

FCC PART 15.247 TEST REPORT

For

Zeeva International Limited

Suite 1007B,10th Floor, Exchange Tower, 33 Wang Chiu Road, Kowloon Bay, Hong Kong

FCC ID: 2ADM5-SP-0522

Report Type: Original Report		Product Type: BT LED FESTIVAL STK SPKR
Report Number:	<u>RSZ180112830</u>	-00
Report Date:		
	Candy Li	Candy. Cr
Reviewed By:	RF Engineer	V
Prepared By:	6/F., West Wing	3320018 3320008

Note: This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP* or any agency of the Federal Government. * This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "*".

Report No.: RSZ180112830-00

Bay Area Compliance Laboratories Corp. (Shenzhen)

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	
Test Methodology Measurement Uncertainty	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
Support Equipment List and Details External I/O Cable	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	9
FCC§15.247 (i), §1.1307 (b) (1) &§2.1093 – RF EXPOSURE	
APPLICABLE STANDARD	
FCC §15.203 – ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	11
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER SETUP	
Test Procedure Corrected Factor & Margin Calculation	
TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS	16
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
Test Procedure Corrected Amplitude & Margin Calculation	
TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.247(a) (1)-CHANNEL SEPARATION TEST	23
Applicable Standard	
TEST PROCEDURE	
TEST DATA	
FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	

FCC Part 15.247

Page 2 of 62

FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST	
Applicable Standard	
TEST PROCEDURE	
TEST DATA	
FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)	
Applicable Standard	
Test Procedure	
TEST DATA	
FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT	55
Applicable Standard	
Test Procedure	
TEST DATA	
FCC §15.247(d) - BAND EDGES TESTING	56
Applicable Standard	
Test Procedure	
TEST DATA	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The Zeeva International Limited's product, model number: SP-0522 (FCC ID: 2ADM5-SP-0522, UPC Number: 400029458712) in this report is a BT LED FESTIVAL STK SPKR, which was measured approximately: 29.8 cm (L) * 3.2 cm (W) *3.2 cm (H), rated with input voltage: DC 3.7 V from battery.

* All measurement and test data in this report was gathered from production sample serial number: 20180112830 (Assigned by BACL, Shenzhen). The EUT supplied by the applicant was received on 2018-01-12.

Objective

This test report is prepared on behalf of *Zeeva International Limited* in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

No Related Submittal(s)/Grant(s).

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter		uncertainty	
Occupied Channel Bandwidth		±5%	
RF Output Power	with Power meter	±0.5dB	
RF conducted test with spectrum		±1.5dB	
AC Power Lines Conducted Emissions		±1.95dB	
emissions,	Below 1GHz	±4.75dB	
radiated	Above 1GHz	±4.88dB	
Temperature		±3°C	
Humidity		±6%	
Supply	voltages	±0.4%	

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 382179, the FCC Designation No.: CN5001.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062B.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in engineering mode.

EUT Exercise Software

"RDA ToolKit 8.03.02" exercise software was used.

Special Accessories

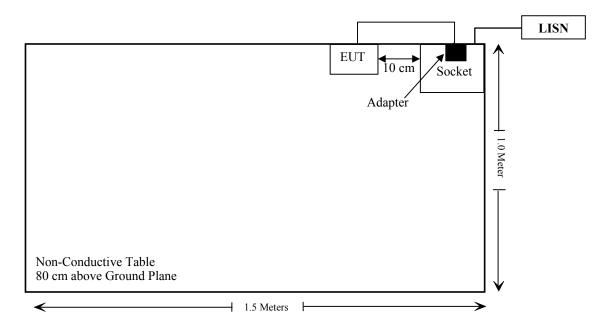
No special accessory.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
SKY	Adapter	N/A	N/A


External I/O Cable

Cable Description	Length (m)	From/Port	То
Un-Shielding Detachable USB Cable	0.5	EUT	Adapter

Report No.: RSZ180112830-00

Block Diagram of Test Setup

For conducted emission:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §2.1093	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.207(a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209 & §15.247(d)	Radiated Emissions	Compliance
§15.247(a)(1)	20 dB Emission Bandwidth	Compliance
§15.247(a)(1)	Channel Separation Test	Compliance
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliance
§15.247(b)(1)	Peak Output Power Measurement	Compliance
§15.247(d)	Band edges	Compliance

Report No.: RSZ180112830-00

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
Conducted Emissions Test						
Rohde & Schwarz	EMI Test Receiver	ESCS30	100176	2017-08-04	2018-08-04	
Rohde & Schwarz	LISN	ENV216	3560.6650.12- 101613-Yb	2017-12-07	2018-12-07	
Rohde & Schwarz	Transient Limiter	ESH3Z2	DE25985	2017-11-19	2018-05-17	
Rohde & Schwarz	CE Test software	EMC 32	V8.53.0	NCR	NCR	
N/A	Conducted Emission Cable	N/A	UF A210B-1- 0720-504504	2017-11-12	2018-05-12	
	Radia	ated Emission T	est			
Sunol Sciences	Horn Antenna	DRH-118	A052604	2017-12-29	2018-12-28	
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2017-04-24	2018-04-24	
Mini	Pre-amplifier	ZVA-183-S+	5969001149	2017-05-21	2018-05-21	
HP	Amplifier	HP8447E	1937A01046	2017-11-19	2018-05-17	
Sunol Sciences	Broadband Antenna	JB1	A040904-2	2017-12-13	2020-12-13	
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2017-12-07	2018-12-07	
Ducommun technologies	RF Cable	UFA210A-1- 4724-30050U	MFR64369 223410-001	2017-11-19	2018-05-17	
Ducommun technologies	RF Cable	104PEA	218124002	2017-11-19	2018-05-17	
Ducommun technologies	RF Cable	RG-214	1	2017-11-19	2018-05-17	
Ducommun technologies	RF Cable	RG-214	2	2017-11-22	2018-05-22	
Ducommun Technologies	Horn Antenna	ARH-4223- 02	1007726-04	2017-12-29	2020-12-28	
Ducommun Technologies	Pre-amplifier	ALN- 22093530-01	991373-01	2017-08-03	2018-08-03	
Sinoscite	Band Reject Filter	BSF2402- 2480MN- 0898-001	N/A	2017-05-21	2018-05-21	
	RF	Conducted Tes	t			
Agilent	P-Series Power Meter	N1912A	MY5000448	2017-12-05	2018-12-05	
Agilent	Wideband Power Sensor	N1921A	MY54210016	2017-12-05	2018-12-05	
WEINSCHEL	10dB Attenuator	5324	AU 3842	2017-11-22	2018-05-22	
Rohde & Schwarz	EMI Test Receiver	ESR	1316.3003K03 -101746-zn	2017-08-19	2018-08-19	
Ducommun technologies	RF Cable	RG-214	3	2017-11-22	2018-05-22	

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.247 (i), §1.1307 (b) (1) &§2.1093 – RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D01 General RF Exposure Guidance

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] ·

 $[\sqrt{f}(GHz)] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

For worst case:

Frequency	Maximum Tune-up power		Calculated Distance	Calculated	Threshold	SAR Test
(MHz)	(dBm)	(mW)	(mm) value		(1-g SAR)	Exclusion
2480	3.10	2.04	5.0	0.64	3.0	Yes

Result: No Standalone SAR test is required

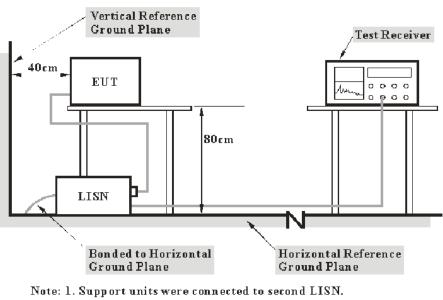
FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

The EUT has one PCB antenna arrangement for bluetooth which was permanently attached and the antenna gain is 0 dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliance.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W	
150 kHz – 30 MHz	9 kHz	

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Correction Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

