

TEST REPORT

Applicant Name : Address : Zeeva International Limited Suite 1007B, 10th Floor, Exchange Tower, 33 Wang Chiu Road, Kowloon Bay, Hong Kong SZ3220727-34163E-RF 2ADM5-SP-0452

Report Number : FCC ID:

Test Standard (s) FCC PART 15.247

Sample Description

Product Type: Test Model: Date Received: Date of Test: Report Date: BT LED ROUND SPEAKER SP-0452 2022-07-27 2022-08-08 to 2022-08-11 2022-08-16

Test Result:

Pass*

* In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Roger, Ling

Roger.Ling EMC Engineer **Approved By:**

Candry . Ci

Candy Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*.

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China Tel: +86 755-26503290 Fax: +86 755-26503396 Web: www.atc-lab.com

Version 11: 2021-11-09

Page 1 of 62

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective Test Methodology	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	
EUT EXERCISE SOFTWARE	
Special Accessories Equipment Modifications	
SUPPORT EQUIPMENT LIST AND DETAILS	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	8
TEST EQUIPMENT LIST	9
FCC§15.247 (i), §1.1307 (b) – RF EXPOSURE	10
APPLICABLE STANDARD	
TEST RESULT	
FCC §15.203 – ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP EMI TEST RECEIVER SETUP	
Test Procedure	13
FACTOR & MARGIN CALCULATION	
TEST DATA	
FCC §15.205, §15.209 & §15.247(d) - RADIATED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP EMI Test Receiver & Spectrum Analyzer Setup	
Test Procedure	
FACTOR & MARGIN CALCULATION	
TEST DATA	17
FCC §15.247(a) (1)-CHANNEL SEPARATION TEST	
APPLICABLE STANDARD	
TEST PROCEDURE TEST DATA	
FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH	
APPLICABLE STANDARD	
TEST DATA	
FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST	

Shenzhen Accurate Technology Co., Ltd.	Report No.: SZ3220727-34163E-RF
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWEL	L TIME)40
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASURE	MENT
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
FCC §15.247(d) - BAND EDGES TESTING	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	

GENERAL INFORMATION

Product	BT LED ROUND SPEAKER
Tested Model	SP-0452
SKU	BLACK 6570041; WHITE 6570042; BLUE 6570043; PINK 6570044;
UPC	BLACK 1922343900177;WHITE 1922343900184; BLUE 1922343900191;PINK 1922343900207;
Frequency Range	2402~2480MHz
Maximum conducted Peak output power	-2.17 dBm
Modulation Technique	BDR(GFSK)/EDR(π/4-DQPSK)/EDR(8DPSK)
Antenna Specification*	Internal Antenna: -0.68dBi(provided by the applicant)
Voltage Range	DC 3.7V from battery or DC 5V from USB port.
Sample number	SZ3220727-34163E-RF -S1(Assigned by ATC, Shenzhen)
Sample/EUT Status	Good condition

Product Description for Equipment under Test (EUT)

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Para	meter	Uncertainty
Occupied Cha	nnel Bandwidth	5%
RF Fre	equency	$0.082*10^{-7}$
RF output po	wer, conducted	0.73dB
Unwanted Emi	ssion, conducted	1.6dB
AC Power Lines C	onducted Emissions	2.72dB
	9kHz - 30MHz	2.66dB
	30MHz - 1GHz	4.28dB
Emissions, Radiated	1GHz - 18GHz	4.98dB
Radiated	18GHz - 26.5GHz	5.06dB
	26.5GHz - 40GHz	4.72dB
Temperature		1 °C
Humidity		6%
Supply	voltages	0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189.

Accredited by American Association for Laboratory Accreditation (A2LA). The Certificate Number is 4297.01

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0016. The Registration Number is 5077A.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

EUT Exercise Software

Software "FCC_assist_1.0.2.2"* was used during testing and the power level was 10*.

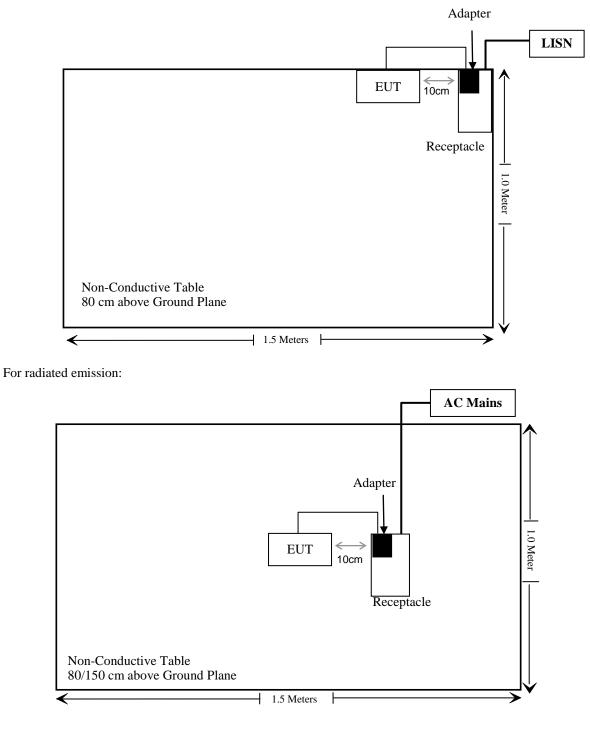
Special Accessories

N/A.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
HUAWEI	Adapter	HW-050100C01	H779KBK6V19398

External I/O Cable

Cable Description	Length (m)	From/Port	То
Un-shielding Detachable USB Cable	0.3	EUT	Adapter

Block Diagram of Test Setup

For conducted emission:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247(i), §1.1307(b)	RF Exposure	Compliant
§15.203	Antenna Requirement	Compliant
§15.207(a)	AC Line Conducted Emissions	Compliant
§15.205, §15.209 & §15.247(d)	Radiated Emissions	Compliant
§15.247(a)(1)	20 dB Emission Bandwidth & 99% Occupied Bandwidth	Compliant
§15.247(a)(1)	Channel Separation Test	Compliant
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliant
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliant
§15.247(b)(1)	Peak Output Power Measurement	Compliant
§15.247(d)	Band edges	Compliant

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
		Conducted Emiss	sions Test		1
Rohde & Schwarz	EMI Test Receiver	ESCI	100784	2021/12/13	2022/12/12
Rohde & Schwarz	L.I.S.N.	ENV216	101314	2021/12/13	2022/12/12
Anritsu Corp	50 Coaxial Switch	MP59B	6100237248	2021/12/13	2022/12/12
Unknown	RF Coaxial Cable	No.17	N0350	2021/12/14	2022/12/13
	Conducted E		tware: e3 19821b (V9)	
		Radiated Emissi	ons Test		
Rohde & Schwarz	Test Receiver	ESR	102725	2021/12/13	2022/12/12
Rohde & Schwarz	Spectrum Analyzer	FSV40	101949	2021/12/13	2022/12/12
SONOMA INSTRUMENT	Amplifier	310 N	186131	2021/11/09	2022/11/08
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2021/11/09	2022/11/08
Quinstar	Amplifier	QLW-184055 36-J0	15964001002	2021/11/11	2022/11/10
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04
Schwarzbeck	Horn Antenna	BBHA9170	9170-359	2020/01/05	2023/01/04
Wainwright	High Pass Filter	WHKX3.6/18 G-10SS	5	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.10	N050	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.11	N1000	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.12	N040	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.13	N300	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.14	N800	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.15	N600	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.16	N650	2021/12/14	2022/12/13
	Radiated En	nission Test Soft	ware: e3 19821b (V	/9)	
RF Conducted Test					
Rohde & Schwarz	Spectrum Analyzer	FSV-40	101495	2021/12/13	2022/12/12
Rohde & Schwarz	Open Switch and Control Unit	OSP120 + OSP-B157	101244 + 100866	2021/12/13	2022/12/12
WEINSCHEL	10dB Attenuator	5324	AU 3842	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.33	RF-03	Each	time

* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.247 (i), §1.1307 (b) – RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D04 Interim General RF Exposure Guidance v01, clause 2.1.2 – 1-mW test Exemption:

Per § 1.1307(b)(3)(i)(A), a single RF source is exempt RF device (from the requirement to show data demonstrating compliance to RF exposure limits, as previously mentioned) if the available maximum time-averaged power is no more than 1 mW, regardless of separation distance.

This exemption applies to all operating configurations and exposure conditions, for the frequency range 100 kHz to 100 GHz, regardless of fixed, mobile, or portable device exposure conditions. This is a standalone exemption, and it cannot be applied in conjunction with any other test exemption.

Test Result

For worst case:

Mode	Frequency	Maximum Conducte	-	1-mW test
(MHz)		(dBm)	(mW)	Exemption
BDR/EDR	2402-2480	-2.0	0.63	Yes

Note: The tune-up power was declared by the applicant.

Result: Compliant.

