

TEST REPORT

Applicant Name : Address : Zeeva International Limited Suite 1007B, 10th Floor, Exchange Tower, 33 Wang Chiu Road, Kowloon Bay, Hong Kong SZ3220704-30046E-RF 2ADM5-SP-0424

Report Number : FCC ID:

Test Standard (s) FCC PART 15.247

Sample Description

Product Type:
Model No.:
Trade Mark:
Date Received:
Date of Test:
Report Date:

BT SMALL HOME SPEAKER SP-0424 N/A 2022-07-04 2022-07-07 to 2022-07-12 2022-07-15

Test Result:

Pass*

* In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Andy. YUL

Audy.Yu EMC Engineer

Approved By:

Candy, Li

Candy Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk " \star ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China Tel: +86 755-26503290 Fax: +86 755-26503396 Web: www.atc-lab.com

Version 11: 2021-11-09

Page 1 of 62

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	5
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	
EUT Exercise Software	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	
FCC §1.1310 & §2.1091 -MAXIMUM PERMISSIBLE EXPOSURE (MPE)	10
TEST RESULT:	10
FCC §15.203 – ANTENNA REQUIREMENT	11
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a) - AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP EMI Test Receiver Setup	
Test Procedure	13
FACTOR & MARGIN CALCULATION	
TEST DATA	
FCC §15.205, §15.209 & §15.247(d) - RADIATED EMISSIONS	
Applicable Standard EUT Setup	
EUT SETUP EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	
FACTOR & MARGIN CALCULATION Test Data	
FCC §15.247(a) (1)-CHANNEL SEPARATION TEST	23
Applicable Standard Test Procedure	
TEST DATA	
FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH	26
Applicable Standard	26
TEST PROCEDURE	
TEST DATA	
FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST	
APPLICABLE STANDARD	37

Version 11: 2021-11-09

Shenzhen Accurate Technology Co., Ltd.	Report No.: SZ3220704-30046E-RF
TEST PROCEDURE	
TEST DATA	
FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWI	ELL TIME)40
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASU	REMENT
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
FCC §15.247(d) - BAND EDGES TESTING	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	

Shenzhen Accurate Technology Co., Ltd.

GENERAL INFORMATION

Product	BT SMALL HOME SPEAKER
Tested Model	SP-0424
SKU Number	BLACK 6555182; WHITE 6555183; BLUE 6555184; PINK 6555185
UPC Number	BLACK 1922343801030; WHITE 1922343801047; BLUE 1922343801054; PINK 1922343801061
Frequency Range	2402~2480MHz
Maximum conducted Peak output power	1.36dBm
Modulation Technique	BDR(GFSK)/EDR(1/4-DQPSK)/EDR(8DPSK)
Antenna Specification*	Internal Antenna: -0.68dBi(provided by the applicant)
Voltage Range	DC 5V from adapter or DC 3.7V from battery
Sample number	SZ3220704-30046E-RF-S1(RF Radiated Test) SZ3220704-30046E-RF-S2(RF Conducted Test) (Assigned by ATC, Shenzhen)
Sample/EUT Status	Good condition

Product Description for Equipment under Test (EUT)

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Para	meter	Uncertainty
Occupied Char	nnel Bandwidth	5%
RF output pov	wer, conducted	0.73dB
Unwanted Emis	ssion, conducted	1.6dB
AC Power Lines Conducted Emissions		2.72dB
.	30MHz - 1GHz	4.28dB
Emissions, Radiated	1GHz - 18GHz	4.98dB
Rudiated	18GHz - 26.5GHz	5.06dB
Temperature		1°C
Humidity		6%
Supply	voltages	0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189.

Accredited by American Association for Laboratory Accreditation (A2LA). The Certificate Number is 4297.01

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0016. The Registration Number is 5077A.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

EUT Exercise Software

Software "FCC_assist_1.0.2.2"* was used during testing and the power level was 10*.

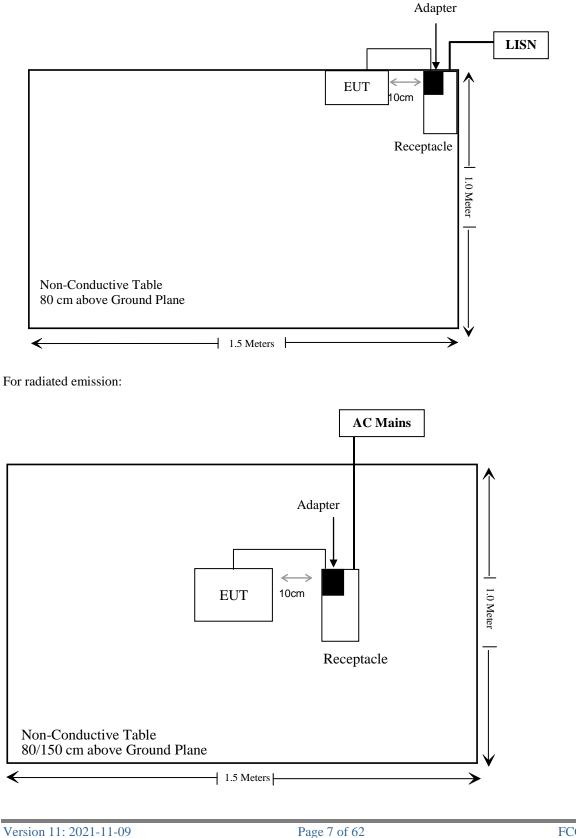
Special Accessories

N/A.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
TECNO	Adapter	U050TSA	AH07015321906

External I/O Cable

Cable Description	Length(m)	From/Port	То
Un-shielding Detachable USB Cable	0.3	EUT	Adapter
Unshielded Un-detachable AC cable	1.2	LISN	Receptacle

Block Diagram of Test Setup

For conducted emission:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1310, §2.1091	Maximum Permissible Exposure (MPE)	Compliant
§15.203	Antenna Requirement	Compliant
§15.207(a)	AC Line Conducted Emissions	Compliant
§15.205, §15.209 & §15.247(d)	Radiated Emissions	Compliant
§15.247(a)(1)	20 dB Emission Bandwidth & 99% Occupied Bandwidth	Compliant
§15.247(a)(1)	Channel Separation Test	Compliant
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliant
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliant
§15.247(b)(1)	Peak Output Power Measurement	Compliant
§15.247(d)	Band edges	Compliant

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date			
Conducted Emissions Test								
Rohde & Schwarz	nde & Schwarz EMI Test Receiver		100784	2021/12/13	2022/12/12			
Rohde & Schwarz	L.I.S.N.	ENV216	101314	2021/12/13	2022/12/12			
Anritsu Corp	50 Coaxial Switch	MP59B	6100237248	2021/12/13	2022/12/12			
Unknown	RF Coaxial Cable	No.17	N0350	2021/12/14	2022/12/13			
	Conducted E		ware: e3 19821b (V9)				
		Radiated Emissi	ons Test					
Rohde & Schwarz	Test Receiver	ESR	102725	2021/12/13	2022/12/12			
Rohde & Schwarz	Spectrum Analyzer	FSV40	101949	2021/12/13	2022/12/12			
SONOMA INSTRUMENT	Amplifier	310 N	186131	2021/11/09	2022/11/08			
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2021/11/09	2022/11/08			
Quinstar	Amplifier	QLW-184055 36-J0	15964001002	2021/11/11	2022/11/10			
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05			
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04			
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2020/01/05	2023/01/04			
Wainwright	High Pass Filter	WHKX3.6/18 G-10SS	5	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.10	N050	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.11	N1000	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.12	N040	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.13	N300	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.15	N600	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.16	N650	2021/12/14	2022/12/13			
	Radiated En	nission Test Softw	ware: e3 19821b (V	/9)				
		RF Conducted	d Test					
Rohde & Schwarz	Spectrum Analyzer	FSV-40	101495	2021/12/13	2022/12/12			
Rohde & Schwarz	Open Switch and Control Unit	OSP120 + OSP-B157	101244 + 100866	2021/12/13	2022/12/12			
WEINSCHEL	10dB Attenuator	5324	AU 3842	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.34	RF-04	Each	time			

* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1310 & §2.1091 –MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to KDB 447498 D04 Interim General RF Exposure Guidance v01, clause 2.1.4 – MPE-Based Exemption:

An alternative to the SAR-based exemption is provided in § 1.1307(b)(3)(i)(C), for a much wider frequency range, from 300 kHz to 100 GHz, applicable for separation distances greater or equal to $\lambda/2\pi$, where λ is the free-space operating wavelength in meters. The MPE-based test exemption condition is in terms of ERP, defined as the product of the maximum antenna gain and the delivered maximum time-averaged power. For this case, a RF source is an RF exempt device if its ERP (watts) is no more than a frequency-dependent value, as detailed tabular form in Appendix B. These limits have been derived based on the basic specifications on Maximum Permissible Exposure (MPE) considered for the FCC rules in § 1.1310(e)(1).

