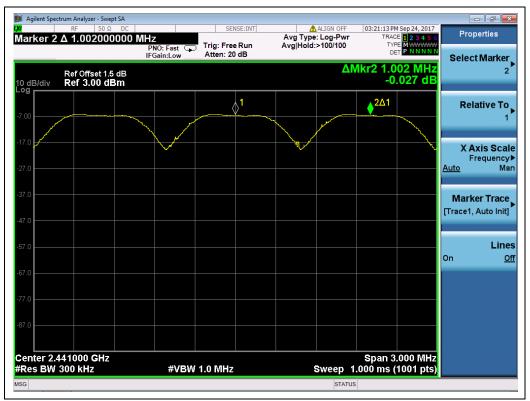
Video (or Average) Bandwidth (VBW) ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.5.4. Test Result

The Bluetooth Module operates at hopping-on test mode. For any adjacent channels (e.g. the channel 39 and 40 as showed in the Plot A), the Module does have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel (refer to section 2.4.4), whichever is greater. So, the verdict is PASSING

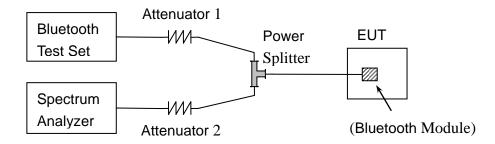
Test Mode	Measured Channel Numbers	Carried Frequency Separation	Refer to Plot	20dB bandwidth (MHz)	Min. Limit	Verdict
GFSK	39 and 40	1.002	Plot A	0.9418	two-thirds of the	PASS
π/4-DQPSK	39 and 40	1.002	Plot B	1.303	20dB bandwidth	PASS

(Plot A: GFSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

arker 2 ∆	RF 50 Ω DC 1.00200000		Trig: Free Run Atten: 20 dB	Avg Type: Log-Pwr Avg Hold:>100/100	03:20:27 PM Sep 24, 2017 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P NNNNN	Trace/Detecto
) dB/div	Ref Offset 1.5 dB Ref 3.00 dBm			ΔΝ	/kr2 1.002 MHz 1.018 dB	
.00	- the second	and and a second se	1	and the second s	2Δ1	Clear Wr
7.0						Trace Avera
7.0						
7.0						Max He
7.0						Min H
7.0						View Blan
7.0						Trace C
7.0						M (
enter 2.44 Res BW 30	1000 GHz 00 kHz	#VB\	V 1.0 MHz	Sweep 1	Span 3.000 MHz .000 ms (1001 pts)	

(Plot B: π/4-DQPSK)


2.6. Time of Occupancy (Dwell time)

2.6.1. Requirement

According to FCC §15.247(a) (1) (iii), frequency hopping systems in the 2400 - 2483.5MHz band shall use at least 15 non-overlapping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

2.6.2. Test Description

A. Test Setup:

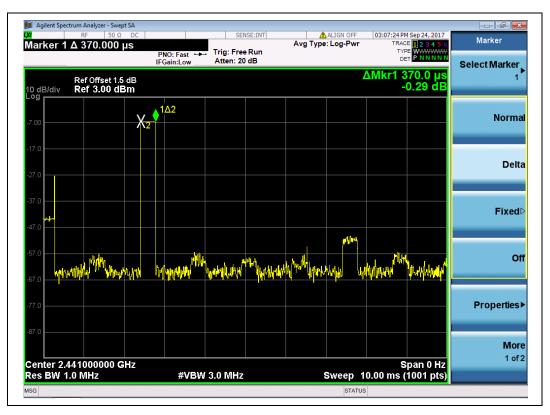
The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please reference ANNEX A(1.5).

2.6.3. Test Procedure

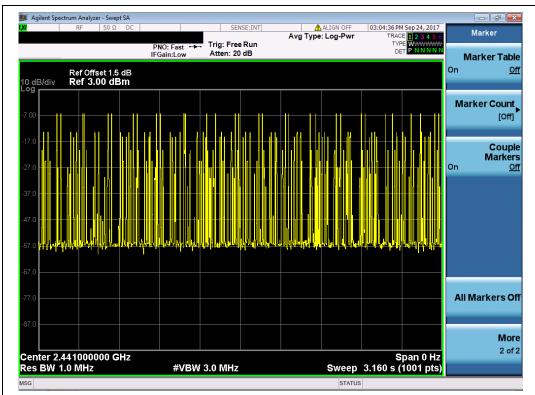
The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence. The average time of occupancy in the specified 31.6 second period (79 channel * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.


2.6.4. Test Result

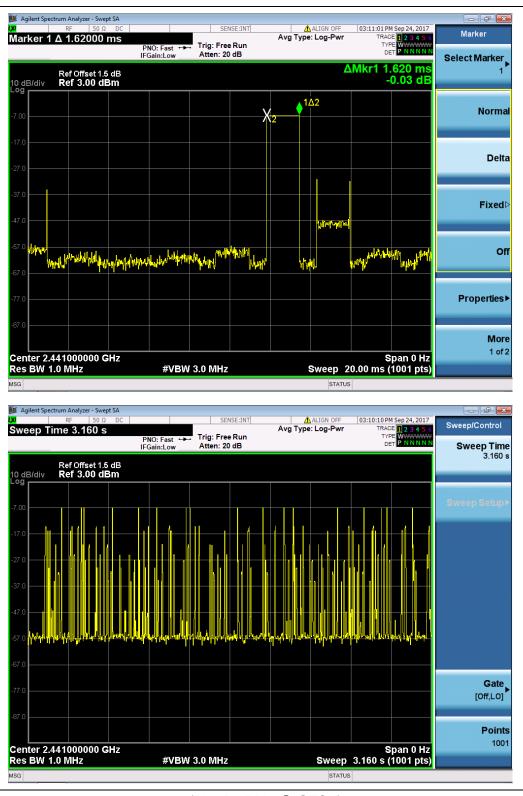
2.6.4.1 GFSK Mode

A. Test Verdict:

DH Packet	Pulse Width (msec)	Number of pulse in 3.16 seconds	Average Time of Occupancy in 3.16 seconds (sec)	Average Time of Occupancy in 31.6 seconds (sec)	Limit (sec)	Verdict
DH1	0.37	32	0.01184	0.1184		PASS
DH3	1.62	17	0.02754	0.2754	0.4	PASS
DH5	2.85	12	0.03420	0.3420		PASS

