



# **TEST REPORT**

Applicant Name : Address : Zeeva International Limited Suite 1007B, 10th Floor, Exchange Tower, 33 Wang Chiu Road, Kowloon Bay, Hong Kong RA221222-63223E-RF 2ADM5-HP-0826

Report Number : FCC ID:

**Test Standard (s)** FCC PART 15.247

#### **Sample Description**

Product Type: Model No.: Trade Mark:

Date Received: Date of Test: Report Date: BT KAWAII BUBBLEHP, KAWAII BUBBLE 2 HP-0826, HP-0826B

**D** BASS JAKK 2022-12-22 2022-12-28 to 2023-01-13 2023-01-19

Test Result:

Pass\*

\* In the configuration tested, the EUT complied with the standards above.

#### **Prepared and Checked By:**

Andy. Yu

Audy.Yu EMC Engineer

**Approved By:** 

Candy, Cr

Candy Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk " $\star$ ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '\*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

#### Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China Tel: +86 755-26503290 Fax: +86 755-26503396 Web: www.atc-lab.com

Version 11: 2021-11-09

Page 1 of 64

FCC-BT

# **TABLE OF CONTENTS**

| DOCUMENT REVISION HISTORY          |                                      | 4      |
|------------------------------------|--------------------------------------|--------|
| GENERAL INFORMATION                |                                      | 5      |
| PRODUCT DESCRIPTION FOR EQUIPME    | ENT UNDER TEST (EUT)                 | 5      |
|                                    |                                      |        |
|                                    |                                      |        |
|                                    |                                      |        |
|                                    |                                      |        |
|                                    |                                      |        |
|                                    | DN                                   |        |
|                                    |                                      |        |
|                                    |                                      |        |
| SUPPORT EQUIPMENT LIST AND DETA    | NILS                                 | 7      |
| BLOCK DIAGRAM OF TEST SETUP        |                                      | 8      |
| SUMMARY OF TEST RESULTS            |                                      | 9      |
| TEST EQUIPMENT LIST                |                                      | 10     |
| FCC §1.1307 (b) & §2.1093 – RF EXF | POSURE                               |        |
| APPLICABLE STANDARD                |                                      |        |
| TEST RESULT:                       |                                      |        |
| FCC §15.203 – ANTENNA REOUIRI      | EMENT                                |        |
|                                    |                                      |        |
|                                    | DN                                   |        |
| FCC §15.207 (a) – AC LINE CONDU    | CTED EMISSIONS                       |        |
| APPLICABLE STANDARD                |                                      |        |
| EUT SETUP                          |                                      |        |
|                                    |                                      |        |
|                                    |                                      |        |
|                                    |                                      |        |
|                                    | RADIATED EMISSIONS                   |        |
|                                    |                                      |        |
|                                    |                                      |        |
|                                    | NALYZER SETUP                        |        |
|                                    |                                      |        |
|                                    |                                      |        |
|                                    |                                      |        |
|                                    | ARATION TEST                         |        |
|                                    |                                      |        |
|                                    |                                      |        |
|                                    |                                      |        |
|                                    | N BANDWIDTH & 99% OCCUPIED BANDWIDTH |        |
|                                    |                                      |        |
|                                    |                                      |        |
|                                    | OF HOPPING CHANNEL TEST              |        |
|                                    |                                      |        |
|                                    |                                      |        |
|                                    |                                      |        |
| Version 11: 2021-11-09             | Page 2 of 64                         | FCC-BT |

| Shenzhen Accurate Technology Co., Ltd.                    | Report No.: RA221222-63223E-RF |  |  |
|-----------------------------------------------------------|--------------------------------|--|--|
| FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) |                                |  |  |
| Applicable Standard<br>Test Procedure<br>Test Data        |                                |  |  |
| FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMEN         | VT                             |  |  |
| APPLICABLE STANDARD                                       |                                |  |  |
| Test Procedure                                            |                                |  |  |
| TEST DATA                                                 |                                |  |  |
| FCC §15.247(d) - BAND EDGES TESTING                       | 58                             |  |  |
| APPLICABLE STANDARD                                       |                                |  |  |
| Test Procedure                                            |                                |  |  |
| TEST DATA                                                 |                                |  |  |

# **DOCUMENT REVISION HISTORY**

| Revision Number | Report Number      | Description of Revision | Date of<br>Revision |
|-----------------|--------------------|-------------------------|---------------------|
| 0               | RA221222-63223E-RF | Original Report         | 2023-01-19          |

# **GENERAL INFORMATION**

| <b>Product Description for Equipment under Test (EUT)</b> |
|-----------------------------------------------------------|
|-----------------------------------------------------------|

| Product                                                  | BT KAWAII BUBBLE HP                                                                                                  |          |  |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------|--|
| Tested Model                                             | HP-0826                                                                                                              |          |  |
| Multiple Product and Model                               | KAWAII BUBBLE 2                                                                                                      | HP-0826B |  |
| SKU*<br>(Barcode of product)                             | BLACK 7910051, PINK 7910052<br>WHITE 7910053, GRAY 7910054 (provided by the applicant)                               |          |  |
| UPC*<br>(Product code of applicant's<br>internal system) | BLACK 1922349250405, PINK 1922349250412<br>WHITE 1922349250429, GRAY 1922349250436<br>(provided by the applicant)    |          |  |
| Model Difference                                         | Please refer to the DOS letter                                                                                       |          |  |
| Frequency Range                                          | 2402~2480MHz                                                                                                         |          |  |
| Maximum conducted Peak<br>output power                   | -2.25dBm                                                                                                             |          |  |
| Modulation Technique                                     | BDR(GFSK)/EDR(π/4-DQPSK)/EDR(8DPSK)                                                                                  |          |  |
| Antenna Specification*                                   | Internal Antenna:-0.58dBi(provided by the applicant)                                                                 |          |  |
| Voltage Range                                            | DC 3.7V from battery or DC 5V from USB port                                                                          |          |  |
| Sample number                                            | RA221222-63223E-RF-S1 (RF Radiated Test)<br>RA221222-63223E-RF-S2 (RF Conducted Test)<br>(Assigned by ATC, Shenzhen) |          |  |
| Sample/EUT Status                                        | Good condition                                                                                                       |          |  |

# Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

## **Test Methodology**

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

# **Measurement Uncertainty**

| Parameter                          |                 | Uncertainty |
|------------------------------------|-----------------|-------------|
| Occupied Channel Bandwidth         |                 | 5%          |
| RF output power, conducted         |                 | 0.73dB      |
| Unwanted Emission, conducted       |                 | 1.6dB       |
| AC Power Lines Conducted Emissions |                 | 2.72dB      |
|                                    | 30MHz - 1GHz    | 4.28dB      |
| Emissions,<br>Radiated             | 1GHz - 18GHz    | 4.98dB      |
| Rudiated                           | 18GHz - 26.5GHz | 5.06dB      |
| Temperature                        |                 | 1°C         |
| Humidity                           |                 | 6%          |
| Supply                             | voltages        | 0.4%        |

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

# **Test Facility**

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A.

# SYSTEM TEST CONFIGURATION

## **Description of Test Configuration**

The system was configured for testing in an engineering mode.

## **EUT Exercise Software**

Software "FCC\_assist\_1.0.2.2"\* was used during testing and the power level was default \*.

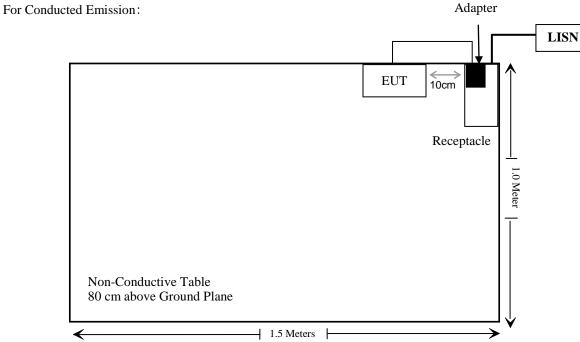
## **Special Accessories**

No special accessory.

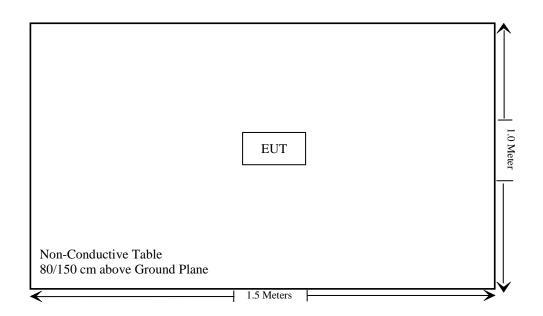
# **Equipment Modifications**

No modification was made to the EUT tested.

# **Support Equipment List and Details**


| Manufacturer | Description | Model   | Serial Number |
|--------------|-------------|---------|---------------|
| TECNO        | Adapter     | U050TSA | AH07015321906 |

#### External I/O Cable


| Cable Description                 | Length<br>(m) | From/Port | То         |
|-----------------------------------|---------------|-----------|------------|
| Un-shielding Detachable USB Cable | 0.5           | EUT       | Adapter    |
| Unshielded Un-detachable AC cable | 1.2           | LISN      | Receptacle |

# **Block Diagram of Test Setup**

Shenzhen Accurate Technology Co., Ltd.



For Radiated Emission:



# SUMMARY OF TEST RESULTS

| FCC Rules                        | Description of Test                                  | Result    |
|----------------------------------|------------------------------------------------------|-----------|
| §1.1307 (b) & §2.1093            | RF Exposure                                          | Compliant |
| §15.203                          | Antenna Requirement                                  | Compliant |
| §15.207(a)                       | AC Line Conducted Emissions                          | Compliant |
| §15.205, §15.209 &<br>§15.247(d) | Radiated Emissions                                   | Compliant |
| §15.247(a)(1)                    | 20 dB Emission Bandwidth & 99% Occupied<br>Bandwidth | Compliant |
| §15.247(a)(1)                    | Channel Separation Test                              | Compliant |
| §15.247(a)(1)(iii)               | Time of Occupancy (Dwell Time)                       | Compliant |
| §15.247(a)(1)(iii)               | Quantity of hopping channel Test                     | Compliant |
| §15.247(b)(1)                    | Peak Output Power Measurement                        | Compliant |
| §15.247(d)                       | Band edges                                           | Compliant |

# **TEST EQUIPMENT LIST**

| Manufacturer                                    | Description                     | Model                | Serial Number      | Calibration<br>Date | Calibration<br>Due Date |  |
|-------------------------------------------------|---------------------------------|----------------------|--------------------|---------------------|-------------------------|--|
|                                                 | (                               | Conducted Emis       | sions Test         |                     |                         |  |
| Rohde& Schwarz                                  | EMI Test Receiver               | ESCI                 | 100784             | 2022/11/25          | 2023/11/24              |  |
| Rohde & Schwarz                                 | L.I.S.N.                        | ENV216               | 101314             | 2022/11/25          | 2023/11/24              |  |
| Anritsu Corp                                    | 50 Coaxial Switch               | MP59B                | 6100237248         | 2022/12/07          | 2023/12/06              |  |
| Unknown                                         | RF Coaxial Cable                | No.17                | N0350              | 2022/11/25          | 2023/11/24              |  |
|                                                 | Conducted E                     | mission Test Soft    | tware: e3 19821b ( | V9)                 |                         |  |
|                                                 |                                 | Radiated Emiss       | ions Test          |                     |                         |  |
| Rohde & Schwarz                                 | Test Receiver                   | ESR                  | 102725             | 2022/11/25          | 2023/11/24              |  |
| Rohde & Schwarz                                 | Spectrum Analyzer               | FSV40                | 101949             | 2022/11/25          | 2023/11/24              |  |
| SONOMA<br>INSTRUMENT                            | Amplifier                       | 310 N                | 186131             | 2022/11/08          | 2023/11/07              |  |
| A.H. Systems, inc.                              | Preamplifier                    | PAM-0118P            | 135                | 2022/11/08          | 2023/11/07              |  |
| Quinstar                                        | Amplifier                       | QLW-184055<br>36-J0  | 15964001002        | 2022/11/08          | 2023/11/07              |  |
| Rohde& Schwarz                                  | Test Receiver                   | ESR                  | 102725             | 2022/11/25          | 2023/11/24              |  |
| Rohde & Schwarz                                 | Spectrum Analyzer               | FSV40                | 101949             | 2022/11/25          | 2023/11/24              |  |
| SONOMA<br>INSTRUMENT                            | Amplifier                       | 310 N                | 186131             | 2022/11/08          | 2023/11/07              |  |
| A.H. Systems, inc.                              | Preamplifier                    | PAM-0118P            | 135                | 2022/11/08          | 2023/11/07              |  |
| Schwarzbeck                                     | HORN ANTENNA                    | BBHA9170             | 9170-359           | 2020/01/05          | 2023/01/04              |  |
| Unknown                                         | RF Coaxial Cable                | No.10                | N050               | 2022/11/25          | 2023/11/24              |  |
| Unknown                                         | RF Coaxial Cable                | No.11                | N1000              | 2022/11/25          | 2023/11/24              |  |
| Unknown                                         | RF Coaxial Cable                | No.12                | N040               | 2022/11/25          | 2023/11/24              |  |
| Unknown                                         | RF Coaxial Cable                | No.13                | N300               | 2022/11/25          | 2023/11/24              |  |
| Unknown                                         | RF Coaxial Cable                | No.14                | N800               | 2022/11/25          | 2023/11/24              |  |
| Unknown                                         | RF Coaxial Cable                | No.15                | N600               | 2022/11/25          | 2023/11/24              |  |
| Unknown                                         | RF Coaxial Cable                | No.16                | N650               | 2022/11/25          | 2023/11/24              |  |
| Radiated Emission Test Software: e3 19821b (V9) |                                 |                      |                    |                     |                         |  |
| RF Conducted Test                               |                                 |                      |                    |                     |                         |  |
| Rohde & Schwarz                                 | Spectrum Analyzer               | FSV-40               | 101495             | 2022/11/25          | 2023/11/24              |  |
| Rohde & Schwarz                                 | Open Switch and<br>Control Unit | OSP120 +<br>OSP-B157 | 101244 +<br>100866 | 2022/11/25          | 2023/11/24              |  |
| WEINSCHEL                                       | 10dB Attenuator                 | 5324                 | AU 3842            | 2022/11/25          | 2023/11/24              |  |
| Unknown                                         | RF Coaxial Cable                | No.31                | RF-01              | Each                | time                    |  |

\* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Version 11: 2021-11-09

# FCC §1.1307 (b) & §2.1093 – RF EXPOSURE

## **Applicable Standard**

According to FCC §2.1093 and §1.1307(b), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D04 Interim General RF Exposure Guidance v01, clause 2.1.2 – 1-mW test Exemption:

Per § 1.1307(b)(3)(i)(A), a single RF source is exempt RF device (from the requirement to show data demonstrating compliance to RF exposure limits, as previously mentioned) if the available maximum time-averaged power is no more than 1 mW, regardless of separation distance.

