Test of: Mad Apparel Inc. - Model A100

To: FCC 47 CFR Part 15.247 & IC RSS-210

Test Report Serial No.: ATHO02-U2 Rev A

TEST REPORT

FROM

Test of: Mad Apparel Inc. - Model A100

to

To: FCC 47 CFR Part 15.247 & IC RSS-210

Test Report Serial No.: ATHO02-U2 Rev A

This report supersedes: NONE

Applicant: Live Athos (MAD Apparel Inc.)

201 Arch Street Redwood City

California 94062, USA

Product Function: Bluetooth (BLE) Health Fitness

Device

Copy No: pdf Issue Date: 14th January 2015

This Test Report is Issued Under the Authority of;

MiCOM Labs, Inc.

575 Boulder Court Pleasanton, CA 94566 USA Phone: +1 (925) 462-0304

Fax: +1 (925) 462-0306 www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A Issue Date: 14th January 2015

Page: 3 of 71

This page has been left intentionally blank

Title: Mad Apparel Inc. - Model A100
To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A Issue Date: 14th January 2015

Page: 4 of 71

TABLE OF CONTENTS

AC(CREDITATION, LISTINGS & RECOGNITION	
	TESTING ACCREDITATION	
	RECOGNITION	
	PRODUCT CERTIFICATION	
TES	ST RESULT CERTIFICATE	_
1.	REFERENCES AND MEASUREMENT UNCERTAINTY	10
	1.1. Normative References	10
	1.2. Test and Uncertainty Procedures	
2.	PRODUCT DETAILS AND TEST CONFIGURATIONS	
	2.1. Technical Details	
	2.2. Scope of Test Program	
	Equipment Model(s) and Serial Number(s) 2.4. Antenna Details	
	2.5. Cabling and I/O Ports	
	2.6. Test Configurations	
	2.7. Equipment Modifications	16
	2.8. Deviations from the Test Standard	16
3.	TEST EQUIPMENT CONFIGURATION(S)	17
	3.1. Conducted RF Emission Test Set-up	17
	3.2. Radiated Spurious Emission Test Set-up > 1 GHz	
	3.3. Digital Emissions Test Set-up (0.03 – 1 GHz)	
_	3.4. ac Wireline Emission Test Set-up	
4.	TEST SUMMARY	
5.	TEST RESULTS	
	5.1. Device Characteristics	
	5.1.1. Conducted Testing 5.1.2. Radiated Emission Testing	
	5.1.2. Radiated Emission Testing	
6.	PHOTOGRAPHS	
0.	6.1. Conducted Test Setup	
	6.2. Radiated Test Set-up	
	6.3. Digital Emissions > 1 GHz	
	6.4. Radiated Emissions Test Setup <1 GHz	
	6.5. ac Wireline Test Setup	57
7.	TEST EQUIPMENT	58
APF	PENDIX	59
Α.	SUPPORTING INFORMATION	59
	A.1. CONDUCTED TEST PLOTS	
	A.1.1. 6 dB & 99% Bandwidth	
	A.1.2. Conducted Spurious Emissions	
	A.1.3. Power Spectral Density	68

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A Issue Date: 14th January 2015

Page: 5 of 71

ACCREDITATION, LISTINGS & RECOGNITION

TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. is available following MiCOM Labs test schedule http://www.a2la.org/scopepdf/2381-01.pdf

Accredited Laboratory A2LA has accredited

MICOM LABS

Pleasanton, CA for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Presented this 28th day of February 2014.

President & CEO For the Accreditation Council Certificate Number 2381.01 Valid to November 30, 2015

For the tests or types of tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A **Issue Date**: 14th January 2015

Page: 6 of 71

RECOGNITION

MiCOM Labs, Inc has widely recognized Electrical testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA** countries. Our test reports are widely accepted for global type approvals.

Country	Recognition Body	Status	Phase	Identification No.
USA Federal Communications Commission (FCC)		TCB	-	US0159 Listing #: 102167
Canada Industry Canada (IC)		FCB	APEC MRA 2	US0159 Listing #: 4143A-2
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
	VCCI			A-0012
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

^{**}APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

N/A – Not Applicable

Is a recognition agreement under which test lab is accredited to regulatory standards of the EU member countries.

Is a recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

^{**}EU MRA – European Union Mutual Recognition Agreement.

^{**}NB - Notified Body

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A Issue Date: 14th January 2015

Page: 7 of 71

PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard EN ISO/IEC 17065. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.02. MiCOM available Labs test schedule following http://www.a2la.org/scopepdf/2381-02.pdf

Accredited Product Certification Body A2LA has accredited

MICOM LABS

Pleasanton, CA for technical competence as a

Product Certification Body

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC 17065:2012 -Requirements for bodies certifying products, processes and services. This accreditation demonstrates technical competence for a defined scope and the operation of a quality management system.

Presented this 28th day of February 2014.

President & CEO For the Accreditation Council Certificate Number 2381.02 Valid to November 30, 2015

For the product certification schemes to which this accreditation applies, please refer to the organization's Product Certification Scope of Accreditation

United States of America – Telecommunication Certification Body (TCB)

TCB Identifier - US0159

Industry Canada – Certification Body

CAB Identifier - US0159

Europe – Notified Body

Notified Body Identifier - 2280

Japan - Recognized Certification Body (RCB)

RCB Identifier - 210

Title: Mad Apparel Inc. - Model A100
To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A **Issue Date:** 14th January 2015

Page: 8 of 71

DOCUMENT HISTORY

	Document History				
Revision Date		Comments			
Draft	21st November 2014				
Rev A	14 th January 2015	Initial release			

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A Issue Date: 14th January 2015

Page: 9 of 71

TEST RESULT CERTIFICATE

Manufacturer: Live Athos (MAD Apparel Inc.) Tested By: MiCOM Labs, Inc.

201 Arch Street 575 Boulder Court

Redwood City Pleasanton

California 94062, USA California, 94566, USA

EUT: Bluetooth (BLE) Health Fitness Telephone: +1 925 462 0304

Device

Model(s): A100 Fax: +1 925 462 0306

S/N's: Development

Test Date(s): 18th - 19th November 2014 Website: www.micomlabs.com

STANDARD(S) TEST RESULTS

FCC 47 CFR Part 15.247 & IC RSS-210 EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

TESTING CERT #2381.01

ACCREDITE

Graeme Grieve

Quality Manager MiCOM Labs,

Gordon Hurst

President & CEO MiCOM Labs, Inc.

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A Issue Date: 14th January 2015

Page: 10 of 71

1. REFERENCES AND MEASUREMENT UNCERTAINTY

1.1. Normative References

REF.	PUBLICATION	YEAR	TITLE
i.	FCC 47 CFR Part 15, Subpart C	2012	Title 47: Telecommunication PART 15—RADIO FREQUENCY DEVICES Subpart C—Intentional Radiators
ii.	RSS-210 Annex 8	2010	Radio Standards Specification 210, Issue 8, Low- power License-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment
iii.	FCC OET KDB 662911	31 st October 2013	Emissions Testing of Transmitters with Multiple Outputs in the Same Band
iv.	RSS-GEN	2010	Radio Standards Specification-Gen, Issue 3, General Requirements and Information for the Certification of Radiocommunication Equipment
V.	FCC 47 CFR Part 15, Subpart B	2012	47 CFR Part 15, SubPart B; Unintentional Radiators
vi.	ICES-003	31 st August 2013	Spectrum Management and Telecommunications Policy Interference-Causing Equipment Standard Digital Apparatus; Issue 5
vii.	ANSI C63.4	2009	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
viii.	CISPR 22/ EN 55022	2010	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
ix.	M 3003	Edition 1 Dec. 1997	Expression of Uncertainty and Confidence in Measurements
x.	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing
xi.	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
xii.	A2LA	July 2014	Reference to A2LA Accreditation Status – A2LA Advertising Policy

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A **Issue Date**: 14th January 2015

Page: 11 of 71

1.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k=2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A Issue Date: 14th January 2015

Page: 12 of 71

2. PRODUCT DETAILS AND TEST CONFIGURATIONS

2.1. Technical Details

Details	Description
Purpose:	Test of the Mad Apparel Inc Model A100 to FCC Part
	15.247 and Industry Canada RSS-210 regulations.
Applicant:	MAD Apparel Inc.
	201 Arch Street,
	Redwood City, California 94062, USA
Manufacturer:	As applicant.
Laboratory performing the tests:	MiCOM Labs, Inc.
	575 Boulder Court, Pleasanton, California 94566 USA
Test report reference number:	ATHO02-U2 Rev A
Date EUT received:	17 th November 2014
Standard(s) applied:	FCC 47 CFR Part 15.247 & IC RSS-210
Dates of test (from - to):	18th - 19th November 2014
No of Units Tested:	One
Type of Equipment:	Bluetooth (BLE)
Manufacturers Trade Name:	Athos Core
Model(s):	
Location for use:	Indoor and Outdoor
Declared Frequency Range(s):	2400 - 2483.5 MHz
Hardware Rev	1.3
Software Rev	Development
Type of Modulation:	GFSK
EUT Modes of Operation:	BLE
Declared Nominal Average	2.4 GHz Operation +4.0 dBm
Output Power:	
System Beam Forming:	None
Transmit/Receive Operation:	Time Division Duplex
Rated Input Voltage and Current:	Battery: 3.8 Vdc Nom, Min 3.0Vdc, Max 4.3 Vdc
Operating Temperature Range:	Declared range 0° to +50°.
ITU Emission Designator:	1M04F1D
Equipment Dimensions:	65 mm x 34 mm x 12.5 mm (L x W x H)
Weight:	22 grams
Primary function of equipment:	Health fitness