Table to § 1.1307(b)(3)(i)(C) - Single RF Sources Subject to Routine Environmental Evaluation

RF Source frequency (MHz)	Threshold ERP (watts)
0.3-1.34	1,920 R ² .
1.34-30	3,450 R ² /f ² .
30-300	3.83 R ² .
300-1,500	0.0128 R ² f.
1,500-100,000	19.2R ² .

f = frequency in MHz;

R = minimum separation distance from the body of a nearby person (appropriate units, e.g., m);

Test Result:

For worst case:

Mode	Frequency Range	Tune-up Pov	-	-	enna ain	EF	RP	Evaluation Distance	MPE-Based Exemption
Widde	(MHz)	(dBm)	(mW)	(dBi)	(dBd)	(dBm)	(mW)	(cm)	Threshold (mW)
BDR/EDR	2402-2480	1.5	1.41	-0.68	-2.83	-1.33	0.74	20	768

Note 1: The tune-up power was declared by the applicant. Note 2: 0dBd=2.15dBi.

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliant.

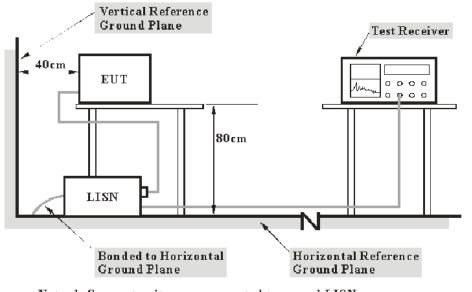
FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

The EUT has one internal antenna arrangement, which was permanently attached and the antenna gain is -0.68 dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliant.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Factor & Margin Calculation

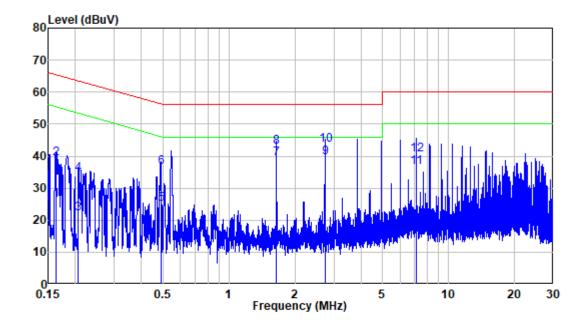
The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

Factor = LISN VDF + Cable Loss

The "**Over limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

Over Limit = Level – Limit Level = Read Level + Factor

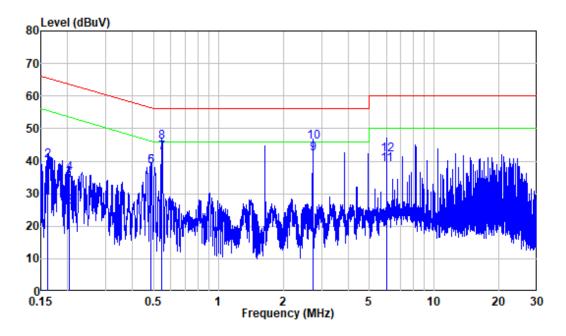
Test Data


Environmental Conditions

Temperature:	24 °C
Relative Humidity:	53 %
ATM Pressure:	101.1 kPa

The testing was performed by Jason Liu on 2022-07-08.

EUT operation mode: Charging + BT Transmitting


AC 120V/60 Hz, Line

Site	:	Shielding Room	
Condition	:	Line	
Mode	:	Charging + BT Transmitting	
Model	:	SP-0424	
Power	:	AC 120V 60Hz	

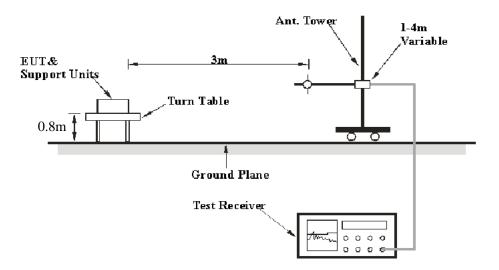
			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.164	9.80	16.58	26.38	55.28	-28.90	Average
2	0.164	9.80	29.59	39.39	65.28	-25.89	QP
3	0.206	9.80	12.35	22.15	53.38	-31.23	Average
4	0.206	9.80	24.76	34.56	63.38	-28.82	QP
5	0.489	9.80	15.28	25.08	46.19	-21.11	Average
6	0.489	9.80	26.70	36.50	56.19	-19.69	QP
7	1.642	9.82	29.37	39.19	46.00	-6.81	Average
8	1.642	9.82	33.18	43.00	56.00	-13.00	QP
9	2.736	9.83	29.59	39.42	46.00	-6.58	Average
10	2.736	9.83	33.49	43.32	56.00	-12.68	QP
11	7.114	9.87	26.53	36.40	50.00	-13.60	Average
12	7.114	9.87	30.58	40.45	60.00	-19.55	QP

AC 120V/60 Hz, Neutral

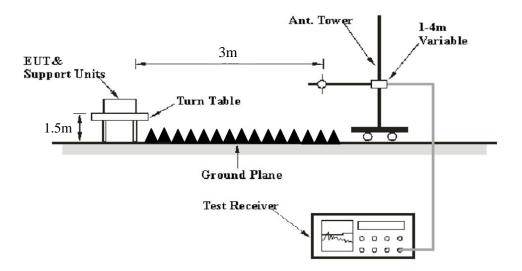
Site	:	Shielding Room
Condition	:	Neutral
Mode	:	Charging + BT Transmitting
Model	:	SP-0424
Power	:	AC 120V 60Hz

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.162	9.80	18.91	28.71	55.36	-26.65	Average
2	0.162	9.80	30.23	40.03	65.36	-25.33	QP
3	0.202	9.80	16.14	25.94	53.51	-27.57	Average
4	0.202	9.80	26.48	36.28	63.51	-27.23	QP
5	0.486	9.80	28.46	38.26	46.24	-7.98	Average
6	0.486	9.80	28.50	38.30	56.24	-17.94	QP
7	0.546	9.81	32.67	42.48	46.00	-3.52	Average
8	0.546	9.81	36.17	45.98	56.00	-10.02	QP
9	2.736	9.83	32.51	42.34	46.00	-3.66	Average
10	2.736	9.83	36.12	45.95	56.00	-10.05	QP
11	6.020	9.93	29.03	38.96	50.00	-11.04	Average
12	6.020	9.93	32.16	42.09	60.00	-17.91	QP

Shenzhen Accurate Technology Co., Ltd.


FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS

Applicable Standard


FCC §15.205; §15.209; §15.247(d)

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	РК
Above I GHZ	1 MHz	10 Hz	/	Average

The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

If the maximized peak measured value complies with the limit, then it is unnecessary to perform an QP/Average measurement

Factor & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

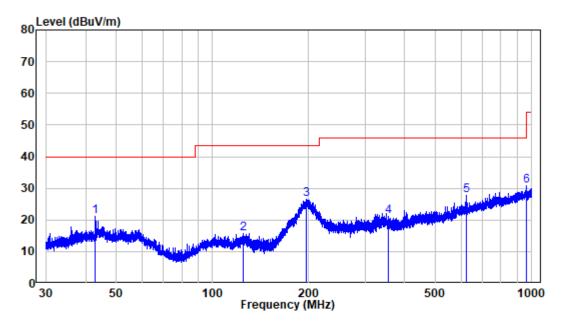
Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

Test Data

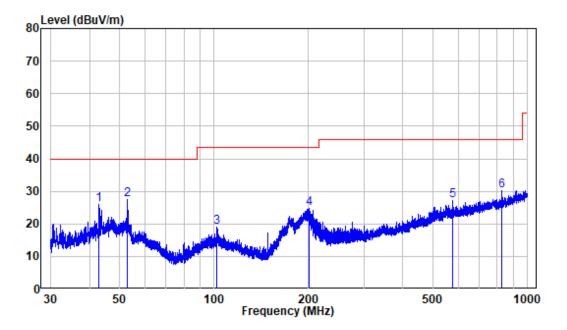
Environmental Conditions


Temperature:	28 °C
Relative Humidity:	58 %
ATM Pressure:	108.0 kPa

The testing was performed by Level Li on 2022-07-12.