This exemption applies to all operating configurations and exposure conditions, for the frequency range 100 kHz to 100 GHz, regardless of fixed, mobile, or portable device exposure conditions. This is a standalone exemption, and it cannot be applied in conjunction with any other test exemption.

## **Test Result:**

For worst case:

| Mode    | Frequency | Maximum Tune-up<br>Conducted Power |               | 1-mW test |
|---------|-----------|------------------------------------|---------------|-----------|
|         | (MHz)     | (dBm)                              | ( <b>mW</b> ) | Exemption |
| BDR/EDR | 2402-2480 | -2                                 | 0.631         | Yes       |

Note: The tune-up power was declared by the applicant.

**Result:** Compliant.

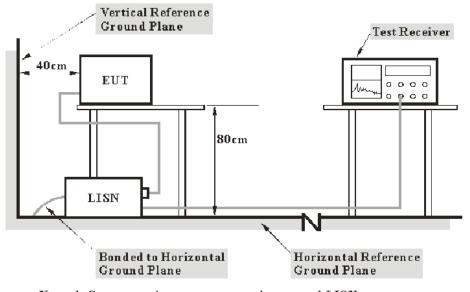
# FCC §15.203 – ANTENNA REQUIREMENT

# **Applicable Standard**

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

# Antenna Connector Construction

The EUT has one internal antenna arrangement, which was permanently attached and the antenna gain is -0.58 dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliant.

# FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

# **Applicable Standard**

FCC §15.207(a)

# **EUT Setup**



Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

# **EMI Test Receiver Setup**

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

| Frequency Range  | IF B/W |  |
|------------------|--------|--|
| 150 kHz – 30 MHz | 9 kHz  |  |

# **Test Procedure**

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

# **Factor & Margin Calculation**

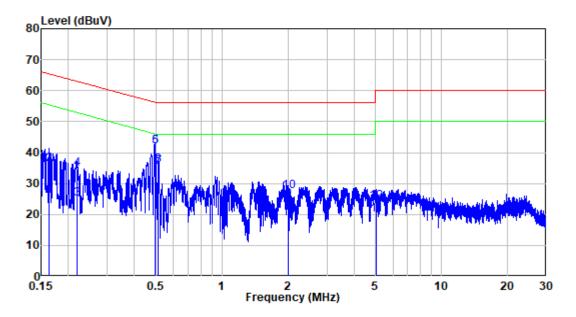
The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

Factor = LISN VDF + Cable Loss

The "**Over limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

Over Limit = Level – Limit Level = Read Level + Factor

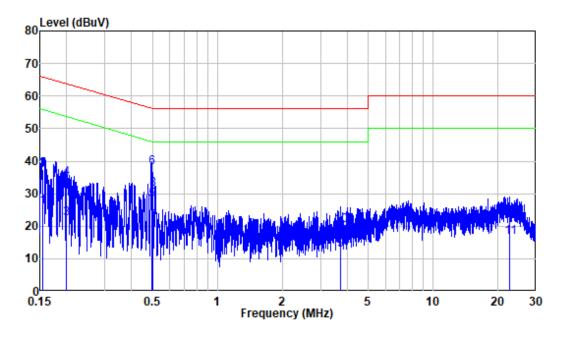
# **Test Data**


#### **Environmental Conditions**

| Temperature:       | 21 °C     |
|--------------------|-----------|
| Relative Humidity: | 60 %      |
| ATM Pressure:      | 101.0 kPa |

The testing was performed by Chen jie on 2022-12-28.

EUT operation mode: Charging


# AC 120V/60 Hz, Line



| Site      | : | Shielding Room     |
|-----------|---|--------------------|
| Condition | : | Line               |
| Job No.   | : | RA221222-63223E-RF |
| Mode      | : | Charging           |
| Power     | : | AC 120V 60Hz       |

|    | Freq  | Factor | Read<br>Level | Level | Limit<br>Line | Over<br>Limit | Remark  |
|----|-------|--------|---------------|-------|---------------|---------------|---------|
|    | MHz   | dB     | dBuV          | dBuV  | dBuV          | dB            |         |
| 1  | 0.164 | 9.80   | 16.08         | 25.88 | 55.27         | -29.39        | Average |
| 2  | 0.164 | 9.80   | 26.36         | 36.16 | 65.27         | -29.11        | QP      |
| 3  | 0.218 | 9.80   | 15.24         | 25.04 | 52.90         | -27.86        | Average |
| 4  | 0.218 | 9.80   | 24.77         | 34.57 | 62.90         | -28.33        | QP      |
| 5  | 0.495 | 9.80   | 32.21         | 42.01 | 46.08         | -4.07         | Average |
| 6  | 0.495 | 9.80   | 32.07         | 41.87 | 56.08         | -14.21        | QP      |
| 7  | 0.513 | 9.81   | 25.39         | 35.20 | 46.00         | -10.80        | Average |
| 8  | 0.513 | 9.81   | 26.06         | 35.87 | 56.00         | -20.13        | QP      |
| 9  | 2.003 | 9.82   | 15.05         | 24.87 | 46.00         | -21.13        | Average |
| 10 | 2.003 | 9.82   | 17.56         | 27.38 | 56.00         | -28.62        | QP      |
| 11 | 5.018 | 9.85   | 10.16         | 20.01 | 50.00         | -29.99        | Average |
| 12 | 5.018 | 9.85   | 14.28         | 24.13 | 60.00         | -35.87        | QP      |

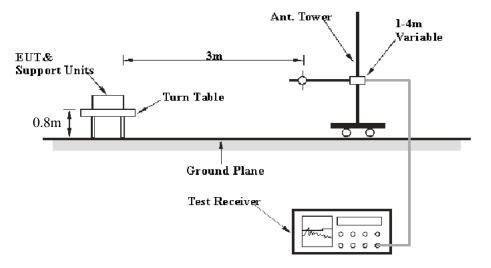
# AC 120V/60 Hz, Neutral



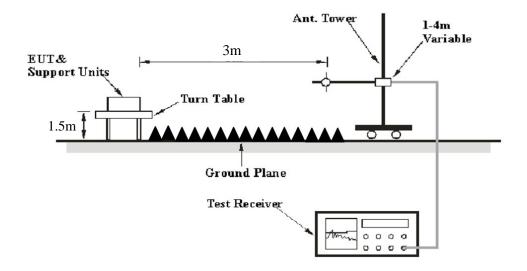
| Site      | : | Shielding Room     |
|-----------|---|--------------------|
| Condition | : | Neutral            |
| Job No.   | : | RA221222-63223E-RF |
| Mode      | : | Charging           |
| Power     | : | AC 120V 60Hz       |

|    | Freq   | Factor | Read<br>Level | Level | Limit<br>Line | Over<br>Limit | Remark  |
|----|--------|--------|---------------|-------|---------------|---------------|---------|
|    | MHz    | dB     | dBuV          | dBuV  | dBuV          | dB            |         |
| 1  | 0.155  | 9.80   | 16.04         | 25.84 | 55.73         | -29.89        | Average |
| 2  | 0.155  | 9.80   | 27.77         | 37.57 | 65.73         | -28.16        | QP      |
| 3  | 0.200  | 9.80   | 12.57         | 22.37 | 53.61         | -31.24        | Average |
| 4  | 0.200  | 9.80   | 24.90         | 34.70 | 63.61         | -28.91        | QP      |
| 5  | 0.496  | 9.80   | 18.33         | 28.13 | 46.06         | -17.93        | Average |
| 6  | 0.496  | 9.80   | 28.35         | 38.15 | 56.06         | -17.91        | QP      |
| 7  | 0.500  | 9.80   | 11.74         | 21.54 | 46.00         | -24.46        | Average |
| 8  | 0.500  | 9.80   | 21.70         | 31.50 | 56.00         | -24.50        | QP      |
| 9  | 3.727  | 9.84   | 2.73          | 12.57 | 46.00         | -33.43        | Average |
| 10 | 3.727  | 9.84   | 10.40         | 20.24 | 56.00         | -35.76        | QP      |
| 11 | 22.685 | 10.13  | 6.43          | 16.56 | 50.00         | -33.44        | Average |
| 12 | 22.685 | 10.13  | 12.54         | 22.67 | 60.00         | -37.33        | QP      |

Version 11: 2021-11-09


# FCC §15.205, §15.209 & §15.247(d) - RADIATED EMISSIONS

# **Applicable Standard**


FCC §15.205; §15.209; §15.247(d)

# **EUT Setup**

#### Below 1 GHz:



# Above 1GHz:



The radiated emission performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, FCC 15.247 limits.

# EMI Test Receiver & Spectrum Analyzer Setup

The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

| Frequency Range   | RBW     | Video B/W | IF B/W  | Measurement |
|-------------------|---------|-----------|---------|-------------|
| 30 MHz – 1000 MHz | 100 kHz | 300 kHz   | 120 kHz | QP          |
| Above 1 GHz       | 1 MHz   | 3 MHz     | /       | РК          |

For average measurement:

Use the duty cycle factor correction factor method per 15.35(c). Duty cycle=On time/100milliseconds, On time=N1\*L1+N2\*L2+...Nn-1\*Ln-1+Nn\*Ln, Where N1 is number of type 1 pulses, L1 is length of type 1 pulse, etc. Average Emission Level=Peak Emission Level+20\*log(Duty cycle)

#### **Test Procedure**

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform QP/Average measurement.

#### **Factor & Margin Calculation**

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

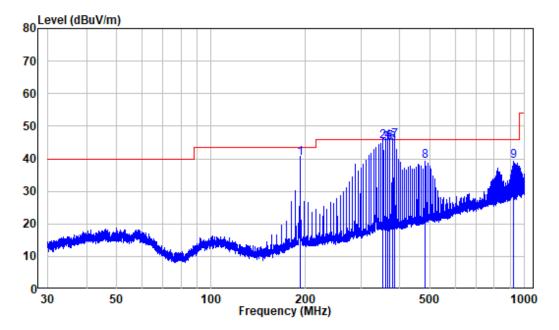
Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

#### **Test Data**

#### **Environmental Conditions**

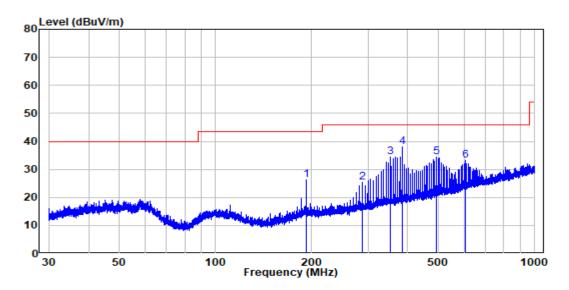

| Temperature:              | 24-25 °C  |
|---------------------------|-----------|
| <b>Relative Humidity:</b> | 55-62 %   |
| ATM Pressure:             | 101.0 kPa |

*The testing was performed by Jimi Zheng on 2023-01-13 for below 1GHz and on 2022-12-29 for above 1GHz.* 

EUT operation mode: Transmitting

(Scan with GFSK,  $\pi/4$ -DQPSK, 8DPSK mode at X axis, Y axis, Z axis, the worst case is 8DPSK Mode at Y axis)

# Below 1GHz: 8DPSK Mode, Low Channel




## Horizontal

| Site :     | chamber            |
|------------|--------------------|
| Condition: | 3m HORIZONTAL      |
| Job No. :  | RA221222-63223E-RF |
| Test Mode: | BT Transmitting    |

|   | Freq    | Factor |       |        | Limit<br>Line | Over<br>Limit | Remark |
|---|---------|--------|-------|--------|---------------|---------------|--------|
|   | MHz     | dB/m   | dBuV  | dBuV/m | dBuV/m        | dB            |        |
| 1 | 191.997 | -11.25 | 51.40 | 40.15  | 43.50         | -3.35         | QP     |
| 2 | 354.028 | -7.46  | 52.60 | 45.14  | 46.00         | -0.86         | QP     |
| 3 | 359.974 | -7.68  | 52.30 | 44.62  | 46.00         | -1.38         | QP     |
| 4 | 366.020 | -7.50  | 52.80 | 45.30  | 46.00         | -0.70         | QP     |
| 5 | 372.005 | -7.29  | 52.29 | 45.00  | 46.00         | -1.00         | QP     |
| 6 | 378.087 | -7.20  | 51.81 | 44.61  | 46.00         | -1.39         | QP     |
| 7 | 384.100 | -7.08  | 52.60 | 45.52  | 46.00         | -0.48         | QP     |
| 8 | 480.107 | -5.00  | 44.13 | 39.13  | 46.00         | -6.87         | Peak   |
| 9 | 924.135 | 1.76   | 37.37 | 39.13  | 46.00         | -6.87         | Peak   |





