

TEST REPORT

Applicant Name : Address : Zeeva International Limited Suite 1007B, 10th Floor, Exchange Tower, 33 Wang Chiu Road, Kowloon Bay, Hong Kong RA221212-60672E-RF 2ADM5-SP-0201

Report Number : FCC ID:

Test Standard (s) FCC PART 15.247

Sample Description

Product Type: Model No.: Date Received: Date of Test: Report Date: S23 BT HOME SPKR LED RING SP-0201B 2022-12-12 2022-12-13 to 2022-12-14 2022-12-14

Test Result:

Pass*

* In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Roger, Ling

Roger.Ling EMC Engineer

Approved By:

Candy . Cr

Candy Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk " \star ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China Tel: +86 755-26503290 Fax: +86 755-26503396 Web: www.atc-lab.com

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	
EUT Exercise Software	
Equipment Modifications	6
SUPPORT EQUIPMENT LIST AND DETAILS	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	
FCC §1.1310 & §2.1091 -MAXIMUM PERMISSIBLE EXPOSURE (MPE)	10
TEST RESULT:	
FCC §15.203 – ANTENNA REQUIREMENT	11
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP EMI Test Receiver Setup	
Test Procedure	13
FACTOR & MARGIN CALCULATION	
TEST DATA	
FCC §15.205, §15.209 & §15.247(d) - RADIATED EMISSIONS	
Applicable Standard EUT Setup	
EUT SETUP EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	
Factor & Margin Calculation Test Data	
FCC §15.247(a) (1)-CHANNEL Separation Test	
Applicable Standard Test Procedure	
TEST DATA	
FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH	27
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST	
APPLICABLE STANDARD	38

Shenzhen	Accurate	Technol	logy	Co	Ltd.
Shenzhen	riccurate	1 comio	055	<i>co.</i> ,	Lau.

Report No.: RA221212-60672E-RF

Them D in t	
TEST DATA	38
FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)	41
APPLICABLE STANDARD	41
Test Procedure	
TEST DATA	41
FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT	51
APPLICABLE STANDARD	51
Test Procedure	51
TEST DATA	51
FCC §15.247(d) - BAND EDGES TESTING	57
APPLICABLE STANDARD	57
Test Procedure	
TEST DATA	

Shenzhen Accurate Technology Co., Ltd.

GENERAL INFORMATION

Product Type	S23 BT HOME SPKR LED RING	
Tested Model	SP-0201B	
UPC	BLACK – 1922345200565 GRAY - 1922345200572 PINK – 1922345200589 BLUE - 1922345200596	
SKU	BLACK – 7540020 GRAY - 7540021 PINK – 7540022 BLUE - 7540023	
Frequency Range	2402~2480MHz	
Maximum conducted Peak output power	4.46dBm	
Modulation Technique	BDR(GFSK)/EDR(π/4-DQPSK)/EDR(8DPSK)	
Antenna Specification*	Internal Antenna: -0.58dBi(provided by the applicant)	
Voltage Range	DC3.7V from battery or 5V from USB port	
Sample number	RA221212-60672E-RF-S1 (Assigned by ATC, Shenzhen)	
Sample/EUT Status	Good condition	

Product Description for Equipment under Test (EUT)

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter		Uncertainty
Occupied Cha	nnel Bandwidth	5%
RF Fre	equency	$0.082*10^{-7}$
RF output por	wer, conducted	0.73dB
Unwanted Emission, conducted		1.6dB
AC Power Lines Conducted Emissions		2.72dB
	30MHz - 1GHz	4.28dB
Emissions, Radiated	1GHz - 18GHz	4.98dB
Radiated	18GHz - 26.5GHz	5.06dB
Temperature		1 °C
Humidity		6%
Supply	voltages	0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189.

Accredited by American Association for Laboratory Accreditation (A2LA). The Certificate Number is 4297.01

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0016. The Registration Number is 5077A.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

EUT Exercise Software

Software "fcc assist1.0.2.2*" was used during testing and the power level was 10*.

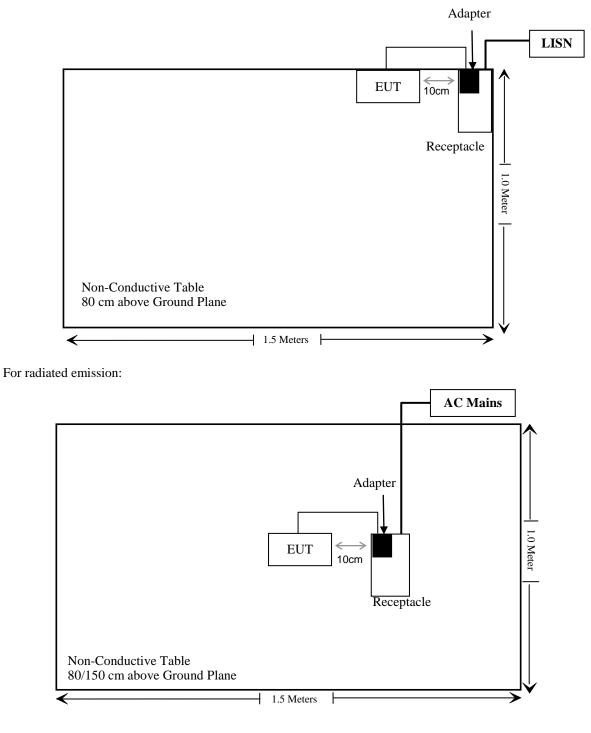
Special Accessories

N/A.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
HUAWEI	Adapter	HW-050100C01	H779KBK6V19398

External I/O Cable

Cable Description	Length(m)	From/Port	То
Unshielded Detachable USB Cable	0.3	EUT	Adapter

Block Diagram of Test Setup

For conducted emission:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§ 1.1310, § 2.1091	Maximum Permissible Exposure (MPE)	Compliant
§15.203	Antenna Requirement	Compliant
§15.207(a)	AC Line Conducted Emissions	Compliant
§15.205, §15.209 & §15.247(d)	Radiated Emissions	Compliant
§15.247(a)(1)	20 dB Emission Bandwidth & 99% Occupied Bandwidth	Compliant
§15.247(a)(1)	Channel Separation Test	Compliant
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliant
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliant
§15.247(b)(1)	Peak Output Power Measurement	Compliant
§15.247(d)	Band edges	Compliant

TEST EQUIPMENT LIST

Manufacturer	Description	Model Serial Number		Calibration Date	Calibration Due Date	
Conducted Emission Test						
Rohde & Schwarz	EMI Test Receiver	ESCI	100784	2022/11/25	2023/11/24	
Rohde & Schwarz	L.I.S.N.	ENV216	101314	2022/11/25	2023/11/24	
Anritsu Corp	50 Coaxial Switch	MP59B	6100237248	2022/12/07	2023/12/06	
Unknown	RF Coaxial Cable	No.17	N0350	2022/11/25	2023/11/24	
	Conducted E	mission Test Soft	ware: e3 19821b (V9)		
		Radiated Emissi	ons Test			
Rohde & Schwarz	Test Receiver	ESR	102725	2022/11/25	2023/11/24	
Rohde & Schwarz	Spectrum Analyzer	FSV40	101949	2022/11/25	2023/11/24	
SONOMA INSTRUMENT	Amplifier	310 N	186131	2022/11/08	2023/11/07	
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2022/11/08	2023/11/07	
Quinstar	Amplifier	QLW-184055 36-J0	15964001002	2022/11/08	2023/11/07	
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05	
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04	
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2020/01/05	2023/01/04	
Wainwright	High Pass Filter	WHKX3.6/18 G-10SS	5	2022/11/25	2023/11/24	
Unknown	RF Coaxial Cable	No.10	N050	2022/11/25	2023/11/24	
Unknown	RF Coaxial Cable	No.11	N1000	2022/11/25	2023/11/24	
Unknown	RF Coaxial Cable	No.12	N040	2022/11/25	2023/11/24	
Unknown	RF Coaxial Cable	No.13	N300	2022/11/25	2023/11/24	
Unknown	RF Coaxial Cable	No.14	N800	2022/11/25	2023/11/24	
Unknown	RF Coaxial Cable	No.15	N600	2022/11/25	2023/11/24	
Unknown	RF Coaxial Cable	No.16	N650	2022/11/25	2023/11/24	
	Radiated Er		ware: e3 19821b (V	/9)		
		RF Conducted				
Rohde & Schwarz	Spectrum Analyzer	FSV-40	101495	2022/11/25	2023/11/24	
Rohde & Schwarz	Open Switch and Control Unit	OSP120 + OSP-B157	101244 + 100866	2022/11/25	2023/11/24	
WEINSCHEL	10dB Attenuator	5324	AU 3842	2022/11/25	2023/11/24	
Unknown	RF Coaxial Cable	No.33	RF-03	Each	time	

* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1310 & §2.1091 –MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to KDB 447498 D04 Interim General RF Exposure Guidance v01, clause 2.1.4 – MPE-Based Exemption:

An alternative to the SAR-based exemption is provided in § 1.1307(b)(3)(i)(C), for a much wider frequency range, from 300 kHz to 100 GHz, applicable for separation distances greater or equal to $\lambda/2\pi$, where λ is the free-space operating wavelength in meters. The MPE-based test exemption condition is in terms of ERP, defined as the product of the maximum antenna gain and the delivered maximum time-averaged power. For this case, a RF source is an RF exempt device if its ERP (watts) is no more than a frequency-dependent value, as detailed tabular form in Appendix B. These limits have been derived based on the basic specifications on Maximum Permissible Exposure (MPE) considered for the FCC rules in § 1.1310(e)(1).