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A **Issue Date**: 14th January 2015

Page: 13 of 71

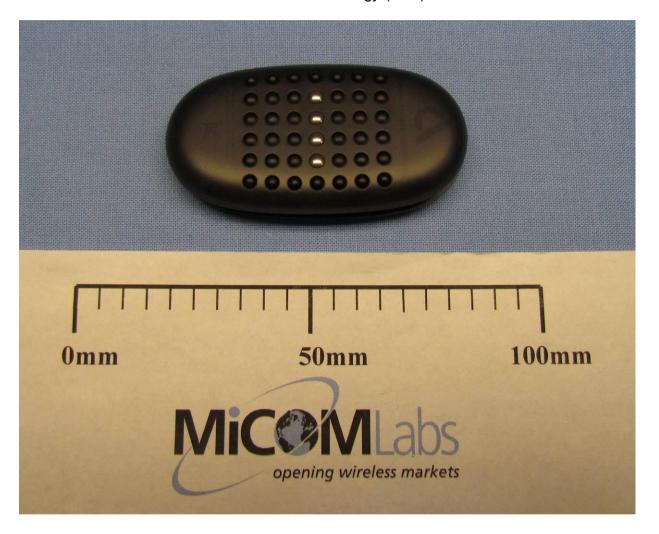

2.2. Scope of Test Program

Athos Bluetooth Low Energy (BLE) Device - A100

The scope of the test program was to test the Athos BLE model A100 in the frequency range 2400 - 2483.5 MHz for compliance against FCC 47 CFR Part 15.247 and Industry Canada RSS-210 specifications.

As the Athos Bluetooth Low Energy frequency hopping spread spectrum device had a bandwith greater than 500 kHz the 15.247 DTS was used to prove compliance.

Athos
Bluetooth Low Energy (BLE)



To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A Issue Date: 14th January 2015

Page: 14 of 71

Athos Bluetooth Low Energy (BLE)

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A Issue Date: 14th January 2015

Page: 15 of 71

2.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	Equipment Description (Including Brand Name)	Mfr	Model No.	Serial No.
EUT	Bluetooth Frequency Hopping	MAD Apparel Inc.	A100	
Support	Laptop PC			None

2.4. Antenna Details

Integral Antenna

Model	Tymo	Gain	Freq. Band	Note
iviodei	Туре	dBi	MHz	Note
Trace Antenna	PCB	0.0	2400 - 2500	

2.5. Cabling and I/O Ports

Number and type of I/O ports

1. NONE

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A Issue Date: 14th January 2015

Page: 16 of 71

2.6. Test Configurations

Testing was performed to determine the highest power level versus bit rate. The variant with the highest power was used to exercise the product

Operational Mode(s) Variant (802.11a/b/g/n/ac)		Data Rate with Highest Power	Frequencies (MHz)
2.4 GHz			
BLE		1 MBit/s	2,402 2,442 2,480

Results for the above configurations are provided in this report

Antenna Test Configurations for Radiated Emissions

Results for the following configurations are provided in this report.

Radiated emissions testing was performed for all possible configurations on the integral antenna, the table below identifies all radiated testing completed on the device.

15.247	
	SE 2402
	SE 2442
BLE Operation	SE 2480
	BE 2390
	BE 2483.5

KEY;-
SE – Spurious Emission BE – Band-Edge

2.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

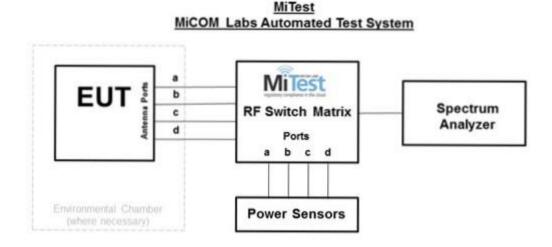
2.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A Issue Date: 14th January 2015


Page: 17 of 71

3. TEST EQUIPMENT CONFIGURATION(S)

3.1. Conducted RF Emission Test Set-up

The following tests were performed using the conducted test set-up shown in the diagram below.

- 1. Section 6.1.1.1. 6 dB and 99% Bandwidth
- 2. Section 6.1.1.2. Peak Output Power
- 3. Section 6.1.1.3. Power Spectral Density
- 4. Section 6.1.1.4. Conducted Spurious Emissions

Conducted Test Measurement Setup

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A **Issue Date**: 14th January 2015

Page: 18 of 71

Measurement and Presentation of Test Data

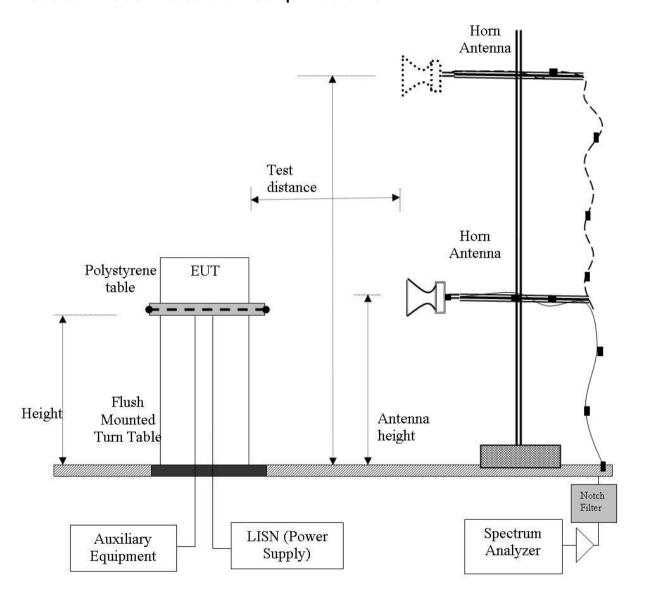
The measurement and graphical data presented in this test report was generated automatically using state-of-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by <u>MiTest</u>. <u>MiTest</u> is an automated test system developed by MiCOM Labs. <u>MiTest</u> is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.

The MiCOM Labs "MiTest" Automated Test System" (Patent Pending)

To: FCC 47 CFR Part 15.247 & IC RSS-210


Serial #: ATHO02-U2 Rev A Issue Date: 14th January 2015

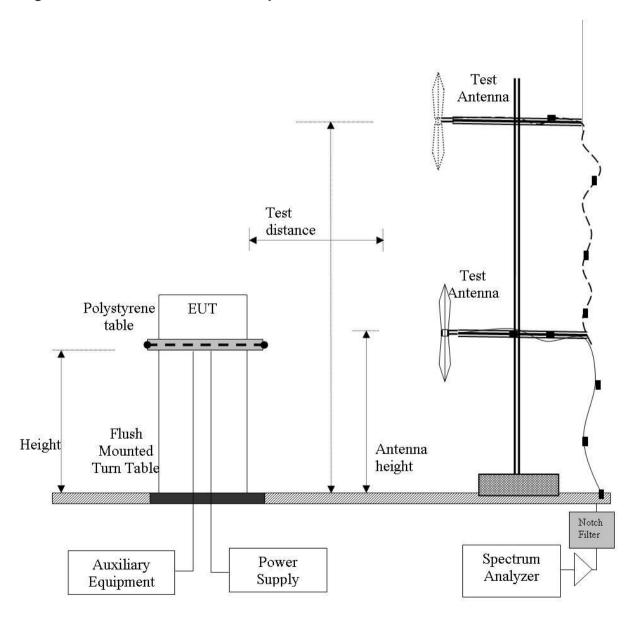
Page: 19 of 71

3.2. Radiated Spurious Emission Test Set-up > 1 GHz

The following tests were performed using the conducted test set-up shown in the diagram below.

Radiated Emission Measurement Setup - Above 1 GHz

To: FCC 47 CFR Part 15.247 & IC RSS-210


Serial #: ATHO02-U2 Rev A **Issue Date:** 14th January 2015

Page: 20 of 71

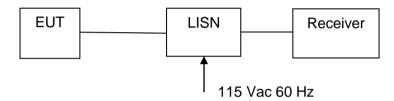
3.3. Digital Emissions Test Set-up (0.03 – 1 GHz)

The following tests were performed using the conducted test set-up shown in the diagram below.

Digital Emission Measurement Setup - Below 1 GHz

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A **Issue Date:** 14th January 2015


Page: 21 of 71

3.4. ac Wireline Emission Test Set-up

The following tests were performed using the conducted test set-up shown in the diagram below.