EUT operation mode: Charging + BT Transmitting

(Scan with GFSK, $\pi/4$ -DQPSK, 8DPSK mode at X axis, Y axis, Z axis, the worst case is 8DPSK Mode at Y axis)


Below 1GHz: 8DPSK High Channel was worst

Horizontal

Site :	chamber
Condition:	3m HORIZONTAL
Job No. :	SZ3220704-30046E-RF
Test Mode:	Charging+BT Transmitting

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	42.956	-9.96	31.03	21.07	40.00	-18.93	Peak
2	124.733	-14.28	29.91	15.63	43.50	-27.87	Peak
3	196.855	-11.56	38.14	26.58	43.50	-16.92	Peak
4	355.895	-7.53	28.55	21.02	46.00	-24.98	Peak
5	622.072	-2.46	30.30	27.84	46.00	-18.16	Peak
6	963.428	2.40	28.45	30.85	54.00	-23.15	Peak

Vertical

Site : chamber Condition: 3m VERTICAL Job No. : SZ3220704-30046E-RF Test Mode: Charging+BT Transmitting

	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	42.937	-9.96	35.84	25.88	40.00	-14.12	Peak
2	52.668	-10.10	37.53	27.43	40.00	-12.57	Peak
3	101.912	-11.58	30.46	18.88	43.50	-24.62	Peak
4	200.249	-11.42	36.11	24.69	43.50	-18.81	Peak
5	575.382	-3.77	30.82	27.05	46.00	-18.95	Peak
6	829.673	0.04	30.28	30.32	46.00	-15.68	Peak

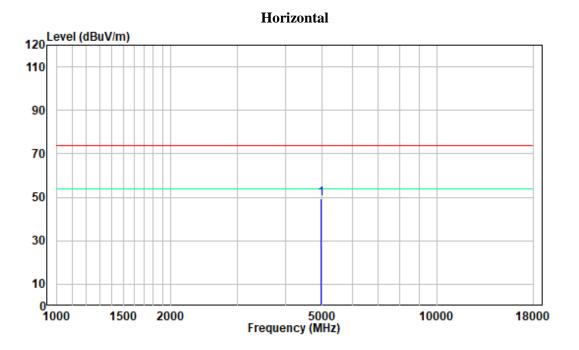
Frequency	Recei	iver	Turntable Angle	Rx An	tenna	Factor	Absolute Level	Limit	Margin
(MHz)	Reading	DIZIAN	Desmas	Height	Polar	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)
	(dBuV)	PK/AV	Degree	(m)	(H/V)		(
	Low Channel								
2310	46.43	РК	276	1.3	Н	-7.23	39.2	74	-34.8
2310	44.49	РК	156	1.4	V	-7.23	37.26	74	-36.74
2390	45.58	РК	241	2.1	Н	-7.21	38.37	74	-35.63
2390	44.54	PK	161	1.1	V	-7.21	37.33	74	-36.67
4804	50.08	PK	158	1.0	Н	-3.52	46.56	74	-27.44
4804	47.99	РК	195	1.3	V	-3.52	44.47	74	-29.53
				Middle C	hannel				
4882	50.66	РК	330	1.7	Н	-3.37	47.29	74	-26.71
4882	46.88	PK	16	1.8	V	-3.37	43.51	74	-30.49
				High Ch	annel				
2483.5	46.05	РК	84	1.4	Н	-7.2	38.85	74	-35.15
2483.5	47.28	РК	235	1.9	V	-7.2	40.08	74	-33.92
2500	46.71	PK	73	1.8	Н	-7.18	39.53	74	-34.47
2500	45.47	РК	285	2.1	V	-7.18	38.29	74	-35.71
4960	52.24	РК	37	1.3	Н	-3.01	49.23	74	-24.77
4960	47.83	РК	146	2.2	V	-3.01	44.82	74	-29.18

Above 1GHz (worst case for 8DPSK mode):

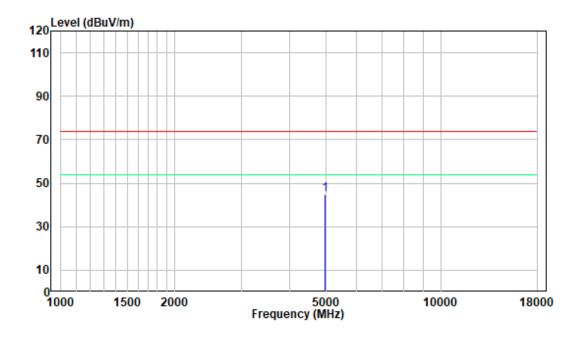
Note:

Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor

Absolute Level (Corrected Amplitude) = Factor + Reading

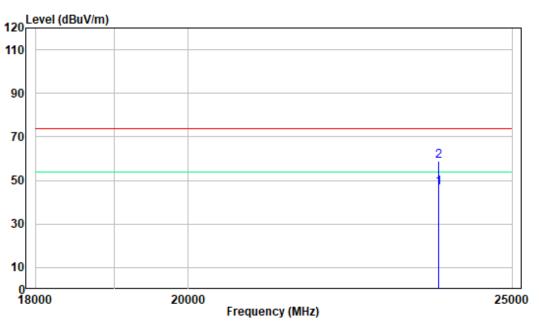

Margin = Absolute Level (Corrected Amplitude) – Limit

The other spurious emission which is in the noise floor level was not recorded.

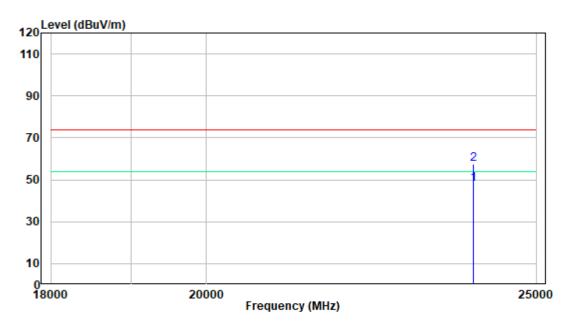

For above 1GHz, the test result of peak was 20dB below to the limit of peak, which can be compliant to the average limit, so just peak value was recorded.

1 GHz - 18 GHz: (Pre-Scan plots)

Worst case for 8DPSK High Channel:

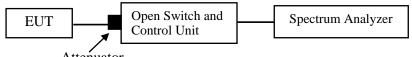

Vertical

Version 11: 2021-11-09


18-25GHz: (Pre-Scan plots)

Worst case for 8DPSK High Channel:

Horizontal


FCC §15.247(a) (1)-CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test Procedure

- 1. Set the EUT in transmitting mode, maxhold the channel.
- 2. Set the adjacent channel of the EUT and maxhold another trace.
- 3. Measure the channel separation.

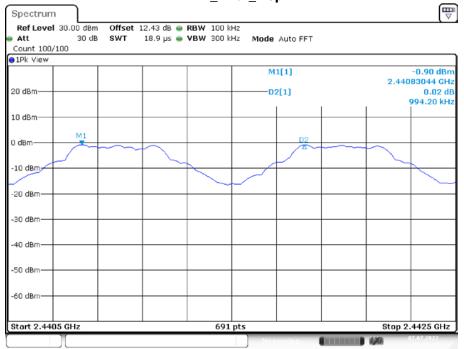
Attenuator

Test Data

Environmental Conditions

Temperature:	23°C
Relative Humidity:	51%
ATM Pressure:	101.1kPa

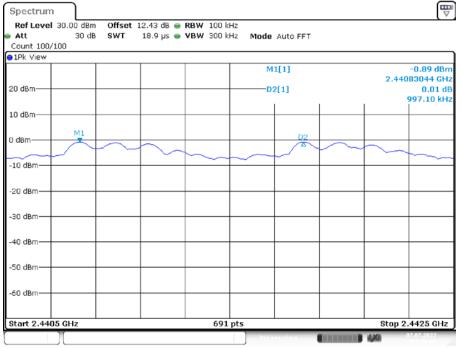
The testing was performed by Glenn Jiang on 2022-07-07.

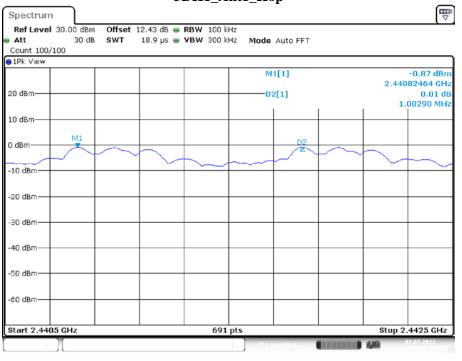

EUT operation mode: Transmitting

Test Result: Compliant.

TestMode	Antenna	Channel Result[MHz]		Limit[MHz]	Verdict
DH1	Ant1	Нор	0.994	>=0.692	PASS
2DH1	Ant1	Нор	0.997	>=0.866	PASS
3DH1	Ant1	Нор	1.003	>=0.846	PASS

Note: The limit = (2/3) * 20dB bandwidth


Please refer to the below plots:


DH1_Ant1_Hop

Date: 7.JUL.2022 09:50:18

2DH1_Ant1_Hop

Date: 7.JUL.2022 09:59:00

3DH1_Ant1_Hop

Date: 7.JUL.2022 10:06:09

FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH

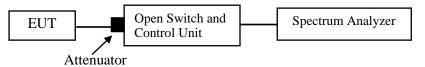
Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

The following conditions shall be observed for measuring the occupied bandwidth and 20 dB bandwidth:

• The transmitter shall be operated at its maximum carrier power measured under normal test conditions.


• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / 20 dB bandwidth if the device is not transmitting continuously.