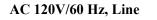
Test Results Summary

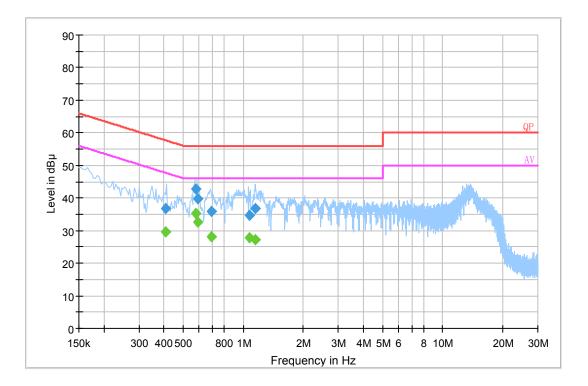
According to the recorded data in following table, the EUT complied with the FCC Part 15.207,

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level complies with the limit if

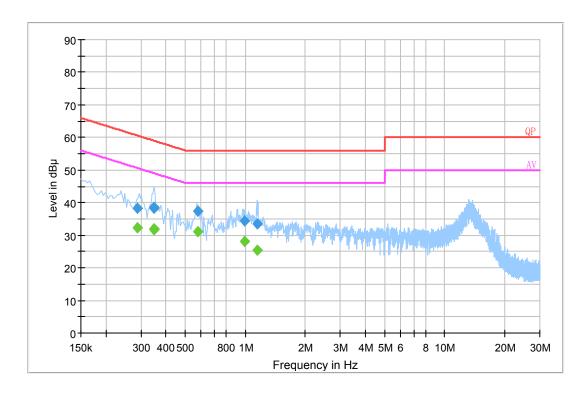
$$L_{\rm m} + U_{(Lm)} \leq L_{\rm lim} + U_{\rm cispr}$$

In BACL, $U_{(Lm)}$ is less than U_{cispr} , if L_{m} is less than L_{lim} , it implies that the EUT complies with the limit.


Test Data


Environmental Conditions

Temperature:	22 °C
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa


The testing was performed by Nancy Wang on 2018-01-16.

EUT operation mode: Charging and transmitting

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
0.407790	36.7	20.2	57.7	21.0	QP
0.577330	42.6	20.1	56.0	13.4	QP
0.589030	39.8	20.1	56.0	16.2	QP
0.691710	36.0	20.0	56.0	20.0	QP
1.070070	34.7	20.1	56.0	21.3	QP
1.148810	36.8	20.1	56.0	19.2	QP
0.407790	29.7	20.2	47.7	18.0	Ave.
0.577330	35.2	20.1	46.0	10.8	Ave.
0.589030	32.7	20.1	46.0	13.3	Ave.
0.691710	28.1	20.0	46.0	17.9	Ave.
1.070070	27.7	20.1	46.0	18.3	Ave.
1.148810	27.3	20.1	46.0	18.7	Ave.

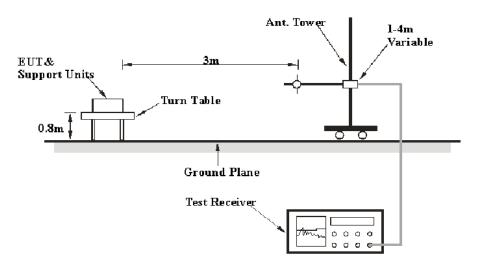
AC 120V/60 Hz, Neutral

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
0.289500	38.2	20.2	60.5	22.3	QP
0.348690	38.7	20.2	59.0	20.3	QP
0.348750	38.3	20.2	59.0	20.7	QP
0.577450	37.4	20.1	56.0	18.6	QP
0.987210	34.4	20.1	56.0	21.6	QP
1.152810	33.5	20.1	56.0	22.5	QP
0.289500	32.4	20.2	50.5	18.1	Ave.
0.348690	32.1	20.2	49.0	16.9	Ave.
0.348750	31.7	20.2	49.0	17.3	Ave.
0.577450	31.2	20.1	46.0	14.8	Ave.
0.987210	28.0	20.1	46.0	18.0	Ave.
1.152810	25.5	20.1	46.0	20.5	Ave.

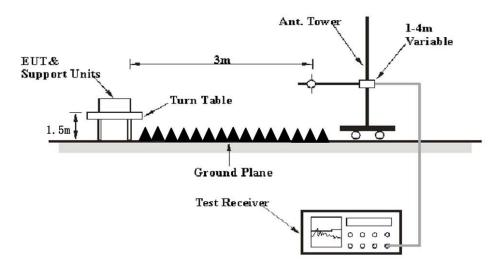
Note:

1) Correction Factor =LISN VDF (Voltage Division Factor) + Cable Loss + Transient Limiter Attenuation

2) Corrected Amplitude = Reading + Correction Factor
3) Margin = Limit - Corrected Amplitude


FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS

Applicable Standard


FCC §15.205; §15.209; §15.247(d)

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, 205 and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	РК
	1 MHz	10 Hz	/	Ave.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

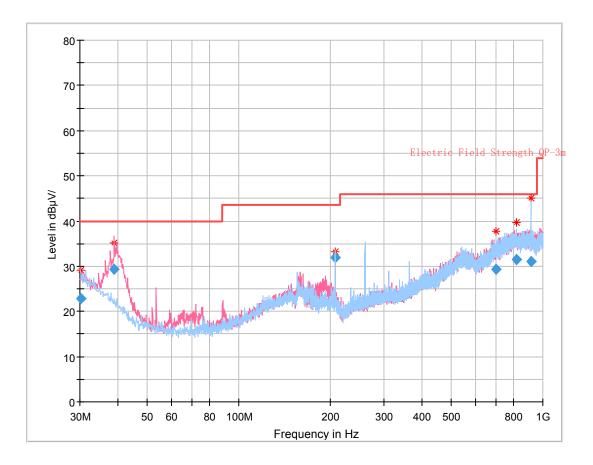
Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.247.

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level complies with the limit if

$$L_{\rm m} + U_{(Lm)} \leq L_{\rm lim} + U_{\rm cispr}$$

In BACL, $U_{(Lm)}$ is less than U_{cispr} , if L_{m} is less than L_{lim} , it implies that the EUT complies with the limit.


Test Data

Environmental Conditions

Temperature:	22 °C
Relative Humidity:	56 %
ATM Pressure:	100.0 kPa

The testing was performed by Nancy Wang on 2018-02-01.

EUT operation mode: Transmitting (Scan with GFSK, \pi/4-DQPSK, 8DPSK the worst case was GFSK mode) **30 MHz - 1GHz:** (GFSK mode, Middle channel)

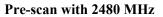
Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna height (cm)	Antenna Polarity	Turntable position (degree)	Correction Factor (dB/m)	Limit (dBµV/m)	Margin (dB)
30.324375	22.77	363.0	Н	290.0	0.1	40.00	17.23
38.953500	29.28	105.0	V	137.0	-5.4	40.00	10.72
208.001750	31.85	210.0	Н	111.0	-5.8	43.50	11.65
702.958875	29.43	309.0	Н	176.0	6.7	46.00	16.57
820.430125	31.50	268.0	Н	21.0	9.0	46.00	14.50
912.002375	31.04	379.0	Н	21.0	9.3	46.00	14.96