Table to § 1.1307(b)(3)(i)(C) - Single RF Sources Subject to Routine Environmental Evaluation

RF Source frequency (MHz)	Threshold ERP (watts)
0.3-1.34	1,920 R ² .
1.34-30	3,450 R ² /f ² .
30-300	3.83 R ² .
300-1,500	0.0128 R ² f.
1,500-100,000	19.2R ² .

f = frequency in MHz;

R = minimum separation distance from the body of a nearby person (appropriate units, e.g., m);

Test Result:

For worst case:

Mode	Frequency Range	Tune-up Output Power		Antenna Gain		ERP		Evaluation Distance	ERP Limit
	(MHz)	(dBm)	(mW)	(dBi)	(dBd)	(dBm)	(mW)	(cm)	(mW)
BT	2402-2480	5.0	2.82	-0.58	-2.73	2.27	1.69	20	768

Note 1: The tune-up power was declared by the applicant. Note 2: 0dBd=2.15dBi.

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliant.

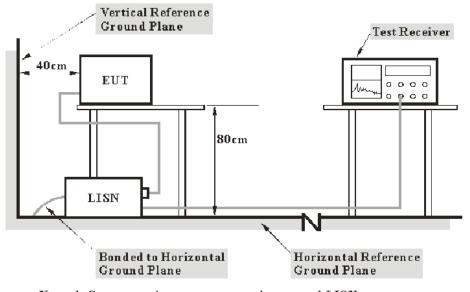
FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

The EUT has one Internal PCB Antenna arrangement, which was permanently attached and the antenna gain is -0.58dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliant.

FCC §15.207 (A) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Factor & Margin Calculation

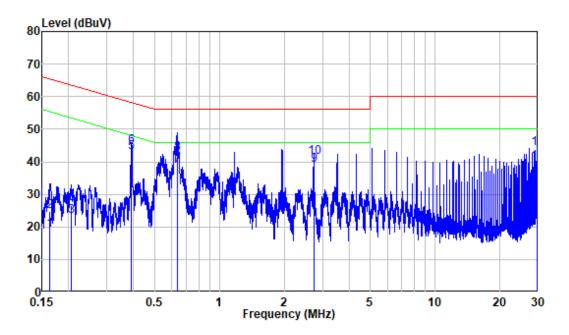
The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

Factor = LISN VDF + Cable Loss

The "**Over limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

Over Limit = Level – Limit Level = Read Level + Factor

Test Data

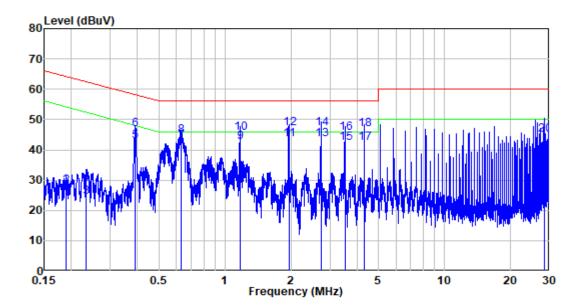

Environmental Conditions

Temperature:	21°C
Relative Humidity:	38%
ATM Pressure:	101kPa

The testing was performed by Chen jie on 2022-12-13.

EUT operation mode: Charging+ BT Transmitting

AC 120V/60 Hz, Line



Site	:	Shielding Room
Condition	:	Line
Job No.	:	RA221212-60672E-RF
Mode	:	Charging+BT Transmitting
Power	:	AC 120V 60Hz

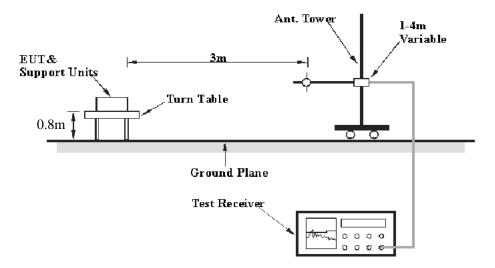
	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.164	9.80	9.36	19.16	55.28	-36.12	Average
2	0.164	9.80	15.00	24.80	65.28	-40.48	QP
3	0.206	9.80	13.56	23.36	53.38	-30.02	Average
4	0.206	9.80	16.88	26.68	63.38	-36.70	QP
5	0.392	9.80	32.94	42.74	48.03	-5.29	Average
6	0.392	9.80	34.74	44.54	58.03	-13.49	QP
7	0.636	9.81	29.27	39.08	46.00	-6.92	Average
8	0.636	9.81	32.77	42.58	56.00	-13.42	QP
9	2.734	9.83	29.14	38.97	46.00	-7.03	Average
10	2.734	9.83	31.39	41.22	56.00	-14.78	QP
11	29.684	10.10	29.60	39.70	50.00	-10.30	Average
12	29.684	10.10	33.95	44.05	60.00	-15.95	QP

Version 11: 2021-11-09

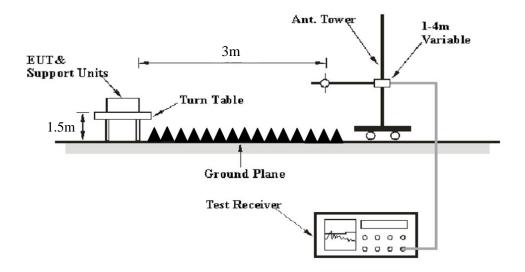
AC 120V/60 Hz, Neutral

Site	:	Shielding Room
Condition	:	Neutral
Job No.	:	RA221212-60672E-RF
Mode	:	Charging+BT Transmitting
Power	:	AC 120V 60Hz

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.189	9.80	14.03	23.83	54.10	-30.27	Average
2	0.189	9.80	18.21	28.01	64.10	-36.09	QP
3	0.233	9.80	14.59	24.39	52.34	-27.95	Average
4	0.233	9.80	18.96	28.76	62.34	-33.58	QP -
5	0.390	9.80	33.13	42.93	48.07	-5.14	Average
6	0.390	9.80	36.90	46.70	58.07	-11.37	QP
7	0.631	9.81	32.96	42.77	46.00	-3.23	Average
8	0.631	9.81	34.76	44.57	56.00	-11.43	QP
9	1.173	9.81	32.81	42.62	46.00	-3.38	Average
10	1.173	9.81	35.68	45.49	56.00	-10.51	QP
11	1.953	9.82	33.78	43.60	46.00	-2.40	Average
12	1.953	9.82	37.23	47.05	56.00	-8.95	QP
13	2.736	9.83	33.74	43.57	46.00	-2.43	Average
14	2.736	9.83	37.36	47.19	56.00	-8.81	QP
15	3.516	9.84	32.48	42.32	46.00	-3.68	Average
16	3.516	9.84	35.79	45.63	56.00	-10.37	QP
17	4.298	9.85	32.32	42.17	46.00	-3.83/	Average
18	4.298	9.85	36.85	46.70	56.00	-9.30 (2P
19	28.508	10.19	28.27	38.46	50.00	-11.54 /	Average
20	28.508	10.19	34.70	44.89		-15.11 (-


FCC §15.205, §15.209 & §15.247(D) - RADIATED EMISSIONS

Applicable Standard


FCC §15.205; §15.209; §15.247(d)

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement	
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP	
Above 1 GHz	1 MHz	3 MHz	/	РК	

For average measurement:

Use the duty cycle factor correction factor method per 15.35(c). Duty cycle=On time/100milliseconds, On time=N1*L1+N2*L2+...Nn-1*Ln-1+Nn*Ln, Where N1 is number of type 1 pulses, L1 is length of type 1 pulse, etc. Average Emission Level=Peak Emission Level+20*log(Duty cycle)

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

If the maximized peak measured value complies with the limit, then it is unnecessary to perform an QP/Average measurement

Factor & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

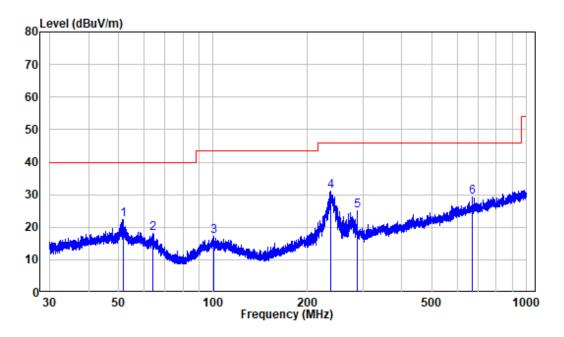
Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

Test Data

Environmental Conditions

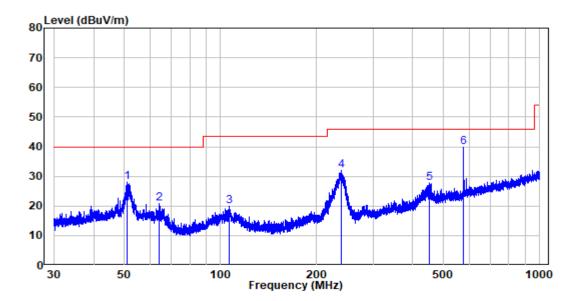

Temperature:	24°C
Relative Humidity:	58%
ATM Pressure:	101kPa

The testing was performed by Jason Liu on 2022-12-14.