• The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / 20 dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

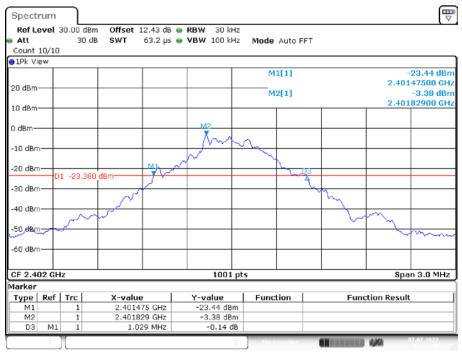
For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

....

Test Data

Environmental Conditions

Temperature:	23°C	
Relative Humidity:	51 %	
ATM Pressure:	101.1kPa	

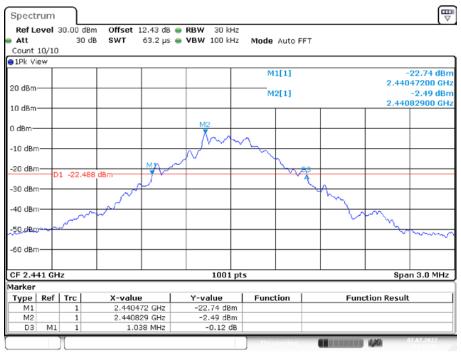

The testing was performed by Glenn Jiang on 2022-07-07.

EUT operation mode: Transmitting

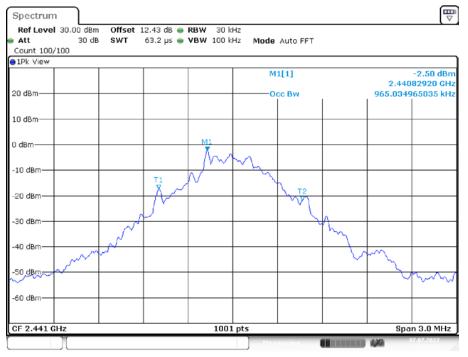
Test Result: Compliant.

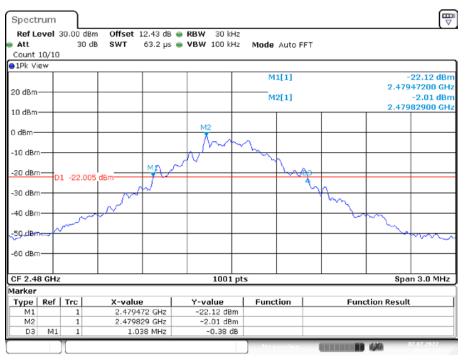
TestMode	Antenna	Channel	20db EBW[MHz]	99% OCCUPIED BANDWIDTH[MHz]	Verdict
DH1	Ant1	2402	1.029	0.938	PASS
		2441	1.038	0.965	PASS
		2480	1.038	0.98	PASS
2DH1	Ant1	2402	1.299	1.214	PASS
		2441	1.296	1.226	PASS
		2480	1.290	1.232	PASS
3DH1	Ant1	2402	1.263	1.187	PASS
		2441	1.260	1.193	PASS
		2480	1.269	1.202	PASS

Please refer to the below plots:


20 dB EMISSION BANDWIDTH_DH1_Ant1_2402

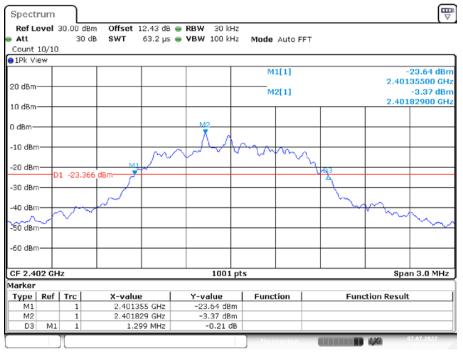
Date: 7.JUL.2022 09:31:38


Date: 7.JUL.2022 09:31:55

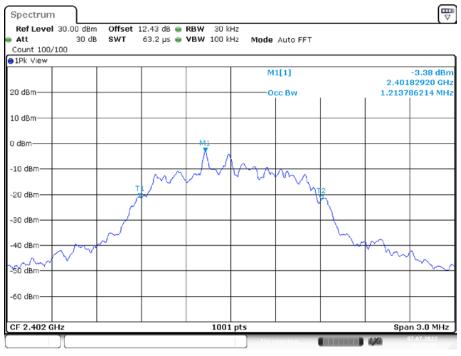

20 dB EMISSION BANDWIDTH_DH1 _Ant1_2441

Date: 7.JUL.2022 09:33:56

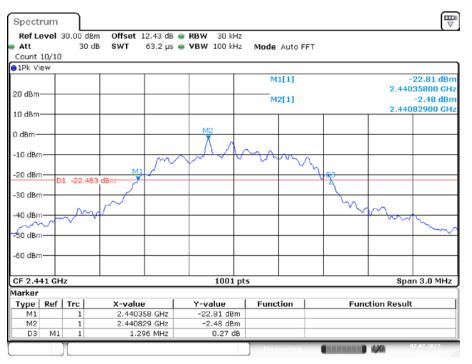

Date: 7.JUL.2022 09:34:13


20 dB EMISSION BANDWIDTH_DH1 _Ant1_2480

Date: 7.JUL.2022 09:35:15


Date: 7.JUL.2022 09:35:32

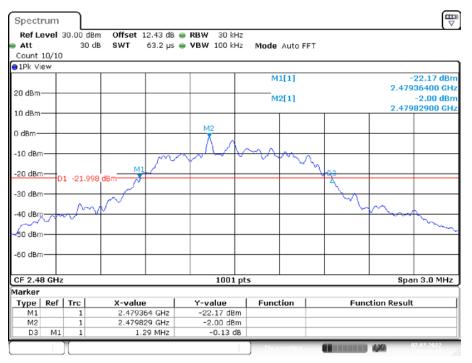
20 dB EMISSION BANDWIDTH_2DH1 _Ant1_2402


Date: 7.JUL.2022 09:36:44

99% OCCUPIED BANDWIDTH_2DH1 _Ant1_2402

Date: 7.JUL.2022 09:37:00

Version 11: 2021-11-09

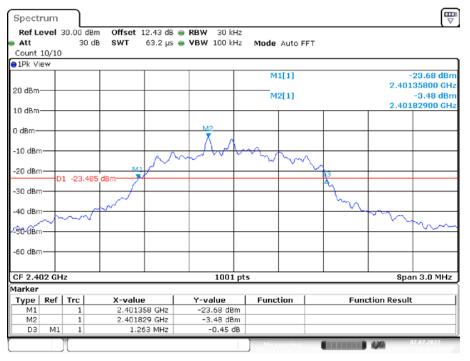

20 dB EMISSION BANDWIDTH_2DH1 _Ant1_2441

Date: 7.JUL.2022 09:38:02

99% OCCUPIED BANDWIDTH_2DH1 _Ant1_2441

Date: 7.JUL.2022 09:38:19

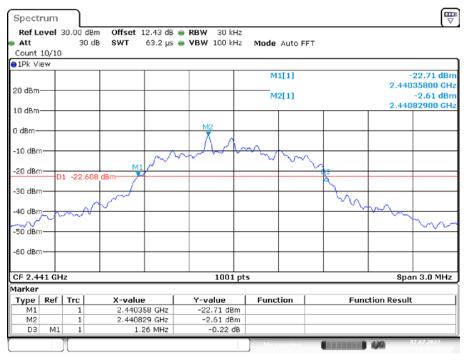
20 dB EMISSION BANDWIDTH _2DH1_Ant1_2480