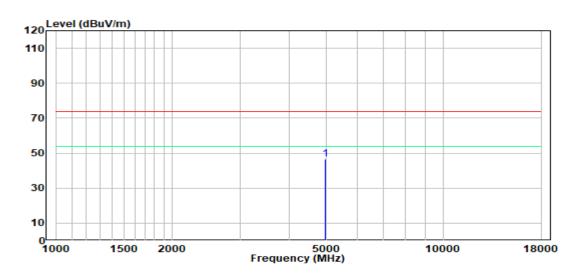
Site : chamber Condition: 3m VERTICAL Job No. : RA221222-63223E-RF Test Mode: BT Transmitting

|   | Freq    | Factor |       |        | Limit<br>Line |        | Remark |
|---|---------|--------|-------|--------|---------------|--------|--------|
| - | MHz     | dB/m   | dBuV  | dBuV/m | dBuV/m        | dB     |        |
| 1 | 191.997 | -11.25 | 37.37 | 26.12  | 43.50         | -17.38 | Peak   |
| 2 | 287.990 | -9.36  | 34.85 | 25.49  | 46.00         | -20.51 | Peak   |
| 3 | 354.028 | -7.46  | 41.77 | 34.31  | 46.00         | -11.69 | Peak   |
| 4 | 384.100 | -7.08  | 45.01 | 37.93  | 46.00         | -8.07  | Peak   |
| 5 | 492.037 | -4.59  | 38.97 | 34.38  | 46.00         | -11.62 | Peak   |
| 6 | 606.190 | -2.32  | 35.39 | 33.07  | 46.00         | -12.93 | Peak   |

| Frequency | Receiver    |       | Turntable<br>Angle | Rx An        | tenna  | Factor | Corrected<br>Amplitude | Limit    | Margin        |  |
|-----------|-------------|-------|--------------------|--------------|--------|--------|------------------------|----------|---------------|--|
| (MHz)     | Reading     | PK/AV | Degree             | Height       | Polar  | (dB/m) | (dBuV/m)               | (dBuV/m) | ( <b>dB</b> ) |  |
|           | (dBuV)      | ΓΛ/Αν | Degree             | ( <b>m</b> ) | (H/V)  |        |                        |          |               |  |
|           | Low Channel |       |                    |              |        |        |                        |          |               |  |
| 2310      | 46.96       | PK    | 329                | 1.6          | Н      | -7.23  | 39.73                  | 74       | -34.27        |  |
| 2310      | 47.2        | РК    | 135                | 1.4          | V      | -7.23  | 39.97                  | 74       | -34.03        |  |
| 2390      | 48.25       | РК    | 46                 | 1.7          | Н      | -7.21  | 41.04                  | 74       | -32.96        |  |
| 2390      | 50.22       | РК    | 342                | 1.1          | V      | -7.21  | 43.01                  | 74       | -30.99        |  |
| 4804      | 50.87       | PK    | 7                  | 1.2          | Н      | -3.52  | 47.35                  | 74       | -26.65        |  |
| 4804      | 48.71       | РК    | 288                | 2.2          | V      | -3.52  | 45.19                  | 74       | -28.81        |  |
|           |             |       |                    | Middle C     | hannel |        |                        |          |               |  |
| 4882      | 49.72       | РК    | 181                | 1.1          | Н      | -3.37  | 46.35                  | 74       | -27.65        |  |
| 4882      | 48.48       | РК    | 196                | 1.7          | V      | -3.37  | 45.11                  | 74       | -28.89        |  |
|           |             |       |                    | High Cł      | annel  |        |                        |          |               |  |
| 2483.5    | 49.52       | РК    | 142                | 1.9          | Н      | -7.2   | 42.32                  | 74       | -31.68        |  |
| 2483.5    | 47.04       | РК    | 181                | 1.8          | V      | -7.2   | 39.84                  | 74       | -34.16        |  |
| 2500      | 47.66       | РК    | 48                 | 1.4          | Н      | -7.18  | 40.48                  | 74       | -33.52        |  |
| 2500      | 46.98       | РК    | 330                | 1.3          | V      | -7.18  | 39.8                   | 74       | -34.2         |  |
| 4960      | 49.63       | РК    | 262                | 1.6          | Н      | -3.01  | 46.62                  | 74       | -27.38        |  |
| 4960      | 50.81       | PK    | 136                | 1.1          | V      | -3.01  | 47.8                   | 74       | -26.2         |  |

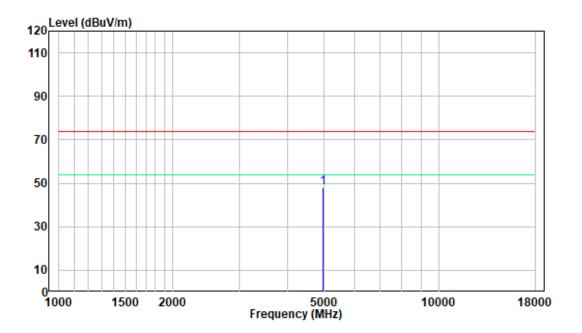
Note:

Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor Corrected Amplitude = Factor + Reading


Margin = Corrected Amplitude - Limit

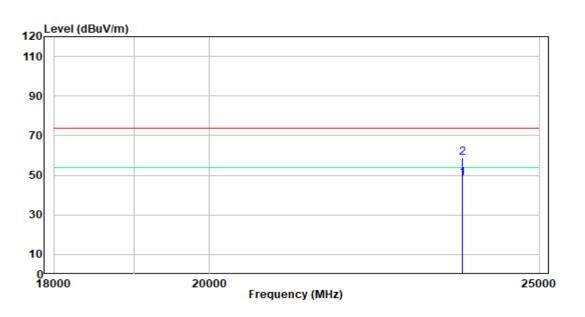
The other spurious emission which is in the noise floor level was not recorded.

For above 1GHz, the test result of peak was 20dB below to the limit of peak, which can be compliant to the average limit, so just peak value was recorded.


#### 1 GHz - 18 GHz: (Pre-Scan plots)

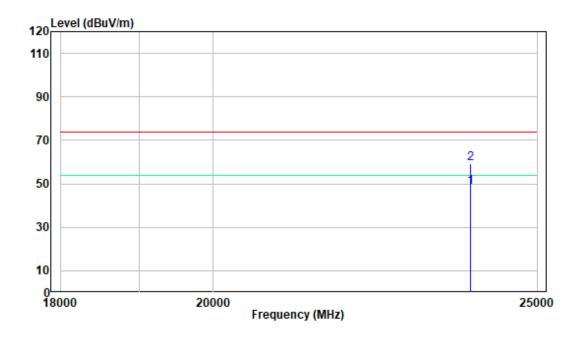
# Worst case for 8DPSK, High Channel




Horizontal

## Vertical




# 18-25GHz: (Pre-Scan plots)

# Worst case for 8DPSK, High Channel



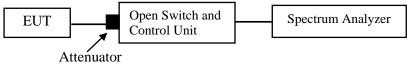
Horizontal

#### Vertical



Version 11: 2021-11-09

# FCC §15.247(a) (1)-CHANNEL SEPARATION TEST


# Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

# **Test Procedure**

According to ANSI C63.10-2013 section 7.8.2

- 1. Set the EUT in transmitting mode, maxhold the channel.
- 2. Set the adjacent channel of the EUT and maxhold another trace.
- 3. Measure the channel separation.

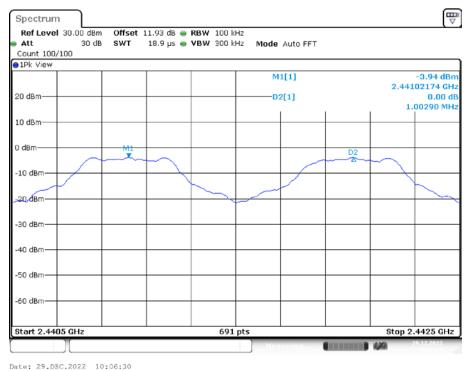


# Test Data

#### **Environmental Conditions**

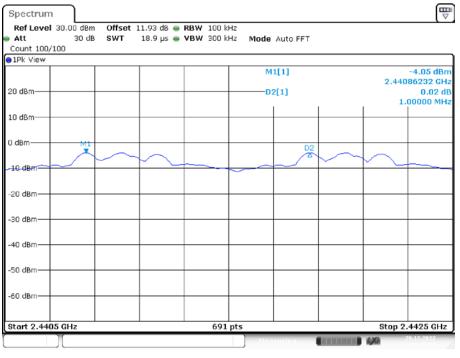
| Temperature:       | 22 °C     |  |
|--------------------|-----------|--|
| Relative Humidity: | 56 %      |  |
| ATM Pressure:      | 101.0 kPa |  |

The testing was performed by Glenn Jiang on 2022-12-29.

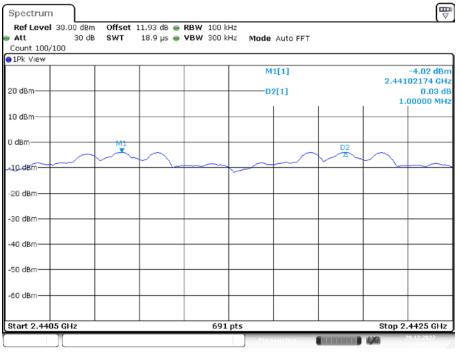

EUT operation mode: Transmitting

Test Result: Compliant.

| Test Mode | Antenna | Channel | Result[MHz] | Limit[MHz] | Verdict |
|-----------|---------|---------|-------------|------------|---------|
| DH5       | Ant1    | Нор     | 1.003       | >=0.576    | PASS    |
| 2DH5      | Ant1    | Нор     | 1           | >=0.820    | PASS    |
| 3DH5      | Ant1    | Нор     | 1           | >=0.834    | PASS    |


Note: The limit = (2/3) \* 20dB bandwidth

Please refer to the below plots:




DH5\_Ant1\_Hop

#### 2DH5\_Ant1\_Hop



Date: 29.DEC.2022 10:30:56



3DH5\_Ant1\_Hop

Date: 29.DEC.2022 10:16:11

# FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH

# **Applicable Standard**

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

# **Test Procedure**

According to ANSI C63.10-2013 section 6.9.2

The following conditions shall be observed for measuring the occupied bandwidth and 20 dB bandwidth:

• The transmitter shall be operated at its maximum carrier power measured under normal test conditions.

• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / 20 dB bandwidth if the device is not transmitting continuously.

• The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / 20 dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

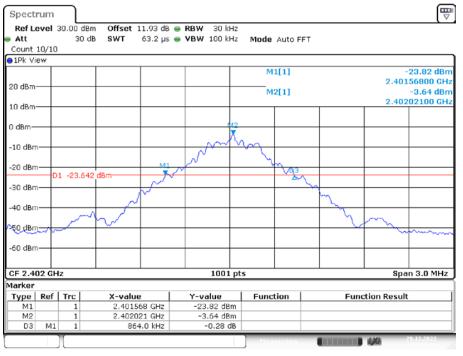
For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).



# **Test Data**

# **Environmental Conditions**

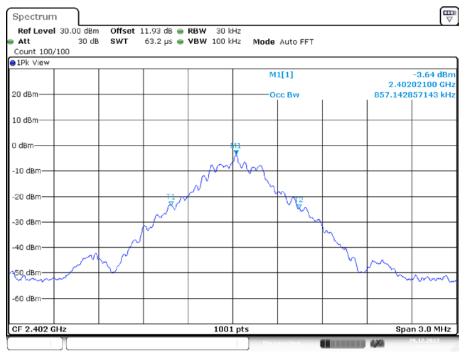
| Temperature:              | 22 °C     |  |
|---------------------------|-----------|--|
| <b>Relative Humidity:</b> | 56 %      |  |
| ATM Pressure:             | 101.0 kPa |  |


The testing was performed by Glenn Jiang on 2022-12-29.