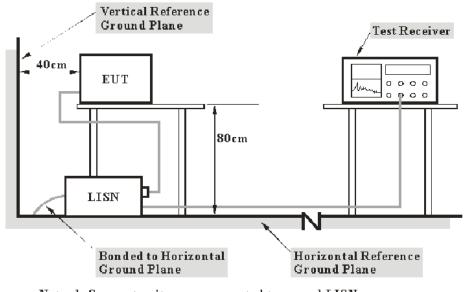
FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

The EUT has one Internal Antenna arrangement, which was permanently attached and the antenna gain is -0.68 dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliant.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Factor & Margin Calculation

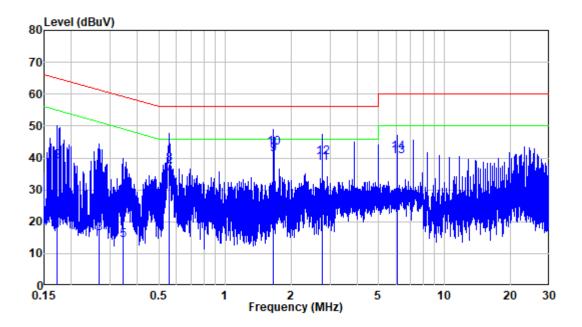
The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

Factor = LISN VDF + Cable Loss

The "**Over limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

Over Limit = Level – Limit Level = Read Level + Factor

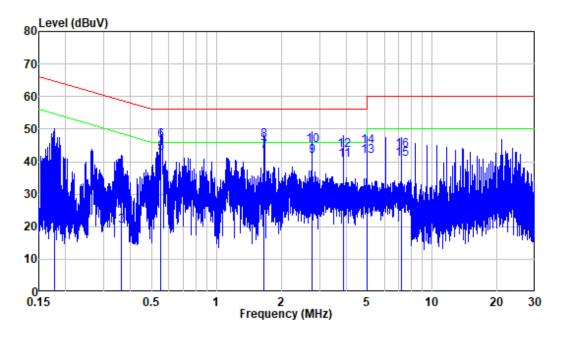
Test Data


Environmental Conditions

Temperature:	24 °C
Relative Humidity:	56 %
ATM Pressure:	101.1 kPa

The testing was performed by Jason Liu on 2022-08-10.

EUT operation mode: Charging + BT Transmitting


AC 120V/60 Hz, Line

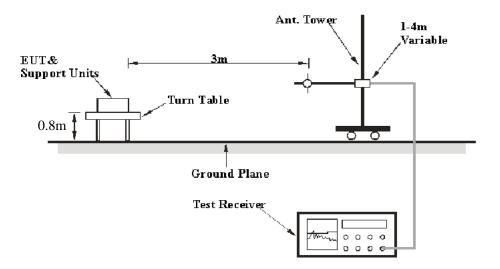
Site	:	Shielding Room
Condition	:	Line
Job No	:	SZ3220727-34163E-RF
Mode	:	BT
Power	:	AC 120V 60Hz

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.172	9.80	10.34	20.14	54.85	-34.71	Average
2	0.172	9.80	29.19	38.99	64.85	-25.86	QP
3	0.266	9.80	6.48	16.28	51.24	-34.96	Average
4	0.266	9.80	24.24	34.04	61.24	-27.20	QP
5	0.343	9.80	4.51	14.31	49.14	-34.83	Average
6	0.343	9.80	18.44	28.24	59.14	-30.90	QP
7	0.559	9.81	25.18	34.99	46.00	-11.01	Average
8	0.559	9.81	28.11	37.92	56.00	-18.08	QP
9	1.665	9.82	31.19	41.01	46.00	-4.99	Average
10	1.665	9.82	33.41	43.23	56.00	-12.77	QP -
11	2.770	9.83	28.49	38.32	46.00	-7.68	Average
12	2.770	9.83	30.40	40.23	56.00	-15.77	QP
13	6.101	9.86	30.66	40.52	50.00	-9.48	Average
14	6.101	9.86	31.88	41.74	60.00	-18.26	QP

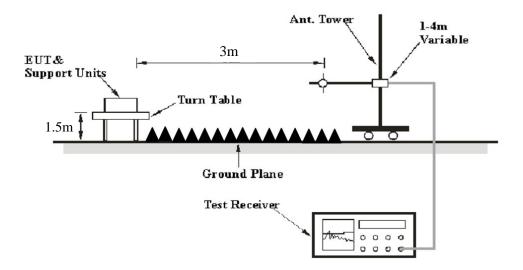
AC 120V/60 Hz, Neutral

Site	:	Shielding Room
Condition	:	Neutral
Job No	:	SZ3220727-34163E-RF
Mode	:	BT
Power	:	AC 120V 60Hz

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.178	9.80	10.60	20.40	54.57	-34.17	Average
2	0.178	9.80	29.30	39.10	64.57	-25.47	QP
3	0.361	9.80	10.38	20.18	48.69	-28.51	Average
4	0.361	9.80	22.43	32.23	58.69	-26.46	QP
5	0.553	9.81	32.71	42.52	46.00	-3.48	Average
6	0.553	9.81	36.58	46.39	56.00	-9.61	QP
7	1.665	9.82	33.44	43.26	46.00	-2.74	Average
8	1.665	9.82	36.80	46.62	56.00	-9.38	QP
9	2.776	9.83	31.88	41.71	46.00	-4.29	Average
10	2.776	9.83	35.14	44.97	56.00	-11.03	QP
11	3.886	9.84	30.64	40.48	46.00	-5.52	Average
12	3.886	9.84	33.70	43.54	56.00	-12.46	QP
13	4.995	9.89	31.81	41.70	46.00	-4.30	Average
14	4.995	9.89	34.72	44.61	56.00	-11.39	QP
15	7.213	9.97	30.80	40.77	50.00	-9.23	Average
16	7.213	9.97	33.46	43.43	60.00	-16.57	QP


FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS

Applicable Standard


FCC §15.205; §15.209; §15.247(d)

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	РК
Above I GHZ	1 MHz	10 Hz	/	Average

The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

If the maximized peak measured value complies with the limit, then it is unnecessary to perform an QP/Average measurement

Factor & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

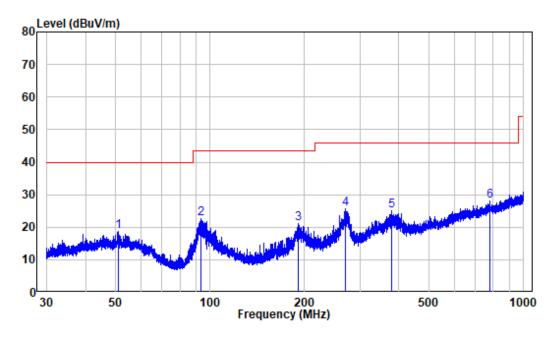
Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

Test Data

Environmental Conditions

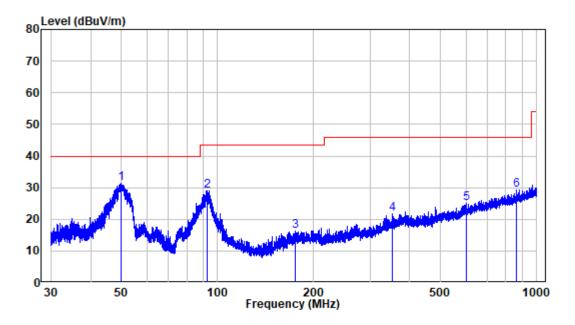

Temperature:	24~28 °C
Relative Humidity:	61~62 %
ATM Pressure:	101.1 kPa

The testing was performed by Level Li from 2022-08-08 to 2022-08-11.

EUT operation mode: Transmitting

(Scan with GFSK, $\pi/4$ -DQPSK, 8DPSK mode at X axis, Y axis, Z axis, the worst case is 8DPSK Mode at Y axis)

Below 1GHz: 8DPSK, High Channel:



Horizontal

Site : chamber Condition: 3m HORIZONTAL Job No. : SZ3220727-34163E-RF Test Mode: BT

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	51.009	-9.94	28.79	18.85	40.00	-21.15	Peak
2	93.195	-12.94	35.46	22.52	43.50	-20.98	Peak
3	190.990	-11.41	32.54	21.13	43.50	-22.37	Peak
4	269.783	-10.24	35.98	25.74	46.00	-20.26	Peak
5	378.418	-7.18	32.30	25.12	46.00	-20.88	Peak
6	783.375	0.01	28.00	28.01	46.00	-17.99	Peak

Site : chamber Condition: 3m VERTICAL Job No. : SZ3220727-34163E-RF Test Mode: BT

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	49.903	-9.91	41.21	31.30	40.00	-8.70	Peak
	92.828	-13.05	42.14	29.09	43.50	-14.41	Peak
3	175.421	-13.10	29.53	16.43	43.50	-27.07	Peak
4	352.325	-7.39	29.20	21.81	46.00	-24.19	Peak
5	603.275	-2.35	27.35	25.00	46.00	-21.00	Peak
6	862.300	0.44	28.89	29.33	46.00	-16.67	Peak

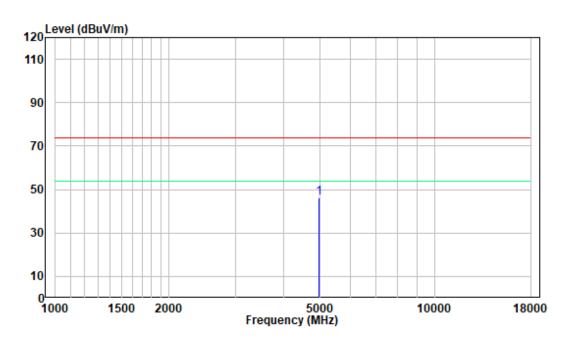
Above 1GHz (worst case for 8DPSK):