EUT operation mode: Charing+ BT Transmitting

(Scan with GFSK, $\pi/4$ -DQPSK, 8DPSK mode at X axis, Y axis, Z axis, the worst case is 8DPSK Mode at Y axis)

Below 1GHz: 8DPSK, Middle Channel:



Horizontal

Site :	chamber
Condition:	3m HORIZONTAL
Job No. :	RA221212-60672E-RF
Test Mode:	BT transmitting

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	51.798	-9.97	32.17	22.20	40.00	-17.80	Peak
2	64.208	-12.22	30.43	18.21	40.00	-21.79	Peak
3	100.581	-11.73	28.83	17.10	43.50	-26.40	Peak
4	236.956	-10.93	42.04	31.11	46.00	-14.89	Peak
5	287.990	-9.36	34.41	25.05	46.00	-20.95	Peak
6	672.255	-1.63	30.84	29.21	46.00	-16.79	Peak


```
Site : chamber
Condition: 3m Vertical
Job No. : RA221212-60672E-RF
Test Mode: BT transmitting
```

	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	51.076	-9.94	38.16	28.22	40.00	-11.78	Peak
2	64.179	-12.21	32.91	20.70	40.00	-19.30	Peak
3	106.759	-11.95	31.87	19.92	43.50	-23.58	Peak
4	238.310	-10.92	42.96	32.04	46.00	-13.96	Peak
5	449.950	-5.63	33.32	27.69	46.00	-18.31	Peak
6	576.139	-3.70	43.45	39.75	46.00	-6.25	Peak

Shenzhen Accurate Technology Co., Ltd.

Above 1GHz (worst case for 8DPSK):

Frequency	Receiver		Turntable	Rx Ar	itenna	Factor	Absolute	Limit	Margin
(MHz)	Reading (dBuV)	PK/Ave	Angle Degree	Height (m)	Polar (H/V)	(dB/m)	Level (dBuV/m)	(dBuV/m)	(dB)
				Low Ch	annel				
2310	47.77	PK	245	1.1	Н	-7.23	40.54	74	-33.46
2310	51.79	PK	358	1.0	V	-7.23	44.56	74	-29.44
2390	53.07	РК	342	1.3	Н	-7.21	45.86	74	-28.14
2390	55.42	PK	217	1.9	V	-7.21	48.21	74	-25.79
4804	57.5	РК	16	1.4	Н	-3.52	53.98	74	-20.02
4804	58.05	PK	246	2.0	V	-3.52	54.53	74	-19.47
				Middle C	hannel				
4882	57.42	РК	294	2.1	Н	-3.37	54.05	74	-19.95
4882	58.58	РК	67	1.4	V	-3.37	55.21	74	-18.79
				High Ch	annel				
2483.5	55.66	РК	233	1.4	Н	-7.2	48.46	74	-25.54
2483.5	53.23	РК	38	2.0	V	-7.2	46.03	74	-27.97
2500	50.2	РК	13	2.1	Н	-7.18	43.02	74	-30.98
2500	48.74	РК	223	1.9	V	-7.18	41.56	74	-32.44
4960	60.16	РК	63	1.1	Н	-3.01	57.15	74	-16.85
4960	58.86	РК	103	1.3	V	-3.01	55.85	74	-18.15

Note:

Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor

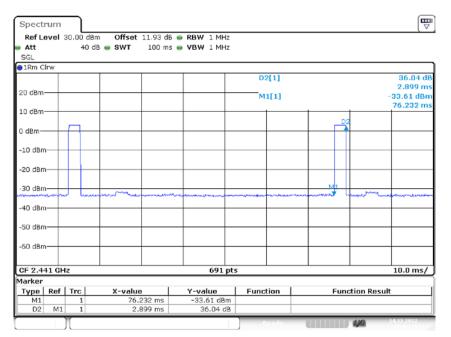
Absolute Level (Corrected Amplitude) = Factor + Reading

Margin = Absolute Level (Corrected Amplitude) – Limit

The other spurious emission which is in the noise floor level was not recorded.

For above 1GHz, the test result of peak was 20dB below to the limit of peak, which can be compliant to the average limit, so just peak value was recorded.

	Field Strength of Average										
Frequency	Peak Measurement	Polar	Duty Cycle	Corrected	Part 15.247						
(MHz)	@3m (dBµV/m)	(H/V)	Correction Factor (dB)	Ampitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comment				
	BT 3DH1, Low Channel										
4804	53.98	Н	-24.73	29.25	54	-24.75	Harmonic				
4804	54.53	V	-24.73	29.8	54	-24.20	Harmonic				
			BT 3DH1, Mide	dle Channel							
4882	54.05	Н	-24.73	29.32	54	-24.68	Harmonic				
4882	55.21	V	-24.73	30.48	54	-23.52	Harmonic				
	BT 3DH1, High Channel										
4960	57.15	Н	-24.73	32.42	54	-21.58	Harmonic				
4960	55.85	V	-24.73	31.12	54	-22.88	Harmonic				


Average level= Peak level+ Duty Cycle Corrected Factor

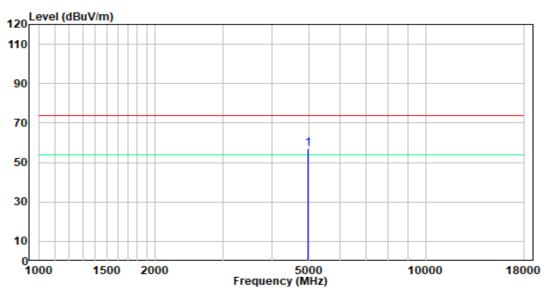
Margin = Absolute Level (Corrected Amplitude) – Limit

The worst case duty cycle as below:

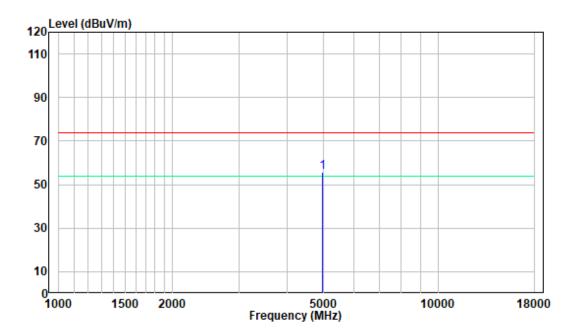
Duty cycle = Ton/100ms = (2.899*2)/100=0.05798

Duty Cycle Corrected Factor = 20*lg (Duty cycle) = 20*lg(0.05798) = -24.73

Date: 14.DEC.2022 12:01:50

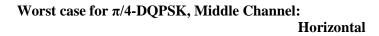

Version 11: 2021-11-09

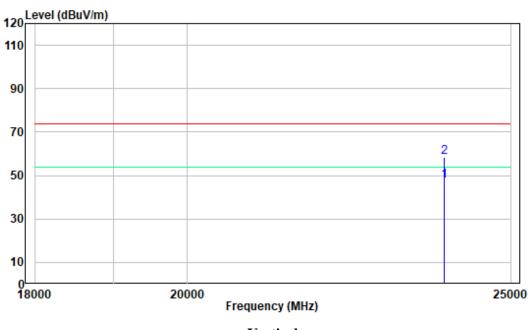
Shenzhen Accurate Technology Co., Ltd.

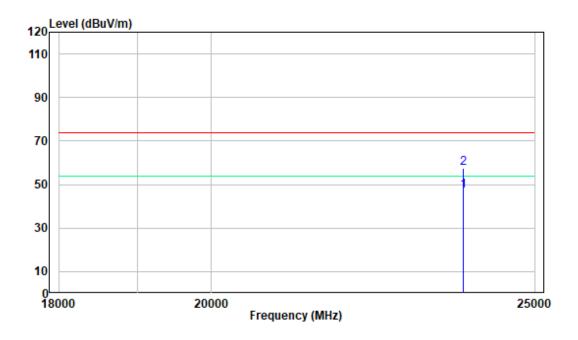

1 GHz - 18 GHz: (Pre-Scan plots)

Worst case for 8DPSK, High Channel:

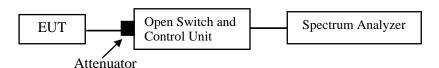
Horizontal






Shenzhen Accurate Technology Co., Ltd.