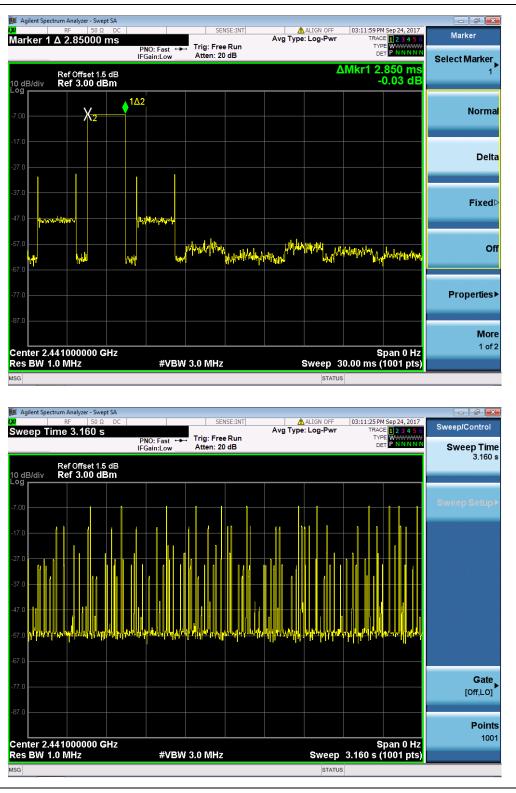

B. Test Plots:

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



(Plot A: DH1 @ GFSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


(Plot B: DH3 @ GFSK)

MORLAB

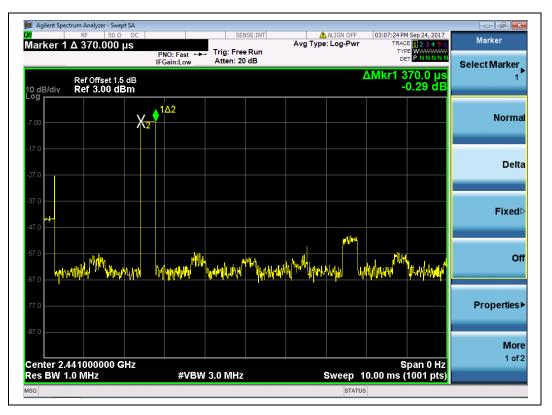
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

(Plot C: DH5 @ GFSK)

MORLAB

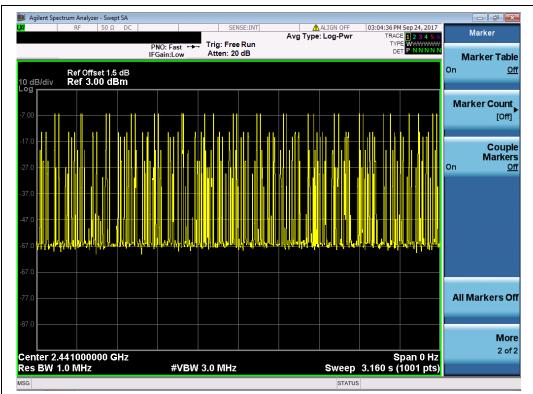
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn



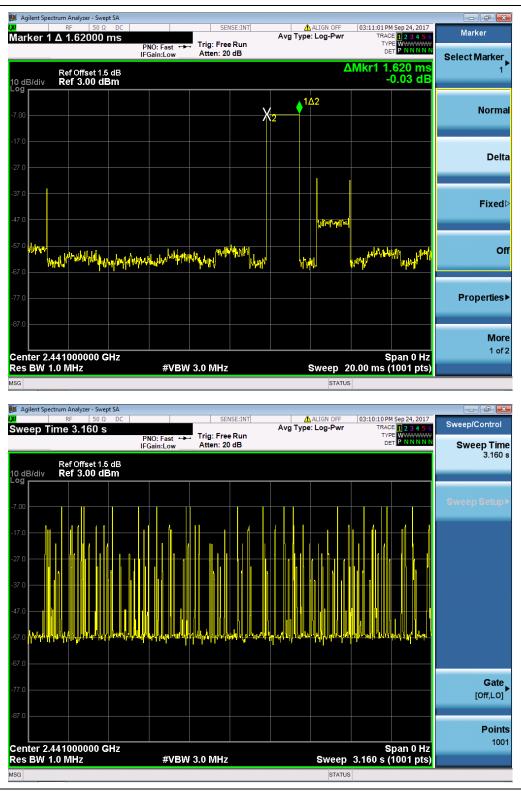
2.6.4.2 $\pi/4$ -DQPSK Mode

A. Test Verdict:

DH Packet	Pulse Width (msec)	Number of pulse in 3.16 seconds	Average Time of Occupancy in 3.16 seconds (sec)	Average Time of Occupancy in 31.6 seconds (sec)	Limit (sec)	Verdict
DH1	0.37	31	0.01147	0.1147		PASS
DH3	1.64	15	0.02460	0.2460	0.4	PASS
DH5	2.85	11	0.03135	0.3135		PASS

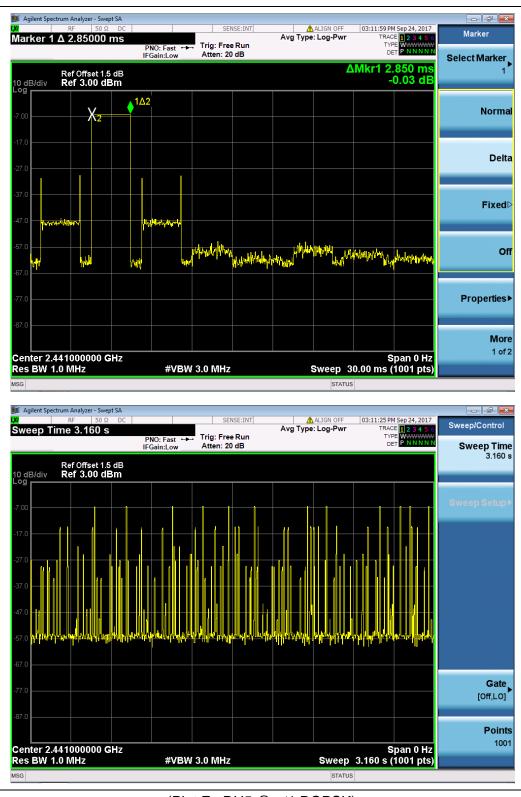

B. Test Plots:

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



(Plot D: DH1 @ π/4-DQPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


(Plot E: DH3 @ n/4-DQPSK)

MORLAB

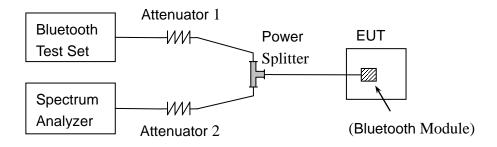
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

(Plot F: DH5 @ π/4-DQPSK)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn


2.7. Conducted Spurious Emissions

2.7.1. Requirement

According to FCC §15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

2.7.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please reference ANNEX A(1.5).