Frequency	Receiver		Turntable	Rx Ar	Rx Antenna		Absolute	Limit	Margin
(MHz)	Reading (dBuV)	PK/Ave	Angle Degree	Height (m)	Polar (H/V)	(dB/m)	Level (dBuV/m)	(dBuV/m)	(dB)
				Low Ch	annel				
2310	44.52	PK	123	1.9	Н	-7.23	37.29	74	-36.71
2310	47.8	PK	53	1.5	V	-7.23	40.57	74	-33.43
2390	47.19	РК	285	1.2	Н	-7.21	39.98	74	-34.02
2390	50.95	РК	57	1.9	V	-7.21	43.74	74	-30.26
4804	46.23	РК	130	2.0	Н	-3.52	42.71	74	-31.29
4804	48.42	PK	88	1.7	V	-3.52	44.9	74	-29.1
				Middle C	hannel				
4882	48.83	РК	186	1.7	Н	-3.37	45.46	74	-28.54
4882	46.1	PK	178	2.2	V	-3.37	42.73	74	-31.27
				High Ch	annel				
2483.5	47.21	РК	259	1.7	Н	-7.2	40.01	74	-33.99
2483.5	46.79	РК	272	2.1	V	-7.2	39.59	74	-34.41
2500	49.42	РК	60	1.3	Н	-7.18	42.24	74	-31.76
2500	45.9	РК	340	1.4	V	-7.18	38.72	74	-35.28
4960	49.04	РК	66	1.9	Н	-3.01	46.03	74	-27.97
4960	47.77	РК	76	2.1	V	-3.01	44.76	74	-29.24

Note:

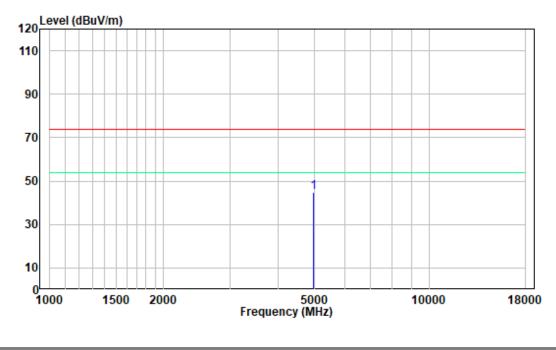
Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor

Absolute Level (Corrected Amplitude) = Factor + Reading


Margin = Absolute Level (Corrected Amplitude) – Limit

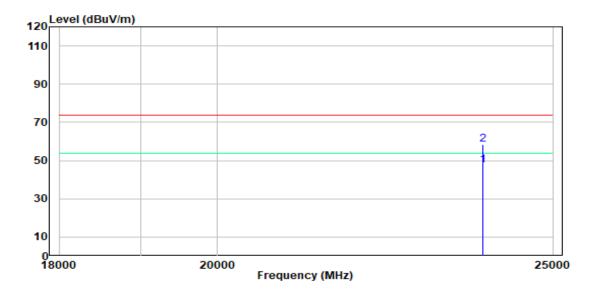
The other spurious emission which is in the noise floor level was not recorded.

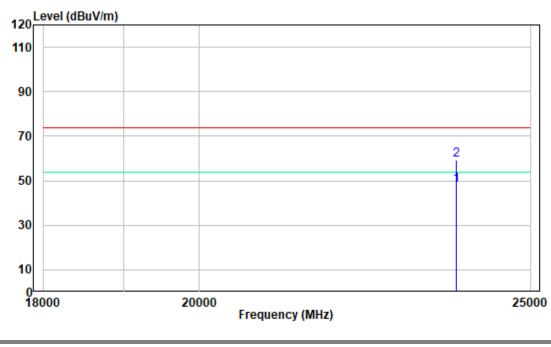
For above 1GHz, the test result of peak was 20dB below to the limit of peak, which can be compliant to the average limit, so just peak value was recorded.


1 GHz - 18 GHz: (Pre-Scan plots)

Worst case for 8DPSK, High Channel:

Horizontal

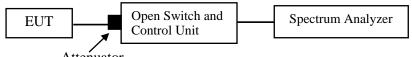

Vertical


18-25GHz: (Pre-Scan plots)

Worst case for 8DPSK, High Channel:

Horizontal

Vertical


FCC §15.247(a) (1)-CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test Procedure

- 1. Set the EUT in TX mode, maxhold the channel.
- 2. Set the adjacent channel of the EUT and maxhold another trace.
- 3. Measure the channel separation.

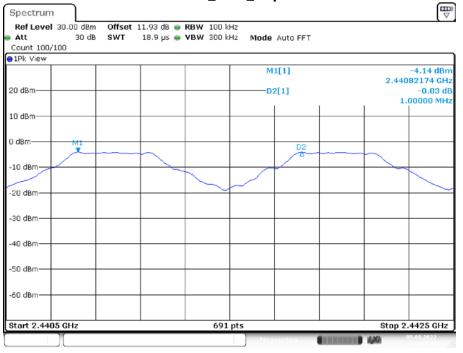
Attenuator

Test Data

Environmental Conditions

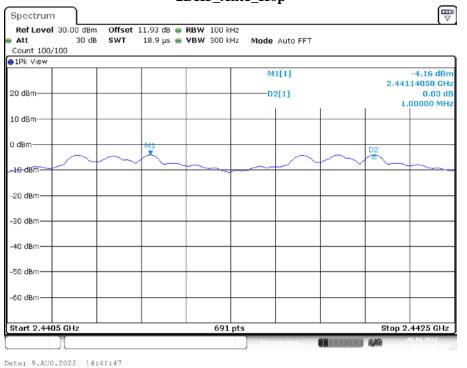
Temperature:	23°C
Relative Humidity:	51%
ATM Pressure:	101.1kPa

The testing was performed by Glenn. Jiang on 2022-08-09.

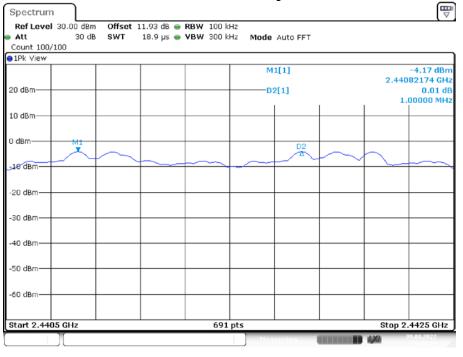

EUT operation mode: Transmitting

Test Result: Compliant.

Test Mode	Antenna	Channel	Result[MHz]	Limit[MHz]	Verdict
DH5	Ant1	Нор	1	>=0.718	PASS
2DH5	Ant1	Нор	1	>=0.900	PASS
3DH5	Ant1	Нор	1	>=0.870	PASS


Note: The limit = (2/3) * 20dB bandwidth

Please refer to the below plots:



DH5_Ant1_Hop

Date: 9.AUG.2022 14:25:07

2DH5_Ant1_Hop

3DH5_Ant1_Hop

Date: 9.AUG.2022 14:40:25

FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH

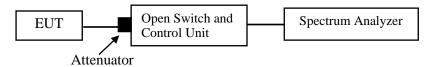
Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

The following conditions shall be observed for measuring the occupied bandwidth and 20 dB bandwidth:

• The transmitter shall be operated at its maximum carrier power measured under normal test conditions.


• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / 20 dB bandwidth if the device is not TX continuously.

• The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / 20 dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

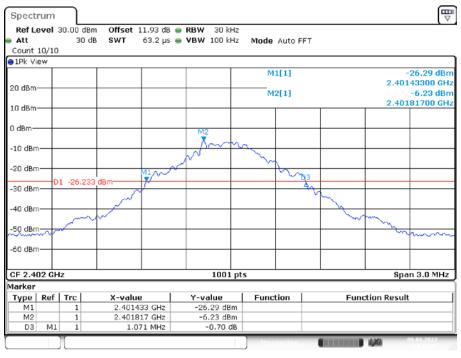
Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

Test Data

Environmental Conditions

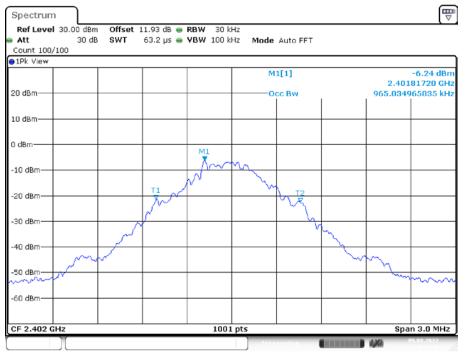
Temperature:	23°C
Relative Humidity:	51 %
ATM Pressure:	101.1kPa

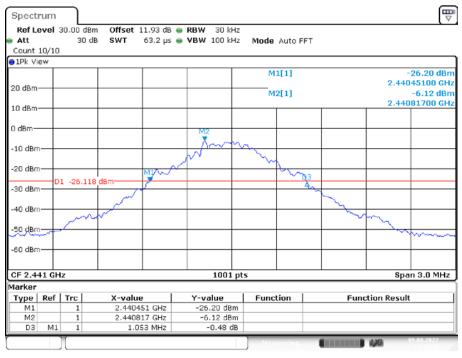

The testing was performed by Glenn. Jiang on 2022-08-09.