Report No.: RSZ180112830-00

1 GHz – 25 GHz:

Frequency	Re	eceiver	Turntable Rx Antenna		Correction Corrected		C Part //205/209		
(MHz)	Reading (dBµV)	PK/QP/Ave.	Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			Low Ch	nannel (1	2402 M	Hz)			
2402.00	60.46	РК	37	2.0	Н	33.92	94.38	/	/
2402.00	50.58	AV	37	2.0	Н	33.92	84.50	/	/
2402.00	56.92	РК	358	1.6	V	33.92	90.84	/	/
2402.00	46.84	AV	358	1.6	V	33.92	80.76	/	/
2374.64	28.12	РК	115	1.3	Н	33.92	62.04	74	11.96
2374.64	14.12	Ave.	115	1.3	Н	33.92	48.04	54	5.96
2489.84	27.04	РК	321	2.1	Н	34.08	61.12	74	12.88
2489.84	13.56	Ave.	321	2.1	Н	34.08	47.64	54	6.36
4804.00	57.68	РК	59	2.1	Н	5.84	63.52	74	10.48
4804.00	43.65	Ave.	354	1.9	Н	5.84	49.49	54	4.51
		•	Middle (Channel	(2441]	MHz)			
2441.00	59.68	РК	88	1.6	Н	33.92	93.60	/	/
2441.00	49.10	AV	88	1.6	Н	33.92	83.02	/	/
2441.00	57.08	РК	109	2.0	V	33.92	91.00	/	/
2441.00	46.16	AV	109	2.0	V	33.92	80.08	/	/
4882.00	57.23	PK	313	2.2	Н	6.21	63.44	74	10.56
4882.00	42.10	Ave.	313	2.2	Н	6.21	48.31	54	5.69
		•	High Cl	nannel (2480 M	(Hz)			
2480.00	60.72	РК	124	2.0	Н	34.08	94.80	/	/
2480.00	49.50	AV	124	2.0	Н	34.08	83.58	/	/
2480.00	56.57	РК	102	1.3	V	34.08	90.65	/	/
2480.00	46.16	AV	102	1.3	V	34.08	80.24	/	/
2381.90	27.62	РК	170	2.3	Н	33.92	61.54	74	12.46
2381.90	14.25	Ave.	170	2.3	Н	33.92	48.17	54	5.83
2489.33	28.01	РК	329	1.6	Н	34.08	62.09	74	11.91
2489.33	13.67	Ave.	329	1.6	Н	34.08	47.75	54	6.25
4960.00	56.34	РК	294	1.6	Н	7.82	64.16	74	9.84
4960.00	42.11	Ave.	294	1.6	Н	7.82	49.93	54	4.07

Note:

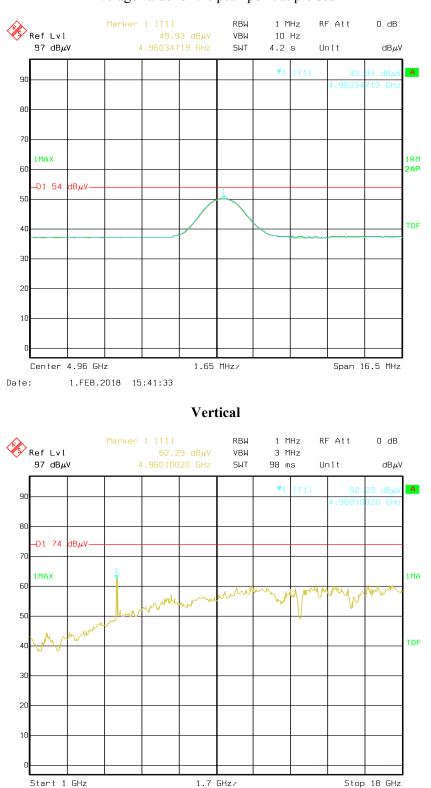

Corrected Factor = Antenna factor (RX) + Cable Loss - Amplifier Factor

Corrected Amplitude = Corrected Factor + Reading

Margin = Limit - Corrected. Amplitude

The other spurious emission which is 20dB to the limit was not recorded. And for the pre-scan is performed with the 2400-2483.5MHz band filter.

Report No.: RSZ180112830-00

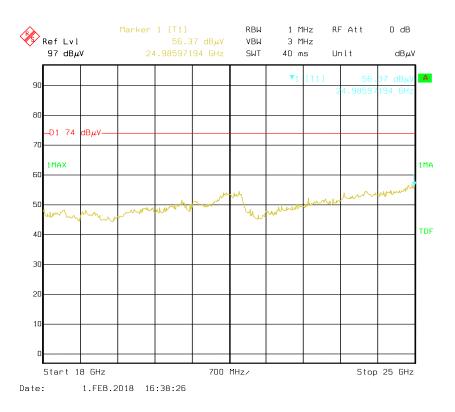


Horizontal

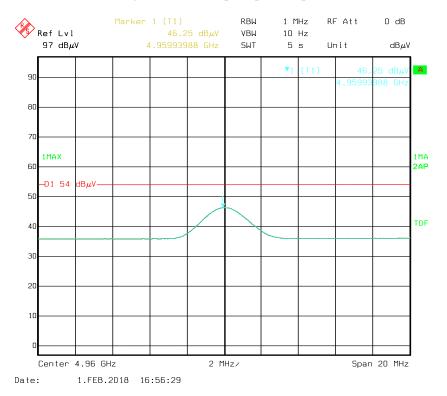
FCC Part 15.247

Page 20 of 62

Average value for the peak point at pre-scan


FCC Part 15.247

Date:


1.FEB.2018 16:05:08

Page 21 of 62

Report No.: RSZ180112830-00

Average value for the peak point at pre-scan

FCC Part 15.247

Page 22 of 62

FCC §15.247(a) (1)-CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW.

Test Procedure

- 1.
- Set the EUT in transmitting mode, maxhold the channel. Set the adjacent channel of the EUT and maxhold another trace. 2.
- 3. Measure the channel separation.

Test Data

Environmental Conditions

Temperature:	22 °C
Relative Humidity:	56 %
ATM Pressure:	101.0 kPa

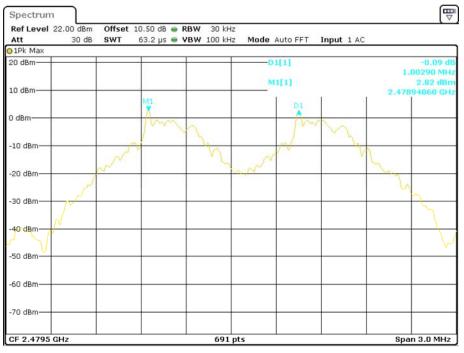
The testing was performed by Nancy Wang on 2018-01-31.

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following table and plots

Mode	Channel	Frequency (MHz)	Channel Separation (MHz)	≥Limit (MHz)	Result
	Low	2402	1.003	0.550	Pass
	Adjacent	2403	1.003	0.550	rass
BDR	Middle	2441	1.003	0.559	Pass
(GFSK)	Adjacent	2442	1.003	0.339	Pass
	High	2480	1.002	0.561	Dees
	Adjacent	2479	1.003	0.561	Pass
	Low	2402	1.002	0.757	Pass
	Adjacent	2403	1.003		
EDR	Middle	2441	1.000	0.757 0.759	Pass Pass
(π/4-DQPSK)	Adjacent	2442	1.003		
	High	2480	1.002		
	Adjacent	2479	1.003		
	Low	2402	1.002	0.77(D
	Adjacent	2403	1.003	0.776	Pass
EDR	Middle	2441	1.003	0.777	Daga
(8DPSK)	Adjacent	2442	1.003		Pass
	High	2480	1.002	0.776	Degg
	Adjacent	2479	1.003	0.776	Pass