18-25GHz: (Pre-Scan plots)


FCC §15.247(A) (1)-CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test Procedure

- 1. Set the EUT in TX mode, maxhold the channel.
- 2. Set the adjacent channel of the EUT and maxhold another trace.
- 3. Measure the channel separation.

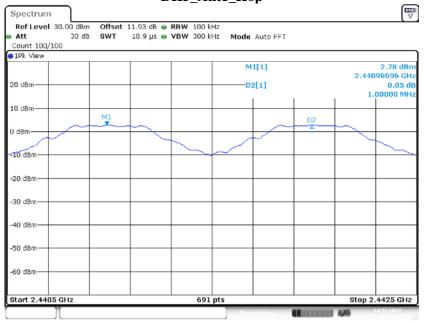
Test Data

Environmental Conditions

Temperature:	24°C	
Relative Humidity:	48%	
ATM Pressure:	101kPa	

The testing was performed by Glenn Jiang on 2022-12-14.

EUT operation mode: Transmitting

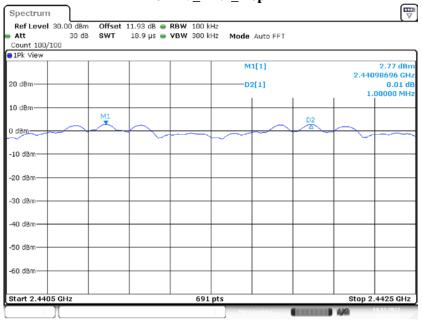

Test Result: Compliant.

Test Mode	Antenna	Channel	Result[MHz]	Limit[MHz]	Verdict
DH5	Ant1	Нор	1	>=0.787	PASS
2DH5	Ant1	Нор	1.005	>=0.936	PASS
3DH5	Ant1	Нор	1	>=0.901	PASS

Note: The limit = (2/3) * 20dB bandwidth

Please refer to the below plots:

Shenzhen Accurate Technology Co., Ltd.


DH5_Ant1_Hop

Date: 14.DEC.2022 11:36:27

2DH5_Ant1_Hop

Spectrum				
Ref Level 30.00 dBm	Offset 11.93 dB 😑 RBW	100 kHz		
Att 30 dB	SWT 18.9 µs 🖶 VBW	300 kHz Mode Auto FFT		
Count 100/100				
1Pk View				
		D2[1]	0.01 di 1.00484 MH	
20 dBm		M1[1]	2.59 dBn	
			2.44115507 GH	
10 dBm				
	M1		D2	
	\sim \checkmark		D2	
-10 dBm				
20 dBm				
20 0811				
-30 dBm				
-30 UBIII				
40 dBm				
40 0811				
50 dBm				
-50 UB/II				
co dom				
-60 dBm				
Start 2.4405 GHz		691 pts	Stop 2.4425 GHz	
T I		Measuring	4/0 1112-012	

Date: 14.DEC.2022 11:46:25

Date: 14.DEC.2022 11:53:56

FCC §15.247(A) (1) – 20 DB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH

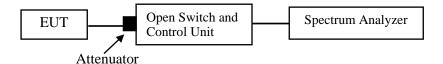
Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

The following conditions shall be observed for measuring the occupied bandwidth and 20 dB bandwidth:

• The transmitter shall be operated at its maximum carrier power measured under normal test conditions.


• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / 20 dB bandwidth if the device is not TX continuously.

• The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / 20 dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

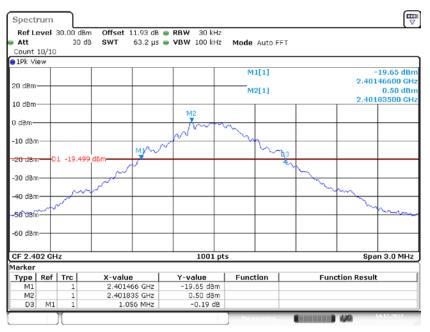
Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

Test Data

Environmental Conditions

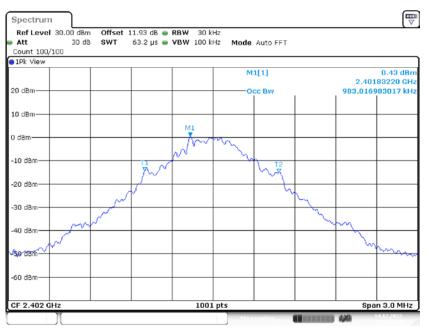
Temperature:	24°C	
Relative Humidity:	48%	
ATM Pressure:	101kPa	


The testing was performed by Glenn Jiang on 2022-12-14.

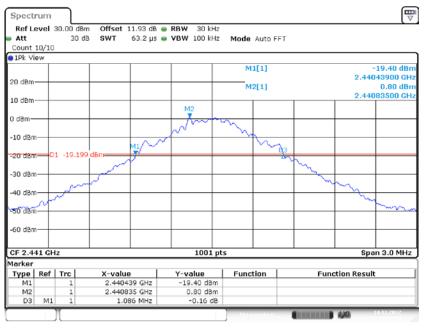
EUT operation mode: Transmitting

Test Result: Compliant.

TestMode	Antenna	Channel	20db EBW[MHz]	99% OCCUPIED BANDWIDTH[MHz]	Verdict
DH5	Ant1	2402	1.056	0.983	PASS
		2441	1.086	1.004	PASS
		2480	1.181	1.013	PASS
2DH5	Ant1	2402	1.356	1.250	PASS
		2441	1.380	1.286	PASS
		2480	1.404	1.286	PASS
3DH5	Ant1	2402	1.331	1.238	PASS
		2441	1.320	1.256	PASS
		2480	1.351	1.256	PASS

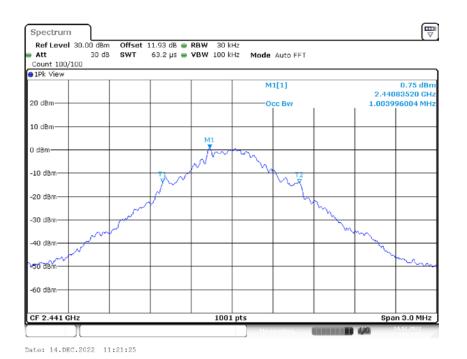

Please refer to the below plots:

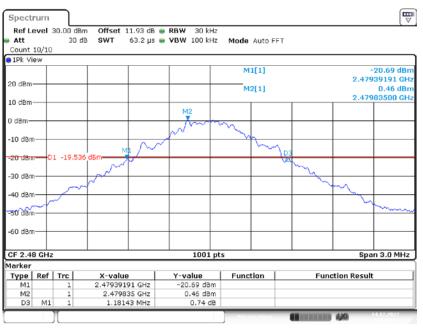
20 dB EMISSION BANDWIDTH_DH5_Ant1_2402


Date: 14.DEC.2022 11:19:57

99% OCCUPIED BANDWIDTH_DH5 _Ant1_2402

Date: 14.DEC.2022 11:20:14

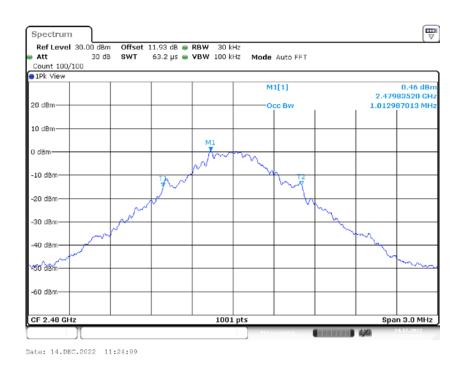

Version 11: 2021-11-09

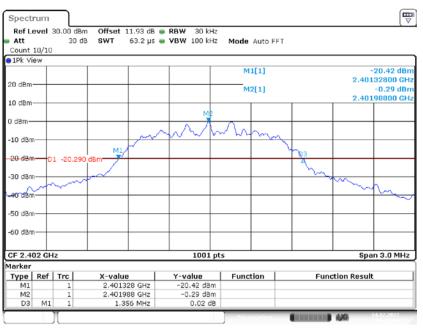


20 dB EMISSION BANDWIDTH_DH5 _Ant1_2441

Date: 14.DEC.2022 11:21:09

99% OCCUPIED BANDWIDTH_DH5 _Ant1_2441

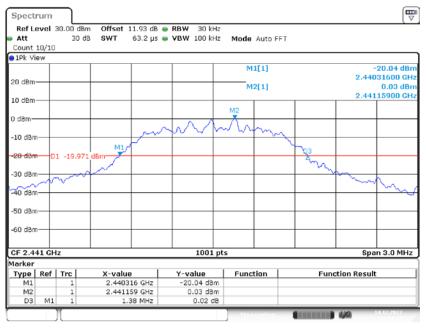



20 dB EMISSION BANDWIDTH_DH5 _Ant1_2480

Date: 14.DEC.2022 11:23:53

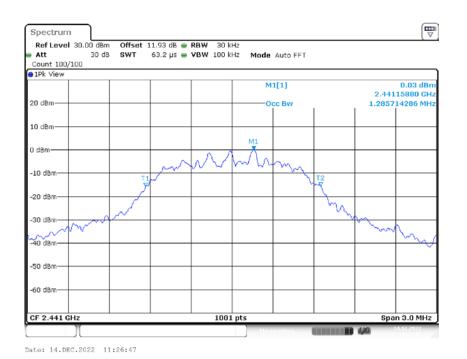
99% OCCUPIED BANDWIDTH_DH5 _Ant1_2480

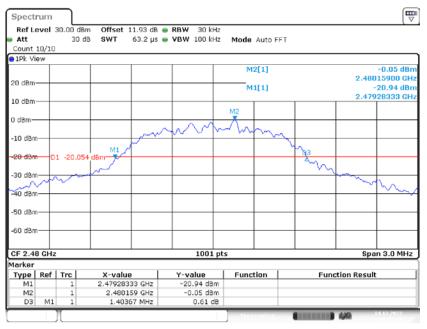
Version 11: 2021-11-09


20 dB EMISSION BANDWIDTH_2DH5 _Ant1_2402

Date: 14.DEC.2022 11:25:08

99% OCCUPIED BANDWIDTH_2DH5 _Ant1_2402

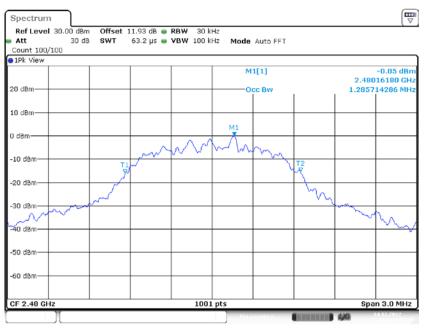

Version 11: 2021-11-09



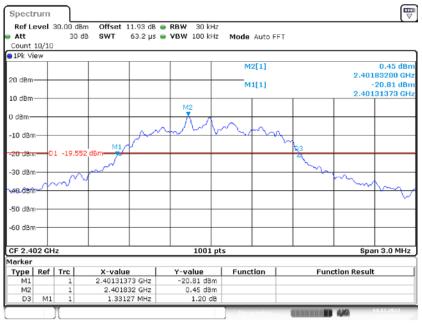
20 dB EMISSION BANDWIDTH_2DH5 _Ant1_2441

Date: 14.DEC.2022 11:26:30

99% OCCUPIED BANDWIDTH_2DH5 _Ant1_2441



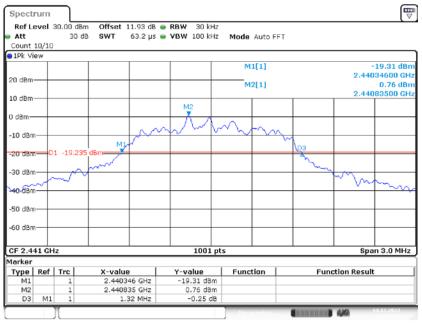
20 dB EMISSION BANDWIDTH _2DH5_Ant1_2480


Date: 14.DEC.2022 11:27:38

99% OCCUPIED BANDWIDTH _2DH5_Ant1_2480

Date: 14.DEC.2022 11:27:55

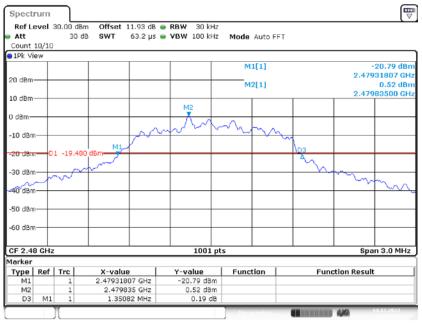

Version 11: 2021-11-09


20 dB EMISSION BANDWIDTH _3DH5_Ant1_2402

Date: 14.DEC.2022 11:30:09

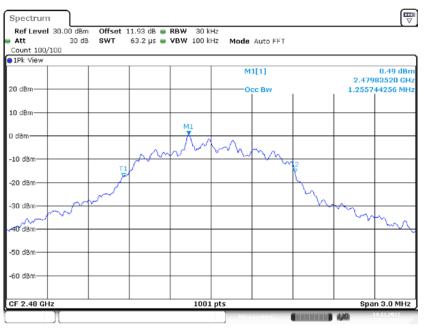
99% OCCUPIED BANDWIDTH _3DH5_Ant1_2402

Date: 14.DEC.2022 11:30:26


20 dB EMISSION BANDWIDTH _3DH5_Ant1_2441

Date: 14.DEC.2022 11:31:17

99% OCCUPIED BANDWIDTH _3DH5_Ant1_2441

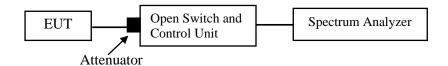

Date: 14.DEC.2022 11:31:33

20 dB EMISSION BANDWIDTH _3DH5_Ant1_2480

Date: 14.DEC.2022 11:33:24

99% OCCUPIED BANDWIDTH _3DH5_Ant1_2480

Date: 14.DEC.2022 11:33:41


FCC §15.247(A) (1) (III)-QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

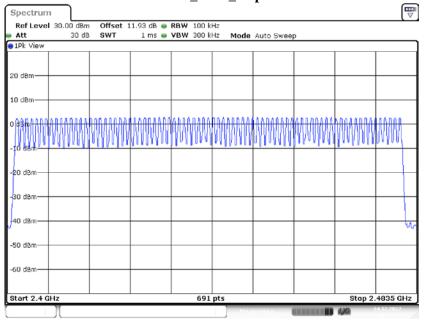
Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

Test Data

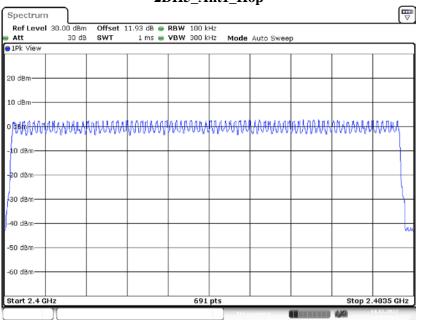
Environmental Conditions

Temperature:	24°C
Relative Humidity:	48%
ATM Pressure:	101kPa


The testing was performed by Glenn Jiang on 2022-12-14.

EUT operation mode: Transmitting

Test Result: Compliant.


Test Mode	Antenna	Channel	Result[Num]	Limit[Num]	Verdict
DH5	Ant1	Нор	79	>=15	PASS
2DH5	Ant1	Нор	79	>=15	PASS
3DH5	Ant1	Нор	79	>=15	PASS

Please refer to the below plots:

DH5_Ant1_Hop

Date: 14.DEC.2022 11:37:21

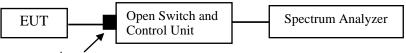
2DH5_Ant1_Hop

Date: 14.DEC.2022 11:47:21

Ref Level 3 Att	30 dB		11.93 dB 👄 1 ms 👄	VBW 300		e Auto Swee	р		
1Pk View								_	
20 dBm									
10 dBm									
HUMMAN	unu	HILLING	www	num	Mariana	uwwww	uuuu	MILNIN	JUM
10 dBm									
20 dBm									
30 dBm									
40 dBm									- L
50 dBm									
60 dBm									
Start 2.4 GHz					1 pts				.4835 GHz

3DH5_Ant1_Hop

Date: 14.DEC.2022 11:55:00


FCC §15.247(A) (1) (III) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 1. The EUT was worked in channel hopping.
- 2. Set the RBW to: 1MHz.
- 3. Set the VBW \geq 3×RBW.
- 4. Set the span to 0Hz.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Recorded the time of single pulses

Attenuator

Test Data

Environmental Conditions

Temperature:	24°C
Relative Humidity:	48%
ATM Pressure:	101kPa

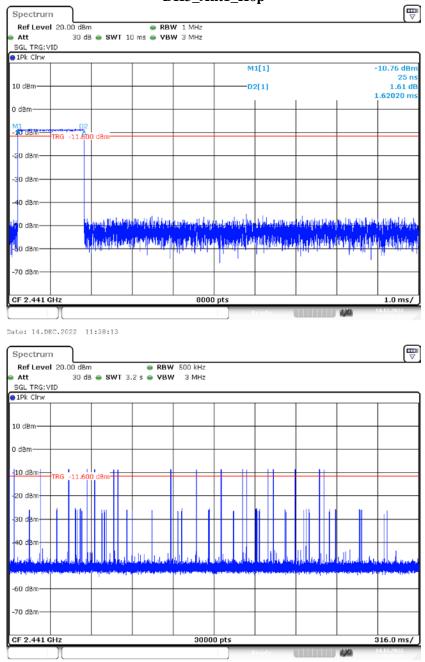
The testing was performed by Glenn. Jiang on 2022-12-14.