EUT operation mode: Transmitting

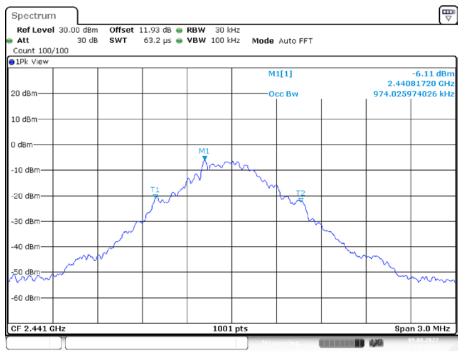
Test Result: Compliant.

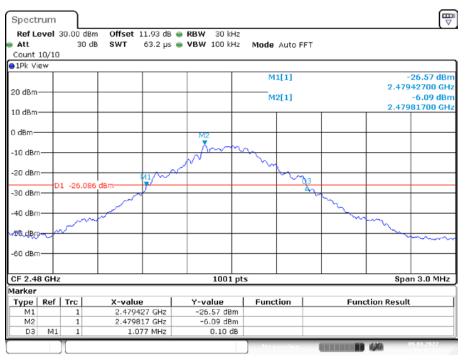
TestMode	Antenna	Channel	20db EBW[MHz]	99% OCCUPIED BANDWIDTH[MHz]	Verdict	
		2402	1.071	0.965	PASS	
DH5	Ant1	2441	1.053	0.974	PASS	
		2480	1.077	0.986	PASS	
	Ant1	2402	1.347	1.232	PASS	
2DH5		2441	1.344	1.241	PASS	
		2480	1.350	1.256	PASS	
	Ant1		2402	1.305	1.223	PASS
3DH5		2441	1.296	1.229	PASS	
		2480	1.290	1.226	PASS	


Please refer to the below plots:

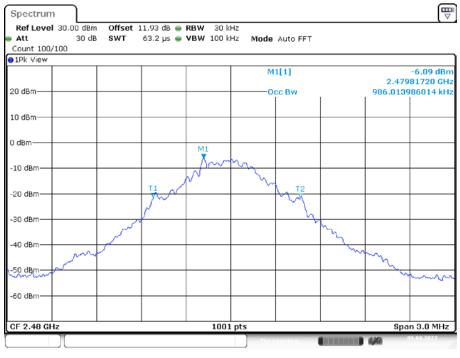

20 dB EMISSION BANDWIDTH_DH5_Ant1_2402

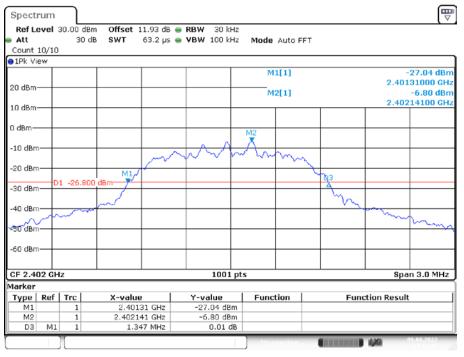
Date: 9.AUG.2022 14:13:23


Date: 9.AUG.2022 14:13:40


20 dB EMISSION BANDWIDTH_DH5 _Ant1_2441

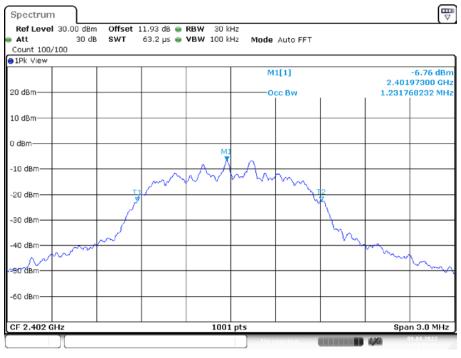
Date: 9.AUG.2022 14:14:43

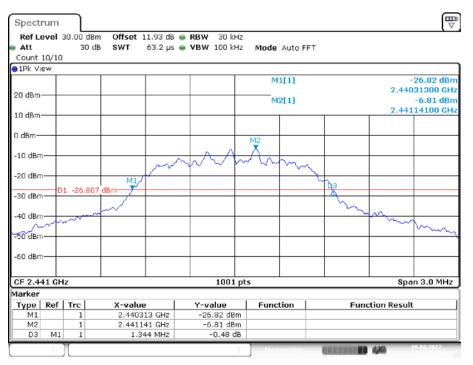

Date: 9.AUG.2022 14:15:00


20 dB EMISSION BANDWIDTH_DH5 _Ant1_2480

Date: 9.AUG.2022 14:15:34

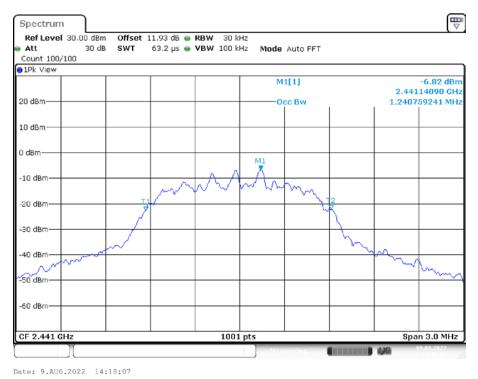
99% OCCUPIED BANDWIDTH_DH5 _Ant1_2480

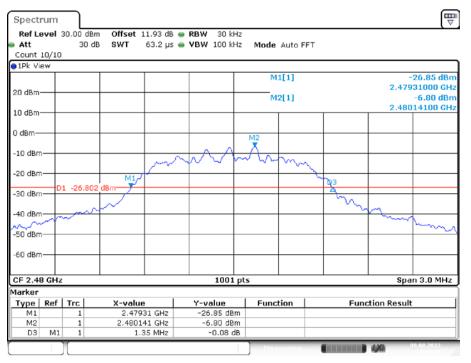

Date: 9.AUG.2022 14:15:51


20 dB EMISSION BANDWIDTH_2DH5 _Ant1_2402

Date: 9.AUG.2022 14:16:42

99% OCCUPIED BANDWIDTH_2DH5 _Ant1_2402

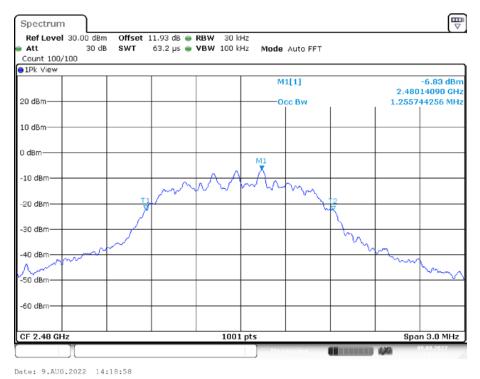

Date: 9.AUG.2022 14:16:59

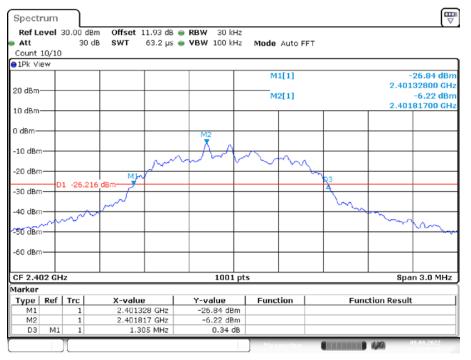


20 dB EMISSION BANDWIDTH_2DH5 _Ant1_2441

Date: 9.AUG.2022 14:17:50

99% OCCUPIED BANDWIDTH_2DH5 _Ant1_2441

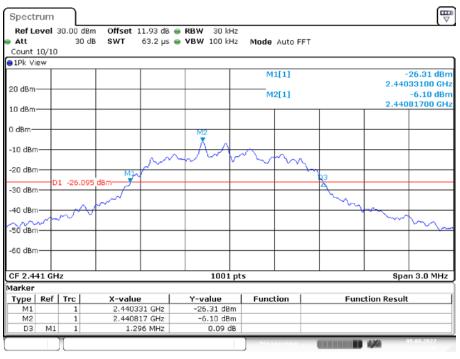




20 dB EMISSION BANDWIDTH _2DH5_Ant1_2480

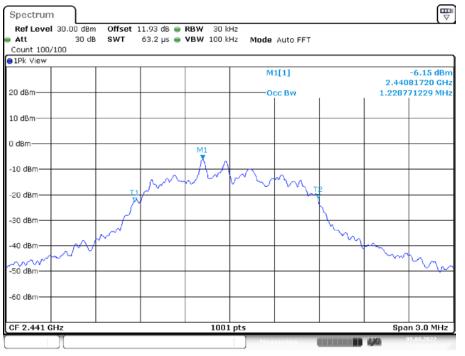
Date: 9.AUG.2022 14:18:41

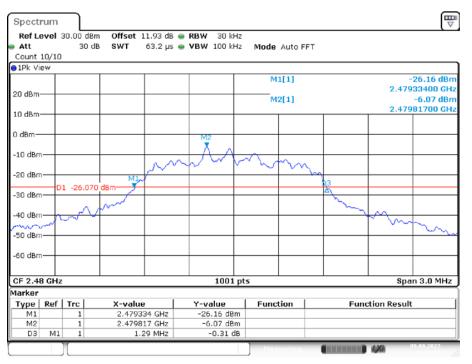
99% OCCUPIED BANDWIDTH _2DH5_Ant1_2480


20 dB EMISSION BANDWIDTH_3DH5_Ant1_2402

Date: 9.AUG.2022 14:19:49

99% OCCUPIED BANDWIDTH_3DH5 _Ant1_2402


Date: 9.AUG.2022 14:20:06


20 dB EMISSION BANDWIDTH_3DH5 _Ant1_2441

Date: 9.AUG.2022 14:21:01

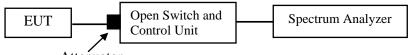
Date: 9.AUG.2022 14:21:18

20 dB EMISSION BANDWIDTH_3DH5 _Ant1_2480

Date: 9.AUG.2022 14:21:59

99% OCCUPIED BANDWIDTH_3DH5 _Ant1_2480

Date: 9.AUG.2022 14:22:16


FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

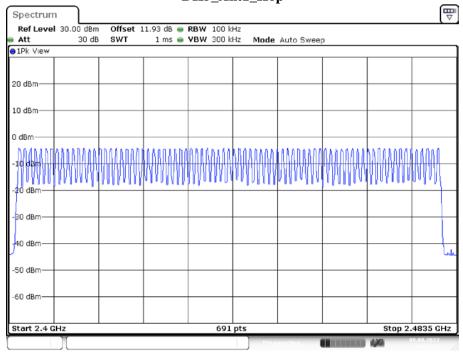
- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

Attenuator

Test Data

Environmental Conditions

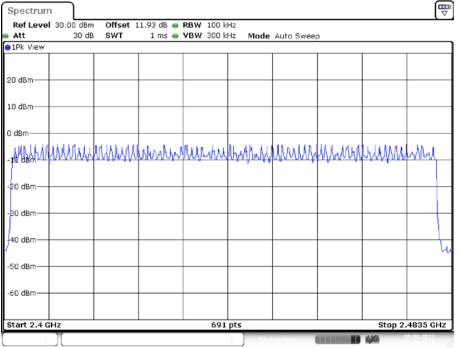
Temperature:	23°C
Relative Humidity:	51%
ATM Pressure:	101.1kPa


The testing was performed by Glenn. Jiang on 2022-08-09.

EUT operation mode: Transmitting

Test Result: Compliant.

Test Mode	Antenna	Channel	Result[Num]	Limit[Num]	Verdict
DH5	Ant1	Нор	79	>=15	PASS
2DH5	Ant1	Нор	79	>=15	PASS
3DH5	Ant1	Нор	79	>=15	PASS


Please refer to the below plots:

DH5_Ant1_Hop

Date: 9.AUG.2022 14:25:28

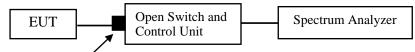
2DH5_Ant1_Hop

Date: 9.AUG.2022 14:30:18

3DH5_Ant1_Hop

30.00 dBm						Auto Swoo	-		
	541	1 115	1011	300 KH2	Moue	AULU SWEE	P		
Hully	MMM	Murth	Wh	www	NHUN	mm	MMM	mappin	Muy
									•~~
Ηz				691 pt	-			Stop 2	.4835 GHz
	30 dB		30 dB SWT 1 ms	30 dB SWT 1 ms • VBW	30 dB SWT 1 ms • VBW 300 kHz	30 dB SWT 1 ms VBW 300 kHz Mode	30 dB SWT 1 ms VBW 300 kHz Mode Auto Swee	30 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep	30 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep

Date: 9.AUG.2022 14:34:48


FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 1. The EUT was worked in channel hopping.
- 2. Set the RBW to: 1MHz.
- 3. Set the VBW \geq 3×RBW.
- 4. Set the span to 0Hz.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Recorded the time of single pulses

Attenuator

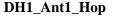
Test Data

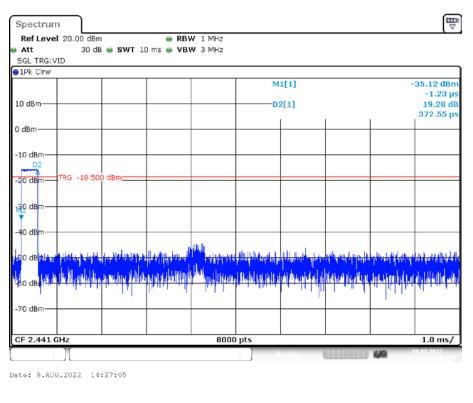
Environmental Conditions

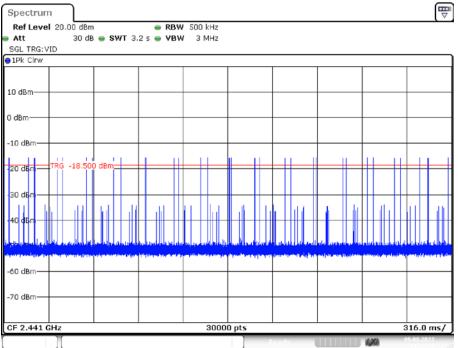
Temperature:	23°C
Relative Humidity:	51%
ATM Pressure:	101.1kPa

The testing was performed by Glenn. Jiang on 2022-08-09

EUT operation mode: Transmitting

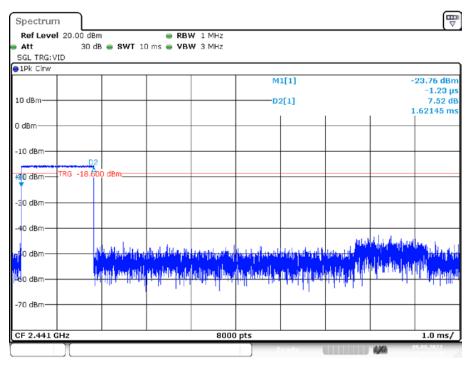

Test Result: Compliant.

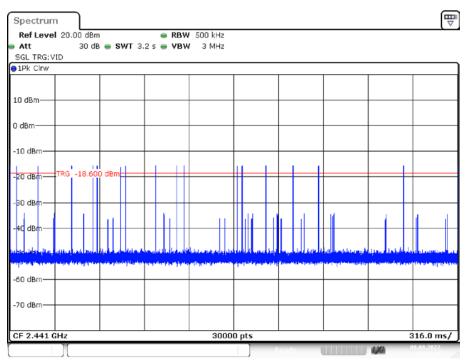

Test Mode	Antenna	Channel	Burst Width [ms]	Total Hops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.37	330	0.123	<=0.4	PASS
DH3	Ant1	Нор	1.62	170	0.276	<=0.4	PASS
DH5	Ant1	Нор	2.86	130	0.372	<=0.4	PASS
2DH1	Ant1	Нор	0.38	320	0.122	<=0.4	PASS
2DH3	Ant1	Нор	1.63	170	0.277	<=0.4	PASS
2DH5	Ant1	Нор	2.87	110	0.315	<=0.4	PASS
3DH1	Ant1	Нор	0.38	330	0.126	<=0.4	PASS
3DH3	Ant1	Нор	1.63	150	0.244	<=0.4	PASS
3DH5	Ant1	Нор	2.87	120	0.344	<=0.4	PASS


Note 1: A period time=0.4*79=31.6(s), Result=Burst Width*Total Hops

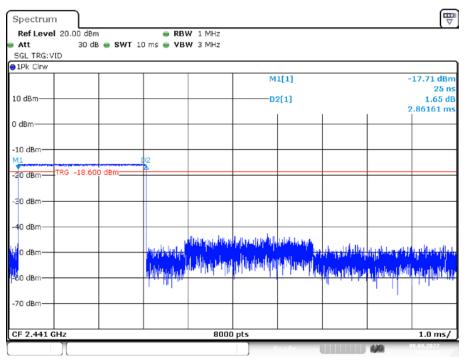
Note 2: Total Hops =Hopping Number in 3.16s*10

Note 3: Hoping Number in 3.16s=Total of highest signals in 3.16s (Second high signals were other channel)