2.7.3. Test Procedure

Use the following spectrum analyzer settings:

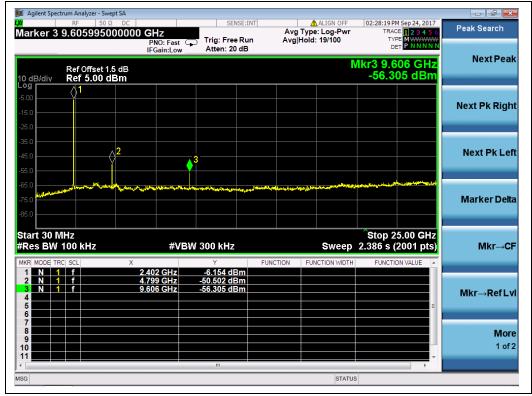
Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.

RBW = 100 kHz VBW ≥ RBW Sweep = auto Detector function = peak

Trace = max hold Allow the trace to stabilize.

2.7.4. Test Result

The Bluetooth Module operates at hopping-off test mode. The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions.


2.7.4.1 GFSK Mode

A. Test Verdict:

	Frequency (MHz)	Measured Max.	Refer to	Limit (dBm)			
Channel		Out of Band	Plot	Carrier Level	Calculated	Verdict	
		Emission (dBm)	FIUL	Camer Lever	-20dBc Limit		
0	2402	-50.50	Plot A	-6.15	-26.15	PASS	
39	2441	-50.85	Plot B	-6.62	-26.62	PASS	
78	2480	-48.62	Plot C	-5.94	-25.94	PASS	

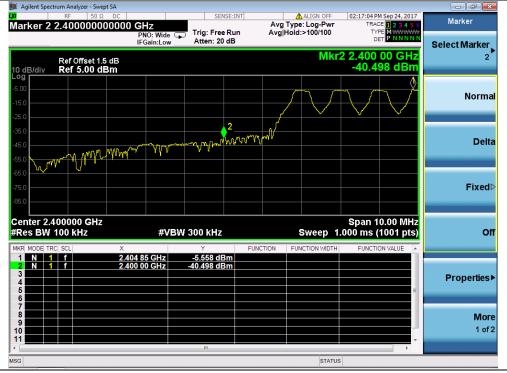
B. Test Plots:

Note: the power of the Module transmitting frequency should be ignored.

(Plot A: Channel = 0, 30MHz to 25GHz @ GFSK Mode)

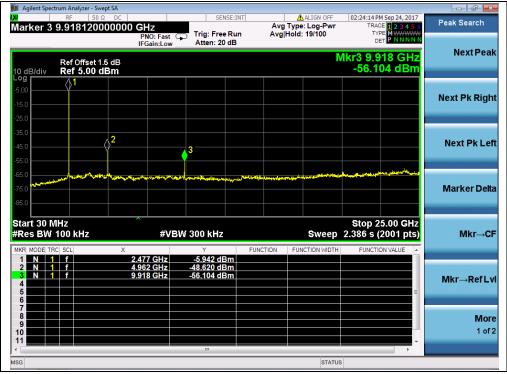

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel:
 86-755-36698555
 Fax


 Http://www.morlab.cn
 E-r

Fax: 86-755-36698525 E-mail: service@morlab.cn

(Channel = 0, Band edge @ GFSK Mode)


(Channel = 0, Band edge with hopping on @ GFSK Mode)

🔰 Agilent Spectrum Analyzer - Swept SA					
₩ RF 50 Ω DC Marker 3 9.755815000000) GHz	Avg Ty	ALIGN OFF	02:26:45 PM Sep 24, 20 TRACE 1 2 3 4	5 6 Trace/Detector
	PNO: Fast Trig: Fre IFGain:Low Atten: 2		d: 12/100	TYPE MWWW DET PNNN	Select Trace
Ref Offset 1.5 dB 10 dB/div Ref 5.00 dBm			Ν	/kr3 9.756 GF -56.745 dB	n 1 [*]
-500 1 -15.0					Clear Write
-25.0 -35.0 -45.0 -55.0	3				Trace Average
-0.0 -65.0 -75.0 -85.0	n jan fran y Marrier y Marrier and Marr	an the second state of the	الدواريون ومعادل المدين ويقوم المراجع ا المراجع المراجع	in the second state of the	Max Hold
Start 30 MHz #Res BW 100 kHz	#VBW 300 kHz		Sweep	Stop 25.00 GF 2.386 s (2001 pt	
1 N 1 f 2 N 1 f	2.440 GHz -6.619 d 4.887 GHz -50.851 d 9.756 GHz -56.745 d	Bm Bm		FUNCTION VALUE	View Blank Trace On
7 8 9 10					More 1 of 3
< [III			•	
MSG			STATUS	\$	

(Plot B: Channel = 39, 30MHz to 25GHz @ GFSK Mode)

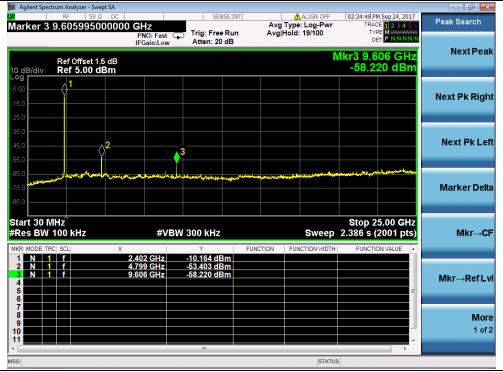
(Plot C: Channel = 78, 30MHz to 25GHz @ GFSK Mode)

🔰 Agilent Spectrum Analyzer - Swept SA								
Marker 2 2.483500000000	GHz	SENSE:INT	ALIGN O Avg Type: Log-P			Marker		
	PNO: Wide 🕟 Trig	g: Free Run ten: 20 dB	Avg Hold:>100/10		wwww	Select Marker		
Ref Offset 1.5 dB 10 dB/div Ref 5.00 dBm								
-5.00 -15.0 -25.0						Normal		
-35.0 -45.0 -55.0		22				Delta		
-65.0		**************************************	mm m m m m m m m m m m m m m m m m m m			Fixed⊳		
Center 2.483500 GHz #Res BW 100 kHz	#VBW 300			Span 10.00 1.000 ms (100	1 pts)	Off		
1 N 1 f 2.47 2 N 1 f 2.48 3 4 5 6	9 86 GHz -5.7	45 dBm 53 dBm				Properties▶		
7 8 9 9 9 10 11		111				More 1 of 2		
MSG			ST	TATUS				

(Channel = 78, Band edge @ GFSK Mode)

(Channel = 78, Band edge with hopping on @ GFSK Mode)