EUT operation mode: Transmitting

Test Result: Compliant.

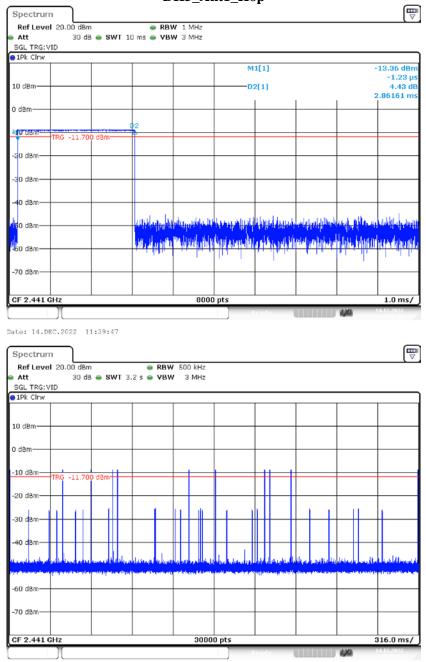
Test Mode	Antenna	Channel	Burst Width [ms]	Total Hops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.37	330	0.123	<=0.4	PASS
DH3	Ant1	Нор	1.62	180	0.292	<=0.4	PASS
DH5	Ant1	Нор	2.86	110	0.315	<=0.4	PASS
2DH1	Ant1	Нор	0.38	320	0.122	<=0.4	PASS
2DH3	Ant1	Нор	1.63	170	0.276	<=0.4	PASS
2DH5	Ant1	Нор	2.87	110	0.315	<=0.4	PASS
3DH1	Ant1	Нор	0.38	320	0.123	<=0.4	PASS
3DH3	Ant1	Нор	1.63	170	0.276	<=0.4	PASS
3DH5	Ant1	Нор	2.87	110	0.316	<=0.4	PASS

Note 1: A period time=0.4*79=31.6(s), Result=Burst Width*Total Hops

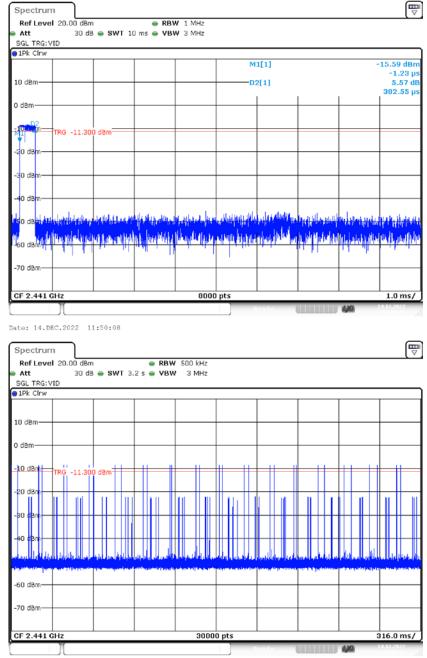

Note 2: Total Hops =Hopping Number in 3.16s*10

Note 3: Hoping Number in 3.16s=Total of highest signals in 3.16s (Second high signals were other channel)

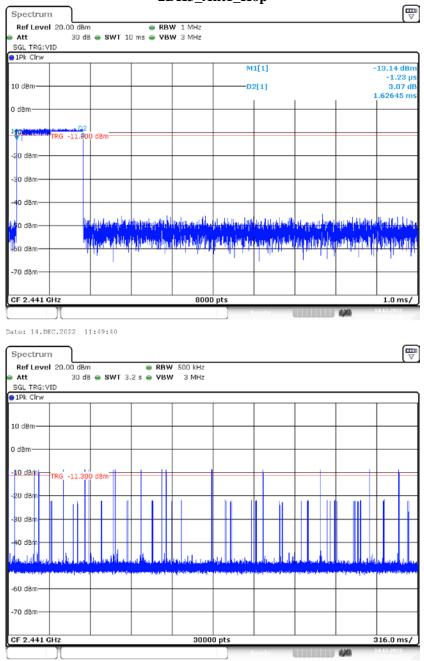
₽ Spectrum Ref Level 20.00 dBm Att SGL TRG: VID • 1Pk Clrw M1[1] -13.47 dBn -1.23 µs 4.72 dE 372.55 µs 10 dBm-D2[1] 0 dBm D2 AND CEAN TRG -11.600 dBm⁻ -20 dBr 30 dB an de والماأر الالمعال արտիրում, հայ վելելեն 0 dB la_{bo de} <mark>je kontrenska da prostavana kanona da prostava kanona kantrakter palater berdan bere zalita pozeka pričeberater b</mark> 11.1 -70 dBm-CF 2.441 GHz 8000 pts 1.0 ms/ 110 Date: 14.DEC.2022 11:40:15 ₽ Spectrum Ref Level 20.00 dBm RBW 500 kHz Att 30 dB 👄 SWT 3.2 s 👄 VBW 3 MHz SGL TRG: VID ●1Pk Clrw 10 dBm 0 dBm -10 dBmſŔĠ -11.600 20 dB -60 dBm -70 dBm 316.0 ms/ CF 2.441 GHz 30000 pts


DH1_Ant1_Hop

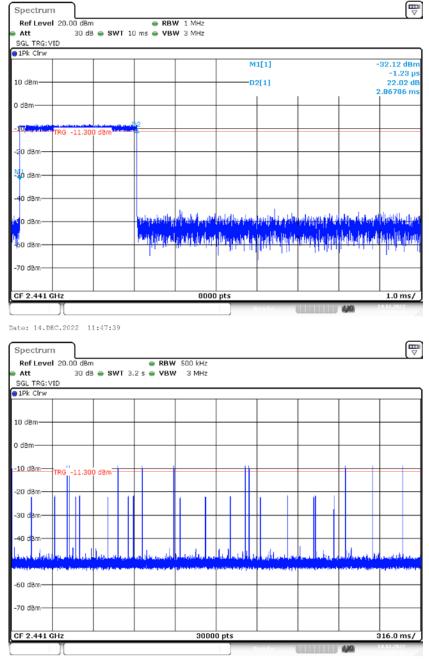
Date: 14.DEC.2022 11:40:20


DH3_Ant1_Hop

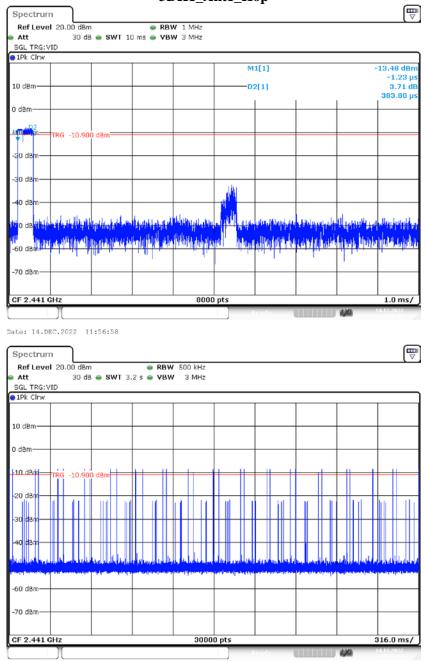
Date: 14.DEC.2022 11:38:18


DH5_Ant1_Hop

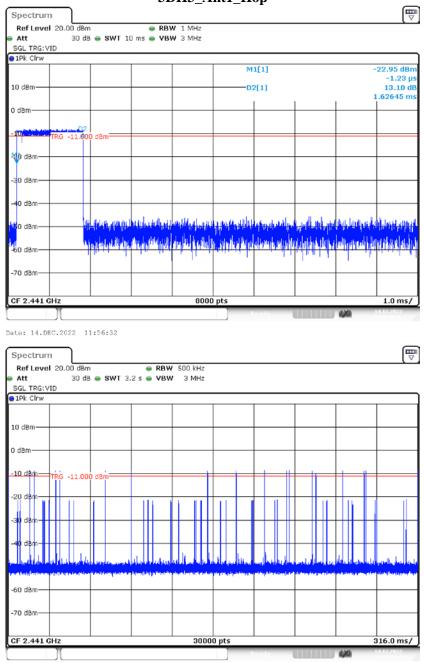
Date: 14.DEC.2022 11:39:53


2DH1_Ant1_Hop

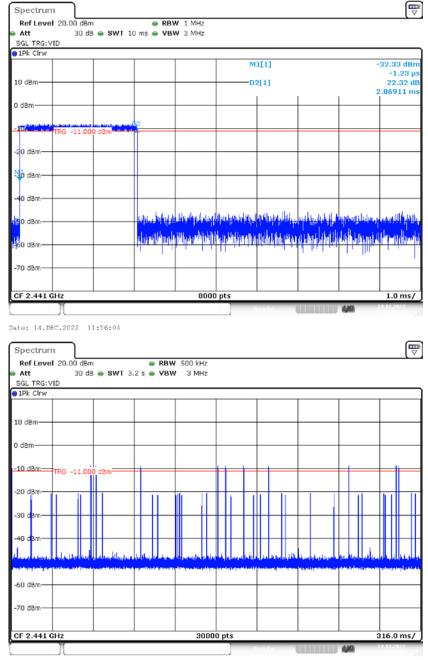
Date: 14.DEC.2022 11:50:13


2DH3_Ant1_Hop

Date: 14.DEC.2022 11:49:45


2DH5_Ant1_Hop

Date: 14.DEC.2022 11:47:44


3DH1_Ant1_Hop

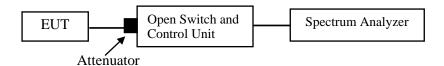
Date: 14.DEC.2022 11:57:03

3DH3_Ant1_Hop

Date: 14.DEC.2022 11:56:37

3DH5_Ant1_Hop

Date: 14.DEC.2022 11:56:10


FCC §15.247(B) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Test Procedure