Note: Limit = 20 dB bandwidth *2/3

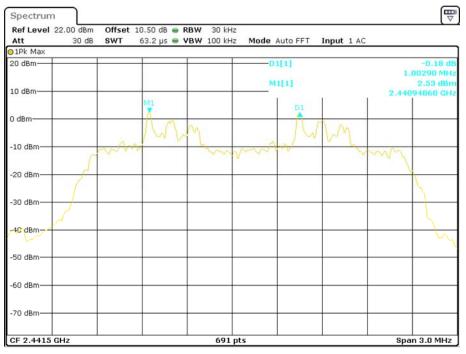


BDR (GFSK): Low Channel

Date: 31.JAN.2018 10:11:14

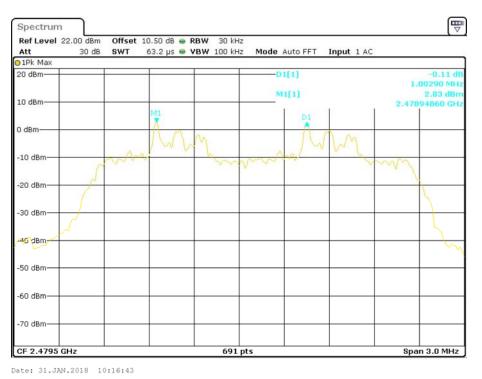


BDR (GFSK): High Channel


Date: 31.JAN.2018 10:12:42

EDR (π /4-DQPSK): Low Channel

FCC Part 15.247


Page 26 of 62

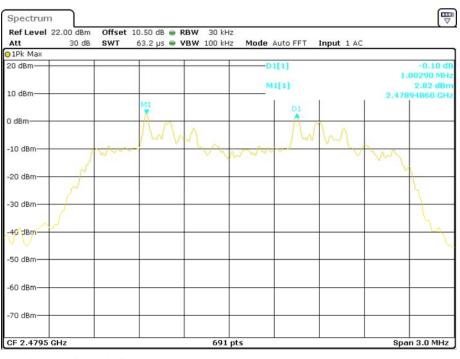
EDR (π /4-DQPSK): Middle Channel

Date: 31.JAN.2018 10:16:02

EDR (π/4-DQPSK): High Channel

FCC Part 15.247

Page 27 of 62



EDR (8DPSK): Low Channel

Date: 31.JAN.2018 10:17:27

EDR (8DPSK): Middle Channel

EDR (8DPSK): High Channel

Date: 31.JAN.2018 10:18:45

FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

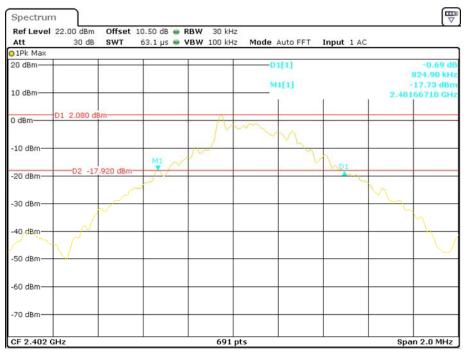
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

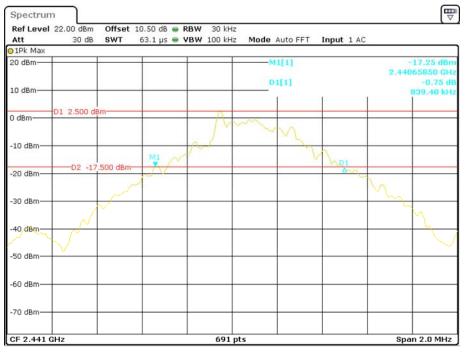
Environmental Conditions

Temperature:	22 °C
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa

The testing was performed by Nancy Wang on 2018-01-31.


EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following table and plots


Report No.: RSZ180112830-00

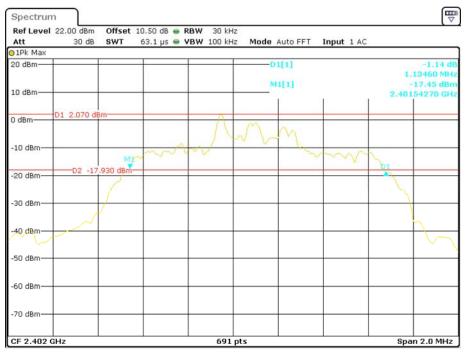
Mode	Channel	Frequency (MHz)	20 dB Emission Bandwidth (MHz)
	Low	2402	0.825
BDR (GFSK)	Middle	2441	0.839
(01.511)	High	2480	0.842
	Low	2402	1.135
EDR (π/4-DQPSK)	Middle	2441	1.135
(, 1 2 (1)	High	2480	1.138
	Low	2402	1.164
EDR (8DPSK)	Middle	2441	1.166
()	High	2480	1.164

BDR (GFSK): Low Channel


Date: 31.JAN.2018 09:13:32

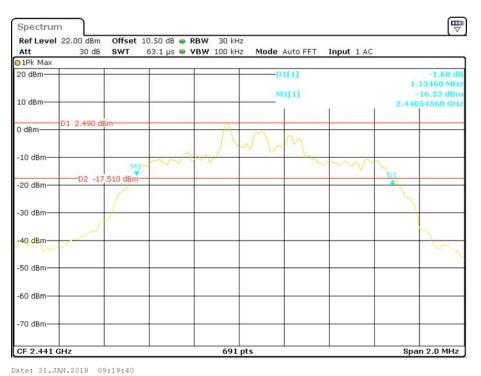
BDR (GFSK): Middle Channel

Date: 31.JAN.2018 09:15:19


BDR (GFSK): High Channel

Date: 31.JAN.2018 09:16:41

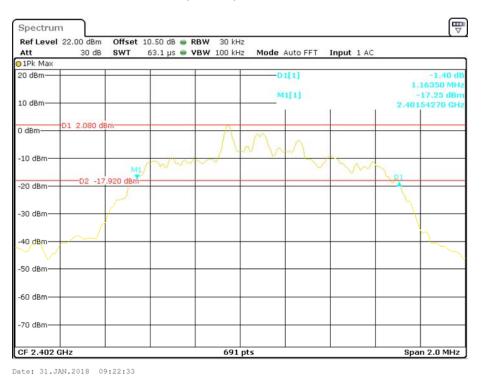
FCC Part 15.247


Page 32 of 62

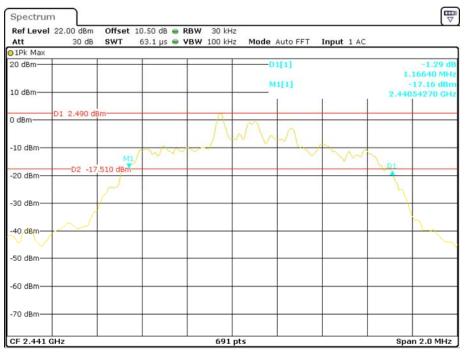
EDR (π /4-DQPSK): Low Channel

Date: 31.JAN.2018 09:18:15

EDR (π/4-DQPSK): Middle Channel

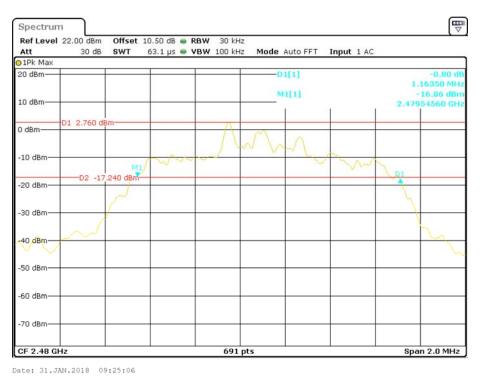


EDR (π/4-DQPSK): High Channel


Date: 31.JAN.2018 09:21:02

EDR (8DPSK): Low Channel

FCC Part 15.247


Page 34 of 62

EDR (8DPSK): Middle Channel

Date: 31.JAN.2018 09:23:44

EDR (8DPSK): High Channel

FCC Part 15.247

Page 35 of 62

FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

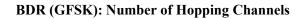
- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

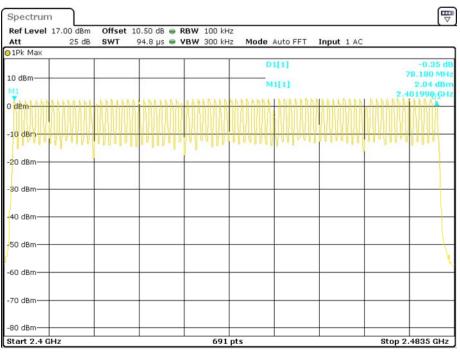
Test Data

Environmental Conditions

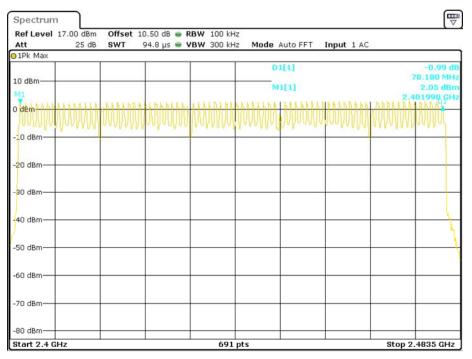
Temperature:	22 °C	
Relative Humidity:	52 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Nancy Wang on 2018-01-31.