1. Section 5.1.3 ac Wireline Conducted Emissions

Test Measurement Set up

Measurement set up for AC Wireline Conducted Emissions Test

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A Issue Date: 14th January 2015

Page: 22 of 71

4. TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under the FCC CFR47 Part 15.247 and Industry Canada RSS-210 and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(a)(2) A8.2(1) 4.4	6 dB and 99 % Bandwidths	≥500 kHz	Conducted	Complies	5.1.1.1
15.247(b)(3) 15.31(e) A8.4(4)	Peak Output Power Voltage Variation	Shall not exceed 1W Variation of supply voltage 85 % -115 %	Conducted	Complies	5.1.1.2
15.247(e) A8.2	Peak Power Spectral Density	Shall not be greater than +8 dBm in any 3 kHz band	Conducted	Complies	5.1.1.3
15.247(d) 15.205 / 15.209 A8.5 2.2	Spurious Emissions (30MHz - 26 GHz b/g and 30 MHz – 40 GHz a)	The radiated emission in any 100 kHz of outband shall be at least 20 dB below the highest inband spectral density	Conducted	Complies	5.1.1.4

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A Issue Date: 14th January 2015

Page: 23 of 71

List of Measurements (continued)

The following table represents the list of measurements required under the FCC CFR47 Part 15.247, Industry Canada RSS-210, and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(d) 15.205 / 15.209 A8.5 2.2 2.6 4.7	Radiated Emissions	Restricted Bands	Radiated	Complies	5.1.2
	Transmitter Radiated Spurious Emissions	Emissions above 1 GHz		Complies	
	Radiated Band Edge	Band-edge results Peak Emissions		Complies	
15.205 / 15.209 2.2	Radiated Spurious Emissions	Emissions <1 GHz (30M- 1 GHz)	Radiated	Complies	5.1.2.4
15.207 7.2.2	AC Wireline Conducted Emissions 150 kHz– 30 MHz	Conducted Emissions	Conducted	N/A EUT is battery powered	5.1.3

Note 1: Test results reported in this document relate only to the items tested

Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

Note 3: Section 3.7 Equipment Modifications highlights the equipment modifications that were required to bring the product into compliance with the above test matrix

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A Issue Date: 14th January 2015

Page: 24 of 71

5. TEST RESULTS

5.1. Device Characteristics

5.1.1. Conducted Testing

5.1.1.1. 6 dB and 99 % Bandwidth

Conducted Test Conditions for 6 dB and 99% Bandwidth					
Standard:	Standard: FCC CFR 47:15.247 Ambient Temp. (°C): 24.0 - 27.5				
Test Heading:	6 dB and 99 % Bandwidth	Rel. Humidity (%):	32 - 45		
Standard Section(s):	15.247 (a)(2) Pressure (mBars): 999 - 1001				
Reference Document(s):	KDB 558074 - D01 DTS Measurement Guidance v01: Section 5.1 Emission Bandwidth				

Test Procedure for 6 dB and 99% Bandwidth Measurement

The bandwidth at 6 dB and 99 % was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A **Issue Date:** 14th January 2015

Page: 25 of 71

Equipment Configuration for 6 dB & 99% Bandwidth

Variant:	Bluetooth Low Energy	Duty Cycle (%):	88
Data Rate:	1 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Me	easured 6 dB E	Bandwidth (MF	łz)	6 dB Bandı	width (MHz)	Limit	Lowest
Frequency		Port(s) 6 dB Bandwidth (MH			width (Williz)	Lilling	Margin	
MHz	а	b	С	d	Highest	Lowest	KHz	MHz
2402.0	<u>0.673</u>				0.673	0.673	≥500.0	-0.17
2440.0	<u>0.673</u>		-		0.673	0.673	≥500.0	-0.17
2480.0	<u>0.665</u>				0.665	0.665	≥500.0	-0.17

Test	1	Measured 99% E	Bandwidth (MHz	Maximum		
Frequency	Port(s)			99% Bandwidth		
MHz	а	b	С	d	(MHz)	
2402.0	<u>1.042</u>				1.042	
2440.0	<u>1.042</u>				1.042	
2480.0	1.042				1.042	

Traceability to Industry Recognized Test Methodologies				
Work Instruction: WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB			

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A **Issue Date**: 14th January 2015

Page: 26 of 71

Specification

Limits

§15.247 (a)(2) & RSS-210 §A8.2(1)

The minimum 6 dB bandwidth shall be at least 500 kHz.

§ IC RSS-Gen 4.4.1 Occupied Bandwidth When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured.

§ IC RSS-Gen 4.4.2 6 dB Bandwidth Where indicated, the 6 dB bandwidth is measured at the points when the spectral density of the signal is 6 dB down from the in –band spectral density of the modulated signal, with the transmitter modulated by a representative signal.

Traceability

Test Equipment Used

0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A **Issue Date**: 14th January 2015

Page: 27 of 71

5.1.1.2. Peak Output Power

Conducted Test Conditions for Fundamental Emission Output Power					
Standard:	FCC CFR 47:15.247	Ambient Temp. (°C):	24.0 - 27.5		
Test Heading:	Emission Output Power	Rel. Humidity (%):	32 - 45		
Standard Section(s):	15.247 (a)(2)	Pressure (mBars):	999 - 1001		
Reference Document(s):	KDB 558074 - D01 DTS Measurement Guidance v01: Section 5.2 Fundamental Emission Output Power				
()	KDB 662911 was implemented for In-band power measurements. The measure and sum technique was implemented in all cases.				

Test Procedure for Fundamental Emission Output Power Measurement

The transmitter terminal of EUT was connected to the input of the spectrum analyzer set to measure peak power. The resolution filter bandwidth was set to 6 dB, peak detector selected and the analyzer built-in power function was used to integrate peak power over the 20 dB bandwidth.

Supporting Information

Calculated Power = $A + G + 10 \log (1/x) dBm$

A = Total Power [10 Log10 ($10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10}$)], G = Antenna Gain,

x = Duty Cycle

15.247 (c) Operation with directional antenna gains greater than 6 dBi.

If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Athos Core Antenna gain < 6dBi therefore maximum permitted output power ≤ 30 dBm

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A Issue Date: 14th January 2015

Page: 28 of 71

Equipment Configuration for Average Output Power

Variant:	Bluetooth Low Energy	Duty Cycle (%):	88.0
Data Rate:	1 MBit/s	Antenna Gain (dBi):	0.0
Modulation:	GFSK	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

	N	leasured Outp	ut Power (dBn	n)	Calculated Total Power			
Test Frequency	Port(s)		Σ Port(s) + Duty Cycle Correction Factor: +0.04 dB	Limit	Margin	EUT Power Setting		
MHz	а	b	С	d	dBm	dBm	dB	
2402.0	2.24				2.24	30.00	-27.76	Max
2440.0	1.65				1.65	30.00	-28.35	Max
2480.0	1.89				1.89	30.00	-28.11	Max

Traceability to Industry Recognized Test Methodologies				
Work Instruction: WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB			

Antenna Type V's Power Setting

The following **Antenna Types V's Power Setting** table consolidates the results of all tests performed on the Athos Core;

PCB Antenna

Channel	2.4 GHz
Channel	BLE
2402.0	Max Power
2440.0	Max Power
2480.0	Max Power

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A **Issue Date**: 14th January 2015

Page: 29 of 71

Specification

Limits

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

§15.247 (b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1.0 watt.

15.247 (b) (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

15.247 (c) Operation with directional antenna gains greater than 6 dBi.

- (1) Fixed point-to-point operation:
- (i) Systems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.
- (ii) Systems operating in the 5725–5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted output power.

§15.31 (e) For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

§ RSS-210 A8.4(4) For systems employing digital modulation techniques operating in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands the maximum peak conducted power shall not exceed 1 watt.

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output	0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A **Issue Date**: 14th January 2015

Page: 30 of 71

5.1.1.3. Power Spectral Density

Conducted Test Conditions for Power Spectral Density							
Standard:	FCC CFR 47:15.247	CC CFR 47:15.247 Ambient Temp. (°C): 24.0 - 27.5					
Test Heading:	Power Spectral Density	Rel. Humidity (%):	32 - 45				
Standard Section(s):	15.247 (e)	15.247 (e) Pressure (mBars): 999 - 1001					
Reference Document(s):	KDB 558074 - D01 DTS Measurement Guidance v01: Section 5.3 Maximum Power Spectral Density Level in the Emission Bandwidth						

Test Procedure for Power Spectral Density

The transmitter output was connected to a spectrum analyzer and the maximum level in a 3 kHz bandwidth was measured. A peak value was found over the full emission bandwidth and the frequency span reduced to obtain enhanced resolution. Sweep time ≥ span / 3 kHz with video averaging turned off. The Peak Power Spectral Density is the highest level found across the emission in a 3 kHz resolution bandwidth.