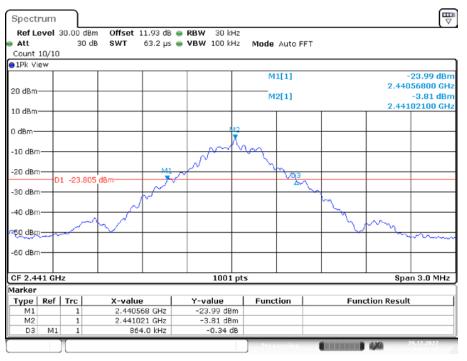
EUT operation mode: Transmitting

Test Result: Compliant.

| Test Mode | Antenna | Channel | 20db EBW[MHz] | OCB [MHz] | Verdict |
|-----------|---------|---------|---------------|-----------|---------|
| DH5       | Ant1    | 2402    | 0.864         | 0.857     | PASS    |
|           |         | 2441    | 0.864         | 0.857     | PASS    |
|           |         | 2480    | 0.864         | 0.857     | PASS    |
| 2DH5      | Ant1    | 2402    | 1.230         | 1.166     | PASS    |
|           |         | 2441    | 1.227         | 1.166     | PASS    |
|           |         | 2480    | 1.230         | 1.166     | PASS    |
| 3DH5      | Ant1    | 2402    | 1.251         | 1.169     | PASS    |
|           |         | 2441    | 1.251         | 1.172     | PASS    |
|           |         | 2480    | 1.251         | 1.172     | PASS    |


Please refer to the below plots:




#### 20 dB EMISSION BANDWIDTH\_DH5\_Ant1\_2402

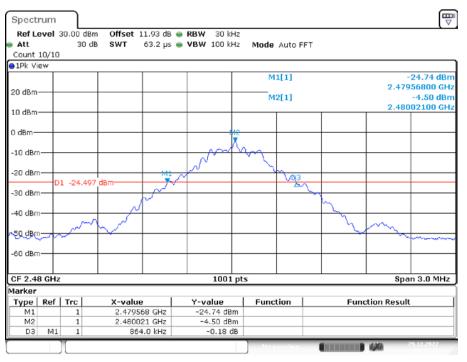
Date: 29.DEC.2022 09:51:11

# 99% OCCUPIED BANDWIDTH\_DH5 \_Ant1\_2402



Date: 29.DEC.2022 09:51:28

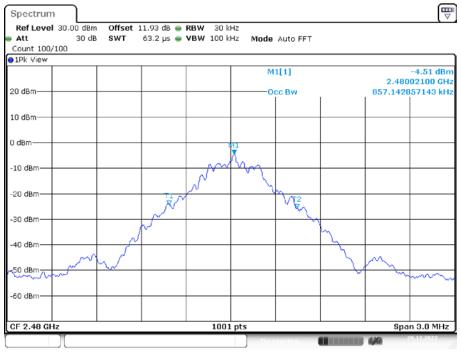



20 dB EMISSION BANDWIDTH\_DH5 \_Ant1\_2441

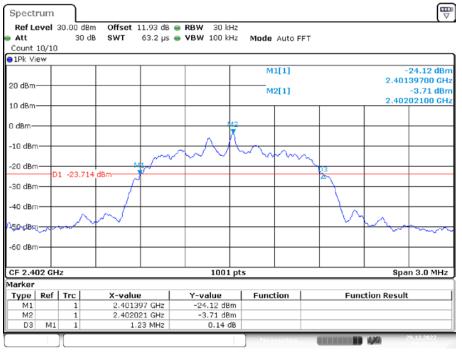
Date: 29.DEC.2022 09:52:27

# 99% OCCUPIED BANDWIDTH\_DH5 \_Ant1\_2441




Date: 29.DEC.2022 09:52:44

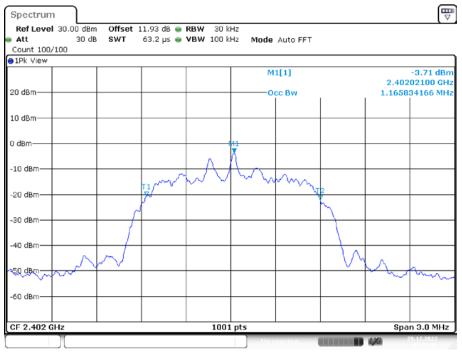



20 dB EMISSION BANDWIDTH\_DH5 \_Ant1\_2480

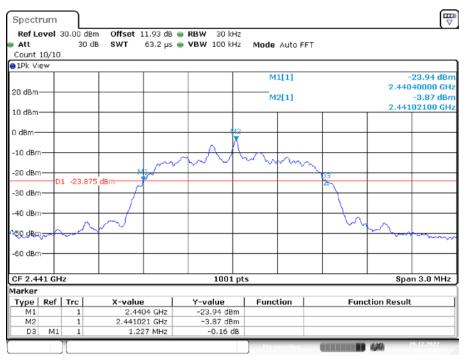
Date: 29.DEC.2022 09:53:19

#### 99% OCCUPIED BANDWIDTH\_DH5 \_Ant1\_2480




Date: 29.DEC.2022 09:53:35

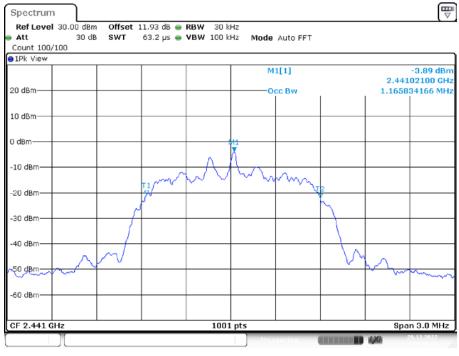



#### 20 dB EMISSION BANDWIDTH\_2DH5 \_Ant1\_2402

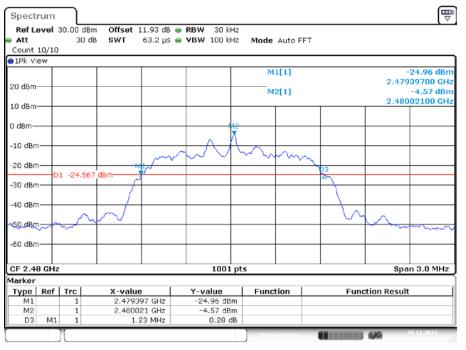
Date: 29.DEC.2022 09:57:46

#### 99% OCCUPIED BANDWIDTH\_2DH5 \_Ant1\_2402




Date: 29.DEC.2022 09:58:03




#### 20 dB EMISSION BANDWIDTH\_2DH5 \_Ant1\_2441

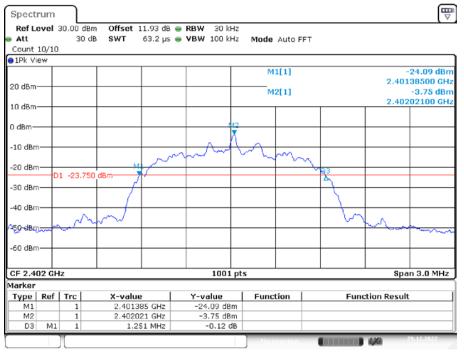
Date: 29.DEC.2022 09:59:04

# 99% OCCUPIED BANDWIDTH\_2DH5 \_Ant1\_2441




Date: 29.DEC.2022 09:59:21

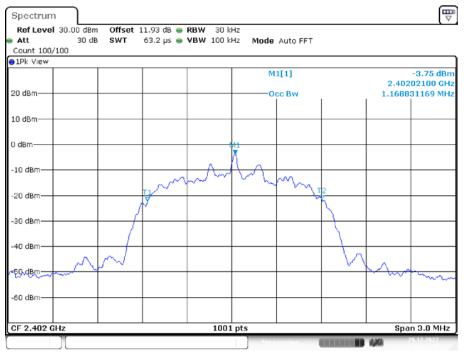



## 20 dB EMISSION BANDWIDTH \_2DH5\_Ant1\_2480

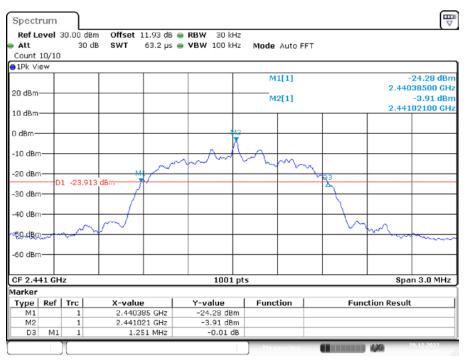
Date: 29.DEC.2022 09:59:57






Date: 29.DEC.2022 10:00:14

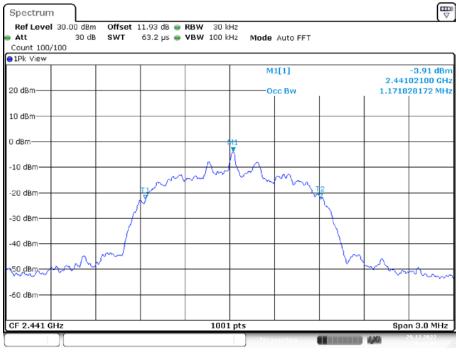



#### 20 dB EMISSION BANDWIDTH\_3DH5 \_Ant1\_2402

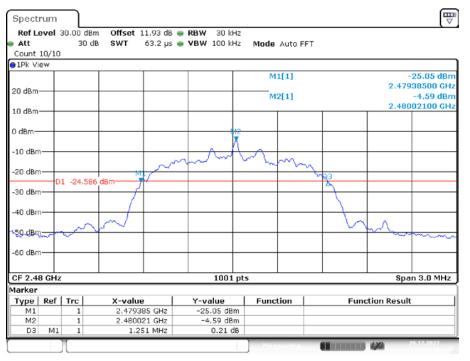
Date: 29.DEC.2022 10:01:22

#### 99% OCCUPIED BANDWIDTH\_3DH5 \_Ant1\_2402




Date: 29.DEC.2022 10:01:39




## 20 dB EMISSION BANDWIDTH\_3DH5 \_Ant1\_2441

Date: 29.DEC.2022 10:02:45

# 99% OCCUPIED BANDWIDTH\_3DH5 \_Ant1\_2441



Date: 29.DEC.2022 10:03:02



### 20 dB EMISSION BANDWIDTH \_3DH5\_Ant1\_2480

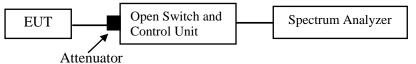
Date: 29.DEC.2022 10:03:40

#### 99% OCCUPIED BANDWIDTH \_3DH5\_Ant1\_2480



Date: 29.DEC.2022 10:03:57

# FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST


# **Applicable Standard**

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

# **Test Procedure**

According to ANSI C63.10-2013 section 7.8.3

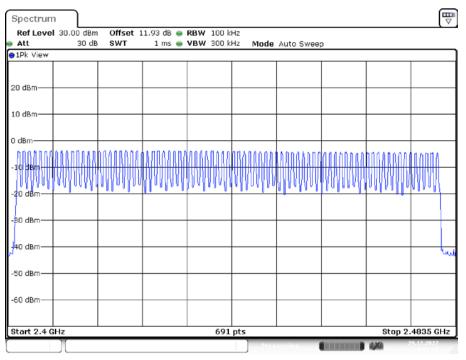
- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.



# **Test Data**

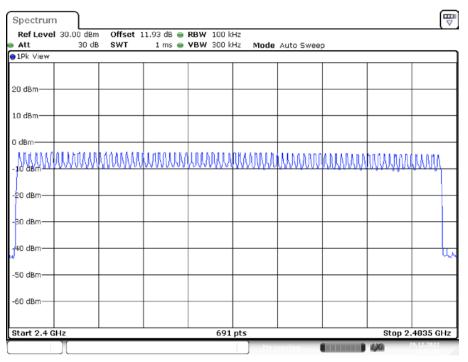
#### **Environmental Conditions**

| Temperature:       | 22 °C     |
|--------------------|-----------|
| Relative Humidity: | 56 %      |
| ATM Pressure:      | 101.0 kPa |


The testing was performed by Glenn Jiang on 2022-12-29.

EUT operation mode: Transmitting

Test Result: Compliant.


| Test Mode | Antenna | Channel | Result[Num] | Limit[Num] | Verdict |
|-----------|---------|---------|-------------|------------|---------|
| DH5       | Ant1    | Нор     | 79          | >=15       | PASS    |
| 2DH5      | Ant1    | Нор     | 79          | >=15       | PASS    |
| 3DH5      | Ant1    | Нор     | 79          | >=15       | PASS    |





Date: 29.DEC.2022 10:07:51

#### 2DH5\_Ant1\_Hop



Date: 29.DEC.2022 10:12:47

# 3DH5\_Ant1\_Hop

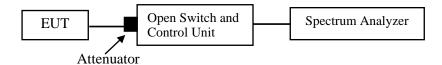
|          | 30.00 dBm |     | 11.93 dB 👄 |     | 100 kHz |      |           |    |    | $\nabla$ |
|----------|-----------|-----|------------|-----|---------|------|-----------|----|----|----------|
| Att      | 30 dB     | SWT | 1 ms 👄     | VBW | 300 kHz | Mode | Auto Swee | 0  |    |          |
| 1Pk View |           |     |            |     |         |      |           |    |    |          |
| 20 dBm   |           |     |            |     |         |      |           |    |    |          |
| LO dBm   |           |     |            |     |         |      |           |    |    |          |
| ) dBm    |           |     |            |     |         |      |           |    |    |          |
|          | MMMM      | MMM | mm         | MM  | MM      | рили | MMM       | mm | mm | ana a    |
| 20 dBm   |           |     |            |     |         |      |           |    |    |          |
| 30 dBm   |           |     |            |     |         |      |           |    |    |          |
| 40 dBm   |           |     |            |     |         |      |           |    |    | - lu     |
| 50 dBm   |           |     |            |     |         |      |           |    |    |          |
| I        |           |     |            |     |         |      |           |    |    |          |
| 60 dBm   |           |     |            |     |         |      |           |    |    |          |

Date: 29.DEC.2022 10:17:34

# FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

# **Applicable Standard**

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.


## **Test Procedure**

According to ANSI C63.10-2013 section 7.8.4

- 1. The EUT was worked in channel hopping.
- 2. Set the RBW to: 1MHz.
- 3. Set the VBW  $\geq$  3×RBW.
- 4. Set the span to 0Hz.
- 5. Detector = peak.
- 6. Sweep time = As necessary to capture the entire dwell time per hopping channel
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Recorded the time of single pulses
- 10. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

(Number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) × (period specified in the requirements / analyzer sweep time)

11. The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation.



#### **Test Data**

#### **Environmental Conditions**

| Temperature:       | 22 °C     |  |
|--------------------|-----------|--|
| Relative Humidity: | 56 %      |  |
| ATM Pressure:      | 101.0 kPa |  |

The testing was performed by Glenn Jiang on 2022-12-29.