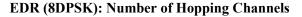

EUT operation mode: Transmitting

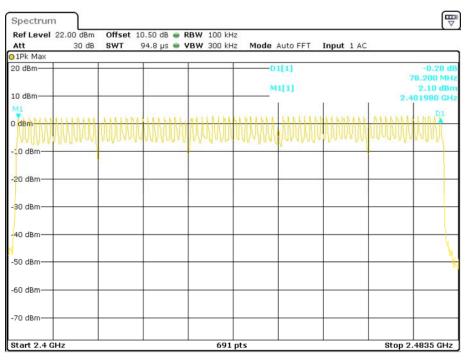

Test Result: Compliance. Please refer to following table and plots

Bay Area Compliance Laboratories Corp. (Shenzhen)


Report No.: RSZ180112830-00

Mode	Frequency Range (MHz)	Number of Hopping Channel (CH)	Limit (CH)	
BDR (GFSK)	2400-2483.5	79	≥15	
EDR $(\pi/4-DQPSK)$	2400-2483.5	79	≥15	
EDR (8DPSK)	2400-2483.5	79	≥15	




Date: 31.JAN.2018 08:47:05

EDR (π/4-DQPSK): Number of Hopping Channels

Date: 31.JAN.2018 08:51:45

Date: 31.JAN.2018 08:56:37

Bay Area Compliance Laboratories Corp. (Shenzhen)

FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 1. The EUT was worked in channel hopping.
- 2. Set the RBW to: 1MHz.
- 3. Set the VBW $\geq 3 \times RBW$.
- 4. Set the span to 0Hz.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Recorded the time of single pulses

Test Data

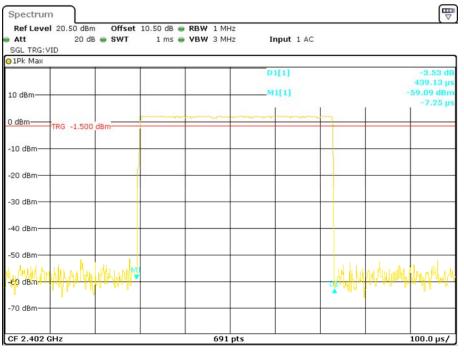
Environmental Conditions

Temperature:	22 °C		
Relative Humidity:	52 %		
ATM Pressure:	101.0 kPa		

The testing was performed by Nancy Wang on 2018-01-31.

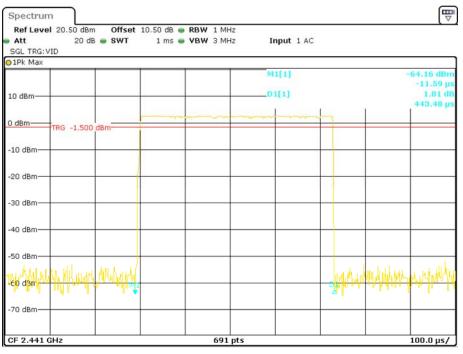
EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following table and plots


Bay Area Compliance Laboratories Corp. (Shenzhen)

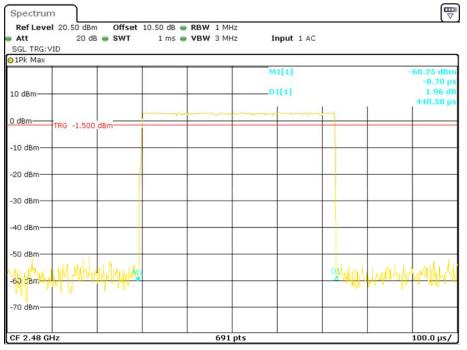
Report No.: RSZ180112830-00

Mode	2	Channel	Pulse Width (ms)	Dwell Time (S)	Limit (S)	Result			
		Low	0.439	0.140	0.4	Pass			
	DUI 1	Middle	0.443	0.142	0.4	Pass			
	DH 1	High	0.441	0.141	0.4	Pass			
		Note: DH1:Dwell time = Pulse time*(1600/2/79)*31.6S							
		Low	1.730	0.277	0.4	Pass			
BDR		Middle	1.730	0.277	0.4	Pass			
(GFSK)	DH 3	High	1.730	0.277	0.4	Pass			
		Note:	DH3:Dwell time = P	ulse time*(1600/	4/79)*31.6S				
		Low	2.974	0.317	0.4	Pass			
	DU 5	Middle	2.974	0.317	0.4	Pass			
	DH 5	High	2.974	0.317	0.4	Pass			
		Note:	DH5:Dwell time = P	ulse time*(1600/	6/79)*31.6S				
		Low	0.459	0.147	0.4	Pass			
	2DH 1	Middle	0.461	0.148	0.4	Pass			
		High	0.464	0.148	0.4	Pass			
		Note: 2DH1:Dwell time = Pulse time*(1600/2/79)*31.6S							
		Low	1.726	0.276	0.4	Pass			
EDR	2DH 3	Middle	1.735	0.278	0.4	Pass			
$(\pi/4-DQPSK)$		High	1.717	0.275	0.4	Pass			
		Note: 2DH3:Dwell time = Pulse time*(1600/4/79)*31.6S							
	2DH 5	Low	2.991	0.319	0.4	Pass			
		Middle	2.991	0.319	0.4	Pass			
		High	2.991	0.319	0.4	Pass			
		Note:2DH5:Dwell time = Pulse time*(1600/6/79)*31.6S							
		Low	0.462	0.148	0.4	Pass			
	3DH 1	Middle	0.452	0.145	0.4	Pass			
		High	0.458	0.147	0.4	Pass			
		Note: 3DH1:Dwell time = Pulse time* $(1600/2/79)$ *31.6S							
		Low	1.730	0.277	0.4	Pass			
EDR	2011.2	Middle	1.722	0.276	0.4	Pass			
(8DPSK)	3DH 3	High	1.726	0.276	0.4	Pass			
		Note: 3	DH3:Dwell time = I	Pulse time*(1600	/4/79)*31.6S				
		Low	2.974	0.317	0.4	Pass			
	2011.6	Middle	2.986	0.319	0.4	Pass			
	3DH 5	High	2.986	0.319	0.4	Pass			
		-	DH5:Dwell time = I	Pulse time*(1600	/6/79)*31.6S				


BDR (GFSK):