Date: 7.JUL.2022 09:39:15

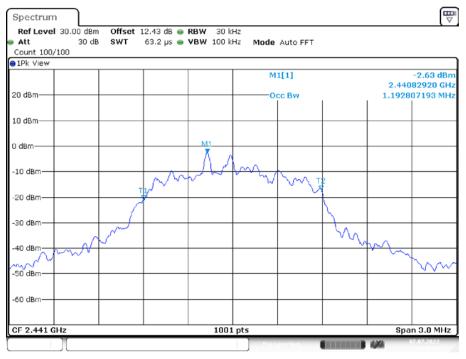
99% OCCUPIED BANDWIDTH _2DH1_Ant1_2480

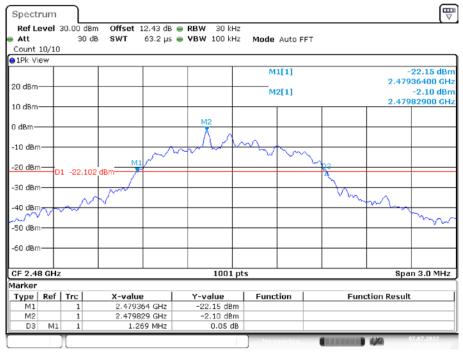
Date: 7.JUL.2022 09:39:32

Version 11: 2021-11-09


20 dB EMISSION BANDWIDTH_3DH1_Ant1_2402

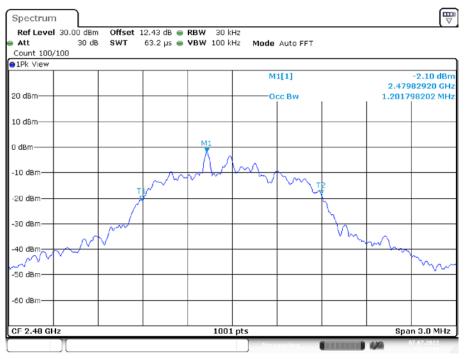
Date: 7.JUL.2022 09:42:24


Date: 7.JUL.2022 09:42:41


20 dB EMISSION BANDWIDTH_3DH1_Ant1_2441

Date: 7.JUL.2022 09:45:56

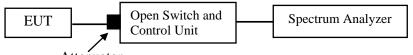
99% OCCUPIED BANDWIDTH_3DH1_Ant1_2441


Date: 7.JUL.2022 09:46:13

20 dB EMISSION BANDWIDTH_3DH1_Ant1_2480

Date: 7.JUL.2022 09:47:00

Date: 7.JUL.2022 09:47:17


FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

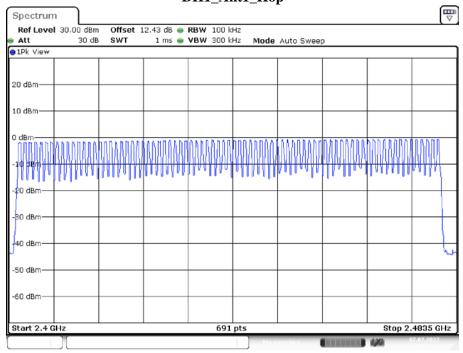
- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

Attenuator

Test Data

Environmental Conditions

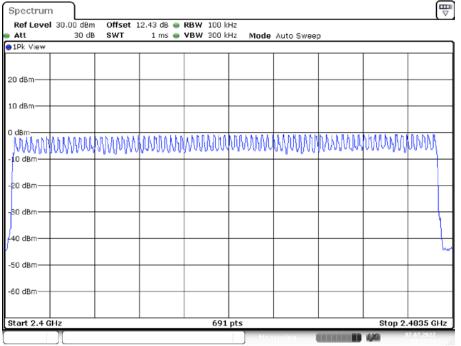
Temperature:	23°C
Relative Humidity:	51%
ATM Pressure:	101.1kPa


The testing was performed by Glenn Jiang on 2022-07-07.

EUT operation mode: Transmitting

Test Result: Compliant.

TestMode	Antenna	Channel	Result[Num]	Limit[Num]	Verdict
DH1	Ant1	Нор	79	>=15	PASS
2DH1	Ant1	Нор	79	>=15	PASS
3DH1	Ant1	Нор	79	>=15	PASS


Please refer to the below plots:

DH1_Ant1_Hop

Date: 7.JUL.2022 09:51:17

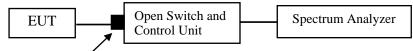
2DH1_Ant1_Hop

Date: 7.JUL.2022 09:59:34

						Υ Γ			G
Spectrum									₩ ▽
Ref Level Att	30.00 dBm 30 dB		12.43 dB 😑	RBW 100 VBW 300 VBW 30			_		
1Pk View	30 UB	301	I IIIS 🛑	APM 2001	ma mode	Auto Swee	p		
APK VIEW									
20 dBm									
10 dBm									
odem NNN NN	ለአከለበለበሰ	UNITALIAAA	MMM	A A A A A A A A A A A A A A A A A A A	NA N	A A A B A A A A	BALLANA	КЛААКОВА	ANNANA
-10 dBm	Innalador	PARAAA	Mahanaal	ANAAAAA	499VVVVV	แก่งหม่าก	lanashna	10000200.	
20 dBm									
30 dBm									
40 dBm									1
50 dBm									
-60 dBm									
Start 2.4 G	Hz			. 691	pts			Stop 2	.4835 GHz
					Mes	suring		100	07.07.2022

3DH1_Ant1_Hop

Date: 7.JUL.2022 10:06:39


FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 1. The EUT was worked in channel hopping.
- 2. Set the RBW to: 1MHz.
- 3. Set the VBW \geq 3×RBW.
- 4. Set the span to 0Hz.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Recorded the time of single pulses

Attenuator

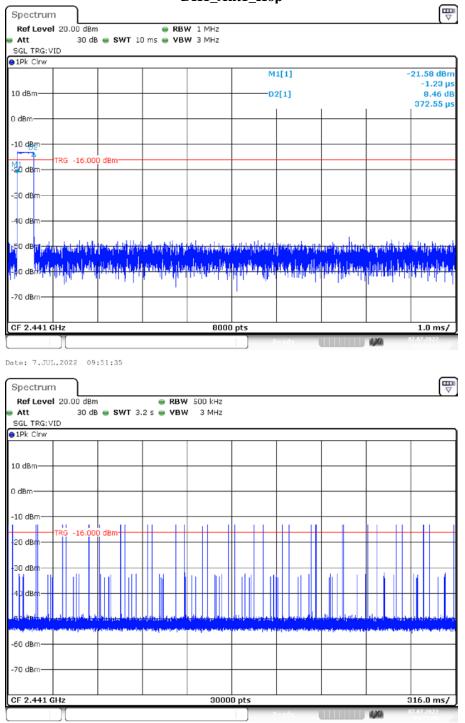
Test Data

Environmental Conditions

Temperature:	23°C
Relative Humidity:	51%
ATM Pressure:	101.1kPa

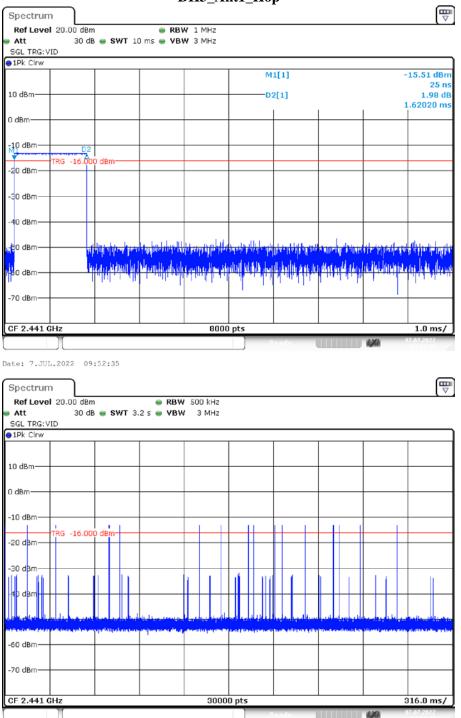
The testing was performed by Glenn Jiang on 2022-07-07.

EUT operation mode: Transmitting

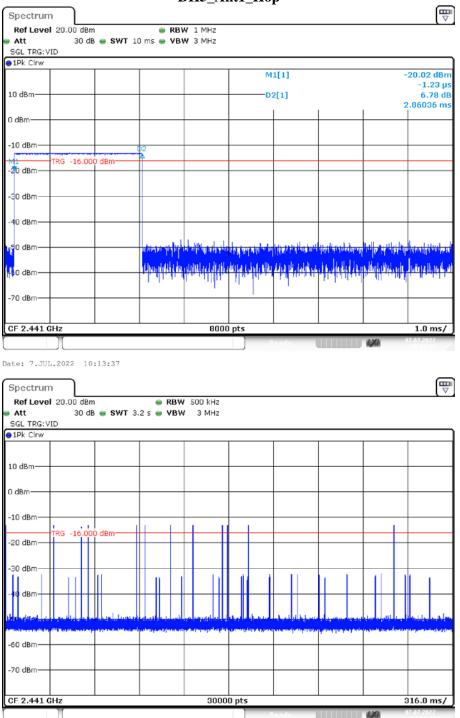

Test Result: Compliant.