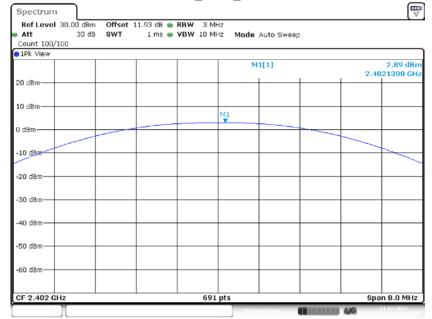
- 1. Place the EUT on a bench and set in TX mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	24°C
Relative Humidity:	48%
ATM Pressure:	101kPa

The testing was performed by Glenn Jiang on 2022-12-14.

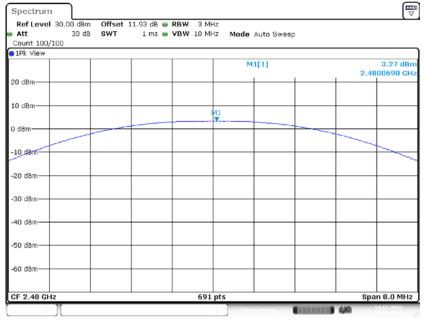

EUT operation mode: Transmitting

Test Result: Compliant.

Test Mode	Antenna	Channel	Conducted peak output power [dBm]	Limit[dBm]	Verdict
		2402	2.89	<=20.97	PASS
DH5	Ant1	2441	3.34	<=20.97	PASS
		2480	3.27	<=20.97	PASS
		2402	3.68	<=20.97	PASS
2DH5	Ant1	2441	4.07	<=20.97	PASS
		2480	3.97	<=20.97	PASS
		2402	4.02	<=20.97	PASS
3DH5	Ant1	2441	4.46	<=20.97	PASS
		2480	4.34	<=20.97	PASS

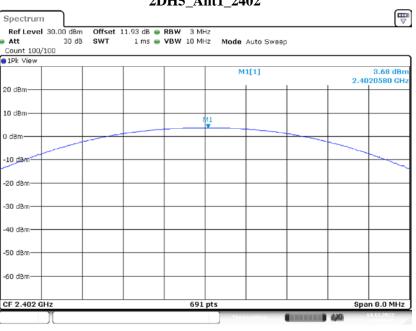
Please refer to the below plots:

Shenzhen Accurate Technology Co., Ltd.

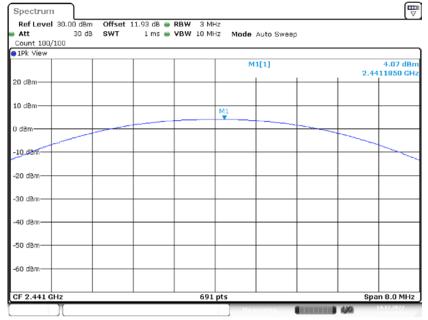

DH5_Ant1_2402

Date: 14.DEC.2022 11:02:59

DH5_Ant1_2441

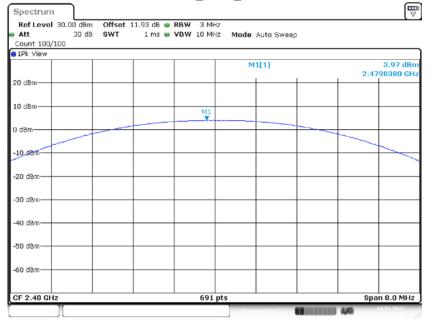

Ref Level 30.00 dBm Offset 11.93 d		
Att 30 dB SWT 1 m Count 100/100	s 🖶 VBW 10 MHz 🛛 Mode Auto Sweep	
1Pk View		
	M1[1]	3.34 dBr 2.4406990 GH
20 dBm		
10 dBm	M1	
D dBm		
-10,d8m		
20 dBm		
30 dBm		
40 dBm		
50 dBm		
60 dBm		
CF 2.441 GHz	691 pts	Span 8.0 MHz

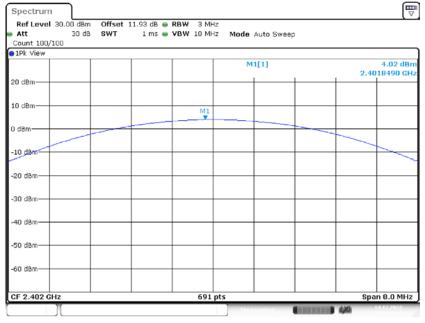
Date: 14.DEC.2022 11:03:23


DH5_Ant1_2480

Date: 14.DEC.2022 11:03:49

2DH5_Ant1_2402


Date: 14.DEC.2022 11:04:17


2DH5_Ant1_2441

Date: 14.DEC.2022 11:04:41

2DH5_Ant1_2480

Date: 14.DEC.2022 11:06:47

3DH5_Ant1_2402

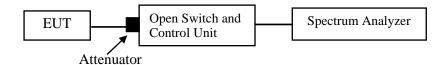
Date: 14.DEC.2022 11:07:16

3DH5_Ant1_2441

Date: 14.DEC.2022 11:07:42

Att 30 dB Count 100/100	SWT	1 ms 🖶 VBW 10) MHz Mode Auto Sv	veep	
1Pk View					
			M1[1]		4.34 dBn 2.4800230 GH
20 dBm					
10 dBm			M1		
0 d8m					
-10.dBm					
-20 dBm					
-30 dBm					
40 dBm					
-50 dBm					
-60 dBm					
CF 2.48 GHz			591 pts		Span 8.0 MHz

Date: 14.DEC.2022 11:07:59


FCC §15.247(D) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

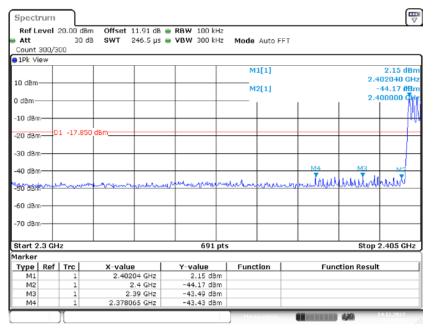
Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in TX mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	24°C
Relative Humidity:	48%
ATM Pressure:	101kPa

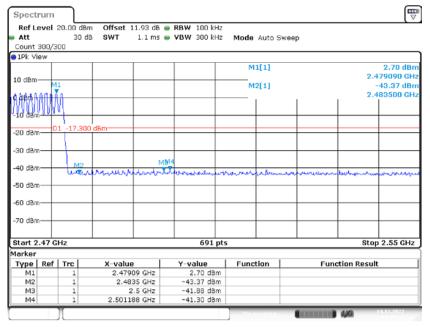

The testing was performed by Glenn Jiang on 2022-12-14.