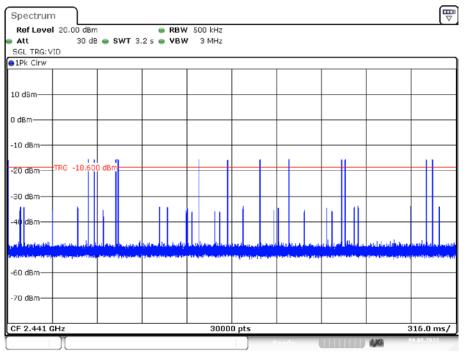



Date: 9.AUG.2022 14:27:10

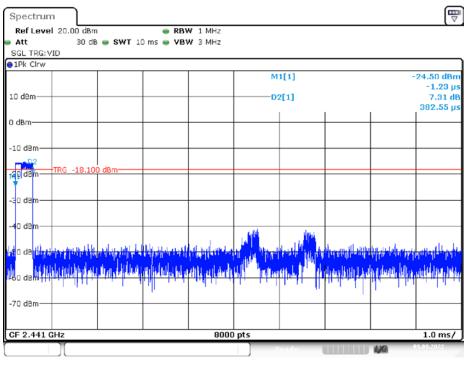
Version 11: 2021-11-09



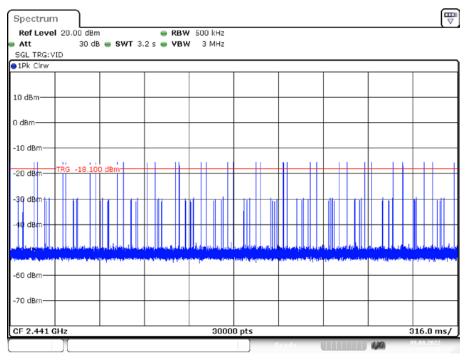
Date: 9.AUG.2022 14:26:39



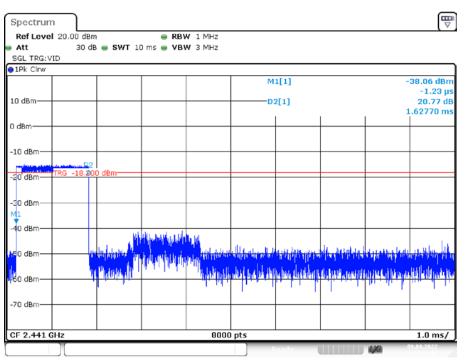
Date: 9.AUG.2022 14:26:45



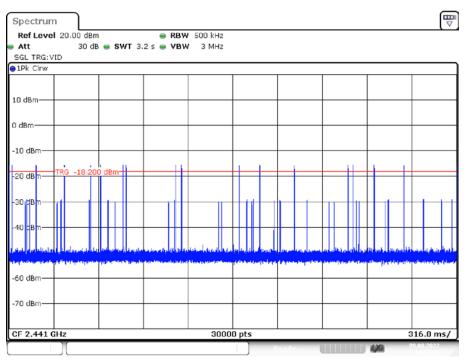
Date: 9.AUG.2022 14:42:28



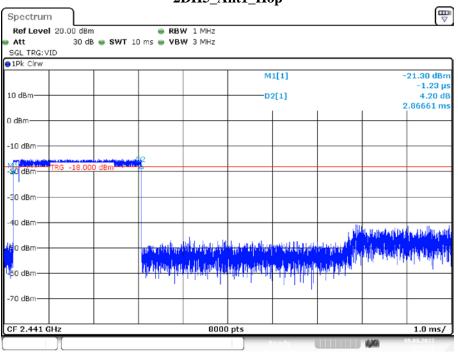
Date: 9.AUG.2022 14:42:34



Date: 9.AUG.2022 14:31:38

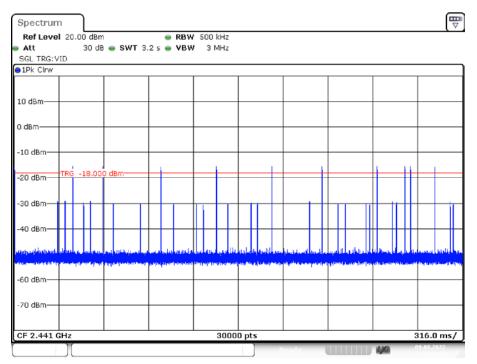


Date: 9.AUG.2022 14:31:43

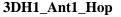


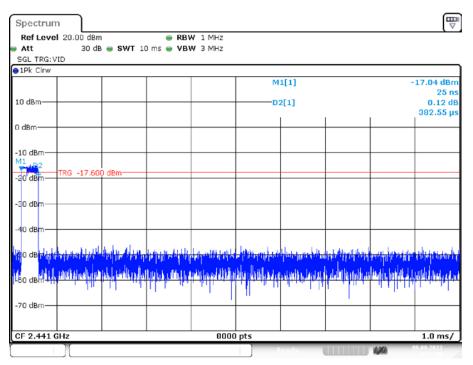
2DH3_Ant1_Hop

Date: 9.AUG.2022 14:31:08

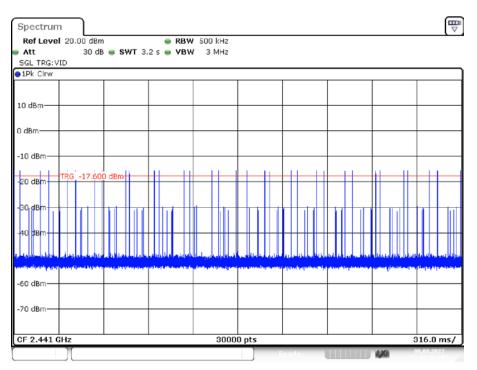


Date: 9.AUG.2022 14:31:13

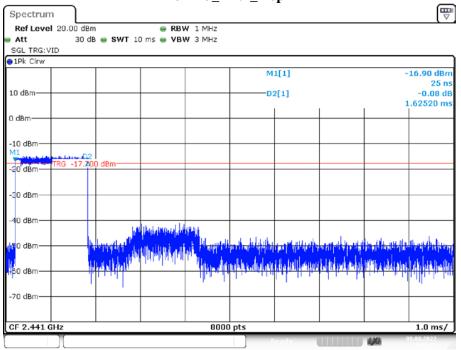



2DH5_Ant1_Hop

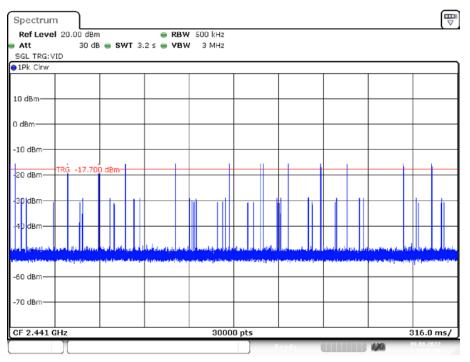
Date: 9.AUG.2022 14:43:17



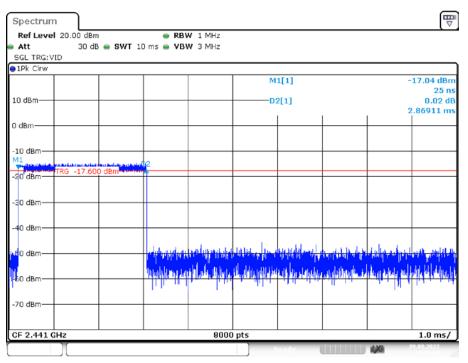
Date: 9.AUG.2022 14:43:23



Date: 9.AUG.2022 14:36:06



Date: 9.AUG.2022 14:36:12



3DH3_Ant1_Hop

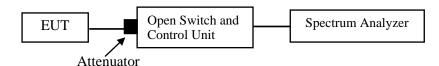
Date: 9.AUG.2022 14:35:36

Date: 9.AUG.2022 14:35:41

3DH5_Ant1_Hop

Date: 9.AUG.2022 14:44:02

Date: 9.AUG.2022 14:44:07


FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

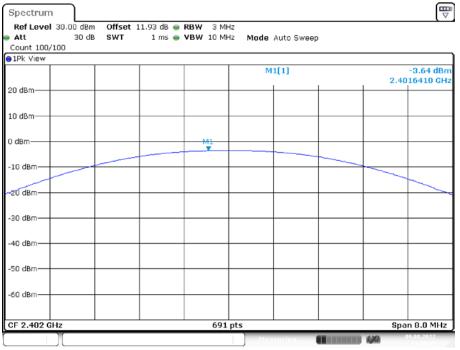
Test Procedure

- 1. Place the EUT on a bench and set in TX mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

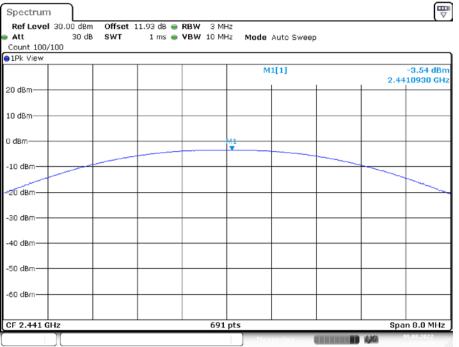
Temperature:	23°C
Relative Humidity:	51 %
ATM Pressure:	101.1kPa

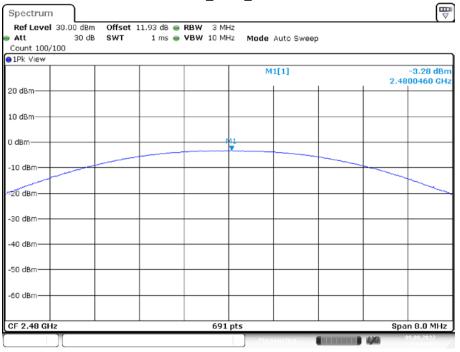

The testing was performed by Glenn. Jiang on 2022-08-09.

EUT operation mode: Transmitting

Test Result: Compliant.