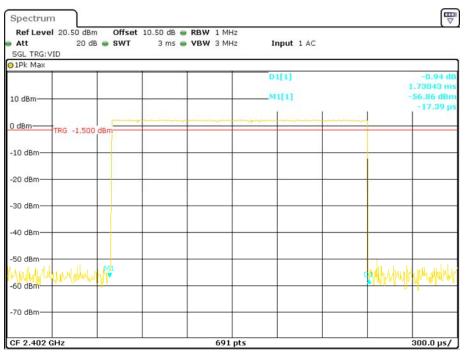
Pulse time, Low Channel, DH1

Date: 31.JAN.2018 10:26:01


Pulse time, Middle Channel, DH1

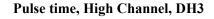
Date: 31.JAN.2018 10:26:45

FCC Part 15.247


Page 41 of 62

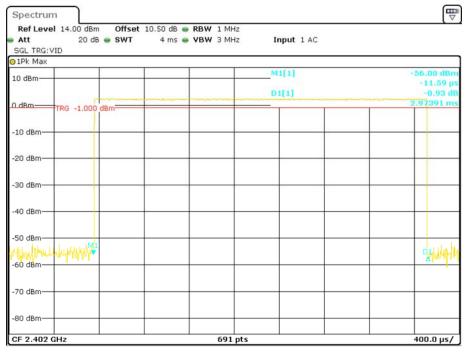
Pulse time, High Channel, DH1

Date: 31.JAN.2018 10:27:25



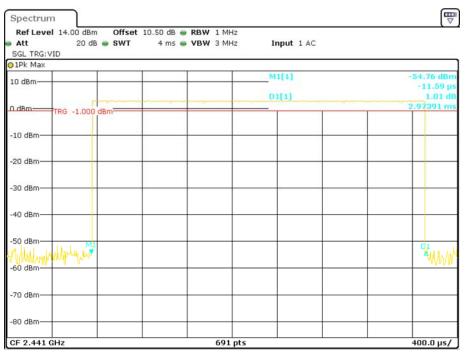
Date: 31.JAN.2018 10:38:50

₽ Spectrum Ref Level 20.50 dBm Offset 10.50 dB 🖷 RBW 1 MHz Att 20 dB 👄 SWT 3 ms 👄 VBW 3 MHz Input 1 AC SGL TRG: VID 01Pk Max D1[1] 1.73043 m M1[1] -54.98 dB 10 dBm-17.39 0 dBm-TRG -1.500 dBr -10 dBm--20 dBm--30 dBm--40 dBm· -50 dBmwindhill 1 -60 dBm--70 dBm-CF 2.441 GHz 691 pts 300.0 µs/ Date: 31.JAN.2018 10:39:25


Pulse time, Middle Channel, DH3

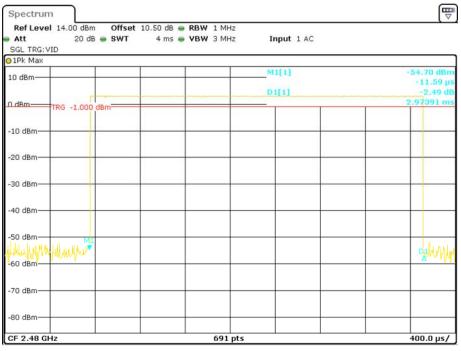
Spectrum Ref Level 20.50 dBm Offset 10.50 dB 🖷 RBW 1 MHz Att 20 dB 👄 SWT 3 ms 👄 VBW 3 MHz Input 1 AC SGL TRG: VID 01Pk Max D1[1] 1.73043 m -59.79 dBr M1[1] 10 dBm-17.39 0 dBm-TRG -1.500 dBr -10 dBm--20 dBm -30 dBm--40 dBm· -50 dBm-Helmohr NaAilwa hallen han ber -60 dBm -70 dBm· CF 2.48 GHz 691 pts 300.0 µs/

Date: 31.JAN.2018 10:40:48


Report No.: RSZ180112830-00

Pulse time, Low Channel, DH5

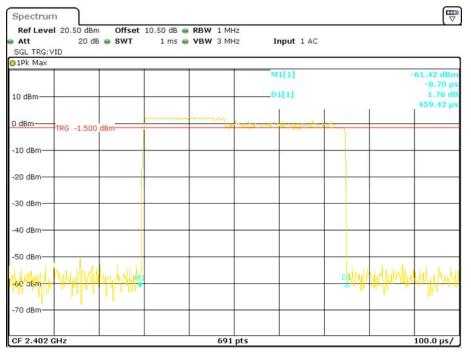
Date: 31.JAN.2018 11:01:41



Date: 31.JAN.2018 11:02:19

FCC Part 15.247

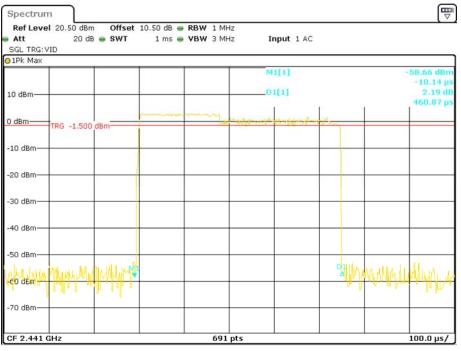
Page 44 of 62



Pulse time, High Channel, DH5

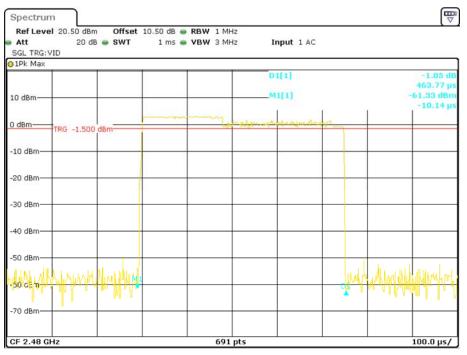
Date: 31.JAN.2018 11:02:56

EDR (π /4-DQPSK):

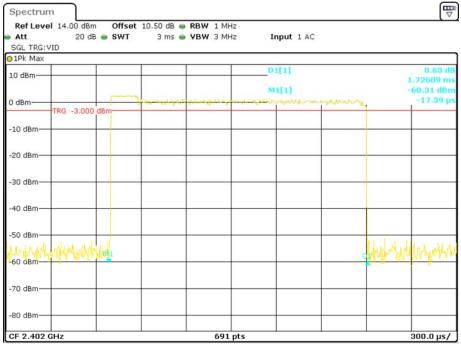

Pulse time, Low Channel, 2DH1

Date: 31.JAN.2018 10:36:02

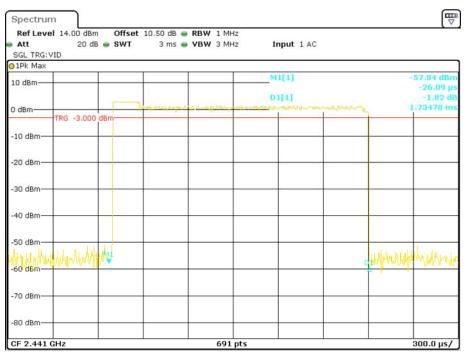
FCC Part 15.247


Page 45 of 62

Pulse time, Middle Channel, 2DH1

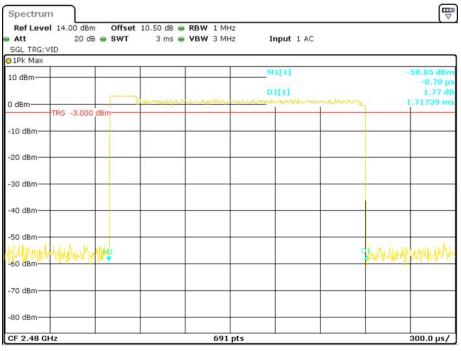

Date: 31.JAN.2018 10:36:44

Date: 31.JAN.2018 10:37:22


Report No.: RSZ180112830-00

Pulse time, Low Channel, 2DH3

Date: 31.JAN.2018 10:46:24



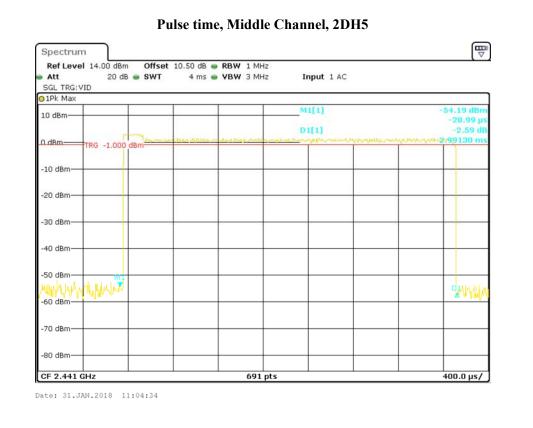
Date: 31.JAN.2018 10:47:40

FCC Part 15.247

Page 47 of 62

Pulse time, High Channel, 2DH3

Date: 31.JAN.2018 10:48:16

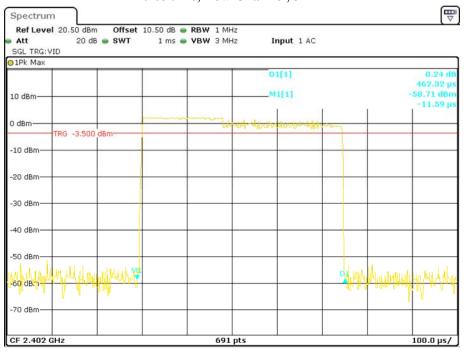


Ref Leve Att SGL TRG:\ 1Pk Max		n Offset B 🖷 SWT		RBW 1 MHz VBW 3 MHz	Input 1 AC		
10 dBm					M1[1] D1[1]		56.65 dBn -28.99 µs 0.09 dE
0.dBm	TRG -1.000	dBm ^{dbarrach}	<u></u>	h degaingt is see and sich is second		and a many disk of the Registration of the Reg	99130 m
-20 dBm							
-30 dBm—							
-40 dBm—							
-50 dBm	phyraph (grythe
-70 dBm—							
-80 dBm—							