Supporting Information

Calculated Power = $A + 10 \log (1/x) dBm$

 $A = Total\ Power\ Spectral\ Density\ [10\ Log10\ (10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10})]$

x = Duty Cycle

Limit Line: KDB 662911 was implemented for In-band power spectral density (PSD) measurements - Option (2) measure and subtract 10 log (N) dB from the limit for devices with multiple RF ports

Title: Mad Apparel Inc. - Model A100
To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A **Issue Date:** 14th January 2015

Page: 31 of 71

Equipment Configuration for Power Spectral Density - Average	

Variant:	Bluetooth Low Energy	Duty Cycle (%):	88.0
Data Rate:	1 MBit/s	Antenna Gain (dBi):	0.00
Modulation:	GFSK	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurem	nent Results						
	N	leasured Power	Amplitude Summation +				
Test Frequency	Port(s) (dBm/3KHz)			DCCF Duty Cycle Correction Factor: +0.56 dB	Limit	Margin	
MHz	а	b	С	d	dBm/3KHz	dBm/3KHz	dB
2402.0	<u>-8.924</u>				<u>-8.369</u>	8.0	-16.4
2440.0	<u>-10.166</u>				<u>-9.611</u>	8.0	-17.6
2480.0	<u>-6.127</u>				<u>-5.572</u>	8.0	-13.6

Traceability to Industry Recognized Test Methodologies			
Work Instruction: WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB		

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A **Issue Date**: 14th January 2015

Page: 32 of 71

Specification Peak Power Spectral Density Limits

§15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission

RSS-210 §A8.2(2) The transmitter power spectral density (into the antenna) shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission or over 1.0 second if the transmission exceeds 1.0 second duration.

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A **Issue Date**: 14th January 2015

Page: 33 of 71

5.1.1.4. Conducted Spurious Emissions

Conducted Test Conditions for Transmitter Conducted Spurious and Band-Edge Emissions			
Standard:	FCC CFR 47:15.247	24.0 - 27.5	
Test Heading:	Max Unwanted Emission Levels	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.247 (d) Pressure (mBars): 999 - 1001		
Reference Document(s):	KDB 558074 - D01 DTS Measurement Guidance v01: Section 5.4 Maximum Unwanted Emission Levels		

Test Procedure for Transmitter Conducted Spurious and Band-Edge Emissions Measurement

Transmitter Conducted Spurious and Band-Edge emissions were measured at a limit of 20 dB below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Measurements were made while EUT was operating in transmit mode of operation at the appropriate centre frequency closest to the band-edge. Emissions were maximized during the measurement and limits derived from the peak spectral power and drawn on each plot.

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A **Issue Date**: 14th January 2015

Page: 34 of 71

Equipment Configuration for Conducted Low Band-Edge Emissions - Average

Variant:	Bluetooth Low Energy	Duty Cycle (%):	88.0
Data Rate:	1 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	GFSK	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	2402.0 MHz					
Band-Edge Frequency:	2400.0 IVID2					
Test Frequency Range:	2350.0 - 2405.0 M	Hz				
	Band-	Band-Edge Markers and Limit Amended Limit Margin				
Port(s)	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-65.66</u>	-31.00	2401.60	-		-1.600

Traceability to Industry Recognized Test Methodologies			
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS		
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB		

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A Issue Date: 14th January 2015

Page: 35 of 71

Equipment Configuration for Conducted High Band-Edge Emissions - Average

Variant:	Bluetooth Low Energy	Duty Cycle (%):	88.0
Data Rate:	1 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	GFSK	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel	2480.0 MHz					
Band-Edge Frequency:	2483.5 MHz					
Range:	2475.0 - 2524.0 M	Hz				
	Band	Band-Edge Markers and Limit Amended Limit Margin			Margin	
Port(s)	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-72.92</u>	-32.00	2480.50			-3.000

Traceability to Industry Recognized Test Methodologies			
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS		
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB		

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A Issue Date: 14th January 2015

Page: 36 of 71

Equipment Configuration for Transmitter Conducted Spurious Emissions

Variant:	Bluetooth Low Energy	Duty Cycle (%):	88.0
Data Rate:	1 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	GFSK	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Frequency	Transmitter Conducted Spurious Emissions (dBm)							
Frequency	Range	Port a		Port b		Port c		Port d	
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
2402.0	30.0 - 26000.0	<u>-71.586</u>	-64.00						
2440.0	30.0 - 26000.0	<u>-71.586</u>	-70.00						
2480.0	30.0 - 26000.0	<u>-71.586</u>	-70.00						

	Traceability to Industry Recognized Test Methodologies			
	Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS		
Measurement Uncertainty:		<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB		

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A **Issue Date:** 14th January 2015

Page: 37 of 71

Specification

Limits Band-Edge

Lower Limit Band-edge	Upper Limit Band-edge	Limit below highest level of desired power	
2,400 MHz	2,483.5 MHz	≥ 20 dB	
5725 MHz	5850 MHz	≥ 20 dB	

§15.247(d) and RSS-210 §A8.5 In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

§15.247(d)

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section §15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(a)).

RSS-210 §A8.5 If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required. In addition, radiated emissions which fall in the restricted bands of Table 1 must also comply with the radiated emission limits specified in Tables 2 and 3.

RSS-Gen §4.7

The search for unwanted emissions shall be from the lowest frequency internally generated or used in the device (local oscillator, intermediate of carrier frequency), or from 30 MHz, whichever is the lowest frequency, to the 5th harmonic of the highest frequency generated without exceeding 40 GHz.

Laboratory Measurement Uncertainty for Conducted Spurious Emissions

Measurement uncertainty	±2.37 dB
i vicasarcinent anocitainty	±2.07 aD

Traceability

Method	Test Equipment Used
Measurements were made per work	0088, 0158, 0287, 0252, 0313, 0314, 0070,
instruction WI-05 'Measurement of	0116, 0117.
Spurious Emissions'	

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A **Issue Date**: 14th January 2015

Page: 38 of 71

5.1.2. Radiated Emission Testing

Transmitter Radiated Spurious Emissions (above 1 GHz); Peak Field Strength Measurements; and Radiated Band Edge Measurements – Restricted Bands

FCC, Part 15 Subpart C §15.247(d) 15.205; 15.209 Industry Canada RSS-210 §A8.5, §2.2, §2.6 Industry Canada RSS-Gen §4.7

Test Procedure

Radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

Operational Modes

Operational mode(s) tested for spurious emissions were the modes which delivered maximum spectral density 802.11b and 802.11a.

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A **Issue Date:** 14th January 2015

Page: 39 of 71

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

where: FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

For example:

Given receiver input reading of 51.5 dB $_{\mu}$ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$$

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level $(dB\mu V/m) = 20 * Log (level (\mu V/m))$

40 $dB\mu V/m = 100 \mu V/m$ 48 $dB\mu V/m = 250 \mu V/m$

NOTE: KDB 662911 was implemented for Out-of-Band measurements. Where necessary Option (2) Measure and add 10 log (N) dB was implemented

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A **Issue Date:** 14th January 2015

Page: 40 of 71

Test Freq.	2402 MHz	Engineer	SB
Variant	Digital Emissions	Temp (°C)	18.5
Freq. Range	30 MHz - 1000 MHz	Rel. Hum.(%)	38
Power Setting	Max Power	Press. (mBars)	1007
Antenna	Integral Trace Antenna	Duty Cycle (%)	100
Test Notes 1	Battery Pow ered EUT;		
Test Notes 2			
	70.0 60.0 50.0 40.0 30.0	- I The state of t	Pik Lmt — Av Lmt + Debug + Formal
	20.0		Meas Dist 3m Spec Dist 3m Frequency: MHz

Frequency MHz	Raw dBuV	Cabl e Loss	AF dB	Level dBuV/ m	Measuremen t Type	Pol	Hgt cm	Azt Deg	Limit dBuV/ m	Margin dB	Pass /Fail	Comments
12219.940	48.6	9.7	-5.0	53.3	Peak Max	>	116	268	74.0	-20.7	Pass	RB
7200.4008	55.2	7.1	-7.4	55.0	Peak Max	Ι	108	25	74.0	-19.0	Pass	RB
12219.940	35.1	9.7	-5.0	39.8	Average Max	V	116	268	54	-14.2	Pass	RB
7200.401	45.6	7.1	-7.4	45.4	Average Max	Н	108	25	54	-8.6	Pass	RB
9601.303	51.6	8.5	-6.0	54.1	Peak [Scan]	V	100					NRB

TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission Legend: RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A Issue Date: 14th January 2015