MORLAB

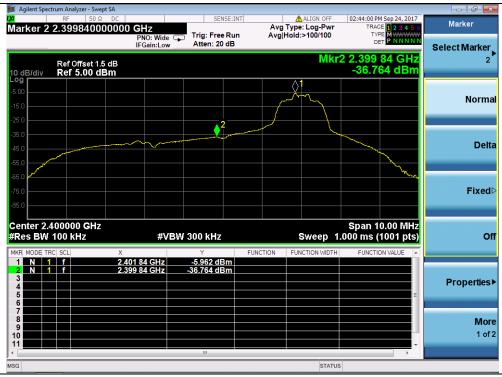

2.7.4.2 π /4-DQPSK Mode

A. Test Verdict:

	Frequency	Fragueney Measured Max.		Refer to	Limit	
Channel		Out of Band		Carrier	Calculated	Verdict
	(MHz)	Emission (dBm)	Plot	Level	-20dBc Limit	
0	2402	-53.40	Plot D	-10.16	-30.16	PASS
39	2441	-54.20	Plot E	-10.27	-30.27	PASS
78	2480	-48.52	Plot F	-10.66	-30.66	PASS

B. Test Plots:

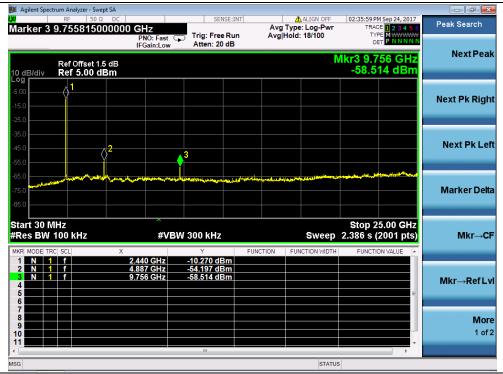
Note: the power of the Module transmitting frequency should be ignored.



(Plot D: Channel = 0, 30MHz to 25GHz @ π /4-DQPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 0, Band edge $@\pi/4$ -DQPSK)

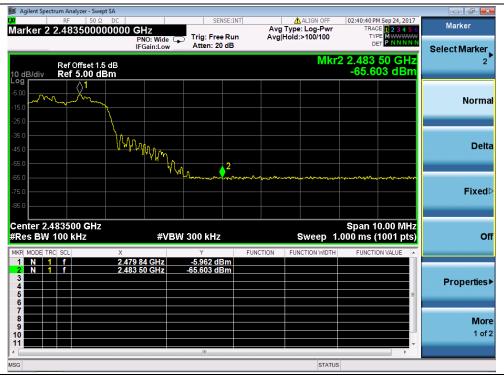


(Channel = 0, Band edge with hopping on $@\pi/4$ -DQPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 E-mail: service@morlab.cn Http://www.morlab.cn

(Plot E: Channel = 39, 30MHz to 25GHz @ $\pi/4$ -DQPSK)

(Plot F: Channel = 78, 30MHz to 25GHz $@\pi/4$ -DQPSK)



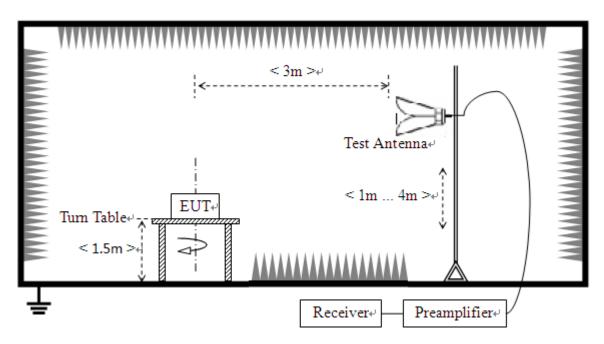
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

🚺 Agilent Spectrum Analyzer - Swept SA				
Marker 2 2.483500000000 G	SENSE:INT	ALIGN OFF Avg Type: Log-Pwr	02:37:44 PM Sep 24, 2017 TRACE 1 2 3 4 5 6	Marker
P	PNO: Wide Trig: Free Run FGain:Low Atten: 20 dB	Avg Hold:>100/100	DET PNNNN	Select Marker
Ref Offset 1.5 dB 10 dB/div Ref 5.00 dBm		Mkr	2 2.483 50 GHz -66.455 dBm	2
Log -5.00 -15.0 -25.0				Normal
-36.0				Delta
-65.0 -75.0 -85.0		Man Martin Martin Martin	and the second s	Fixed⊳
Center 2.483500 GHz #Res BW 100 kHz	#VBW 300 kHz	-	Span 10.00 MHz .000 ms (1001 pts)	Off
MKR MODE TRC SCL X	Y 85 GHz -5.477 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	
2 N 1 f 2.483 3 - - - - 4 - - - - 5 - - - - 6 - - - -	50 GHz66.455 dBm		Ξ	Properties►
7 8 9 10 11				More 1 of 2
MSG		STATUS		

(Channel = 78, Band edge $@\pi/4$ -DQPSK)

(Channel = 78, Band edge with hopping on @ π /4-DQPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


2.8. Restricted Frequency Bands

2.8.1. Requirement

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

2.8.2. Test Description

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the Bluetooth Service Supplier (SS) via a Common Antenna, and is set to operate under non hopping-on test mode transmitting 339 bytes DH5, 679 bytes 2DH5 and 1021 bytes 3DH5 packages at maximum power. For the Test Antenna:

Horn Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

B. Equipments List:

Please reference ANNEX A(1.5).

2.8.3. Test Procedure

Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 KHz for f < 1GHz VBW = 3 MHz for peak and 10Hz for average Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize.

2.8.4. Test Result

The lowest and highest channels are tested to verify Restricted Frequency Bands.

The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; AT = L_{Cable loss} [dB] - G_{preamp} [dB]$

AT: Total correction Factor except Antenna

UR: Receiver Reading

Gpreamp: Preamplifier Gain

AFactor: Antenna Factor at 3m

Note: Restricted Frequency Bands were performed when antenna was at vertical and horizontal polarity, and only the worse test condition (vertical) was recorded in this test report.