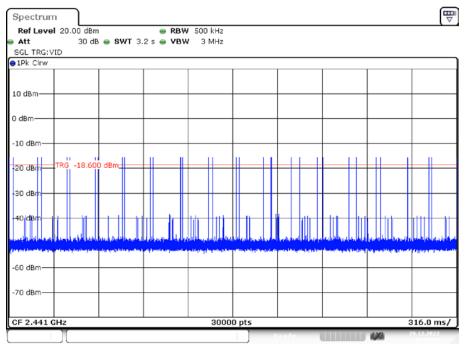
EUT operation mode: Transmitting

Test Result: Compliant.

#### Shenzhen Accurate Technology Co., Ltd.

| Test Mode | Antenna | Channel | Burst Width [ms] | Total Hops[Num] | Result[s] | Limit[s] | Verdict |
|-----------|---------|---------|------------------|-----------------|-----------|----------|---------|
| DH1       | Ant1    | Нор     | 0.42             | 320             | 0.134     | <=0.4    | PASS    |
| DH3       | Ant1    | Нор     | 1.67             | 160             | 0.267     | <=0.4    | PASS    |
| DH5       | Ant1    | Нор     | 2.91             | 120             | 0.349     | <=0.4    | PASS    |
| 2DH1      | Ant1    | Нор     | 0.43             | 320             | 0.138     | <=0.4    | PASS    |
| 2DH3      | Ant1    | Нор     | 1.67             | 170             | 0.284     | <=0.4    | PASS    |
| 2DH5      | Ant1    | Нор     | 2.92             | 110             | 0.321     | <=0.4    | PASS    |
| 3DH1      | Ant1    | Нор     | 0.43             | 330             | 0.142     | <=0.4    | PASS    |
| 3DH3      | Ant1    | Нор     | 1.67             | 170             | 0.284     | <=0.4    | PASS    |
| 3DH5      | Ant1    | Нор     | 2.92             | 130             | 0.380     | <=0.4    | PASS    |

 Note 1: A period time=0.4\*79=31.6(s), Result=Burst Width\*Total Hops


 Note 2: Total Hops =Hopping Number in 3.16s\*10

 Note 3: Hoping Number in 3.16s=Total of highest signals in 3.16s (Second high signals were other channel)

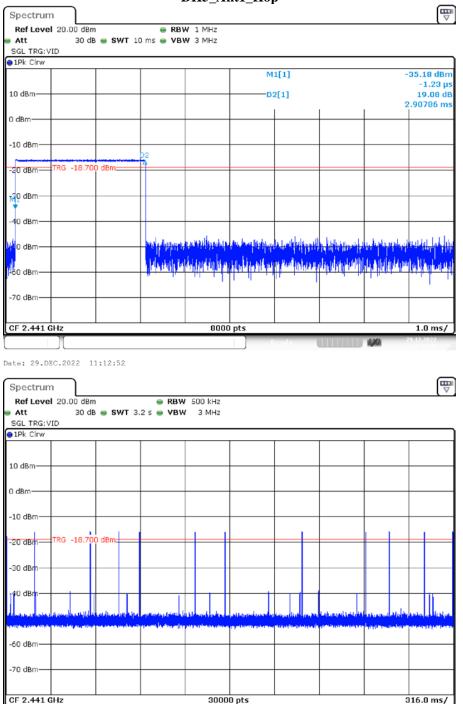
| Att 30 dB  SWT        | 10 ms 😑 <b>VBW</b> 3 MHz               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|-----------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 1Pk Cirw              |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|                       |                                        | M1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -17.30 dBn<br>25 n:      |
| 0 dBm                 |                                        | D2[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.53 di                  |
|                       |                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 417.55 μ                 |
| dBm-                  |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|                       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
| 10 dBm                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
| 0 dBm TRG -18.600 dBm |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|                       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
| 0 dBm                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|                       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
| 0 dBm                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
| O dBrook              | hilling along a bar an baharat da sa   | الالالم ومعرفة والمالية والمالية المالية المالية المالية المالية المالية المالية المالية المالية الم                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ويواويه وفرير فرارد اداد وروالا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | na matani katika.        |
|                       | CPRATE AND A DEPARTMENT                | White the state of | <ul> <li>The second se<br/>Second second sec</li></ul> |                          |
| io dBm                | la u ha biya bibikin i adadi biti , bi | <mark>n an a dhilisead da can haid dhaadaa</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l hi, ndi sela sa mukada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | i (di shiji dhi phine dh |
|                       | 11 . I. I. I.                          | Le la de la de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · · · ·                  |
| 70 dBm                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|                       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
| F 2.441 GHz           | 800                                    | 0 pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0 ms/                  |

DH1\_Ant1\_Hop

Date: 29.DEC.2022 10:09:26



Date: 29.DEC.2022 10:09:31


| 1Pk Cirw  |              |                   |                | м                     | 1[1]                                                                                                              |                |                | -21.51 dBm                                                                                                     |
|-----------|--------------|-------------------|----------------|-----------------------|-------------------------------------------------------------------------------------------------------------------|----------------|----------------|----------------------------------------------------------------------------------------------------------------|
| .0 dBm    |              |                   |                | D                     | 2[1]                                                                                                              |                | :              | -1.23 µs<br>5.62 dE<br>1.66646 ms                                                                              |
| I dBm     |              |                   |                |                       |                                                                                                                   |                |                |                                                                                                                |
| 10 dBm    |              |                   |                |                       |                                                                                                                   |                |                |                                                                                                                |
| 0 dBm TRG | -18.600 dBm  |                   |                |                       |                                                                                                                   |                |                |                                                                                                                |
| 30 dBm    |              |                   |                |                       |                                                                                                                   |                |                |                                                                                                                |
| 10 dBm    |              |                   |                |                       |                                                                                                                   |                |                |                                                                                                                |
| 0 dBm     |              | . Ill stales poly | an all many by | n dut, salata data ya | When the second | Ադսիթիկ        | Intel i contra | And the property of the second se |
|           | diad allambi | والمعاقر والدألى  | Lake Allah     | 5. No. House          | deficited Die                                                                                                     | k Malillowah W | ni litadaki    | i wanda lahi ala                                                                                               |
|           |              | 1                 |                |                       | Lond Con-                                                                                                         | 1.00           | י ויין י       | k na sina ka                                                                                                   |
| 60 dBm    |              |                   |                |                       |                                                                                                                   |                |                |                                                                                                                |

DH3\_Ant1\_Hop

Date: 29.DEC.2022 10:08:55

| Spectrum                                                                       |                                                                          |                                                                                                                 |                          |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------|
| Ref Level 20.00 dBm                                                            | 😑 RBW 500 kHz                                                            |                                                                                                                 |                          |
| Att 30 dB 🖷 SWT 3.2                                                            | s 🥌 VBW 3 MHz                                                            |                                                                                                                 |                          |
| SGL TRG: VID                                                                   |                                                                          |                                                                                                                 |                          |
| 1Pk Cirw                                                                       |                                                                          |                                                                                                                 |                          |
|                                                                                |                                                                          |                                                                                                                 |                          |
| 10 dBm                                                                         |                                                                          |                                                                                                                 |                          |
|                                                                                |                                                                          |                                                                                                                 |                          |
| ) dBm                                                                          |                                                                          |                                                                                                                 |                          |
|                                                                                |                                                                          |                                                                                                                 |                          |
| -10 dBm                                                                        |                                                                          |                                                                                                                 |                          |
|                                                                                |                                                                          |                                                                                                                 |                          |
| -20 dBmTRG -18.600 dBm                                                         |                                                                          |                                                                                                                 |                          |
| -20 dBm                                                                        |                                                                          |                                                                                                                 |                          |
|                                                                                |                                                                          |                                                                                                                 |                          |
| -30 dBm                                                                        |                                                                          |                                                                                                                 |                          |
|                                                                                |                                                                          |                                                                                                                 |                          |
| -40 dBm                                                                        |                                                                          |                                                                                                                 |                          |
| والمتعاري ويستعربوا وتقريقك المتعاقر والقروع ورور                              | ite as an an hard and the balance of a solar start have                  | والمراجع وال |                          |
| un electrica de la contrativa en entre de la presidencia de la constante de la | والمتحمل والمتعارية المحمد المتعادية فالمتعار والمتعاد والمعاد والمعادية | and the state of the | International Medication |
|                                                                                |                                                                          |                                                                                                                 |                          |
| -60 dBm                                                                        |                                                                          |                                                                                                                 |                          |
|                                                                                |                                                                          |                                                                                                                 |                          |
| -70 dBm                                                                        |                                                                          | 1 1 1                                                                                                           |                          |
|                                                                                |                                                                          |                                                                                                                 |                          |
| CF 2.441 GHz                                                                   | 30000 pts                                                                | · · · · · ·                                                                                                     | 316.0 ms/                |
|                                                                                |                                                                          | ke a div                                                                                                        | 29.12.2022               |

Date: 29.DEC.2022 10:09:01

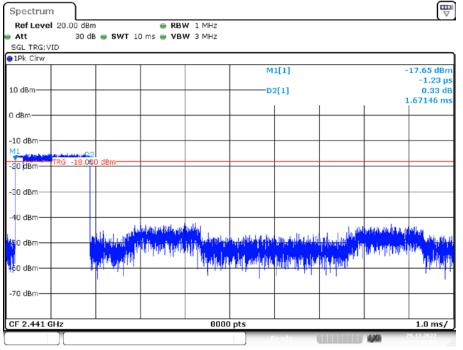


DH5\_Ant1\_Hop

Date: 29.DEC.2022 11:12:58

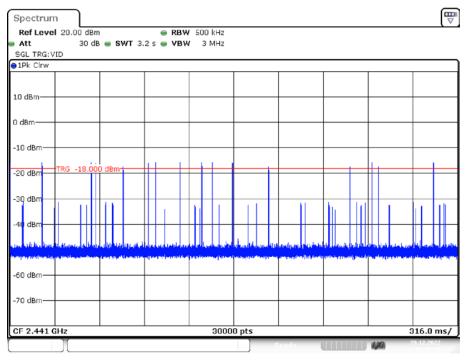
Version 11: 2021-11-09

LXI

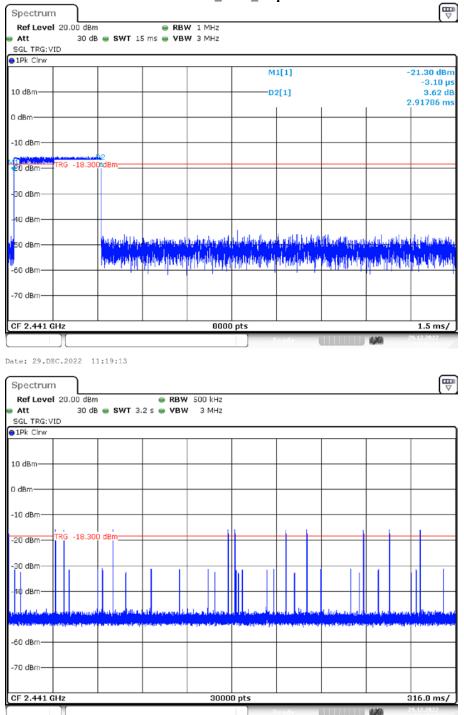

| Ref Level 20.00 dBm 🛛 🖷 RB                                                                                      | W 1 MHz               |                                                                                                                |                   |                 |                     |                    |
|-----------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------|-------------------|-----------------|---------------------|--------------------|
| Att 30 dB 🖷 SWT 10 ms 🖷 VB                                                                                      | SW 3 MHz              |                                                                                                                |                   |                 |                     |                    |
| BGL TRG: VID                                                                                                    |                       |                                                                                                                |                   |                 |                     |                    |
| 1Pk Clrw                                                                                                        |                       |                                                                                                                |                   |                 |                     |                    |
|                                                                                                                 |                       | м                                                                                                              | 1[1]              |                 | -                   | 21.90 dBn          |
| 0 dBm                                                                                                           |                       | D'                                                                                                             | 2[1]              |                 |                     | -1.23 μ<br>4.48 di |
|                                                                                                                 |                       |                                                                                                                | 2[1]              |                 |                     | 427.55 μ           |
| dBm-                                                                                                            |                       |                                                                                                                |                   |                 |                     |                    |
| dom                                                                                                             |                       |                                                                                                                |                   |                 |                     |                    |
| .0 dBm                                                                                                          |                       |                                                                                                                |                   |                 |                     |                    |
|                                                                                                                 |                       |                                                                                                                |                   |                 |                     |                    |
| 0 dBm TRG -18.200 dBm                                                                                           |                       |                                                                                                                |                   |                 |                     |                    |
|                                                                                                                 |                       |                                                                                                                |                   |                 |                     |                    |
| 0 dBm                                                                                                           |                       |                                                                                                                |                   |                 |                     |                    |
|                                                                                                                 |                       |                                                                                                                |                   |                 |                     |                    |
| 10 dBm                                                                                                          |                       |                                                                                                                |                   |                 |                     |                    |
|                                                                                                                 |                       |                                                                                                                |                   |                 |                     |                    |
| о автория в на правити и правит | 1. Lukelander die     |                                                                                                                | e kanderlit i de  | والالان والتكار | والمتعالية والمتعاد | احتلال تعارف التعر |
| crossing black and cost out traffick or                                                                         | to the case           | in the formation of the second se | n an trainn an t- | and an and a    | de an del           | i di citta         |
| 50 dBm                                                                                                          | and the second second | ad the second second                                                                                           | telli. Utita      | o Wei sarrin    | altik hanu.         | AND ADD. W         |
|                                                                                                                 | 1.11.5                |                                                                                                                |                   | i ti            |                     |                    |
| 70 dBm                                                                                                          |                       |                                                                                                                |                   |                 |                     |                    |
|                                                                                                                 |                       |                                                                                                                |                   |                 |                     |                    |
| F 2.441 GHz                                                                                                     | 8000                  | pts                                                                                                            | 1                 |                 |                     | 1.0 ms/            |
|                                                                                                                 |                       |                                                                                                                | le adv            |                 | 430                 | 9.12.2022          |