Date: 31.JAN.2018 11:03:55

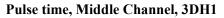
FCC Part 15.247

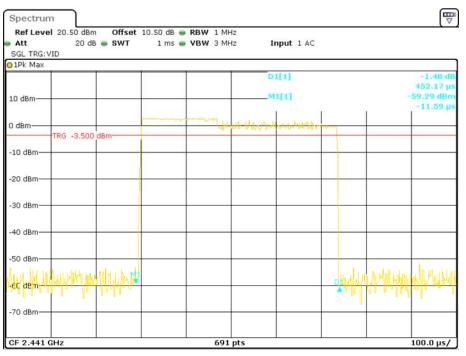
Page 48 of 62


Pulse time, High Channel, 2DH5

SGL TRG:	VID						
10 dBm					M1[1]		-55.32 dBn -28.99 μs -0.23 dB
1 dBm	TRG -1.000	dBm	manyana a	and the state of t	inen makananan	and and the second second	2:99130 ms
10 dBm—					-		
-20 dBm—							
30 dBm—							
40 dBm—							
50 dBm-							224M/r

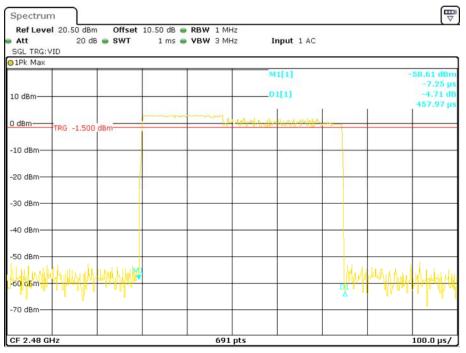
Date: 31.JAN.2018 11:05:10


FCC Part 15.247

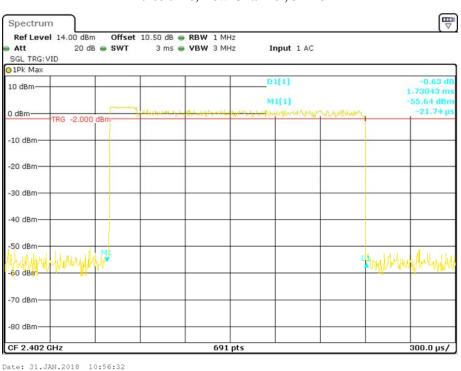

Page 49 of 62

EDR (8DPSK): Pulse time, Low Channel, 3DH1

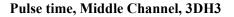
Date: 31.JAN.2018 10:32:15

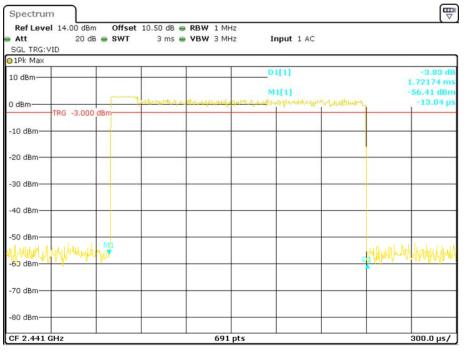


Date: 31.JAN.2018 10:32:49

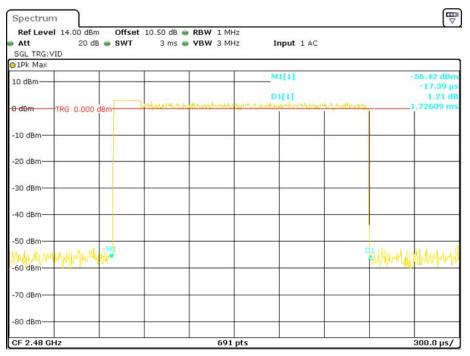

FCC Part 15.247

Page 50 of 62

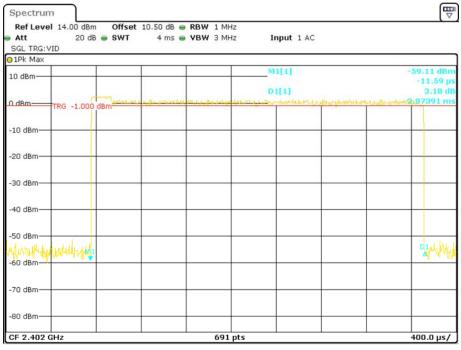



Pulse time, High Channel, 3DH1

Date: 31.JAN.2018 10:35:03

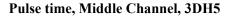

Pulse time, Low Channel, 3DH3

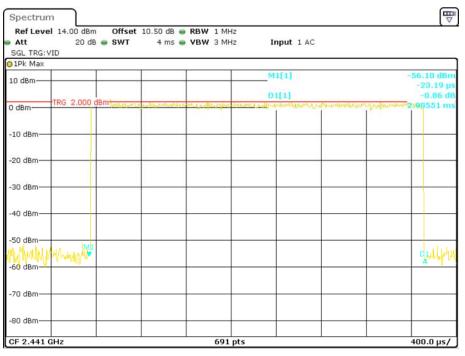
Date: 31.JAN.2018 10:49:50



Date: 31.JAN.2018 10:50:40

FCC Part 15.247

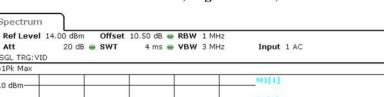

Page 52 of 62


Report No.: RSZ180112830-00

Pulse time, Low Channel, 3DH5

Date: 31.JAN.2018 11:06:13

Date: 31.JAN.2018 11:07:37


FCC Part 15.247

Page 53 of 62

Spectrum

SGL TRG: VID 01Pk Max

Att

Pulse time, High Channel, 3DH5

Date: 31.JAN.2018 11:08:32

10 dBm-23.19 D1[1] 3.28 TRG 2.000 dB 551 r 0 dBm--10 dBm--20 dBm--30 dBm--40 dBm -50 dBm· unduud datt -60 dBm· -70 dBm--80 dBm-CF 2.48 GHz 691 pts 400.0 µs/

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Test Procedure

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	22 °C		
Relative Humidity:	52 %		
ATM Pressure:	101.0 kPa		

The testing was performed by Nancy Wang on 2018-01-30.

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following table.