2.8.4.1 GFSK Mode

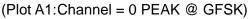
A. Test Verdict:

Channel	Frequency (MHz)	Detector PK/ AV	Receiver Reading U _R	A _T (dB)	A _{Factor} (dB@3m)	Max. Emission E (dBµV/m)	Limit (dBµV/m)	Verdict
			(dBuV)			(ubµv/m)		
0	2365.98	PK	43.73	-33.63	32.56	42.66	74	Pass
0	2367.70	AV	32.54	-33.63	32.56	31.47	54	Pass
78	2485.96	PK	42.72	-33.18	32.50	42.04	74	Pass
78	2486.71	AV	32.39	-33.18	32.50	31.71	54	Pass

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525


Http://www.morlab.cn


E-mail: service@morlab.cn

B. Test Plots:

06:27:53 AM Nov 08, 2017 TRACE 1 2 3 4 5 (TYPE MM DET P P N N N ALI Marker Marker 1 2.365976000000 GHz Avg Type: Voltage Avg|Hold:>100/100 PNO: Fast IFGain:Low Trig: Free Run Atten: 6 dB Select Marker Mkr1 2.365 976 GHz 43.729 dBµV Ref 100.00 dBµV 10 dB/div Log Normal 1 Delta ⊖<mark>2</mark> **Fixed** Start 2.30000 GHz Res BW (CISPR) 1 MHz Stop 2.40400 GHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz Off 2.365 976 GHz 2.390 000 GHz 43.729 dBμV 43.773 dBμV f f **Properties**► More 1 of 2

(Plot A2:Channel = 0 AVERAGE @ GFSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

	Analyzer - Swept SA ESEL 50 Ω DC OMHZ		SENS	Av	ALIGN AUTO g Type: Voltage	06:12:54 AM Nov 0	3456	Trace/Detector
		PNO: Fast IFGain:Low	Trig: Free F Atten: 6 dl		g Hold:>100/100 Mkr2	TYPE MM DET P P	NNNN	Select Trace
dB/div Re	ef 100.00 dBµ\	/			1011112	42.717 dl		
)g 0.0								
0.0								Clear Wr
0.0								
		1	2					Trace Avera
).0	Wonner	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	****	water and the procession	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	All and the Party of Agencies	March 1	
0.0								
).0								Max Ho
art 2.47800 s BW (CISF		#VB	W 3.0 MHz		Sweep 1	Stop 2.50000 .000 ms (1001	GHz pts)	Min Ho
R MODE TRC SC			Y	FUNCTION	FUNCTION WIDTH			
N 1 f N 1 f	2.48	3 500 GHz 5 964 GHz	43.745 dBµ 42.717 dBµ					View Blan
4								Trace O
7 B B B								M
0								1 0
			ш				P.	

(Plot B1: Channel = 78 PEAK @ GFSK)

(Plot B2: Channel = 78 AVERAGE @ GFSK)

2.8.4.2 π/4-DQPSK Mode

A. Test Verdict:

Channel	Channel		Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	
0	2348.40	PK	43.33	-33.63	32.56	42.26	74	Pass
0	2350.34	AV	32.54	-33.63	32.56	31.47	54	Pass
78	2487.70	PK	44.34	-33.18	32.5	43.66	74	Pass
78	2487.00	AV	32.46	-33.18	32.5	31.78	54	Pass

B. Test Plots:

(Plot C1: Channel = 0 PEAK @ $\pi/4$ -DQPSK)

RF PRESEL 5	6000000	PNO: Fast 0	Trig: Free				TRAC	PE M WWWWW	Marker
Ref 100.		FGalli:Low	Atten: 0			Mkr1	2.350 3 32.54	36 GHz 2 dBµV	Select Marker 1
									Norm
							. 2		Del
							<u></u>		Fixed
CISPR) 1 I	MHz	#VB	W 10 Hz			Sweep	Stop 2.4 11.93 s (0400 GHz 1001 pts)	c
f				υV	NCTION	FUNCTION WIDTH	FUNCTI	ON VALUE	Properties
									Mo 1 o
	2.350336 Ref 100. 0000 GHz CISPR) 1 1 Inc Soll f	2.350336000000 C Ref 100.00 dBµV 0000 GHz CISPR) 1 MHz 3C SCL X f 2,350 3	2.350336000000 GHz PN0: Fast (IFGain:Low Ref 100.00 dBµV 0000 GHz CISPR) 1 MHz #VB CISPR) 1 MHz #VB	2.350336000000 GHz PNO: Fast IFGain:Low Ref 100.00 dBµV Ref 100.00 dBµV 0000 GHz CISPR) 1 MHz #VBW 10 Hz #VBW 10 Hz 32.542 dB	2.350336000000 GHz PN0: Fast IFGain:Low Ref 100.00 dBµV 0000 GHz CISPR) 1 MHz #VBW 10 Hz FU SCI X f 2.350 336 GHz 32.542 dBµV	2.350336000000 GHz PN0: Fast IFGain:Low Trig: Free Run Avg Avg A	2.350336000000 GHz PN0: Fast IFGsin:Low Trig: Free Run Atten: 6 dB Avg Type: Voltage AvglHold:>100/100 Mkr1 Ref 100.00 dBµV Mkr1 0000 GHz CISPR) 1 MHz #VBW 10 Hz Sweep xC SCL X Y FUNCTION FUNCTION FUNCTION WIDTH	2.350336000000 GHz PNO: Fast IFGain:Low Ref 100.00 dBµV 32.54 Mkr1 2.350 3 Ref 100.00 dBµV ClSPR) 1 MHz #VBW 10 Hz Sweep 1.1.93 s (ClSPR) 1 MHz 2.350 336 GHz 2.350 GHz 2.350 GHz 2.350 336 GHz 32.54 FUNCTION	2.350336000000 GHz PN0: Fast IFGain:Low Trig: Free Run Atten: 6 dB Avg Type: Voltage AvglHold:>100/100 Trace Type Www.www. orr Mkr1 2.350 336 GHz 32.542 dBµV 336 GHz 32.542 dBµV Ref 100.00 dBµV 0 <td< td=""></td<>

(Plot C2: Channel = 0 AVERAGE @ $\pi/4$ -DQPSK)

(Plot D1: Channel = 78 PEAK @ π/4-DQPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Select Marke	E 1 2 3 4 5 6 E MM	TYF Di	pe: Voltage d:>100/100			Trig: Fre Atten: 6	PNO: Fast FGain:Low		.0099000	rker 2 2.4
	98 GHz 8 dBµV	2.486 9 32.45	Mkr2					dBµV	ef 100.00	IB/div Re
Norr										
De						.2				
Fixe						¢²		^1		
	0000 GHz 1001 pts)	Stop 2.50 2.523 s (Sweep			BW 10 Hz	#V	z		rt 2.47800 BW (CISI
	ON VALUE	FUNCTION	UNCTION WIDTH	CTION	BμV BμV	Y 32.433 dE 32.458 dE	500 GHz 198 GHz			MODE TRC SC N 1 f N 1 f
Propertie	E									
M										

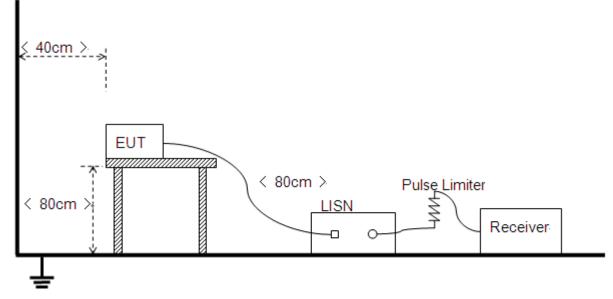
(Plot D2: Channel = 78 AVERAGE @ $\pi/4$ -DQPSK)

2.9. Conducted Emission

2.9.1. Requirement

According to RSS-GEN section 8.8, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50μ H/50 Ω line impedance stabilization network (LISN).