EUT operation mode: Transmitting

Test Result: Compliant

Please refer to the below plots:

DH5: Band Edge-Left Side Hopping

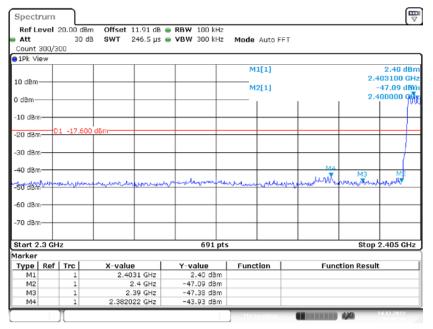

Date: 14.DEC.2022 11:34:50

Single

	evel :	20.00 dBr		RBW 100 kHz			
Att Count	300/3	30 d	B SWT 246.5 μs	😑 VBW 300 kHz	Mode Auto F	FT	
∋1Pk Vi							
					M1[1]		2.35 dB
10 dBm							2.402040 GF
					M2[1]		-45.75 88 2.400000 di
0 dBm-						1	2.400000 0
-10 dBm							
-10 080							
-20 dBn		1 -17.650) dBm				
-30 dBn	-						
40.40						M4	
-40 dBm						T	M3 Ma
uso den	ver all	بالصمهمحا	John Martin Martin	a Marin rolling	Burdermichalant	you we have	marganet we shall
-60 dBrr	-						
-70 dBm							
Start 2		_					Stop 2.405 GHz
Marker	.3 GH	z		691 pt:	5		Stop 2.405 GH2
Type	Def	Tun	X-value	Y-value	Function		ction Result
Type M1	Ket	1	2.40204 GHz	2.35 dBm	Function	Fun	ction Result
M2		1	2.40204 GHz	-45.75 dBm			
M3		1	2.39 GHz	-48.27 dBm			
M4		1	2.377913 GHz	-43.52 dBm			

Date: 14.DEC.2022 11:20:29

DH5: Band Edge- Right Side Hopping

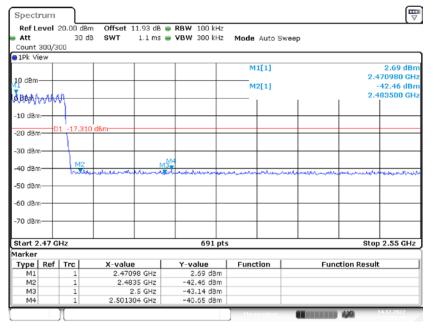

Date: 14.DEC.2022 11:40:46

Single

	evel :	20.00 dBr	m Offset	11.93 dB	RBW 100 kHz				
Att	000/0	30 d	B SWT	1.1 ms	VBW 300 kHz	Mode Auto S	weep		
Count		JU							
ALK I						M1[1]			2.64 dBr
10 dBm								2.	480010 GH
LO GDIN	1	11				M2[1]			-42.24 dBr
) dBm-	_	Ă						2.4	483500 GH
		Ω							
10 dBr	n		+						
20 dBr	D	1 -17.360	0 dBm						
20 001	"								
-30 dBr	n	\rightarrow	+						
		M2		м	3 M4				
40 dBn	n t	Det Lat	to A day			managener	L. M. William	and when a set of the set of the	A Martine and I
50 dBr									
ou ubi	"								
			+						
60 dBr	n——		1						
60 dBr	n								1
			+						
-70 dBr	n	Hz			691 pts			Sto	p 2.55 GHz
70 dBr	n	Hz			691 pts			Sto	p 2.55 GHz
70 dBn Start 2 Iarker	n 2.47 G		X-valu		691 pts	Function	F	Sto unction Resul	
70 dBn Start 2 Iarker Type M1	n 2.47 G	Trc 1	2.48	001 GHz	Y-value 2.64 dBm		F		
-60 dBn -70 dBn Start 2 Iarker Type M1 M2 M3	n 2.47 G	Trc	2.48		Y-value		F		

Date: 14.DEC.2022 11:24:24

2DH5: Band Edge-Left Side Hopping

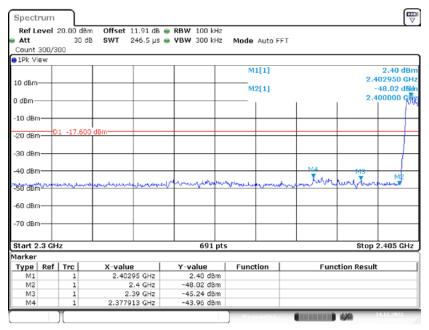

Date: 14.DEC.2022 11:41:45

Single

RefL	evel	20.00 dBr	m Offset 11.93 dB	RBW 100 kHz			(*
Att		30 d		VBW 300 kHz	Mode Auto F	FT	
Count	300/3	00					
∋1Pk Vi	эw						
					M1[1]		2.36 dBr
10 dBm							2.402190 GH
10 000					M2[1]		-44.97 d <mark>/</mark> Br
0 dBm—	_						2.400000 d H
-							
-10 dBrr	+		<u> </u>				
	n	1 -17.64	0 dBm				
-20 dBm	Ť	1 1/10/1					
-30 dBm							
-30 UBI							
-40 dBm	-					M4	ME
						Χ	M3 🔰
-Se den	Arston	مقمدي معقد	Hand Marilland and Marine	a the march will be all	mure watch	and the work with the	hunstremand
-60 dBrr							
-70 dBm							
-70 übli							
Start 2	3.64	7		691 pt			Stop 2.405 GHz
1arker		2		091 pt	3		3(0p 2.403 GHz
Type	Dof	Tro	X-value	Y-value	Function	Euro	ction Result
M1	Rei	1	2.40219 GHz	2.36 dBm	Function	Fun	ction Result
M2		1	2.4 GHz	-44.97 dBm			
M3		1	2.39 GHz	-48.39 dBm			
M4		1	2.378065 GHz	-44.07 dBm			

Date: 14.DEC.2022 11:25:39

2DH5: Band Edge- Right Side Hopping

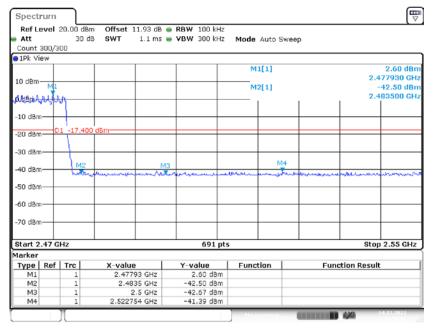

Date: 14.DEC.2022 11:51:18

Single

Ref Lo	evel 20	0.00 dBm	Offset 11.93 dB	RBW 100 kHz			· · · · · ·
Att		30 d8	SWT 1.1 ms	VBW 300 kHz	Mode Auto S	Sweep	
Count]					
∎1Pk Vi	∋₩				M1[1]		2.68 dBr
					MILI		2.68 dBr 2.480010 GH
10 dBm-	M	1			M2[1]		-43.07 dBr
0 dBm—	8						2.483500 GH
J dam-							
-10 dBm							
		-17.320					
-20 dBm		-17.320	dBm				
		1					
-30 dBm		1					
-40 dBm		M2		13 M4			
where we	w	how	manument	The Month	ويتهار في الم وي الم الم الم الم الم	margare margare	how have a second and the second secon
-50 dBm				_			
-60 dBm							
-70 dBm							
Start 2	.47 GH	z		691 pt	s		Stop 2.55 GHz
1arker							
	Ref		X-value	Y-value	Function	Func	tion Result
M1		1	2.48001 GHz	2.68 dBm			
M2 M3		1	2.4835 GHz 2.5 GHz	-43.07 dBm -44.03 dBm			
		1	2.5 GHZ	-++.U3 GBM			

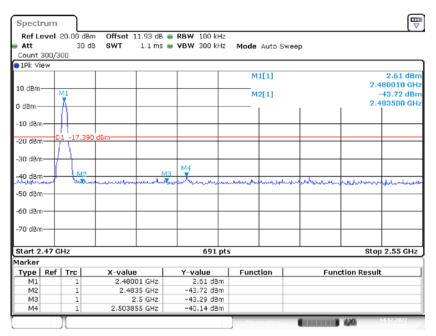
Date: 14.DEC.2022 11:28:10

3DH5: Band Edge-Left Side Hopping


Date: 14.DEC.2022 11:52:21

Single

Ref Lo	evel	20.00 dB	m Offset 11.	93 dB 🧉	RBW 100) kHz						
Att		30 0	dB SWT 246	6.5 µs 🖷	VBW 300) kHz	Mode	Auto F	FT			
Count		00										
∎1Pk Vi	ew											2.29 dBn
							M.	1[1]				2.29 dBn 1880 GH
10 dBm	+		+ +			+	M	2[1]				6.75 dBr
0 dBm-												0000 T H
o ubiii-											1	h
-10 dBm	-		+			_						
		1 -17.71	0 dPm									
-20 dBn	-P	1 -17.71	U UBIII			+						- 11
-30 dBm												
-30 UBI	-											$ \cap$
-40 dBm			+			_			M4			M
			and hit has a state of			ann					M3 Norm	1
-50 dBh	-	and the prime of	hand a second state of the second	Con Mary	- Contraction	and a	h ptare s.	Marner	on the state of the second second	efter and	1 Martine	ML-UN
-60 dBm												
-00 ubii	'											
-70 dBm			+			_						
Start 2	.3 GH	z			69	91 pts					Stop 2	405 GHz
larker						_						
Type	Ref	Trc	X-value		Y-value		Function		Function Result			
M1		1	2.40188	GHz	2.29							
M2		1		GHz	-46.75							
MЗ		1	2.39		-48.89 dBm							
M4		1	2.377761	GHz	-44.33	dBm						


Date: 14.DEC.2022 11:30:41

3DH5: Band Edge- Right Side Hopping

Date: 14.DEC.2022 11:58:17

Single

Date: 14.DEC.2022 11:33:56

***** END OF REPORT *****