TestMode	Antenna	Channel	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.37	330	0.123	<=0.4	PASS
DH3	Ant1	Нор	1.62	160	0.259	<=0.4	PASS
DH5	Ant1	Нор	2.86	120	0.343	<=0.4	PASS
2DH1	Ant1	Нор	0.38	330	0.126	<=0.4	PASS
2DH3	Ant1	Нор	1.63	180	0.294	<=0.4	PASS
2DH5	Ant1	Нор	2.87	120	0.344	<=0.4	PASS
3DH1	Ant1	Нор	0.38	330	0.127	<=0.4	PASS
3DH3	Ant1	Нор	1.63	160	0.26	<=0.4	PASS
3DH5	Ant1	Нор	2.87	120	0.344	<=0.4	PASS

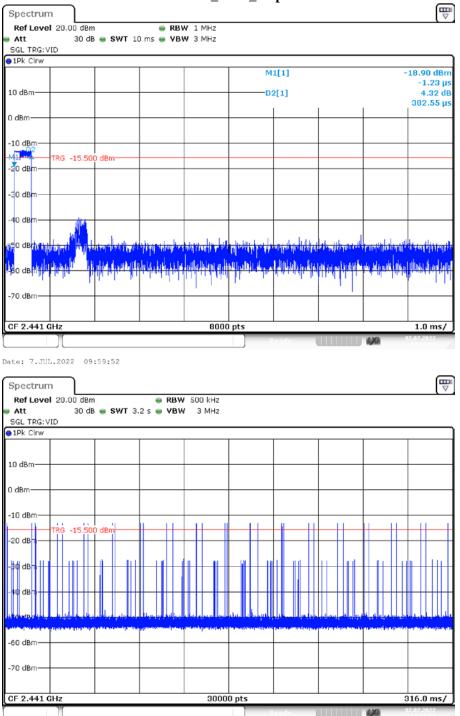
Note 1: A period time=0.4*79=31.6(s), Result=Burst Width*Total Hops


Note 2: Total Hops =Hopping Number in 3.16s*10

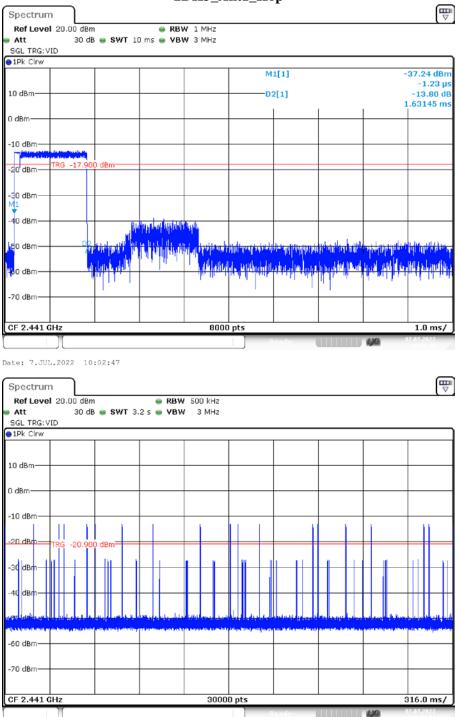
Note 3: Hoping Number in 3.16s=Total of highest signals in 3.16s (Second high signals were other channel)


DH1_Ant1_Hop

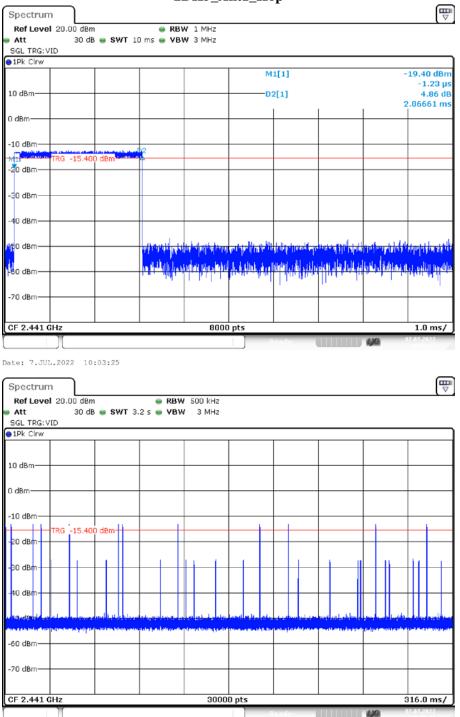
Date: 7.JUL.2022 09:51:40


DH3_Ant1_Hop

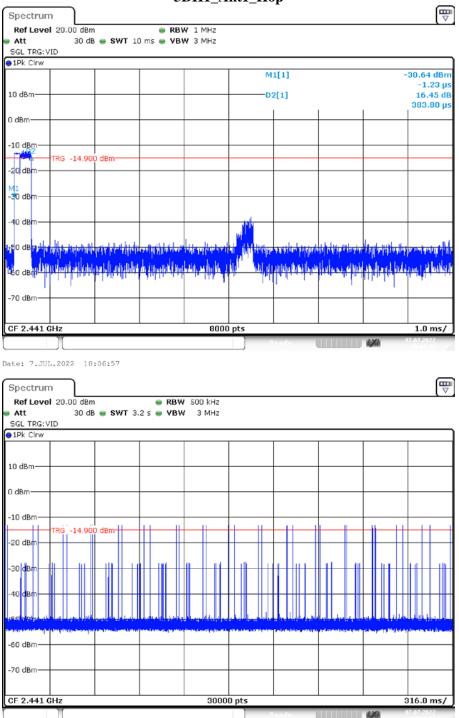
Date: 7.JUL.2022 09:52:40


DH5_Ant1_Hop

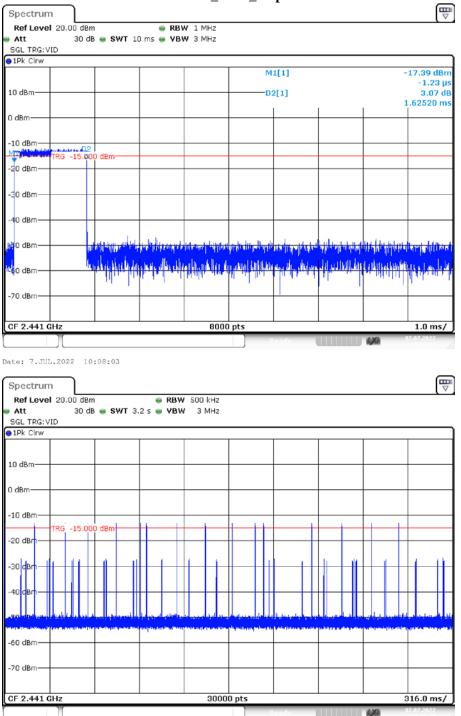
Date: 7.JUL.2022 10:13:43


2DH1_Ant1_Hop

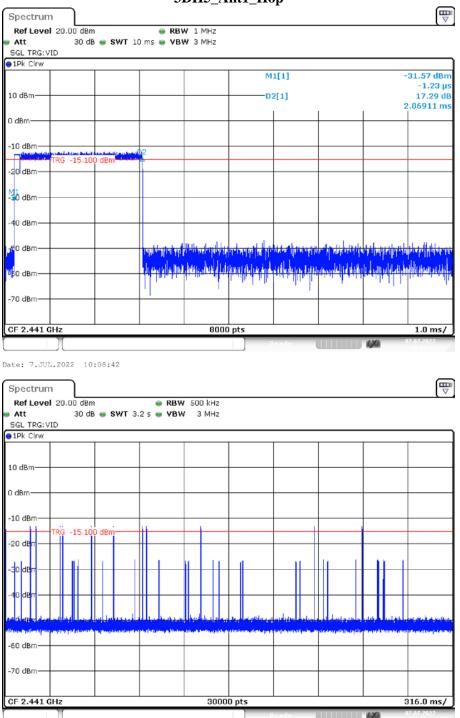
Date: 7.JUL.2022 09:59:58


2DH3_Ant1_Hop

Date: 7.JUL.2022 10:02:52


2DH5_Ant1_Hop

Date: 7.JUL.2022 10:03:30


3DH1_Ant1_Hop

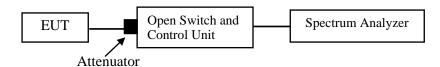
Date: 7.JUL.2022 10:07:02

3DH3_Ant1_Hop

Date: 7.JUL.2022 10:08:08

3DH5_Ant1_Hop

Date: 7.JUL.2022 10:08:48


FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

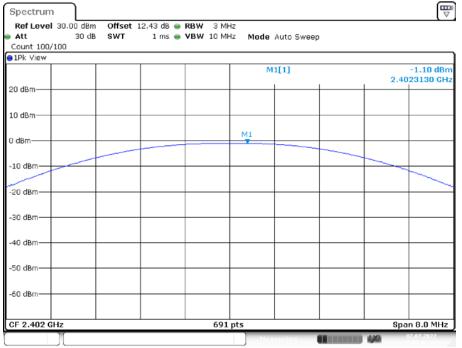
Test Procedure

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

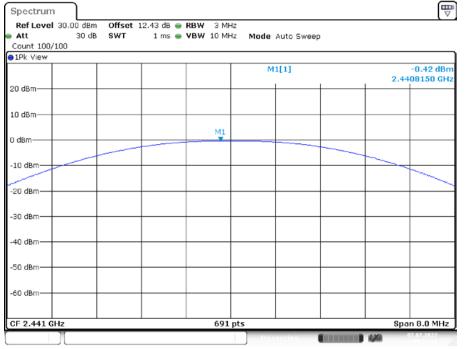
Temperature:	23°C
Relative Humidity:	51 %
ATM Pressure:	101.1kPa


The testing was performed by Glenn Jiang on 2022-07-07.