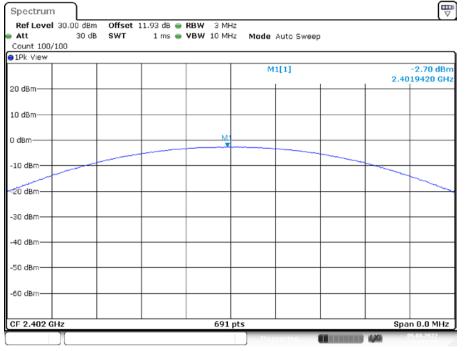
Test Mode	Antenna	Channel	Conducted peak output power [dBm]	Limit[dBm]	Verdict
		2402	-3.64	<=20.97	PASS
DH5	Ant1	2441	-3.54	<=20.97	PASS
		2480	-3.28	<=20.97	PASS
		2402	-2.7	<=20.97	PASS
2DH5	Ant1	2441	-2.63	<=20.97	PASS
		2480	-2.64	<=20.97	PASS
		2402	-2.3	<=20.97	PASS
3DH5	Ant1	2441	-2.21	<=20.97	PASS
		2480	-2.17	<=20.97	PASS

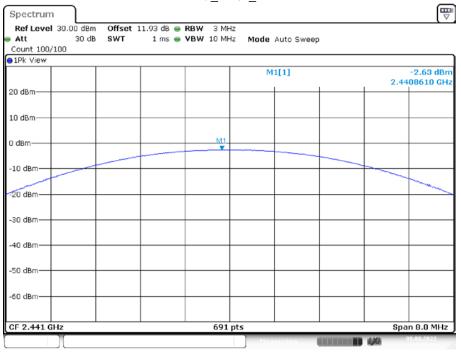

Please refer to the below plots:


DH5_Ant1_2402

Date: 9.AUG.2022 14:08:31

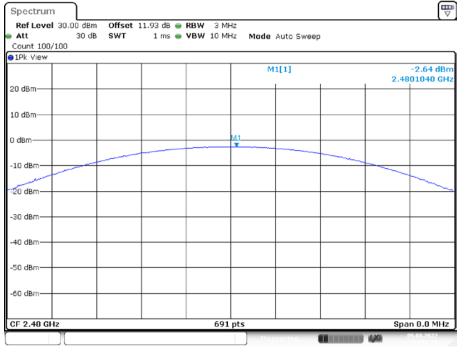
DH5_Ant1_2441


Date: 9.AUG.2022 14:09:16

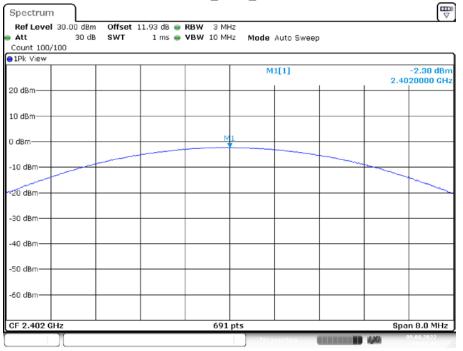

DH5_Ant1_2480

Date: 9.AUG.2022 14:10:05

2DH5_Ant1_2402

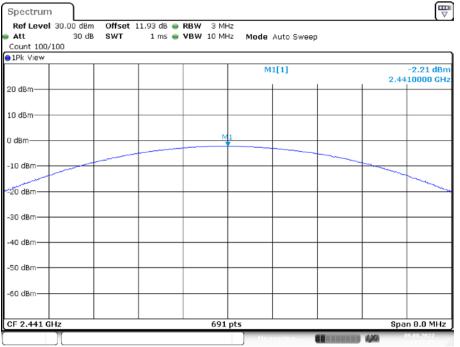

Date: 9.AUG.2022 14:10:29

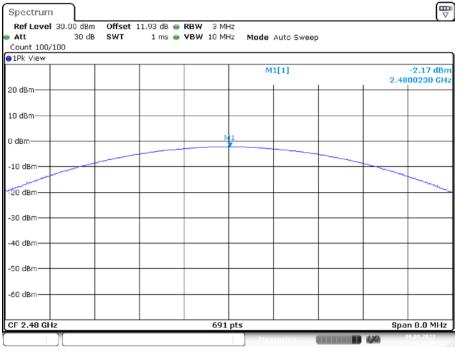
2DH5_Ant1_2441


Date: 9.AUG.2022 14:10:52

2DH5_Ant1_2480

Date: 9.AUG.2022 14:11:11


Report No.: SZ3220727-34163E-RF


3DH5_Ant1_2402

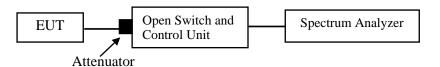
Date: 9.AUG.2022 14:11:43

3DH5_Ant1_2441

Date: 9.AUG.2022 14:12:06

3DH5_Ant1_2480

Date: 9.AUG.2022 14:12:26


FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in TX mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	23°C
Relative Humidity:	51%
ATM Pressure:	101.1kPa

The testing was performed by Glenn. Jiang on 2022-08-09.

EUT operation mode: Transmitting

Test Result: Compliant

Please refer to the below plots:

DH5: Band Edge-Left Side Hopping

Spectrum							
Ref Level				RBW 100 kHz			•
Att)dB SWT 2	46.5 µs (VBW 300 kHz	Mode Auto F	FFT	
Count 300/3	300						
1Pk View							
I					M1[1]		-4.09 dBi
10 dBm		_					2.404770 GH
					M2[1]		-48.77 dBi
D dBm							2.400000 GH
							1 10
-10 dBm —							
00 40							
-20 dBm	1 .94 (090 dBm					
30 dBm	1 -2-1.0	590 abin					
-40 dBm			4				
			÷				M3 M2
-so asm	with	and the second second	mount	mound	moundar	mannully	Uner Thursday and
-60 dBm							
-70 dBm							
Start 2.3 GH	łz			691 pt	s		Stop 2.405 GHz
1arker							
Type Ref	Trc	X-value		Y-value	Function	Fu	nction Result
M1	1	2.4047	77 GHz	-4.09 dBm			
M2	1		.4 GHz	-48.77 dBm			
M3	1		39 GHz	-47.98 dBm			
M4	1	2.33134	H8 GH2	-46.53 dBm			
					Measuring		09.08.2022

Date: 9.AUG.2022 14:23:43

Single

Ref Le	evel	20.00 dB 30 (RBW 100 kHz	: Mode Auto	FFT		
Count :	200/2		JB SWI	240.5 µs (• VBW 300 KH2	MODE AUTO	FFI		
1Pk Vie		00							
TEK AB				1		M1[1]			-4.49 dBr
						MILI		2.4	-4.49 UBI 02040 GH
10 dBm-	+					M2[1]			49.13 dBr
						m2[1]			00000 GH
) dBm—	+		-				1	1 2.3	MI MI
10 dBm									l I
to arm									
20 dBm									
20 0011		1 -24.49	0 dBm						
30 dBm	-								
									1 (1
40 dBm	+				M4			_	H H
				I .	Muserman			MB	Ma
5 <mark>0~18</mark> m	1700 B	الارتقامين مولي فا	ماد مورد ایندر بوده و	بريدينا والمعصوم	Mar	بعصيماه وسيخاه وسعا	www.orwooder	a for the ast attended	wow at
60 dBm	-								
70 dBm									
/o ubiii									
Start 2	.3 G⊦	z			691 p	ts		Stop	2.405 GHz
larker									
	Ref	Trc	X-valu		Y-value	Function	Fur	nction Result	
M1		1		204 GHz	-4.49 dBm				
M2		1		2.4 GHz	-49.13 dBm				
M3 M4		1		.39 GHz	-49.98 dBm -46.31 dBm				

Date: 9.AUG.2022 14:13:55

			mobb	-m <u>s</u>		
Spectrum						
Ref Level	20.00 di	Bm Offset 11.93	dB 🥃 RBW 100 kH	z		
Att	30	dB SWT 1.1	ms 👄 VBW 300 kH	z Mode Auto S	Sweep	
Count 300/3	300					
1Pk View						
				M1[1]		-4.19 dBn
10 dBm						2.478970 GH
				M2[1]		-43.99 dBn
) dBm — 🕌	1					2.483500 GH
10844444	6.0					
10/58/11	8					
Y) () YI (V	UL I					
20 dBm	01 -24.19	00 d8m				
30 dBm	1 -24.1	90 ubin				
SU UBIII						
-40 dBm	M2		M3 M4			
	men	warmander	Makeron Temporties	womenting	mentanden	mannennenne
-50 dBm —						
-60 dBm						
.70 dBm						
Start 2.47 G	iHz		691 p	ts		Stop 2.55 GHz
1arker						
	Trc	X-value	Y-value	Function	Fui	nction Result
M1	1	2.47897 GH				
M2 M3	1	2.4835 GH				
	1	2.5 GH				
M4	1	2.50513 GH				