Frequency range	Conducted Limit (dBµV)			
(MHz)	Quai-peak	Average		
0.15 - 0.50	66 to 56	56 to 46		
0.50 - 5	56	46		
5- 30	60	50		


NOTE:

(a) The lower limit shall apply at the band edges.

(b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 - 0.50MHz.

2.9.2. Test Description

A. Test Setup:

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10: 2013.

The factors of the site are calibrated to correct the reading. During the measurement, the Bluetooth

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

EUT is activated and controlled by the Bluetooth Service Supplier (SS) via a Common Antenna, and is set to operate under hopping-on test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please reference ANNEX A(1.5).

2.9.3. Test Result

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

A. Test setup:

N/A

B. Test Plots:

N/A

2.10. Radiated Emission

2.10.1. Requirement

According to FCC section 15.247(d), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

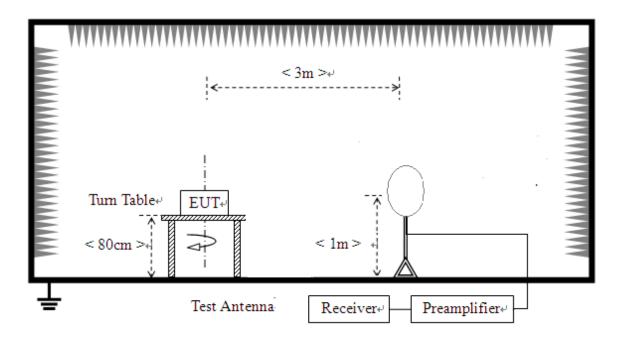
According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

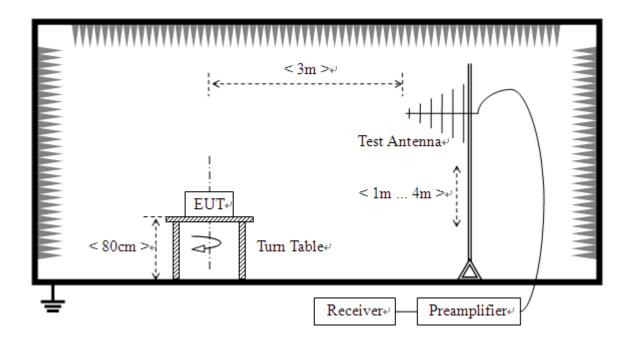
Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Note:

- For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.
- For above 1000MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK)

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table)

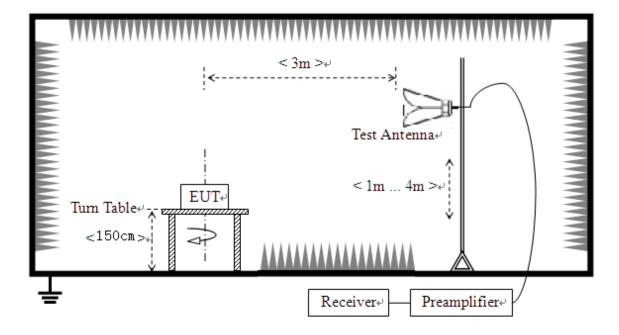



2.10.2. Test Description

A. Test Setup:

1) For radiated emissions from 9kHz to 30MHz

2) For radiated emissions from 30MHz to1GHz



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

3) For radiated emissions above 1GHz

The RF absorbing material used on the reference ground plane and on the turntable have a maximum height (thickness) of 30 cm (12 in) and have a minimum-rated attenuation of 20 dB at all frequencies from 1 GHz to 18 GHz. Test site have a minimum area of the ground plane covered with RF absorbing material as specified in Figure 6 of ANSI C63.4: 2014.

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.10 (2013). For radiated emissions below or equal to 1GHz, the EUT was set-up on insulator 80cm above the Ground Plane, For radiated emissions above 1GHz, The EUT was set-up on insulator 150cm above the Ground Plane. The set-up and test methods were according to ANSI C63.10.

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna:

(a) In the frequency range of 9kHz to 30MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.

(b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Place the test antenna at 3m away from area of the EUT, while keeping the test antenna aimed at the source of emissions at each frequency of significant

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

emissions, with polarization oriented for maximum response. The test antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final test antenna elevation shall be that which maximizes the emissions. The test antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. The emission levels at both horizontal and vertical polarizations should be tested.

B. Equipments List:

Please reference ANNEX A(1.5).

2.10.3. Test Procedure

Use the following spectrum analyzer settings: Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz VBW \ge RBW Sweep = auto Detector function = peak Trace = max hold

2.10.4. Test Result

According to ANSI C63.10, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak limit, it is unnecessary to perform an quasi-peak measurement.

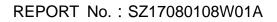
The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$

A_T: Total correction Factor except Antenna

U_R: Receiver Reading

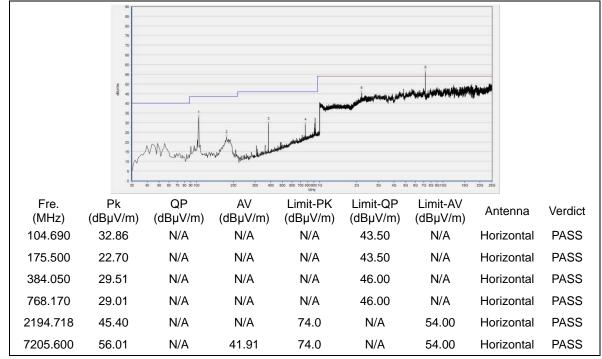
G_{preamp}: Preamplifier Gain

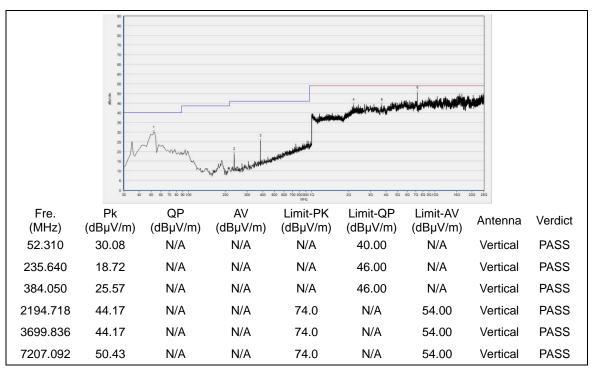

A_{Factor}: Antenna Factor at 3m

During the test, the total correction Factor AT and A_{Factor} were built in test software.