2DH1\_Ant1\_Hop

Date: 29.DEC.2022 10:14:09

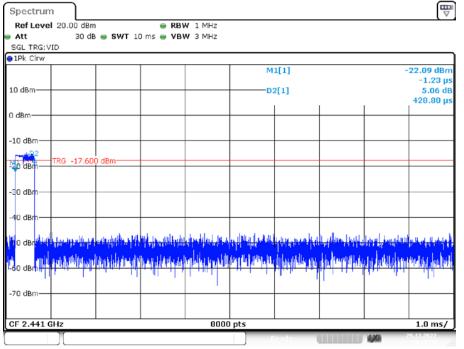

| Spectrum                                                                                                         |                                                          |                                                                                                                                                                                    |                                                     |                                               |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|
| Ref Level 20.00 dBm                                                                                              |                                                          | ₩ 500 kHz                                                                                                                                                                          |                                                     | •                                             |
| Att 30 dB<br>SGL TRG: VID                                                                                        | 9 🖷 SWT 3.2 s 🖷 VB1                                      | W 3 MHz                                                                                                                                                                            |                                                     |                                               |
| 1Pk Cirw                                                                                                         |                                                          |                                                                                                                                                                                    |                                                     |                                               |
|                                                                                                                  |                                                          |                                                                                                                                                                                    |                                                     |                                               |
| 10 dBm                                                                                                           |                                                          |                                                                                                                                                                                    |                                                     |                                               |
|                                                                                                                  |                                                          |                                                                                                                                                                                    |                                                     |                                               |
| ) dBm                                                                                                            |                                                          |                                                                                                                                                                                    |                                                     |                                               |
| -10 dBm                                                                                                          |                                                          |                                                                                                                                                                                    |                                                     |                                               |
|                                                                                                                  |                                                          |                                                                                                                                                                                    |                                                     |                                               |
| 20 dBm TRG -18.20                                                                                                | 0 dBm                                                    |                                                                                                                                                                                    |                                                     |                                               |
|                                                                                                                  |                                                          |                                                                                                                                                                                    |                                                     |                                               |
| 30 dBm                                                                                                           | 1 11 11                                                  | dh dh dh                                                                                                                                                                           |                                                     |                                               |
| 40 dBm                                                                                                           |                                                          |                                                                                                                                                                                    |                                                     |                                               |
|                                                                                                                  |                                                          |                                                                                                                                                                                    |                                                     |                                               |
|                                                                                                                  |                                                          | in fallen fan de fan de servier fan de servier fan de servier.<br>De fallen fan de fan de servier fan d | a hi dan bir yaya bi biyi di barda barda da biya bi | highe ha loo by he bill the loose in fineline |
| and the second | and a data big properties, a notable second part of pro- |                                                                                                                                                                                    |                                                     |                                               |
| -60 dBm                                                                                                          |                                                          |                                                                                                                                                                                    |                                                     |                                               |
| 70 dBm                                                                                                           |                                                          |                                                                                                                                                                                    |                                                     |                                               |
|                                                                                                                  |                                                          |                                                                                                                                                                                    |                                                     |                                               |
| CF 2.441 GHz                                                                                                     |                                                          | 30000 pts                                                                                                                                                                          |                                                     | 316.0 ms/                                     |
|                                                                                                                  |                                                          |                                                                                                                                                                                    | Ready                                               | 29.12.2022                                    |

Date: 29.DEC.2022 10:14:14



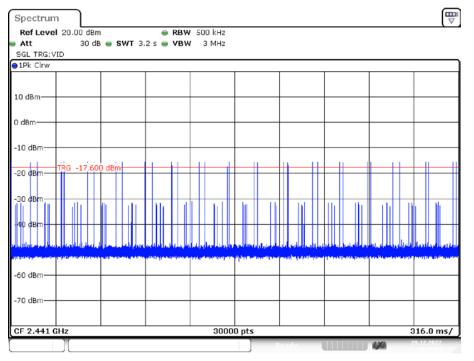

2DH3\_Ant1\_Hop

Date: 29.DEC.2022 11:16:06

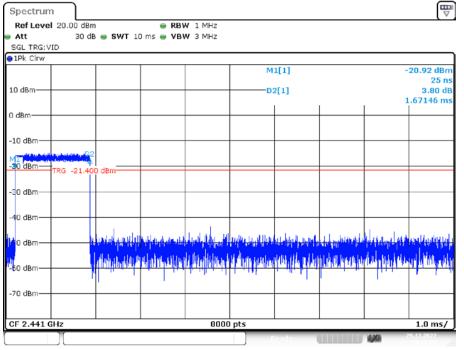



Date: 29.DEC.2022 11:16:11



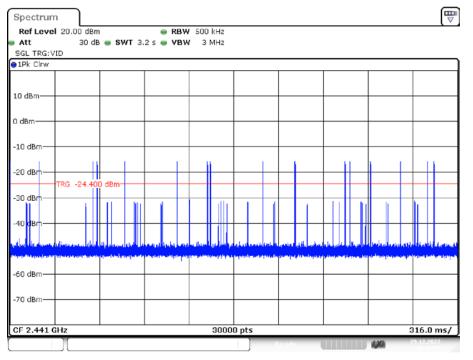

2DH5\_Ant1\_Hop

Date: 29.DEC.2022 11:19:19

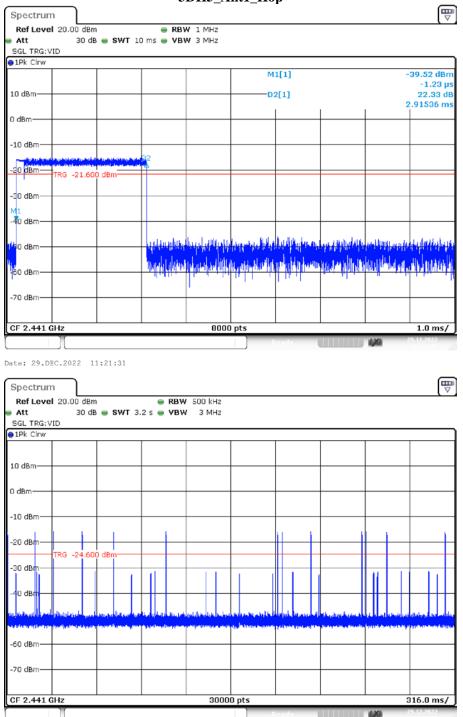



3DH1\_Ant1\_Hop

Date: 29.DEC.2022 10:18:59




Date: 29.DEC.2022 10:19:05




3DH3\_Ant1\_Hop

Date: 29.DEC.2022 10:18:21



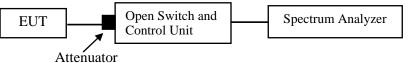
Date: 29.DEC.2022 10:18:26



3DH5\_Ant1\_Hop

Date: 29.DEC.2022 11:21:37

# FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT


# **Applicable Standard**

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

# **Test Procedure**

According to ANSI C63.10-2013 section 7.8.5

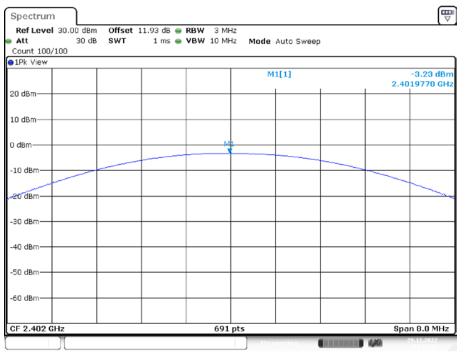
- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.



# **Test Data**

#### **Environmental Conditions**

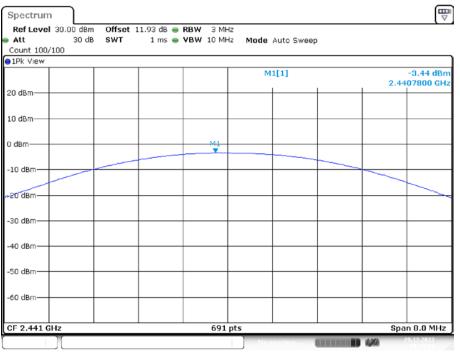
| Temperature:       | 22 °C     |
|--------------------|-----------|
| Relative Humidity: | 56 %      |
| ATM Pressure:      | 101.0 kPa |


The testing was performed by Glenn Jiang on 2022-12-29.

EUT operation mode: Transmitting

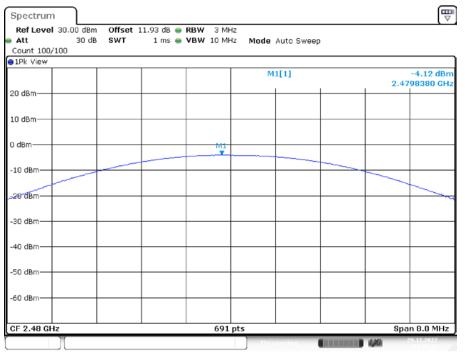
Test Result: Compliant.

| Test Mode | Antenna  | Channel | Result[dBm] | Limit[dBm] | Verdict |
|-----------|----------|---------|-------------|------------|---------|
|           |          | 2402    | -3.23       | <=20.97    | PASS    |
| DH5       | DH5 Ant1 | 2441    | -3.44       | <=20.97    | PASS    |
|           |          | 2480    | -4.12       | <=20.97    | PASS    |
|           |          | 2402    | -2.68       | <=20.97    | PASS    |
| 2DH5      | H5 Ant1  | 2441    | -2.85       | <=20.97    | PASS    |
|           |          | 2480    | -3.45       | <=20.97    | PASS    |
|           |          | 2402    | -2.25       | <=20.97    | PASS    |
| 3DH5      | Ant1     | 2441    | -2.43       | <=20.97    | PASS    |
|           |          | 2480    | -3.09       | <=20.97    | PASS    |


#### Shenzhen Accurate Technology Co., Ltd.



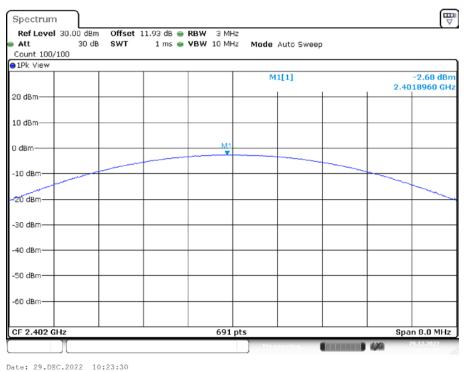
#### DH5\_Ant1\_2402

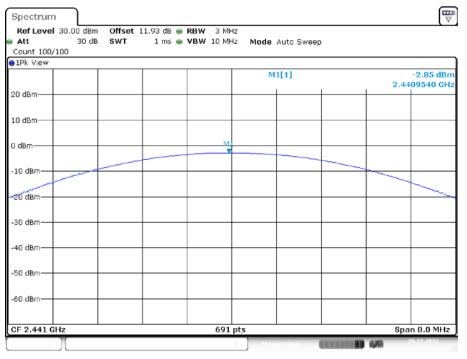

Date: 29.DEC.2022 09:54:26

## DH5\_Ant1\_2441



Date: 29.DEC.2022 09:55:06


#### Shenzhen Accurate Technology Co., Ltd.



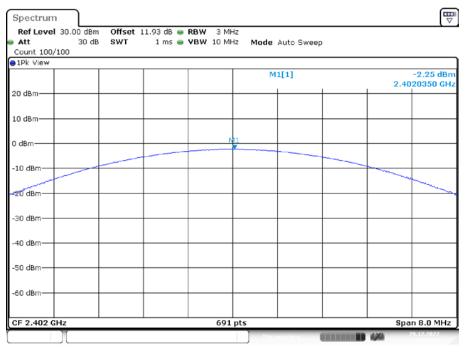

#### DH5\_Ant1\_2480

Date: 29.DEC.2022 09:55:28

#### 2DH5\_Ant1\_2402



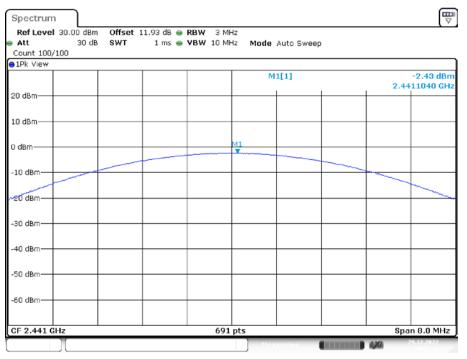




#### 2DH5\_Ant1\_2441

Date: 29.DEC.2022 10:23:47

#### 2DH5\_Ant1\_2480




#### Shenzhen Accurate Technology Co., Ltd.



3DH5\_Ant1\_2402

Date: 29.DEC.2022 10:21:52

#### 3DH5\_Ant1\_2441



Date: 29.DEC.2022 10:22:18

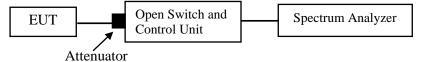
## Shenzhen Accurate Technology Co., Ltd.