Page: 41 of 71

Test Freq. 2440 MHz Variant Digital Emissions Freq. Range 30 MHz - 1000 MHz Rel. Hum.(%) Antenna Integral Trace Antenna Duty Cycle (%) Battery Pow ered EUT; Test Notes 2 MiCOM Labs Vasona by EMISOft Battery Pow ered EUT; Test Notes 2 Meas Dist 3m Spec Dist			r								r		
Press Rel. Hum. (%) 38	Test	Freq.	2440 N	1Hz					E	ngineer	SB		
Power Setting Max Pow er Press. (mBars) 1007 Antenna Integral Trace Antenna Duty Cycle (%) 100 Test Notes 1 Battery Pow ered EUT; Test Notes 2 MiCOMLabs dBuV/m Vasona by EMISoft 18 Nov 14 13:06 - 12 Vertical Ps. E. Int. Margin Ps. E. In	V	ariant	Digital B	Emission	าร				Те	mp (°C)	18.5		
Antenna Integral Trace Antenna Duty Cycle (%) 100 Test Notes 1 Battery Pow ered EUT; Test Notes 2 MiCOMLabs dBuV/m Vasona by EMiSoft 18 Nov 14 13:06 - 20	Freq. F	Range	30 MHz	z - 1000	MHz				Rel. I	Hum.(%)	38		
Test Notes 2 MiCOMLabs dBuV/m Vasona by EMiSoft 18 Nov 14 13:06 - 18 Nov 14 13:06 - 19 Nov 14 13:06 - 19 Nov 14 13:06 - 10 Nov 14 13:06 - 1	Power Se	etting	Max Po	w er				P	ress.	(m Bars)	1007		
Test Notes 2 MiCOMLabs dBuV/m Vasona by EMiSoft 18 Nov 14 13:06 - 18 Nov 14 13:06 - 19 Nov 14 13:06 - 19 Nov 14 13:06 - 19 Nov 14 13:06 - 10 Nov 16	Ant	tenna	Integra	l Trace	Antenna				Duty C	Cycle (%)	100		
Wasona by EMiSoft 18 Nov 14 13:06 - 19 Horizont: 10 Vertical 11 Horizont: 12 Vertical 13 Vertical 14 Vertical 15 Vertical 16 Vertical 17 Vertical 18 Nov 14 13:06 - 19 Vertical 19 Vertical 19 Vertical 10 Vertical 11 Horizont: 12 Vertical 12 Vertical 12 Vertical 12 Vertical 12 Vertical 13 Vertical 14 Vertical 15 Vertical 16 Vertical 17 Frequency: MHz 18 Nov 14 13:06 - 12 Vertical 18 Nov 14 13:06 - 17 Vertical 18 Nov 14 13:06 - 19 Vertical 18 Vertical 19 Vertical 19 Vertical 19 Vertical 10 Vertical 10 Vertical 10 Vertical 10 Vertical 11 Horizont: 12 Vertical 12 Vertical 12 Vertical 13 Vertical 14 Vertical 15 Vertical 16 Vertical 17 Vertical 18 Vertical 18 Vertical 18 Vertical 19 Vertical 19 Vertical 19 Vertical 10 Vertical	Test No	tes 1	Batter	y Pow e	red EUT;								
Formally measured emission peaks Trequency MHz Taylor Measurement MBuV Loss Trequency MHz Taylor Measurement MBuV Loss Trequency MHz Taylor Measurement MBuV Loss Taylor MBuV Limit Margin Margin MBuV MBuV MBuV MBuV MBuV MBuV MBuV MBuV	Test No	otes 2											
Frequency MHz Raw dBuV Loss dB Measuremen t Type Pol cm Deg Margin dB Margin	MICSM	abs	Vasona by EMISON										
Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission	Formally	mea		emiss		ıks							
Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission	Frequency MHz		е		dBuV/		Pol			dBuV/	_		Comments
	7336.863	41.7	7.2	-7.2	41.7	Peak [Scan]	V	98	-1	54.0	-12.3	Pass	RB
RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak	Legend:	TX = T	ransmit	ter Emis	sions; DIC	G = Digital Emissi	ons; F	UND =	Funda	mental; W	B = Widel	band En	nission
		RB = F	Restricte	ed Band	(15.209 L	_imits); NRB = N	on Re	stricted	d Band	, Limit is 2	0dB belov	w funda	mental peak

Serial #: ATHO02-U2 Rev A **Issue Date:** 14th January 2015

Page: 42 of 71

Test F	req.	2480 N	1Hz					E	ngineer	SB		
Vai	riant	Digital E	Emission	าร				Те	mp (°C)	18.5		
Freq. Ra	ange	30 MHz	· 1000	MHz				Rel. I	Hum.(%)	38		
Power Set	tting	Max Po	w er				P	ress.	(mBars)	1007		
Ante	enna	Integra	l Trace	Antenna				Duty (Cycle (%)	100		
Test Not	es 1	Batter	y Pow e	red EUT;		•				•		
Test Not	es 2											
MiC MLa	bs		The property of the property									
Formally	meas	sured	emiss	ion pea	ıks							
	· · · I I A I I ABUVI I I POLI · I I ABUVI I · I LOMMENTS											
No Emissions o	bserv	ed w ith	in 6 dB	of the limit	i.							
Legend:	TX = T	ransmit	ter Emis	sions; DIC	G = Digital Emiss	sions; F	UND =	Funda	mental; W	B = Wide	band En	nission
	RB = R	Restricte	ed Band	(15.209 L	_imits); NRB = 1	Non Re	stricted	d Band	, Limit is 2	0dB belov	w funda	mental peak
				= Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak								

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A Issue Date: 14th January 2015

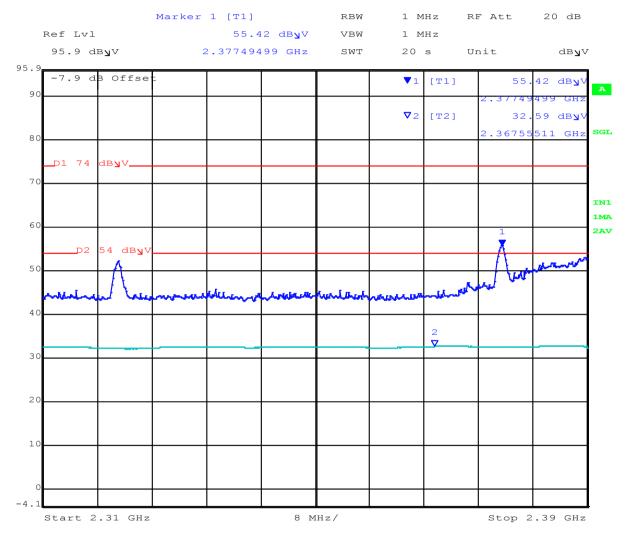
Page: 43 of 71

Band-Edge Antenna Integral

Peak Limit 74.0 dBμV/m, Average Limit 54.0 dBμV/m

2.4 GHz Frequency Band

	Restr	icted Band	I 2390 MHz	Restricted Band 2483.5 MHz			
	dΒμ	V/m	Dower Cotting	dBļ	ıV/m	Power	
Operational Mode	Peak	Average	Power Setting	Peak	Average	Setting	
BLE	55.42	32.59	Max	60.49	45.14	Max	


To: FCC 47 CFR Part 15.247 & IC RSS-210

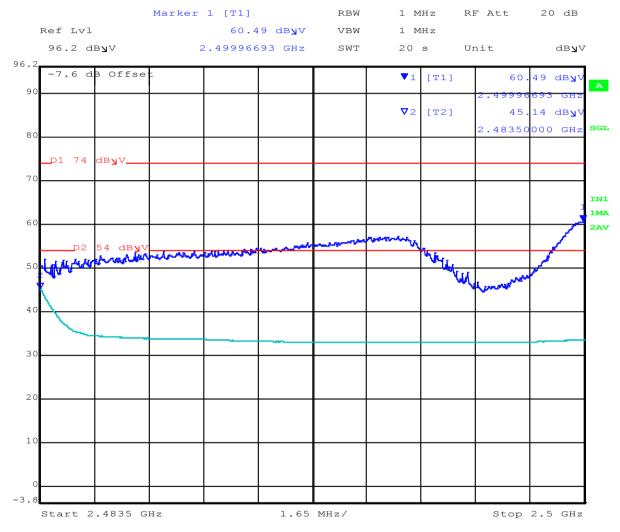
Serial #: ATHO02-U2 Rev A Issue Date: 14th January 2015

Page: 44 of 71

Restricted Band-Edge 2390 MHz

Transmitting Frequency 2402 MHz

Date: 18.NOV.2014 12:08:54


To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A Issue Date: 14th January 2015

Page: 45 of 71

Restricted Band-Edge 2483.5 MHz

Transmitting Frequency 2480 MHz

Date: 18.NOV.2014 12:23:42

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A **Issue Date**: 14th January 2015

Page: 46 of 71

Specification Limits

FCC §15.247(d) and RSS-210 §A8.5 In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

FCC §15.247(d)

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section §15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(a)).

IC RSS-210 §A8.5 If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required. In addition, radiated emissions which fall in the restricted bands of Table 1 must also comply with the radiated emission limits specified in Tables 2 and 3.

IC RSS-Gen §4.7

The search for unwanted emissions shall be from the lowest frequency internally generated or used in the device (local oscillator, intermediate of carrier frequency), or from 30 MHz, whichever is the lowest frequency, to the 5^{th} harmonic of the highest frequency generated without exceeding 40 GHz.

FCC §15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

FCC §15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

FCC §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

Serial #: ATHO02-U2 Rev A **Issue Date:** 14th January 2015

Page: 47 of 71

§15.209 (a) Limit Matrix

Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBμV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB
-------------------------	---------------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A **Issue Date**: 14th January 2015

Page: 48 of 71

5.1.2.2. Digital Emissions (0.03-1 GHz)

FCC, Part 15 Subpart C §15.205/ §15.209 Industry Canada RSS-210 §2.2

Test Procedure

Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed. The anechoic chamber test set-up is identified in Section 6 Test Set-Up Photographs.