DH5: Band Edge- Right Side Hopping

Date: 9.AUG.2022 14:27:42

	evel :	20.00 dB			RBW 100 kHz						
Att Count	200/2	30 0	IB SWT 1.1	ns 😑	VBW 300 kHz	Mode	Auto S	wee	р		
1Pk Vi		00									
						M	1[1]				-4.07 dBn
LO dBm-										2.4	80010 GH
to abiii						M	2[1]				44.14 dBn
) dBm—		41								2.4	83500 GH
		ň									
10 dBm	+	11									
20 dBm		Ω									
		1 -24.07	0 dBm								
30 dBm		4	+								
		1					м	4			
40 dBr		- M2	marken and a state of the state	- M3	and the second	and derta war	man	-	di Lina a	herewant	the state of the
50 dBm	· · · ·			~~~~~		49.000			140- 000-00-0 - V	e Crofine - res and	
50 abri	' I.										
60 dBrr	-										
70 dBm	+										
start 2	.47 G	Hz			691 pt:	5				Stop	2.55 GHz
larker											
	Ref	Trc	X-value		Y-value	Func	tion		Fund	tion Result	
M1		1	2.48001 GH	-	-4.07 dBm						
M2 M3		1	2.4835 GH 2.5 GH		-44.14 dBm -44.23 dBm						
1713		1	2.5 GH	_	-44.23 dBm						

Single

Date: 9.AUG.2022 14:16:06

Version 11: 2021-11-09

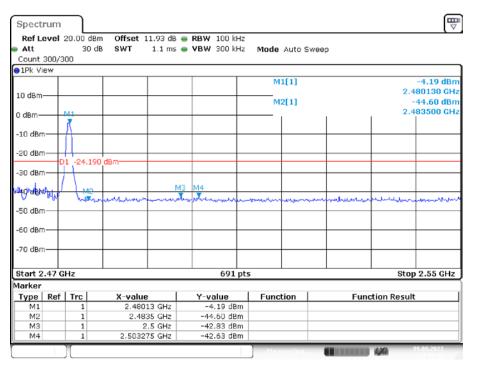
2DH5: Band Edge-Left Side Hopping

Spectrum	Ľ					
Ref Level			3 👄 RBW 100 kHz			
Att		dB SWT 246.5 μ	s 👄 VBW 300 kHz	Mode Auto F	FT	
Count 300/	300					
1Pk View						
				M1[1]		-4.07 dBn 2.404160 GH
10 dBm —				M2[1]		-49.57 dBr
				M2[1]		2.400000 GM
) dBm					1	2.40000 Gin
-10 dBm						M
TO UBIII						
20 dBm						
	01 -24.0	70 dBm				
30 dBm —						
I						
-40 dBm				1414		
ARMAN	مستقد والسرائية	whydraman	upper marine marine	mond	and return her pros	M3 M2
ЭU авт •						
60 dBm						
70 dBm						
I						
Start 2.3 G	H2		691 pt	<u> </u>		Stop 2.405 GHz
larker	12		051 pt	,		0000 21100 0112
	Trc	X-value	Y-value	Function	Euro	ction Result
M1	1	2.40416 GHz	-4.07 dBm	Function	run	ction Result
M2	1	2.40410 GHz	-49.57 dBm			
M3	1	2.39 GHz	-49.57 dBm			
M4	1	2.368022 GHz	-45.59 dBm			
	20					

Date: 9.AUG.2022 14:29:00

₽ Spectrum Ref Level 20.00 dBm Offset 11.93 dB 🖷 RBW 100 kHz Att 30 dB Count 300/300 ●1Pk View -4.11 dBm 2.402190 GHz M1[1] 10 dBm-M2[1] -49.50 dBm 2.400000 AHz 0 dBm--10 dBm--20 dBm-D1 -24.110 dBm -30 dBm -40 dBm М4мз м So dBina -60 dBm -70 dBm-Start 2.3 GHz 691 pts Stop 2.405 GHz Marker Type Ref Trc Function Result X-value Y-value Function -4.11 dBm -49.50 dBm -49.20 dBm -46.77 dBm 2.40219 GHz M1 1 M2 2.4 GHz 2.39 GHz 2.387957 GHz 1 ΜЗ 1 M4 -----THE OWNER WATER

Single


Date: 9.AUG.2022 14:17:14

2DH5: Band Edge- Right Side Hopping

Spectrum						
Ref Level : Att Count 300/3	30		 RBW 100 kHz VBW 300 kHz 	Mode Auto S	Sweep	
1Pk View						
				M1[1]		-4.19 dBn 2.473180 GH
10 dBm				M2[1]		-45.06 dBn
0 d S m						2.483500 GH
ableh and	4					
-20 dBm	1 -24.19	90 dBm				
-30 dBm						
-40 dBm	112		M3		M4	-turner-uludahur Los
-50 dBm				, and the second second		
-60 dBm						
-70 dBm						
Start 2.47 G	Hz		691 pts	5		Stop 2.55 GHz
1arker						
Type Ref	Trc	X-value	Y-value	Function	Fund	ction Result
M1	1	2.47318 GHz	-4.19 dBm			
M2 M3	1	2.4835 GHz 2.5 GHz	-45.06 dBm			
M3 M4	1	2.5 GHz 2.532377 GHz	-44.60 dBm -41.99 dBm			
	1			Measuring	Concerned B	LXA 09.08.2022

Date: 9.AUG.2022 14:32:10

Single

Date: 9.AUG.2022 14:19:13

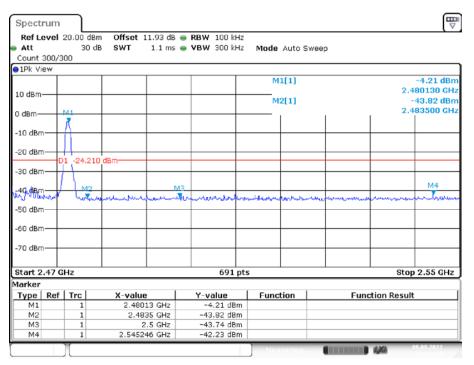
3DH5: Band Edge-Left Side Hopping

Spectrum										
Ref Level				RBW 100 kHz						
Att		dB SWT	246.5 µs	👄 VBW 300 kHz	Mode	Auto F	FT			
Count 300/	300									
1Pk View										
					M1	[1]				-4.06 dBn
10 dBm —			+							02800 GH
					M2	2[1]				-48.50 dBn
D dBm		_	+				1	1	2.4	00000 GH
										1 1
-10 dBm										
20 dBm										
	01 -24.0)60 dBm								
-30 dBm										
-40 dBm —			+	194						<u> </u>
		and a strate		mount				الدواه وال	M3	M2
SO dBm	and the second				- Jump	in the second	and a car		and the second	on the second
-60 dBm										
-00 ubiii										
-70 dBm										
Start 2.3 G	12			691 p					Ston	2.405 GHz
larker	72			091 b	.5				atop	2.403 GHZ
	Trc	X-valu		Y-value	Funct	ion	1	Eune	tion Result	
M1	1		028 GHz	-4.06 dBm	Funct	1011		runc	don Kesul	
M2	1	2	2.4 GHz	-48.50 dBm						
M3	1	2	2.39 GHz	-49.46 dBm						
M4	1	2.353	109 GHz	-46.10 dBm						
	11				-	_				00.00.2022

Date: 9.AUG.2022 14:38:41

Single

Spectrum						ľ
Ref Level			RBW 100 kHz			•
Att	30 0	iB SWT 246.5 µs	👄 VBW 300 kHz	Mode Auto F	FFT	
Count 300/3	300					
1Pk View						
				M1[1]		-4.10 di
10 dBm —						2.401880 G
I				M2[1]		-49.27 di 2.400000
0 dBm					1	2.400000
-10 dBm						
TO GRU						
-20 dBm						
	1 -24.10	0_dBm				
30 dBm —						
I						
-40 dBm		M4				M3 M6
			monumber		a she halon	
soudenty the	-	and with the state of the state		- WANN WHAT AND AND	and the second s	Martha Martha
.60 dBm						
-70 dBm						
Start 2.3 GF	17		691 pts	-		Stop 2.405 GH
larker	12		051 pt.	,		000 2.100 0
	Trc	X-value	Y-value	Function	Eur	nction Result
M1 M1	1	2.40188 GHz	-4.10 dBm	runction	Fur	ICCIOIL RESUL
M2	1	2.40100 GHz	-49.27 dBm			
M3	1	2.39 GHz	-48.45 dBm			
M4	1	2.331348 GHz	-46.72 dBm			
	11				A	B #MA 09.08.2022


Date: 9.AUG.2022 14:20:21

3DH5: Band Edge- Right Side Hopping

Spectrum				8		
Ref Level Att Count 300/3	30 0		8 ● RBW 100 kHz 8 ● VBW 300 kHz	Mode Auto S	Sweep	
1Pk View	.00					
10 dBm				M1[1]		-4.36 dBr 2.471790 GH -43.49 dBr
				M2[1]		2.483500 GH
-20 dBm	01 -24.36	i0 dBm				
-30 dBm						
-40 dBm	M2		MB	M4	- Mar Jackmanne	
-50 dBm						
-60 dBm						
-70 dBm						
Start 2.47 0	Hz		691 pt	s		Stop 2.55 GHz
larker						
	Trc	X-value	Y-value	Function	Fun	ction Result
M1	1	2.47179 GHz	-4.36 dBm			
M2	1	2.4835 GHz	-43.49 dBm			
M3	1	2.5 GHz	-43.93 dBm			
M4	1	2.519855 GHz	-42.31 dBm			
				Measuring.		09.08.2022

Date: 9.AUG.2022 14:36:40

Single

Date: 9.AUG.2022 14:22:31

***** END OF REPORT *****

Version 11: 2021-11-09