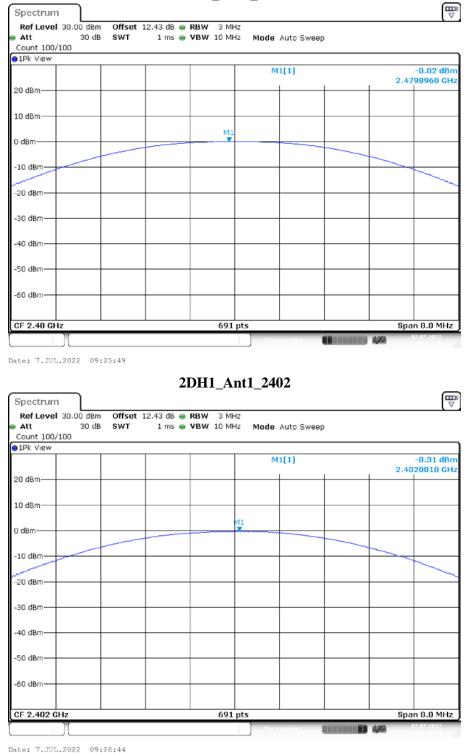
EUT operation mode: Transmitting

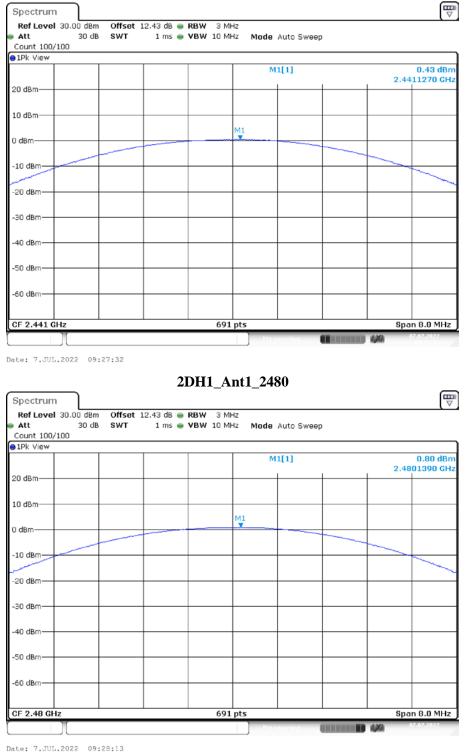
Test Result: Compliant.

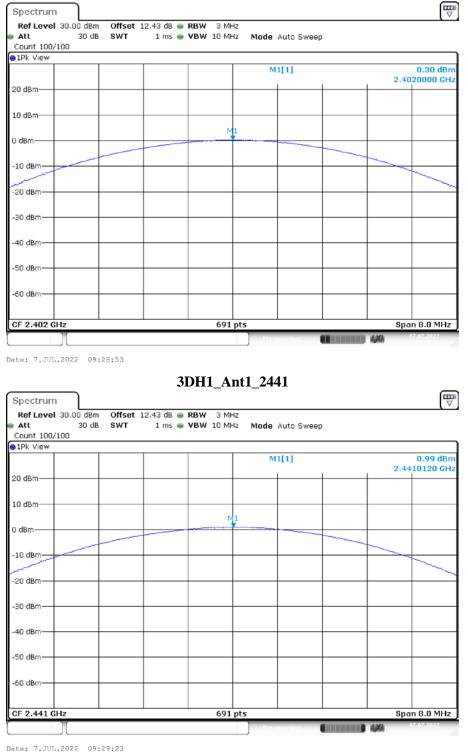
TestMode	Antenna	Channel	Conducted peak output power [dBm]	Limit[dBm]	Verdict
		2402	-1.10	<=20.97	PASS
DH1	Ant1	2441	-0.42	<=20.97	PASS
		2480	-0.02	<=20.97	PASS
	Ant1	2402	-0.31	<=20.97	PASS
2DH1		2441	0.43	<=20.97	PASS
		2480	0.80	<=20.97	PASS
		2402	0.30	<=20.97	PASS
3DH1	Ant1	2441	0.99	<=20.97	PASS
		2480	1.36	<=20.97	PASS


Please refer to the below plots:

DH1_Ant1_2402


Date: 7.JUL.2022 09:17:12


DH1_Ant1_2441


Date: 7.JUL.2022 09:24:19

Shenzhen Accurate Technology Co., Ltd.

2DH1_Ant1_2441

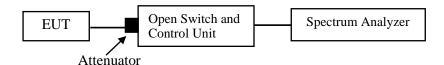
3DH1_Ant1_2402

Shenzhen Accurate Technology Co., Ltd.

					_
Spectrum					
Ref Level 30.00 dBr	n Offset 12.43 dB	● RBW 3 MHz			
Att 30 di	B SWT 1 ms	👄 VBW 10 MHz	Mode Auto Sweep		
Count 100/100					
1Pk View					
			M1[1]		1.36 dBm 799650 GHz
20 dBm				2.4	799030 GH2
10 dBm					
		ML			
0 dBm					
-10 dBm					
-20 dBm					
20 0011					
-30 dBm					
-40 dBm					
HO GDIN					
-50 dBm					
-60 dBm					
-oo abiii					
CF 2.48 GHz		691 pts		Sp	an 8.0 MHz
			Measuring	4/4	07.07.2022

3DH1_Ant1_2480

Date: 7.JUL.2022 09:29:50


FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	23°C
Relative Humidity:	51%
ATM Pressure:	101.1kPa

The testing was performed by Glenn Jiang on 2022-07-07.

EUT operation mode: Transmitting

Test Result: Compliant

Please refer to the below plots:

DH1: Band Edge-Left Side Hopping

Spectrum										
Ref Level				RBW 100 kHz						
Att	30	dB SWT 246.5	hs 😑	VBW 300 kHz	Mode	Auto F	FT			
Count 300/3	00									
1Pk View										
					M	1[1]				-4.54 dBn
10 dBm										02950 GH
					M	2[1]				49.85 dBn
0 dBm									2.4	100000 G H
										1
-10 dBm —							_			
										1 1
-20 dBm		40 dBm								1 10
30 dBm	1 -24.5	40 abm								
-30 aBm										
-40 dBm										
-40 ubili				4					МЗ	M2
SEIGBALLA	harmon	- aprilate fundam	فالربعييتيا	were soughting one	يكيلهن الحن	A Mar	mund	بسريعها	۵. میکر پارسه او	- July and
								· • [· · ·	
-60 dBm										
-70 dBm										
Start 2.3 GH	z			691 pt	s				Stop	2.405 GHz
1arker										
Type Ref	Tre	X-value	1	Y-value	Fund	tion	1	Fund	tion Result	ł
M1	1	2,40295 G	-lz	-4.54 dBm				. and		•
M2	1	2.4 G		-49.85 dBm						
M3	1	2.39 G		-50.25 dBm						
M4	1	2.342152 G	-lz	-47.33 dBm						
	11				-	-		-	4.564	17.07.2022

Date: 7.JUL.2022 09:49:42

Single

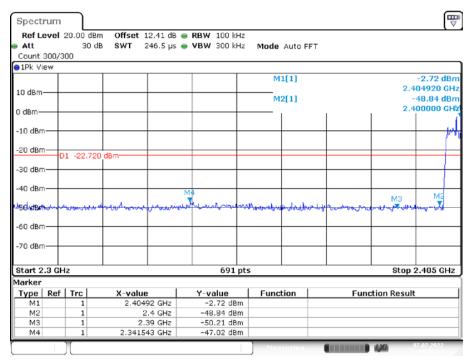
	evel :	20.00 dB		RBW 100 kHz			
Att		30 d	iB SWT 246.5 μs	👄 VBW 300 kHz	Mode Auto F	FT	
Count :		00					
1Pk Vi	ew						
					M1[1]		-1.64 dBr
10 dBm-	\rightarrow						2.401880 GH
					M2[1]		-48.93 dBr
) dBm—	\rightarrow						2.400000 CH
-10 dBm	` + −)
oo Je							
20 dBm		1 -21.64	0 dBm				
30 dBm							
SU UBII	·						
40 dBm							
•							M3 M2
56-UBm	hgvil d ro	والعاجر يسيعه	pt. when the second states and the second st	the way the area to be	and the state of the second	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	and brooth to allow the state of the
60 dBm							
-70 dBm							
70 ubii	'——						
							01 0 105 011
Start 2	.3 GH	z		691 pts	;		Stop 2.405 GHz
larker						_	
Type M1	Ref		2.40188 GHz	<u>Y-value</u> -1.64 dBm	Function	Func	tion Result
M1 M2		1	2.40188 GHz 2.4 GHz	-48.93 dBm			
M2 M3		1	2.39 GHz	-48.93 dBm			
110		1	2.300304 GHz	-47.10 dBm			