The EUT had two methods of powering on ac/dc converter and Power over Ethernet (POE). Both modes were tested for emissions below 1GHz.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

FS = R + AF + CORR

where:

FS = Field Strength
R = Measured Receiver Input Amplitude
AF = Antenna Factor
CORR = Correction Factor = CL – AG + NFL
CL = Cable Loss
AG = Amplifier Gain

For example:

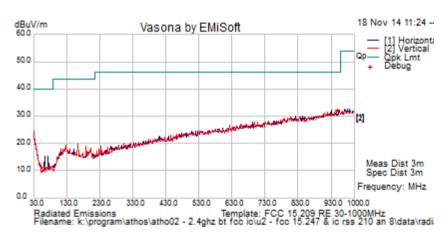
Given a Receiver input reading of $51.5dB\mu V$; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$$

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level $(dB\mu V/m) = 20 * Log (level (\mu V/m))$

 $40 \text{ dB}\mu\text{V/m} = 100\mu\text{V/m}$ $48 \text{ dB}\mu\text{V/m} = 250\mu\text{V/m}$


To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A Issue Date: 14th January 2015

Page: 49 of 71

Test Freq.	2440 MHz	Engineer	SB			
Variant	Digital Emissions	Temp (°C)	18.5			
Freq. Range	30 MHz - 1000 MHz	Rel. Hum.(%)	38			
Power Setting	Max Power	Press. (mBars)	1007			
Antenna	Integral Trace Antenna					
Test Notes 1	Battery Powered EUT;					
Test Notes 2						

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cabl e Loss	AF dB	Level dBuV/ m	Measuremen t Type	Pol	Hgt cm	Azt Deg	Limit dBuV/ m	Margin dB	Pass /Fail	Comments
63.135	35.0	3.8	-23.7	15.1	Peak [Scan]	Н	98	360	40	-24.9	Pass	
74.396	33.7	3.9	-23.1	14.4	Peak [Scan]	Н	98	360	40	-25.6	Pass	
30.871	30.5	3.5	-10.5	23.5	Peak [Scan]	V	98	360	40	-16.5	Pass	
163.860	33.4	4.4	-18.9	19.0	Peak [Scan]	V	98	360	43.5	-24.5	Pass	
623.155	31.1	6.3	-11.1	26.4	Peak [Scan]	V	98	360	46	-19.7	Pass	
233.215	32.3	4.8	-19.2	17.9	Peak [Scan]	V	98	360	46	-28.1	Pass	

Legend: DIG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency

NRB = Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A Issue Date: 14th January 2015

Page: 50 of 71

Specification

Limits

§15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

§15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

§15.209 (a) and RSS-Gen §2.2 Limit Matrix

Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBμV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB
-------------------------	---------------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

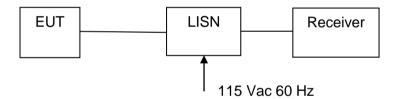
To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A **Issue Date:** 14th January 2015

Page: 51 of 71

5.1.3. AC Wireline Conducted Emissions (150 kHz - 30 MHz)

Test not applicable, device is battery powered


FCC, Part 15 Subpart C §15.207

Industry Canada RSS-Gen §7.2.2

Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

Test Measurement Set up

Measurement set up for AC Wireline Conducted Emissions Test

Measurement Results for AC Wireline Conducted Emissions (150 kHz – 30 MHz)

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A **Issue Date:** 14th January 2015

Page: 52 of 71

Specification

Limit

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\Omega$ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

RSS-Gen §7.2.2

The radio frequency voltage that is conducted back into the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table below. The tighter limit applies at the frequency range boundaries.

§15.207 (a) and RSS-Gen §7.2.2 Limit Matrix

The lower limit applies at the boundary between frequency ranges

Frequency of Emission (MHz)	Conducted Limit (dBμV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*} Decreases with the logarithm of the frequency

Laboratory Measurement Uncertainty for Conducted Emissions

Measurement uncertainty	±2.64 dB
-------------------------	----------

Traceability

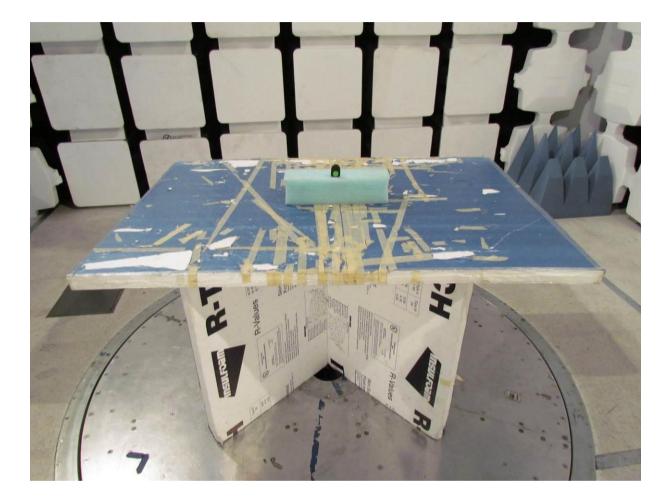
Method	Test Equipment Used
Measurements were made per work instruction WI-EMC-01 'Measurement of Conducted Emissions'	0158, 0184, 0287, 0190, 0293, 0307

Serial #: ATHO02-U2 Rev A Issue Date: 14th January 2015

Page: 53 of 71

6. PHOTOGRAPHS

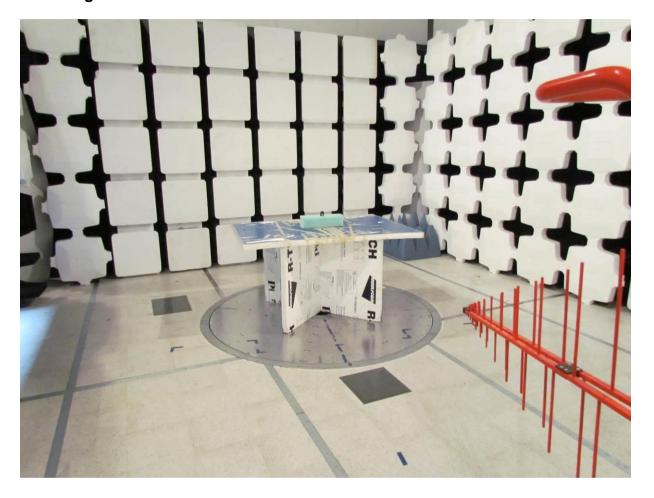
6.1. **Conducted Test Setup**



Serial #: ATHO02-U2 Rev A **Issue Date:** 14th January 2015

Page: 54 of 71

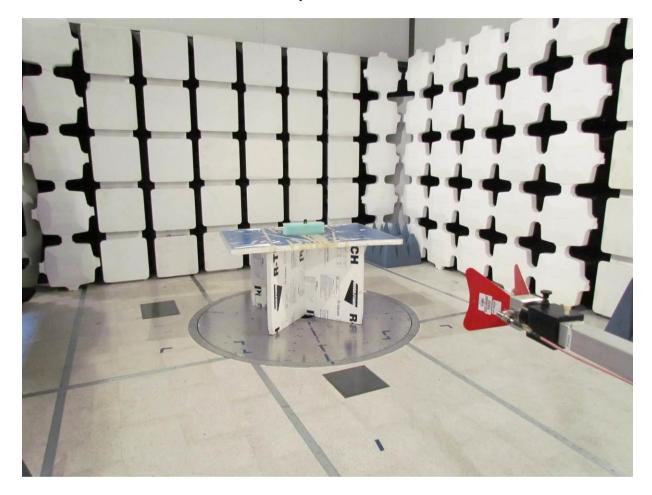
6.2. **Radiated Test Set-up**



Serial #: ATHO02-U2 Rev A **Issue Date:** 14th January 2015

Page: 55 of 71

Digital Emissions > 1 GHz 6.3.



Serial #: ATHO02-U2 Rev A Issue Date: 14th January 2015

Page: 56 of 71

Radiated Emissions Test Setup <1 GHz 6.4.