Note: All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

The low frequency, which started from 9KHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

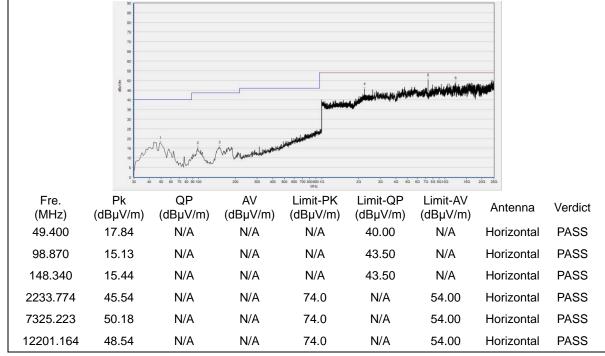



2.10.4.1 GFSK Mode:

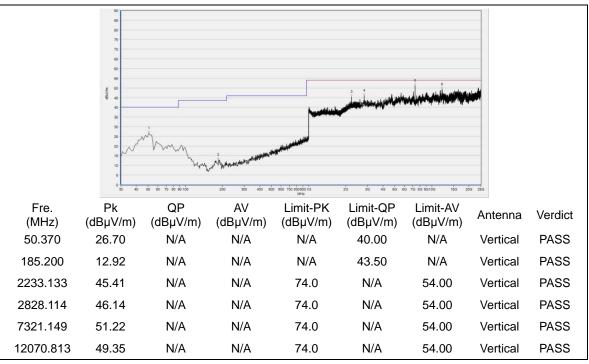
A. Test Plots for the Whole Measurement Frequency Range:

Plots for Channel = 0

(30MHz to 25GHz, Antenna Horizontal @ GFSK, channel 0)

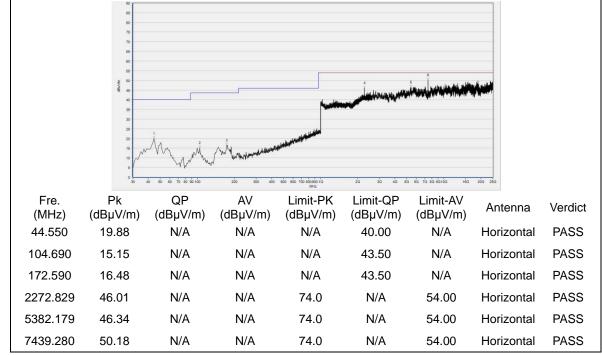

(30MHz to 25GHz, Antenna Vertical @ GFSK, channel 0)

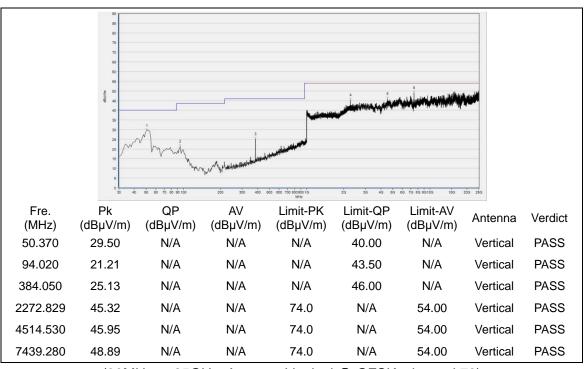
MORLAB


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn Fax: 86-755-36698525 E-mail: service@morlab.cn

Plot for Channel = 39

(30MHz to 25GHz, Antenna Horizontal @ GFSK, channel 39)

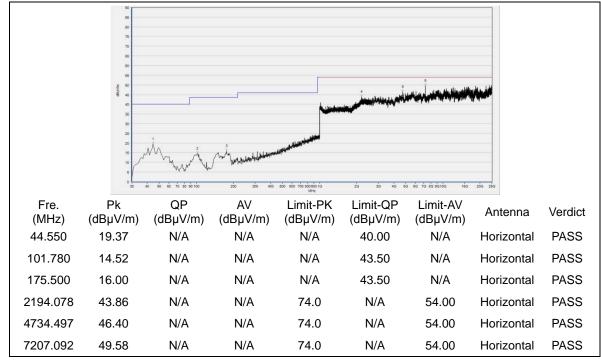

(30MHz to 25GHz, Antenna Vertical @ GFSK, channel 39)

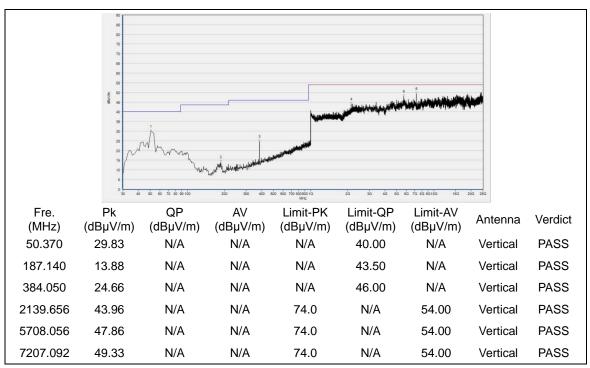

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Plot for Channel = 78

(30MHz to 25GHz, Antenna Horizontal @ GFSK, channel 78)

(30MHz to 25GHz, Antenna Vertical @ GFSK, channel 78)

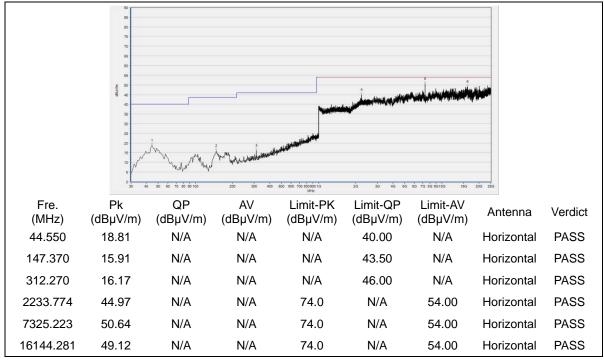

MORLAB


2.10.4.2 π/4-DQPSK Mode:

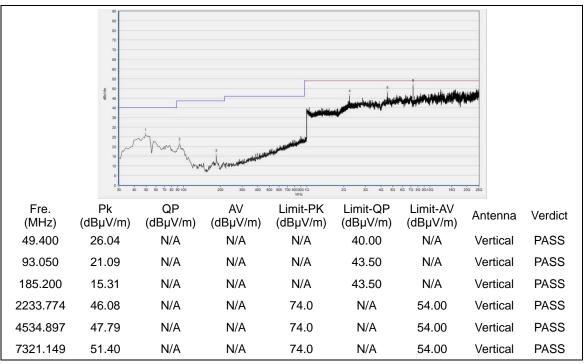
B. Test Plots for the Whole Measurement Frequency Range:

Plots for Channel = 0

(30MHz to 25GHz, Antenna Horizontal @ π/4-DQPSK, channel 0)

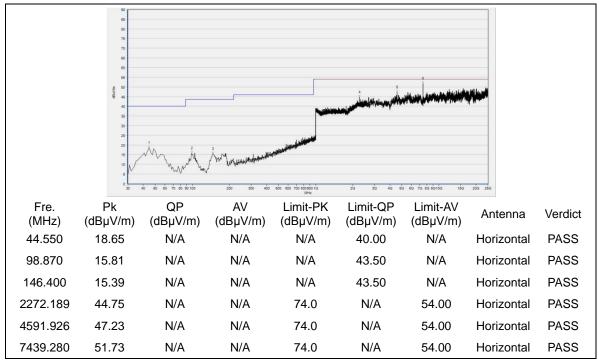

(30MHz to 25GHz, Antenna Vertical @ π/4-DQPSK, channel 0)

MORLAB

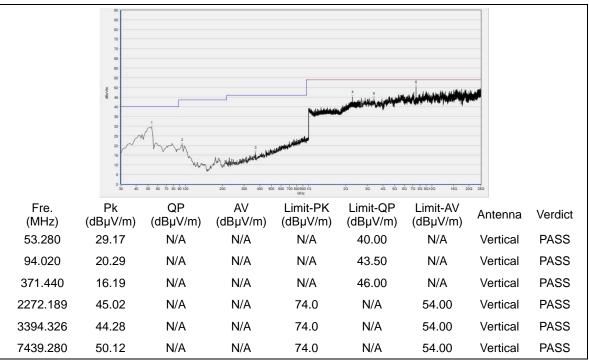

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn Fax: 86-755-36698525 E-mail: service@morlab.cn

Plot for Channel = 39

(30MHz to 25GHz, Antenna Horizontal @ π /4-DQPSK, channel 39)


(30MHz to 25GHz, Antenna Vertical @ π /4-DQPSK, channel 39)

MORLAB


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Plot for Channel = 78

(30MHz to 25GHz, Antenna Horizontal @ π /4-DQPSK, channel 78)

(30MHz to 25GHz, Antenna Vertical @ π /4-DQPSK, channel 78)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Annex A Test Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

Test items	Uncertainty
Number of Hopping Frequency	±5%
Peak Output Power	±2.22dB
20dB Bandwidth	±5%
Carrier Frequency Separation	±5%
Time of Occupancy (Dwell time)	±5%
Conducted Spurious Emission	±2.77 dB
Restricted Frequency Bands	±5%
Radiated Emission	±2.95dB
Conducted Emission	±2.44dB

Annex B Testing Laboratory Information

1. Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.					
Department:	Morlab Laboratory					
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang					
	Road, Block 67, BaoAn District, ShenZhen, GuangDong					
	Province, P. R. China					
Responsible Test Lab	Mr. Su Feng					
Manager:						
Telephone:	+86 755 36698555					
Facsimile:	+86 755 36698525					

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.
Name.	Morlab Laboratory
	FL.3, Building A, FeiYang Science Park, No.8 LongChang
Address:	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China

3. Facilities and Accreditations

Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L3572.

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013 and CISPR Publication 22; the FCC designation number is CN1192.

4. Test Equipments Utilized

4.1 Conducted Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Spectrum Analyzer	MY45101810	E4407B	Agilent	2017.05.24	2018.05.23
Power Splitter	NW521	1506A	Weinschel	2017.05.24	2018.05.23
Attenuator 1	(N/A.)	10dB	Resnet	2017.05.24	2018.05.23
Attenuator 2	(N/A.)	3dB	Resnet	2017.05.24	2018.05.23
EXA Signal Analzyer	MY53470836	N9010A	Agilent	2016.12.07	2017.12.06
Bluetooth Test Set	6K00006210	MT8852B	Anritsu	2017.05.24	2018.05.23
USB Wideband Power Sensor	MY54210011	U2021XA	Agilent	2017.05.24	2018.05.23
RF cable (30MHz-26GHz)	CB01	RF01	Morlab	N/A	N/A
Coaxial cable	CB02	RF02	Morlab	N/A	N/A
SMA connector	CN01	RF03	HUBER-SUHNER	N/A	N/A

4.2 Conducted Emission Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Receiver	US44210471	E7405A	Agilent	2017.05.17	2018.05.16
LISN	812744	NSLK 8127	Schwarzbeck	2017.05.17	2018.05.16
Service Supplier	100448	CMU200	R&S	2017.05.17	2018.05.16
Pulse Limiter	9391	VTSD	Schwarzbeck	2017.05.17	2018.05.16
(20dB)		9561-D	Schwarzbeck	2017.05.17	2018.05.10
Coaxial cable(BNC)	CB01	EMC01	Morlab	N/A	N/A
(30MHz-26GHz)					

4.3Auxiliary Test Equipment

Equipment Name	Model No.	Brand Name	Manufacturer	Cal.Date	Cal.Due Date
Computer	T430i	Think Pad	Lenovo	N/A	N/A

4.4 Radiated Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal.Due Date
System Simulator	GB45360846	8960-E5515C	Agilent	2017.05.17	2018.05.16
Receiver	MY54130016	N9038A	Agilent	2017.05.17	2018.05.16
Test Antenna - Bi-Log	N/A	VULB9163	Schwarzbeck	2016.12.09	2017.12.08
Test Antenna - Horn	9170C-531	BBHA9170	Schwarzbeck	2017.03.30	2018.03.29
Test Antenna - Loop	1519-022	FMZB1519	Schwarzbeck	2017.03.30	2018.03.29
Test Antenna - Horn	71688	BBHA 9120D	Schwarzbeck	2017.03.30	2018.03.29
Coaxial cable (N male) (9KHz-30MHz)	CB04	EMC04	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB02	EMC02	Morlab	N/A	N/A
Coaxial cable(N male) (30MHz-26GHz)	CB03	EMC03	Morlab	N/A	N/A
1-18GHz pre-Amplifier	MA02	TS-PR18	Rohde& Schwarz	2017.05.17	2018.05.16
18-26.5GHz pre-Amplifier	MA03	TS-PR18	Rohde& Schwarz	2017.05.17	2018.05.16
Climate Chamber	2004012	HL4003T	Yinhe	2017.01.11	2018.01.10
Vibration Table	N/A	ACT2000-S01 5L	CMI-COM	2017.01.11	2018.01.10
Anechoic Chamber	N/A	9m*6m*6m	Changning	2017.01.11	2018.01.10

_____ END OF REPORT __