| Spectrum                        |   | 1              |                      |   |                 |      |            |   |      |                        |
|---------------------------------|---|----------------|----------------------|---|-----------------|------|------------|---|------|------------------------|
| Ref Level<br>Att<br>Count 100/3 |   | ) dBm<br>30 dB | 11.93 dB (<br>1 ms ( |   | 3 MHz<br>10 MHz | Mode | Auto Sweep | ) |      |                        |
| 1Pk View                        |   |                |                      |   |                 |      |            |   |      |                        |
|                                 |   |                |                      |   |                 | М    | 1[1]       |   | 2.47 | -3.09 dBm<br>98960 GHz |
| 20 dBm                          |   |                |                      | + |                 |      |            |   |      |                        |
| 10 dBm                          |   | _              |                      | _ |                 |      |            |   |      |                        |
| 0 dBm                           |   |                | <br>                 |   | - 141           |      |            |   |      |                        |
| -10 dBm                         |   |                | <br>                 |   |                 |      |            |   |      |                        |
| -20 dBm-                        |   |                |                      |   |                 |      |            |   |      |                        |
|                                 |   |                |                      |   |                 |      |            |   |      |                        |
| -30 dBm                         |   |                |                      | - |                 |      |            |   |      |                        |
| -40 dBm                         |   | _              |                      |   |                 |      |            |   |      |                        |
| -50 dBm                         |   | _              |                      |   |                 |      |            |   |      |                        |
| -60 dBm                         |   |                | <br>                 |   | _               |      |            |   |      |                        |
| CF 2.48 GH                      | z |                |                      |   | 691 pt          | 5    |            |   | Spa  | n 8.0 MHz              |
|                                 |   |                |                      |   |                 | Mea  | isuring    |   | 4,49 | 29.12.2022             |

# 3DH5\_Ant1\_2480

Date: 29.DEC.2022 10:22:37

# FCC §15.247(d) - BAND EDGES TESTING


# Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

# **Test Procedure**

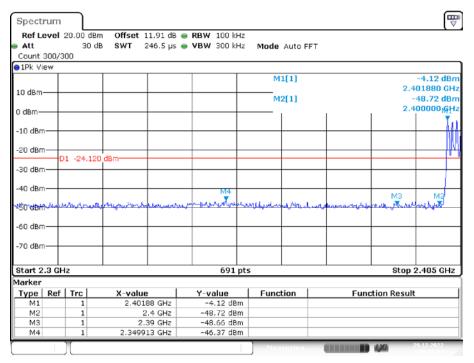
According to ANSI C63.10-2013 section 7.8.6& section 6.10

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.



# **Test Data**

**Environmental Conditions** 


| Temperature:              | 22 °C     |
|---------------------------|-----------|
| <b>Relative Humidity:</b> | 56 %      |
| ATM Pressure:             | 101.0 kPa |

The testing was performed by Glenn Jiang on 2022-12-29.

EUT operation mode: Transmitting

Test Result: Compliant.

#### DH5: Band Edge-Left Side Hopping



Date: 29.DEC.2022 10:05:04

#### Single

| Ref Le   | evel          | 20.00 dB | m Offset 1                  | 1.93 dB 🍕  | • RBW 100 kHz |             |              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------|---------------|----------|-----------------------------|------------|---------------|-------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Att      |               | 30 0     | iB SWT 2                    | 46.5 µs 📢  | VBW 300 kHz   | Mode Auto F | FFT          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Count :  | 300/3         | 00       |                             |            |               |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1Pk Vie  | в₩            |          |                             |            |               |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |               |          |                             |            |               | M1[1]       |              | -3.58 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10 dBm-  |               |          |                             |            |               |             |              | 2.402040 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| to asm-  |               |          |                             |            |               | M2[1]       |              | -48.95 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ) dBm—   |               |          |                             |            |               |             |              | 2.400000 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| J UBIII- |               |          |                             |            |               |             |              | 1 I T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -10 dBm  | $\rightarrow$ |          |                             |            |               |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10 0011  |               |          |                             |            |               |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -20 dBm  | $\rightarrow$ |          |                             |            |               |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |               | 1 -23.58 | 0 dBm                       |            |               |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -30 dBm  | +             |          |                             |            |               |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |               |          |                             |            |               |             |              | 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -40 dBm  | +             |          |                             |            | +             |             |              | M3 M4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | Ι.            |          |                             | . 10       | mention       |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| S0 dBm   | ~ adr         | renteren | a post of the second second | you comple | Manager with  | wwww        | www.www.wala | Contraction and the contraction of the contraction |
|          |               |          |                             |            |               |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -60 dBm  | +             |          |                             |            |               |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -70 dBm  |               |          |                             |            |               |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -70 aBm  |               |          |                             |            |               |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |               |          |                             |            |               |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Start 2  | .3 GH         | z        |                             |            | 691 pt        | s           |              | Stop 2.405 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| larker   |               |          |                             |            |               |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Type     | Ref           | Trc      | X-value                     |            | Y-value       | Function    | Fun          | ction Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| M1       |               | 1        | 2.4020                      | )4 GHz     | -3.58 dBm     |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| M2       |               | 1        | 2.                          | 4 GHz      | -48.95 dBm    |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 140      |               | 1        | 2.3                         | 9 GHz      | -47.94 dBm    |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| M3       |               | 1        |                             | 7 GHz      | -45.05 dBm    |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Date: 29.DEC.2022 09:51:43

|                          |           |                         | 110          | phing      |             |         |                |
|--------------------------|-----------|-------------------------|--------------|------------|-------------|---------|----------------|
| Spectrum                 |           |                         |              |            |             |         |                |
| Ref Level                | 20.00 di  | Bm Offset 11.93         | dB 👄 RBW 100 | kHz        |             |         |                |
| Att                      | 30        | dB SWT 1.1              | ms 👄 VBW 300 | kHz Mode / | Auto Swee   | p       |                |
| Count 300/3              | 300       |                         |              |            |             |         |                |
| 1Pk View                 |           |                         |              |            |             |         |                |
|                          |           |                         |              | M1         | [1]         |         | -4.54 dBn      |
|                          |           |                         |              |            |             |         | 2.470060 GH    |
|                          |           |                         |              | M2         | [1]         |         | -43.73 dBr     |
| 0 dBm                    |           |                         |              | <b></b> .  |             |         | 2.483500 GH    |
| 1540508                  | 16        |                         |              | 1 1        |             |         |                |
| 10/68/h/ <del>-/</del> - | ₩         |                         |              | + +        |             |         |                |
| TAAAAAM                  | n –       |                         |              | 1 1        |             |         |                |
| 20 dBrt                  | )1 -24.54 | 10 dB                   |              |            |             |         |                |
| 30 dBm                   | 1 -24.5   | to ubiii                |              |            |             |         |                |
| SU UBIII                 | 1         |                         |              |            |             |         |                |
| -40 dBm                  | M2        |                         | M3 M4        | ++         |             |         |                |
|                          | hunto     | Almed mar was           | malletter    | mener      | Mahamhiller | whenter | mentingentimes |
| 50 dBm —                 |           |                         |              | + +        |             |         |                |
|                          |           |                         |              | 1 1        |             |         |                |
| 60 dBm                   |           |                         |              |            |             |         |                |
| 70 dBm                   |           |                         |              |            |             |         |                |
| o ubiii                  |           |                         |              |            |             |         |                |
| Start 2.47 0             |           |                         |              | 1 mt c     |             |         | Stop 9 FF CUIs |
|                          | HZ        |                         | 69           | 1 pts      |             |         | Stop 2.55 GHz  |
| larker                   | 1 - 1     |                         | 1            | 1          | 1           | -       |                |
|                          | Trc       | X-value                 | Y-value      | Functi     | on          | Fun     | ction Result   |
| M1<br>M2                 | 1         | 2.47006 Gł<br>2.4835 Gł |              |            |             |         |                |
| M2<br>M3                 | 1         | 2.4835 G                |              |            |             |         |                |
| M4                       | 1         | 2.50513 G               |              |            |             |         |                |
|                          |           |                         |              |            |             |         |                |

## DH5: Band Edge- Right Side Hopping

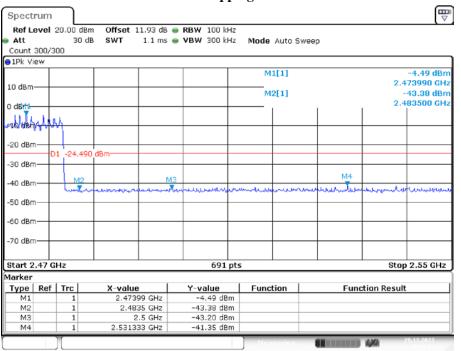
Date: 29.DEC.2022 10:10:08

| Spectru                    | m          |                |            |                  |                                                      |          |          |                    |                                       |
|----------------------------|------------|----------------|------------|------------------|------------------------------------------------------|----------|----------|--------------------|---------------------------------------|
| Ref Lev<br>Att<br>Count 30 |            | 00 dBr<br>30 d |            |                  | <ul> <li>RBW 100 kHz</li> <li>VBW 300 kHz</li> </ul> |          | Sweep    |                    |                                       |
| 1Pk View                   |            |                |            |                  |                                                      |          |          |                    |                                       |
| 10 dBm—                    |            |                |            |                  |                                                      | M1[1]    |          |                    | -4.42 dBm<br>480010 GHz<br>-43.02 dBm |
| 0 dBm                      | M1         |                |            |                  |                                                      |          |          | 2.                 | 483500 GHz                            |
| -10 dBm—                   | H          |                |            |                  |                                                      |          |          |                    |                                       |
| -20 dBm—                   |            | 24 491         | ) dBm      |                  |                                                      |          |          |                    |                                       |
| -30 dBm—                   |            |                |            |                  |                                                      |          |          |                    |                                       |
| -40 dBm-                   | $\psi$     | M2<br>NR       | montesaure | M4 Mi            |                                                      | manhun   | wardende | end the manual and | unun nun                              |
| -50 dBm—                   | +          |                |            |                  |                                                      |          |          |                    |                                       |
| -60 dBm—                   | +          |                |            |                  |                                                      |          |          |                    |                                       |
| -70 dBm—                   | +          |                |            |                  |                                                      |          |          |                    |                                       |
| Start 2.4                  | /<br>7 GHz |                |            |                  | 691 pt                                               | ts       |          | Sto                | p 2.55 GHz                            |
| Marker                     |            |                |            |                  |                                                      |          |          |                    |                                       |
| Type R                     | ef   Tr    |                | X-value    |                  | Y-value                                              | Function |          | Function Resu      | t                                     |
| M1                         |            | 1              |            | D1 GHz           | -4.42 dBm                                            |          |          |                    |                                       |
| M2<br>M3                   |            | 1              |            | 35 GHz<br>.5 GHz | -43.02 dBm<br>-44.29 dBm                             |          |          |                    |                                       |
| M4                         |            | 1              | 2.4966     |                  | -41.58 dBm                                           |          |          |                    |                                       |
|                            |            |                |            |                  |                                                      | Measurin |          | 4/4                | 29.12.2022                            |

# Single

Date: 29.DEC.2022 09:53:50

# 2DH5: Band Edge-Left Side Hopping


| Spectrum                        |         |          |              |                            |          |             |              |             |                        |
|---------------------------------|---------|----------|--------------|----------------------------|----------|-------------|--------------|-------------|------------------------|
| Ref Level<br>Att<br>Count 300/3 | 30      |          |              | RBW 100 kHz<br>VBW 300 kHz | Mode Aut | to FFT      |              |             |                        |
| 1Pk View                        |         |          |              |                            |          |             |              |             |                        |
| 10 dBm                          |         |          |              |                            | M1[1]    | 1           |              |             | -5.63 dBn<br>02950 GH: |
|                                 |         |          |              |                            | M2[1]    | 1           |              |             | 48.64 dBm<br>00000 GHz |
| -10 dBm                         |         |          |              |                            |          |             |              |             | M1                     |
| -10 dBm                         |         |          |              |                            |          |             |              |             | M                      |
|                                 | 1 -25.6 | 530 dBm  |              |                            |          |             |              |             |                        |
|                                 |         |          |              |                            |          |             |              |             |                        |
| -40 dBm                         | here M  | many     | Weber love I | une man                    | M4       | there are a | and the same | M3          | M2                     |
| -60 dBm                         | ~       |          |              |                            |          |             |              |             |                        |
|                                 |         |          |              |                            |          |             |              |             |                        |
| -70 dBm                         |         |          |              |                            |          |             |              |             |                        |
| Start 2.3 GH                    | łz      |          |              | 691 pt                     | s        |             |              | Stop 2      | 2.405 GHz              |
| 1arker                          |         |          |              |                            |          |             |              |             |                        |
| Type   Ref                      | Trc     | X-value  |              | Y-value                    | Function |             | Fund         | tion Result |                        |
| M1                              | 1       | 2.40295  | GHz          | -5.63 dBm                  |          |             |              |             |                        |
| M2                              | 1       |          | GHz          | -48.64 dBm                 |          |             |              |             |                        |
| M3                              | 1       |          | GHz          | -49.41 dBm                 |          |             |              |             |                        |
| M4                              | 1       | 2.357522 | GHZ          | -46.25 dBm                 |          |             |              |             |                        |
|                                 |         |          |              |                            | Measuri  |             |              | 4/4         | 9.12.2022              |