Serial #: ATHO02-U2 Rev A Issue Date: 14th January 2015

Page: 57 of 71

6.5. ac Wireline Test Setup

Not applicable, device battery powered

Serial #: ATHO02-U2 Rev A **Issue Date:** 14th January 2015

Page: 58 of 71

7. TEST EQUIPMENT

Asset #	Instrument	Manufacturer	Part #	Serial #	Calibration Due Date
0376	Power Sensor	Agilent	U2000A	MY51440005	28 th Oct 15
0390	Power Sensor	Agilent	U2002A	MY50000103	17 th Oct 15
0158	Barometer /Thermometer	Control Co.	4196	E2846	6 th Dec 14
0287	EMI Receiver	Rhode & Schwartz	ESIB40	100201	31 st Jul 15
0378	EMI Receiver	Rhode & Schwartz	ESIB40	100107/040	17 th Jul 15
0338	30 - 3000 MHz Antenna	Sunol	JB3	A052907	14 th Aug 15
0399	1-18 GHz Horn Antenna	EMCO	3117	00154575	10 th Oct 15
0252	SMA Cable	Megaphase	Sucoflex 104	None	N/A
0310	2m SMA Cable	Micro-Coax	UFA210A-0- 0787-3G03G0	209089-001	N/A
0312	3m SMA Cable	Micro-Coax	UFA210A-1- 1181-3G0300	209092-001	N/A
0314	30dB N-Type Attenuator	ARRA	N9444-30	1623	N/A
0502	EMC Test Software	EMISoft	Vasona	5.0051	N/A
0503	RF Conducted Test Software	National Instruments	Labview	Version 8.2	N/A
0398	RF Conducted Test Software	MiCOM Labs ATS		Version 1.8	N/A
0380	RF Switch	MiCOM Labs	MIC001	MIC001	20 th Dec 14

Serial #: ATHO02-U2 Rev A **Issue Date:** 14th January 2015

Page: 59 of 71

APPENDIX

A. SUPPORTING INFORMATION

A.1. CONDUCTED TEST PLOTS

To: FCC 47 CFR Part 15.247 & IC RSS-210

Stop 2404.000 MHz

Span 4.000 MHz

Serial #: ATHO02-U2 Rev A Issue Date: 14th January 2015

Page: 60 of 71

A.1.1. 6 dB & 99% Bandwidth

6 dB & 99% BANDWIDTH

Variant: Bluetooth Low Energy, Channel: 2402.00 MHz, Chain a, Temp: Ambient, Voltage: 3.8 Vdc Ref Level: 25 dBm RBW: 100 KHz Sweep Time: 10.0 s 18.6 dB Offset VBW: 300 KHz Date: 19 Nov 2014 -20 10 M2 D1: 2.246 dBm D2: -3.754 dBm -10 -20 -30 -40 -50 -70

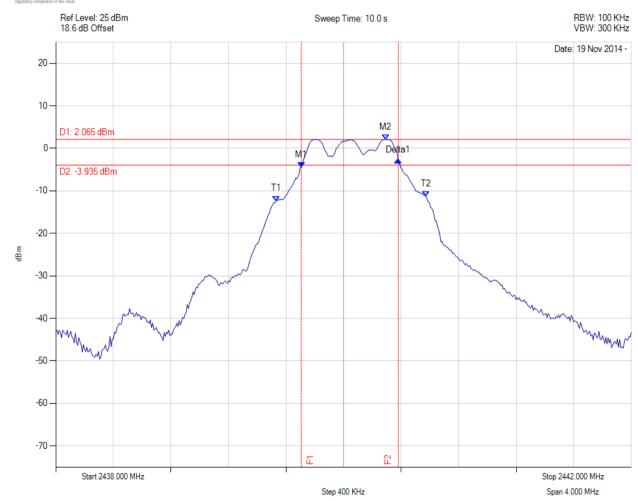
Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M2: 2401.804 MHz: 2.246 dBm	Measured 6 dB Bandwidth: 0.673 MHz Limit: ≥500.0 kHz Margin: -0.17 MHz

Step 400 KHz

Back to Matrix

Start 2400.000 MHz

To: FCC 47 CFR Part 15.247 & IC RSS-210


Serial #: ATHO02-U2 Rev A **Issue Date:** 14th January 2015

Page: 61 of 71

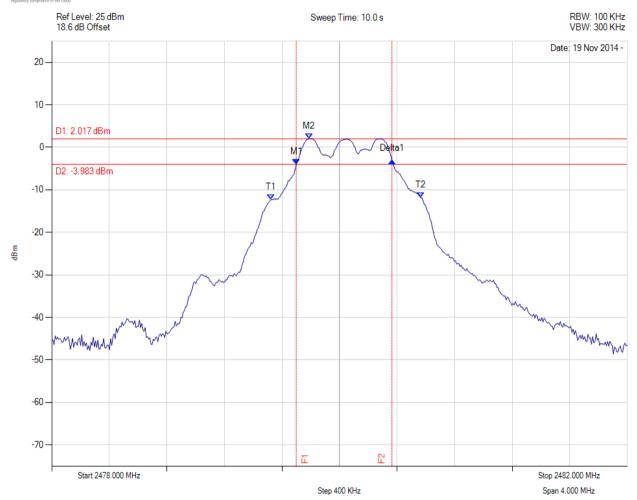
6 dB & 99% BANDWIDTH

MiTest

Variant: Bluetooth Low Energy, Channel: 2440.00 MHz, Chain a, Temp: Ambient, Voltage: 3.8 Vdc

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Sweep Count = 0 RF Atten (dB) = 20	M2: 2440.293 MHz: 2.065 dBm	Measured 6 dB Bandwidth: 0.673 MHz Limit: ≥500.0 kHz Margin: -0.17 MHz

To: FCC 47 CFR Part 15.247 & IC RSS-210


Serial #: ATHO02-U2 Rev A Issue Date: 14th January 2015

Page: 62 of 71

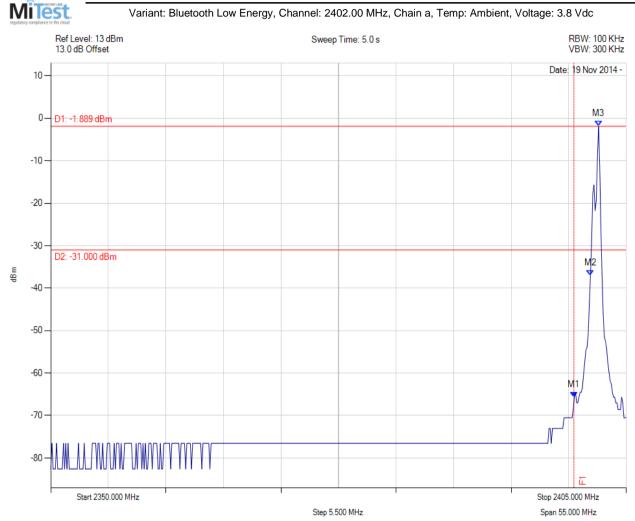
6 dB & 99% BANDWIDTH

MiTest

Variant: Bluetooth Low Energy, Channel: 2480.00 MHz, Chain a, Temp: Ambient, Voltage: 3.8 Vdc

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M2: 2479.788 MHz: 2.017 dBm	Measured 6 dB Bandwidth: 0.665 MHz Limit: ≥500.0 kHz Margin: -0.17 MHz

To: FCC 47 CFR Part 15.247 & IC RSS-210


Serial #: ATHO02-U2 Rev A Issue Date: 14th January 2015

Page: 63 of 71

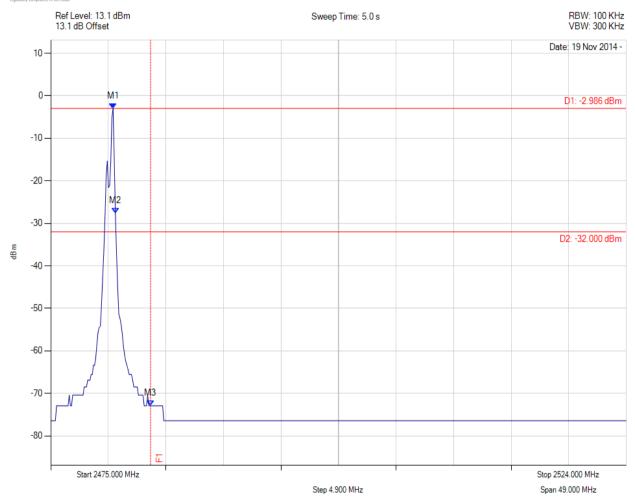
A.1.2. Conducted Spurious Emissions

CONDUCTED LOW BAND-EDGE EMISSIONS - AVERAGE

Variant: Bluetooth Low Energy, Channel: 2402.00 MHz, Chain a, Temp: Ambient, Voltage: 3.8 Vdc

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 10 Trace Mode = VIEW	M1 : 2400.000 MHz : -65.663 dBm M2 : 2401.583 MHz : -36.990 dBm M3 : 2402.355 MHz : -1.889 dBm	Channel Frequency: 2402.00 MHz

To: FCC 47 CFR Part 15.247 & IC RSS-210


Serial #: ATHO02-U2 Rev A Issue Date: 14th January 2015

Page: 64 of 71

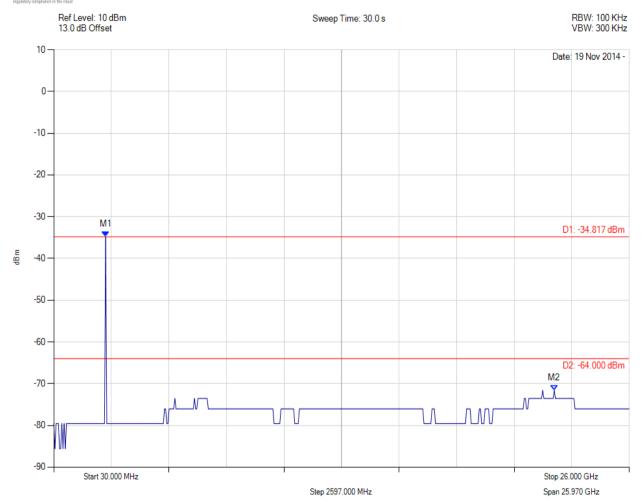
CONDUCTED HIGH BAND-EDGE EMISSIONS - AVERAGE

MiTest.