Mode	Channel	Frequency (MHz)	Reading power (dBm)	Reading power (mW)	Limit (mW)
	Low	2402	2.24	1.67	125
GFSK	Middle	2441	2.73	1.87	125
	High	2480	3.02	2.00	125
	Low	2402	2.24	1.67	125
π/4-DQPSK	Middle	2441	2.75	1.88	125
	High	2480	2.96	1.98	125
	Low	2402	2.20	1.66	125
8DPSK	Middle	2441	2.72	1.66	125
	High	2480	2.96	1.98	125

FCC §15.247(d) - BAND EDGES TESTING

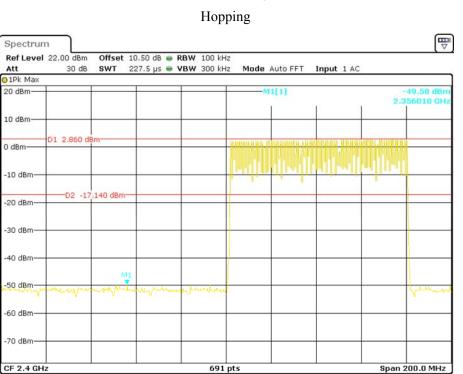
Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

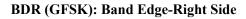

Environmental Conditions

Temperature:	22 °C		
Relative Humidity:	52 %		
ATM Pressure:	101.0 kPa		

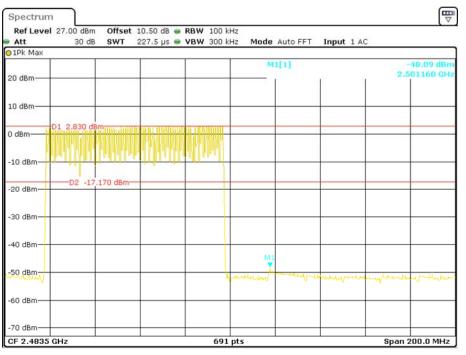
The testing was performed by Nancy Wang on 2018-01-31.

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following plots.

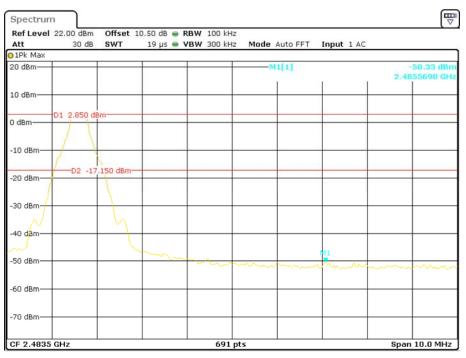

BDR (GFSK): Band Edge-Left Side

Date: 31.JAN.2018 09:49:09

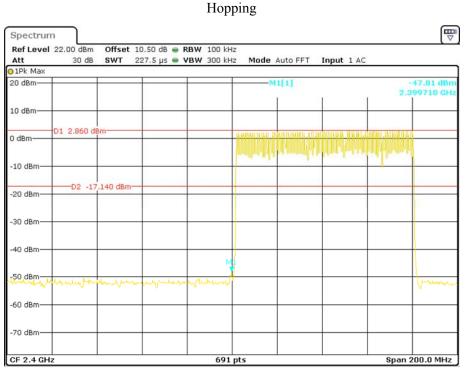

Single

Att	22.00 dBm 30 dB		0.50 dB 👄 R 19 µs 👄 V		Auto FFT	Input 1 AC		
1Pk Max								
0 dBm				 M	1[1]			48.46 dBn 99860 GH
0 dBm								
dBm	D1 2.070 dl	Bm		 	ſ			
10 dBm				 		<u> </u>		
20 dBm	D2 -17	.930 dBm				\rightarrow		
30 dBm					-	-		
40 dBm				 . /	\sim	(η	
50 dBm			mm	 			~~~	
60 dBm								

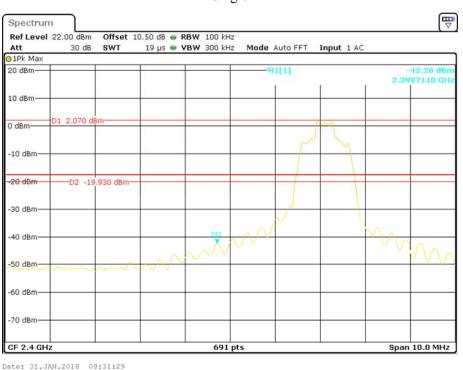
Date: 31.JAN.2018 09:27:50



Date: 31.JAN.2018 11:17:03

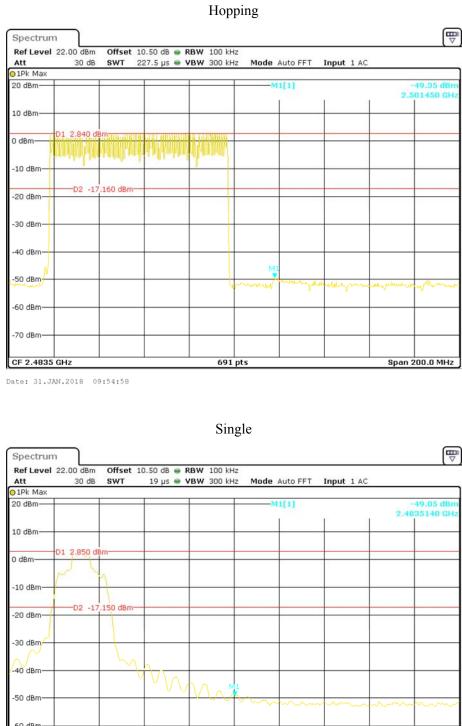


Date: 31.JAN.2018 09:29:36


FCC Part 15.247

Page 58 of 62

EDR (π/4-DQPSK): Band Edge-Left Side

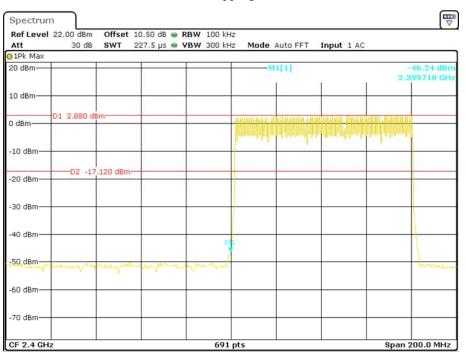

Date: 31.JAN.2018 09:57:55

Single

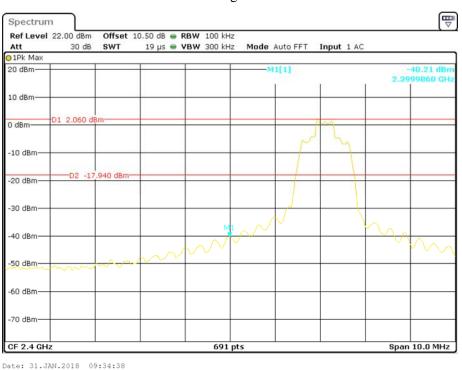
FCC Part 15.247

Page 59 of 62

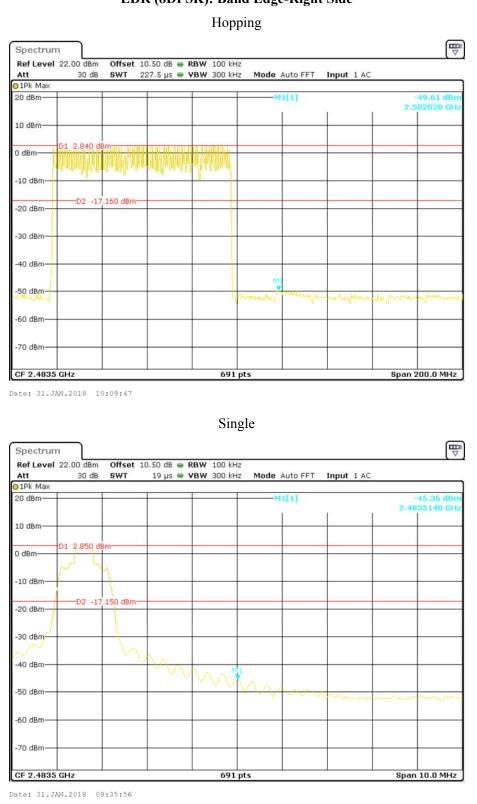
EDR (π/4-DQPSK): Band Edge-Right Side


-60 dBm--70 dBm-CF 2.4835 GHz 691 pts Span 10.0 MHz Date: 31.JAN.2018 09:32:44

FCC Part 15.247


Page 60 of 62

Hopping


Date: 31.JAN.2018 10:07:59

FCC Part 15.247

Page 61 of 62

EDR (8DPSK): Band Edge-Right Side

***** END OF REPORT *****

FCC Part 15.247

Page 62 of 62