Date: 7.JUL.2022 09:32:10

			110pp	0		
Spectrum						
Ref Level	20.00 dBr	m Offset 12.43 d	B 曼 RBW 100 kHz			
Att	30 d	B SWT 1.1 m	s 👄 VBW 300 kHz	Mode Auto S	Sweep	
Count 300/3	00					
1Pk View						
				M1[1]		-0.68 dBn
10 dBm						2.477000 GH
				M2[1]		-44.72 dBn
						2.483500 GH
11466666	14					
-10 dBH++++	₩					
	1					
-20 dBm	1-20.680) dBm				
	1					
-30 dBm						
-40 dBm	Ma		MO	M4		
		mound		munowall	mound	amounantrance
-50 dBm						
-60 dBm —						
-70 dBm						
Start 2.47 G	Hz		691 pt:	5		Stop 2.55 GHz
larker						
Type Ref	Trc	X-value	Y-value	Function	Fun	ction Result
M1	1	2.477 GHz	-0.68 dBm			
M2	1	2.4835 GHz				
M3	1	2.5 GHz				
M4	1	2.515797 GHz	-42.52 dBm			
					A CONTRACTOR	07.07.2022

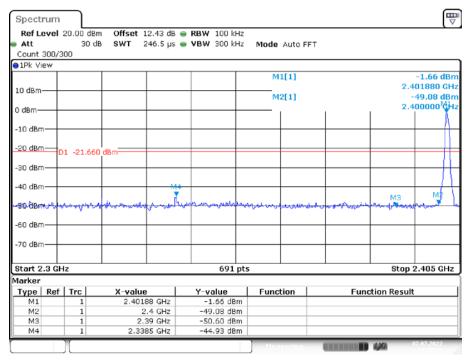
DH1: Band Edge- Right Side Hopping

Date: 7.JUL.2022 09:54:54


Ref Le	evel :	20.00 d	IBm Offset 12.43 dB	RBW 100 kHz			
Att		30	dB SWT 1.1 ms	VBW 300 kHz	Mode Auto S	weep	
Count :	300/3	00					
1Pk Vi	ew						
					M1[1]		-0.61 dBn
10 dBm-							2.479900 GH
LO UBIII					M2[1]		-44.75 dBn
) dBm—	P	41 T					2.483500 GH
, april		n –					
10 dBm	-	A —					
		Л					
20 dBm	Þ	1 -20.6	10 dBm	_			
		0					
30 dBm							
40 dBm	\square	1 145		M4			
- and			unex-moundary	and when and	mundure	mentermenter	mander and work
-S0 dBm							
60 dBm	+						
-70 dBm	-						
Start 2	.47 G	Hz		691 pt:	5		Stop 2.55 GHz
larker							
	Ref	Trc	X-value	Y-value	Function	Funct	ion Result
M1		1	2.4799 GHz	-0.61 dBm			
M2		1	2.4835 GHz	-44.75 dBm			
M3 M4		1	2.5 GHz 2.504087 GHz	-45.09 dBm			
		1		-41.46 dBm			

Single

Date: 7.JUL.2022 09:35:47


Version 11: 2021-11-09

2DH1: Band Edge-Left Side Hopping

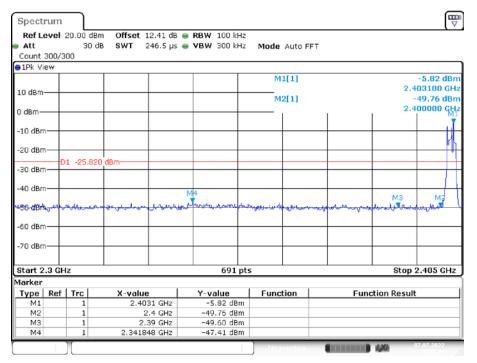
Date: 7.JUL.2022 09:56:18

Single

Date: 7.JUL.2022 09:37:15

2DH1: Band Edge- Right Side Hopping

Spectrum						
Ref Level Att Count 300/3	30		8 ● RBW 100 kHz 5 ● VBW 300 kHz	Mode Auto S	Sweep	•
1Pk View						-0.63 dBn
				M1[1]		-0.63 dBn 2.480010 GH:
	м1			M2[1]		-44.92 dBn 2.483500 GH
	M					
	01 -20.6	30 dBm				
30 dBm						
-40 dBm	L.MS	2 . mainwalkaletaburat	1913 All March	unannu	M4	whenen have been have
50 dBm						
60 dBm						
-70 dBm						
Start 2.47 0	Hz		691 pts			Stop 2.55 GHz
1arker						
Type Ref	Trc	X-value	Y-value	Function	Fune	ction Result
M1	1	2.48001 GHz	-0.63 dBm			
M2	1	2.4835 GHz	-44.92 dBm			
	1	2.5 GHz	-45.34 dBm			
M3 M4	1	2.532145 GHz	-42.62 dBm			


Date: 7.JUL.2022 10:04:30

Ref Level	20.00 dBm	n Offset 12.43 dB	RBW 100 kHz			
Att	30 dB	3 SWT 1.1 ms	👄 VBW 300 kHz	Mode Auto :	Sweep	
Count 300/	300					
1Pk View						
				M1[1]		-0.63 dBr
10 dBm						2.480010 GH
	M1			M2[1]		-44.46 dBr
0 dBm	*					2.483500 GH
	1					
-10 dBm						
	11					
-20 dBm	D1 -20.630	dBm				
-30 dBm						
-30 aBm —	\square					
-40 dBm	142		2 M4			
much	Jan	mulliment	be neventeres	un war when the	mound	an mon for march
-50 dBm						
-60 dBm —						
-70 dBm						
Start 2.47	GHz		691 pt:	s		Stop 2.55 GHz
larker						
Type Ref	Trc	X-value	Y-value	Function	Fu	nction Result
M1	1	2.48001 GHz	-0.63 dBm			
M2	1	2.4835 GHz	-44.46 dBm			
M3	1	2.5 GHz	-44.40 dBm			
M4	1	2.508261 GHz	-42.53 dBm			

Single

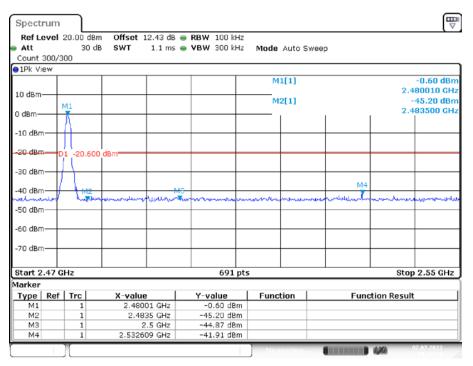
Date: 7.JUL.2022 09:39:47

3DH1: Band Edge-Left Side Hopping

Date: 7.JUL.2022 10:05:23

Single

Ref Lo Att	evel	20.00 dB 30 d		 RBW 100 kHz VBW 300 kHz 	Mode Auto A	FFT	
Count	300/3			• • • • • • • • • • • • • • • • •	Hous Autor		
1Pk Vi	ew						
					M1[1]		-1.60 dBr
10 dBm·							2.401880 GH
					M2[1]		-48.67 dBr
) dBm—							2.400000 CH
o ubin							
10 dBm	<u> </u>						
20 dBm		1 -21.60					
	ľ	1 -21.00	UUDIII				
30 dBm	-						
40 dBm	+				M4		
				anner ar have	T		M3 M2
50 dBr	we way	بالتحليل ومعاني	an and the second of the second of	Martin and a series of the ser	" the second of the second	John Carles and Contraction of the second	and and and the
-60 dBrr							
-ou abri							
-70 dBm							
vo ubii							
Start 2	.3 GH	z		691 pt	s		Stop 2.405 GHz
larker							
Type	Ref	Trc	X-value	Y-value	Function	Fun	ction Result
M1		1	2.40188 GHz	-1.60 dBm			
M2		1	2.4 GHz	-48.67 dBm			
MЗ		1	2.39 GHz	-49.72 dBm			
M4		1	2.356 GHz	-46.81 dBm			


Date: 7.JUL.2022 09:42:56

3DH1: Band Edge- Right Side Hopping

			- I , I ,	8		
Spectrum						
Ref Level 2	0.00 dBr	n Offset 12.43 dB	BRBW 100 kHz			
Att	30 d		VBW 300 kHz	Mode Auto S	weep	
Count 300/30	0					
1Pk View						
				M1[1]		-0.65 dBn
10 dBm						2.472840 GH
				M2[1]		-44.86 dBn
						2.483500 GH
1.0.0.00 (0.0.0.00)						
To dem - 104	<u>} </u>					
20 dBm D1	-20.650) dBm				
	1					
30 dBm						
40 dBm	- M2		2		M4	
do do lin	how	a where man was a set	mummen	manum	malana	the her many and the most of the second seco
50 dBm						
60 dBm						
-70 dBm						
Start 2.47 GH	łz		691 pts			Stop 2.55 GHz
larker						
Type Ref		X-value	Y-value	Function	Fu	nction Result
M1	1	2.47284 GHz	-0.65 dBm			
M2	1	2.4835 GHz	-44.86 dBm			
M3 M4	1	2.5 GHz 2.52542 GHz	-44.37 dBm -42.57 dBm			
1111	-	2,02042 002	-+2,57 UBIII	<u></u>		
]	1			Measuring.		07.07.2022

Date: 7.JUL.2022 10:09:34

Single

Date: 7.JUL.2022 09:47:32

***** END OF REPORT *****

Version 11: 2021-11-09