Variant: Bluetooth Low Energy, Channel: 2480.00 MHz, Chain a, Temp: Ambient, Voltage: 3.8 Vdc

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2480.303 MHz: -2.986 dBm	Channel Frequency: 2480.00 MHz
Sweep Count = 0	M2: 2480.499 MHz: -27.706 dBm	· ·
RF Atten (dB) = 10	M3: 2483.500 MHz: -72.923 dBm	
Trace Mode = VIEW		

To: FCC 47 CFR Part 15.247 & IC RSS-210


Serial #: ATHO02-U2 Rev A **Issue Date:** 14th January 2015

Page: 65 of 71

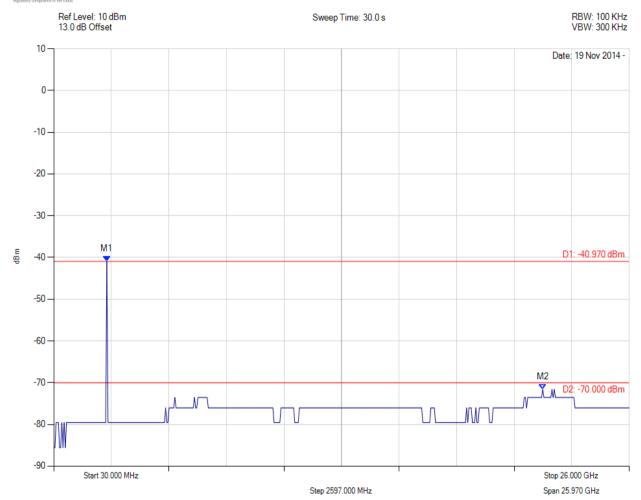
CONDUCTED SPURIOUS EMISSIONS - AVERAGE

MiTest.

Variant: Bluetooth Low Energy, Channel: 2402.00 MHz, Chain a, Temp: Ambient, Voltage: 3.8 Vdc

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2371.984 MHz: -34.817 dBm	Limit: -64.00 dBm
Sweep Count = 0	M2: 22.617 GHz: -71.586 dBm	Margin: -7.59 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		

To: FCC 47 CFR Part 15.247 & IC RSS-210


Serial #: ATHO02-U2 Rev A **Issue Date**: 14th January 2015

Page: 66 of 71

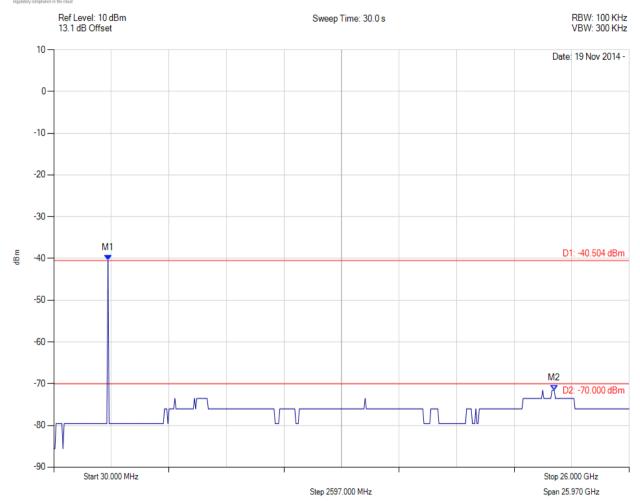
CONDUCTED SPURIOUS EMISSIONS - AVERAGE

MiTest

Variant: Bluetooth Low Energy, Channel: 2440.00 MHz, Chain a, Temp: Ambient, Voltage: 3.8 Vdc

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0	M1 : 2424.028 MHz : -40.970 dBm M2 : 22.097 GHz : -71.586 dBm	Limit: -70.00 dBm Margin: -1.59 dB
RF Atten (dB) = 10	WZ . 22.037 OHZ7 1.300 UDIII	Waigin1.39 db
Trace Mode = VIEW		

To: FCC 47 CFR Part 15.247 & IC RSS-210


Serial #: ATHO02-U2 Rev A **Issue Date:** 14th January 2015

Page: 67 of 71

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

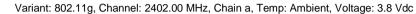
MiTest.

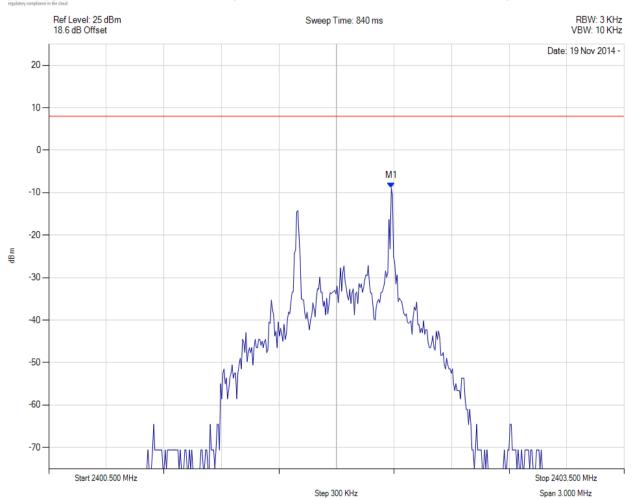
Variant: Bluetooth Low Energy, Channel: 2480.00 MHz, Chain a, Temp: Ambient, Voltage: 3.8 Vdc

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0	M1 : 2476.072 MHz : -40.504 dBm M2 : 22.617 GHz : -71.586 dBm	Limit: -70.00 dBm Margin: -1.59 dB
RF Atten (dB) = 10	WZ . 22.017 GHZ7 1.300 UBIII	Margin1.59 db
Trace Mode = VIEW		

MiTest

Title: Mad Apparel Inc. - Model A100


To: FCC 47 CFR Part 15.247 & IC RSS-210

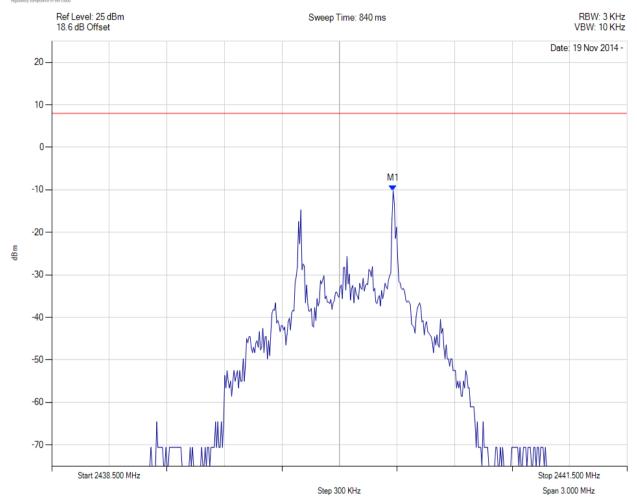

Serial #: ATHO02-U2 Rev A Issue Date: 14th January 2015

Page: 68 of 71

A.1.3. Power Spectral Density

POWER SPECTRAL DENSITY - AVERAGE

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2402.286 MHz: -8.924 dBm	Limit: ≤ 8.000 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		


To: FCC 47 CFR Part 15.247 & IC RSS-210

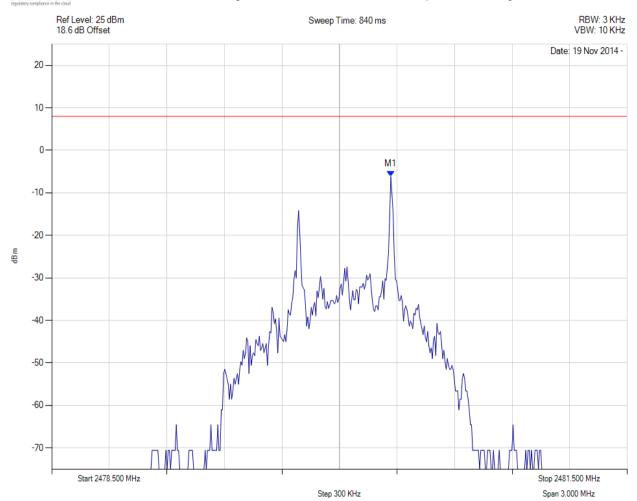
Serial #: ATHO02-U2 Rev A Issue Date: 14th January 2015

Page: 69 of 71

POWER SPECTRAL DENSITY - AVERAGE

Variant: 802.11g, Channel: 2440.00 MHz, Chain a, Temp: Ambient, Voltage: 3.8 Vdc

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2440.280 MHz: -10.166 dBm	Limit: ≤ 8.000 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		


To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ATHO02-U2 Rev A **Issue Date:** 14th January 2015

Page: 70 of 71

POWER SPECTRAL DENSITY - AVERAGE

Variant: 802.11g, Channel: 2480.00 MHz, Chain a, Temp: Ambient, Voltage: 3.8 Vdc

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2480.268 MHz: -6.127 dBm	Limit: ≤ 8.000 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

575 Boulder Court Pleasanton, California 94566, USA

Tel: 1.925.462.0304 Fax: 1.925.462.0306 www.micomlabs.com