Date: 29.DEC.2022 10:10:36

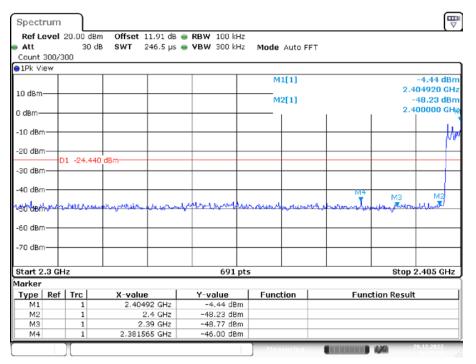
# Single

| Ref Lo         | evel  | 20.00 dB<br>30 d |                           | RBW 100 kHz     |             |                         |                          |
|----------------|-------|------------------|---------------------------|-----------------|-------------|-------------------------|--------------------------|
| Count          | 200/2 |                  | B SWT 246.5 µs            | 👄 VBW 300 kHz   | Mode Auto F | FFT                     |                          |
| 1Pk Vi         |       | 00               |                           |                 |             |                         |                          |
| ртык лі        | ew 1  |                  | 1                         |                 |             |                         | 0.67.40.                 |
|                |       |                  |                           |                 | M1[1]       |                         | -3.67 dBn<br>2.402040 GH |
| 10 dBm·        | +     |                  |                           |                 | 100111      |                         | -47.44 dBr               |
|                |       |                  |                           |                 | M2[1]       |                         | 2.400000 ßH              |
| 0 dBm—         | +     |                  |                           |                 |             | 1 1                     | 2.400000 [4][1           |
|                |       |                  |                           |                 |             |                         | <u>λ</u>                 |
| -10 dBm        | 1     |                  |                           |                 |             |                         |                          |
| 20 dBm         |       |                  |                           |                 |             |                         |                          |
| -20 UBII       |       | 1 -23.67         | 0 dBm                     |                 |             |                         |                          |
| -30 dBm        |       |                  |                           |                 |             |                         |                          |
| 00 00.         | ·     |                  |                           |                 |             |                         |                          |
| -40 dBm        |       |                  |                           | 1714            |             |                         |                          |
|                |       |                  |                           |                 |             |                         | M3 M2                    |
| SO dbh         | when  | undallindrea.    | man was descripted at the | - marine marine | manner      | weland and the shall be | Same and have a          |
|                |       |                  |                           |                 |             |                         |                          |
| -60 dBm        | 1-    |                  |                           |                 |             |                         |                          |
|                |       |                  |                           |                 |             |                         |                          |
| -70 dBm        |       |                  |                           |                 |             |                         |                          |
|                |       |                  |                           |                 |             |                         |                          |
| Start 2        | .3 GH | z                |                           | 691 pt          | 5           |                         | Stop 2.405 GHz           |
| 1arker         |       |                  |                           |                 |             |                         |                          |
| Type           | Ref   | Trc              | X-value                   | Y-value         | Function    | Fund                    | tion Result              |
| M1             |       | 1                | 2.40204 GHz               | -3.67 dBm       |             |                         |                          |
|                |       | 1                | 2.4 GHz                   | -47.44 dBm      |             |                         |                          |
| M2             |       | 1                | 2.39 GHz                  | -48.56 dBm      |             |                         |                          |
| M2<br>M3<br>M4 |       | -                | 2.346413 GHz              | -45.79 dBm      |             |                         |                          |

Date: 29.DEC.2022 09:58:18



#### 2DH5: Band Edge- Right Side Hopping


Date: 29.DEC.2022 10:14:53

|          | evel : | 20.00 dBr |            | 11.93 dB (         |     |                      |      |          |       |                |                     |
|----------|--------|-----------|------------|--------------------|-----|----------------------|------|----------|-------|----------------|---------------------|
| Att      |        | 30 d      | B SWT      | 1.1 ms (           | VBW | 300 kHz              | Mode | Auto \$  | Sweep |                |                     |
| Count    |        | 00        |            |                    |     |                      |      |          |       |                |                     |
| ∋1Pk Vi  | ew .   |           |            |                    |     |                      |      |          |       |                |                     |
|          |        |           |            |                    |     |                      | M    | 1[1]     |       |                | 4.47 dBn            |
| 10 dBm   | +      |           |            |                    |     |                      |      |          |       |                | 79900 GH            |
|          |        |           |            |                    |     |                      | M    | 2[1]     |       |                | 2.88 dBn<br>3500 GH |
| 0 dBm—   | -+     | 41        |            | +                  |     |                      |      | 1        | 1     | 2.40           | 53500 GH            |
| -10 dBm  |        | λ         |            |                    |     |                      |      |          |       |                |                     |
| •10 abri |        |           |            |                    |     |                      |      |          |       |                |                     |
| -20 dBm  | -      |           |            |                    | _   |                      |      |          |       | _              |                     |
|          | — D    | 1 -24.470 | ) dBm      |                    |     |                      |      |          |       |                |                     |
| -30 dBm  | -      | 4         |            | +                  |     |                      |      | <u> </u> |       |                |                     |
|          |        | M2        |            | M                  | . м | 14                   |      |          |       |                |                     |
| -40 dBm  |        | lamente   | hadrenteen | mound              |     | horne                | unna | Amer     | mound | Manus marine   | mulumulu            |
| -50 dBm  |        |           |            |                    |     |                      |      | · · ·    |       |                |                     |
| 00 abii  | ·      |           |            |                    |     |                      |      |          |       |                |                     |
| -60 dBm  | -      |           |            |                    | _   |                      |      |          |       | _              |                     |
|          |        |           |            |                    |     |                      |      |          |       |                |                     |
| -70 dBm  | +      |           |            |                    |     |                      |      |          |       |                |                     |
|          |        |           |            |                    |     |                      |      |          |       |                |                     |
| Start 2  | .47 G  | Hz        |            |                    |     | 691 pt:              | 5    |          |       | Stop           | 2.55 GHz            |
| Marker   |        |           |            |                    |     |                      |      |          |       |                |                     |
| Type     | Ref    | Trc       | X-valu     |                    |     | alue                 | Func | tion     | F     | unction Result |                     |
| M1       |        | 1         |            | 799 GHz            |     | 4.47 dBm             |      |          |       |                |                     |
| M2       |        | 1         |            | 335 GHz            |     | 2.88 dBm             |      |          |       |                |                     |
| M3<br>M4 |        | 1         |            | 2.5 GHz<br>478 GHz |     | 3.70 dBm<br>1.68 dBm |      |          |       |                |                     |
| 1914     |        | 1         | 2.503      | 1/0 GH2            | -4. | 1.00 08m             | I    |          |       |                |                     |

## Single

Date: 29.DEC.2022 10:00:29

# 3DH5: Band Edge-Left Side Hopping



Date: 29.DEC.2022 10:15:30

#### Single

| Ref Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                                          |                                    |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------|------------------------------------|------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Att                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30 di        | B SWT 246.5µs (                          | VBW 300 kHz                        | Mode Auto F      | FFT                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Count 300/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00           |                                          |                                    |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1Pk View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          |                                    |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                          |                                    | M1[1]            |                          | -3.73 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                                          |                                    |                  |                          | 2.402040 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                          |                                    | M2[1]            |                          | -48.77 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                          |                                    |                  |                          | 2.400000 🕅 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Jubin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                          |                                    |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                          |                                    |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                          |                                    |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                          |                                    |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 -23,730    | ) dBm                                    |                                    |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -30 dBm —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                                          |                                    |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | 1 1                                      |                                    |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | 1 1                                      |                                    |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                          |                                    |                  |                          | M4-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | unalinai     | nort at another an another a st          | Mahmander                          | Arrivality with  | alter handress           | M3 M4<br>M3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | min          | m ay any less and here a                 | ulunnun                            | Amenderenantes   | allangerstand            | M3 M4<br>M3 M4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 90-68mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mun          | an ay and the second damage              | Juliahan Ambara                    | Amandelesignetto | altradistantes and       | ma a manufa ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 90-68mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | when         | an a | Jelin more                         | Amunikasiyutta   | edlangh starters ing     | M3 M4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <del>'90 (ዘይነት ፡፡ ^ ኦ.</del><br>-60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | milan        | ant of work the set control success      | ulunan maru                        | Amunikasiyidda   | allangh startion ing     | M3 M4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | an a | J. C. Martine                      | Amunikasiintik   | allengt sources and      | Ma Ma<br>Ma<br>Ma<br>Ma<br>Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | art og andelse er ansterber og           |                                    |                  | ciliangi sensionna,      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | art og sonderligten og sonderden og      | րությունը<br>691 pts               |                  | collignyth stored to any | M3 M4<br>mar. 4. us for up on up of the store o |
| 50 dgh<br>60 dgm<br>70 dgm<br>Start 2.3 GH<br>larker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | łz           |                                          | 691 pts                            | 5                |                          | Stop 2.405 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 50 dBM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Iz           | X-value                                  | 691 pts                            |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -50 dBm<br>-60 dBm<br>-70 dB | IZ           | X-value 2.40204 GHz                      | 691 pts<br>7-value<br>-3.73 dBm    | 5                |                          | Stop 2.405 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| GO         GB           -60         dBm           -70         dBm           -70         dBm           Start 2.3         GH           larker         Type           M1         M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Iz<br>1<br>1 | X-value<br>2.40204 GHz<br>2.4 GHz        | 691 pts<br>-3.73 dbm<br>-48.77 dbm | 5                |                          | Stop 2.405 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -60 dBm<br>-70 dBm<br>Start 2.3 GH<br>Marker<br>Type Ref<br>M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IZ           | X-value 2.40204 GHz                      | 691 pts<br>7-value<br>-3.73 dBm    | 5                |                          | Stop 2.405 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Date: 29.DEC.2022 10:01:54

|                |          |                     |              | TOPPIN           | -9       |          |           |             |                |
|----------------|----------|---------------------|--------------|------------------|----------|----------|-----------|-------------|----------------|
| Spectrum       |          |                     |              |                  |          |          |           |             |                |
| Ref Level      | 20.00 0  | iBm Offset 11.93    | 3 dB 🥃 RBW 🔅 | 100 kHz          |          |          |           |             |                |
| Att            | 30       | dB SWT 1.1          | lms 👄 VBW 3  | 300 kHz          | Mode     | Auto S   | weep      |             |                |
| Count 300/3    | 300      |                     |              |                  |          |          |           |             |                |
| 1Pk View       |          |                     |              |                  |          |          |           |             |                |
|                |          |                     |              |                  | M1       | [1]      |           |             | -4.53 dBn      |
| 10 dBm         |          |                     |              |                  |          |          |           | 2           | .470980 GH     |
|                |          |                     |              |                  | M2       | 2[1]     |           |             | -44.79 dBm     |
| 01dBm          |          |                     |              |                  | <u> </u> |          |           | . 2         | .483500 GHz    |
| T IL N L       | n 1      |                     |              |                  |          |          |           |             |                |
| lto/darwww.dav | <u>n</u> |                     |              | $\rightarrow$    |          |          |           |             |                |
|                |          |                     |              |                  |          |          |           |             |                |
| -20 dBm        |          | 530 dBm             |              |                  |          |          |           |             |                |
| -30 dBm        | JI -24.5 | 530 dBm             |              |                  |          |          |           |             |                |
| -30 ubiii      |          |                     |              |                  |          |          |           |             |                |
| -40 dBm        |          | 2                   | M3           |                  |          |          |           |             | M4             |
|                | here     | manderwar           | montaneers   | menso            | wyellin  | سللماليل | lundbrett | manna       | بلىسى سالاسىما |
| -50 dBm        |          |                     |              |                  |          |          |           |             |                |
|                |          |                     |              |                  |          |          |           |             |                |
| -60 dBm        |          |                     |              |                  |          |          |           |             |                |
| -70 dBm        |          |                     |              |                  |          |          |           |             |                |
| -/0 ubiii      |          |                     |              |                  |          |          |           |             |                |
|                |          |                     |              |                  |          |          |           |             |                |
| Start 2.47 G   | SHZ      |                     |              | 691 pts          |          |          |           | St          | op 2.55 GHz    |
| larker         |          |                     |              |                  |          |          |           |             |                |
|                | Trc      | X-value             | Y-va         |                  | Funct    | ion      | F         | unction Res | ult            |
| M1             | 1        | 2.47098 G           |              | 53 dBm           |          |          |           |             |                |
| M2<br>M3       | 1        | 2.4835 G<br>2.5 G   |              | 79 dBm<br>90 dBm |          |          |           |             |                |
|                | 1        | 2.5 G<br>2.544667 G |              | 90 dBm<br>37 dBm |          |          |           |             |                |
| M4             |          |                     |              |                  |          |          |           |             |                |

## 3DH5: Band Edge- Right Side Hopping

Date: 29.DEC.2022 10:19:36

| Spectrum<br>Ref Level |                  |                                     | 👄 RBW 100 kHz |             |         | $\nabla$           |
|-----------------------|------------------|-------------------------------------|---------------|-------------|---------|--------------------|
| Att                   | 20.00 at<br>30 i |                                     | KBW 100 KHz   |             |         |                    |
| Count 300/3           |                  | UB SWI 1.1 ms                       | SUU KHZ       | Mode Auto S | weep    |                    |
| 1Pk View              | 300              |                                     |               |             |         |                    |
| IFK VIEW              |                  |                                     |               | M1[1]       |         | -4.51 dBn          |
|                       |                  |                                     |               | milil       |         | 2.480010 GH        |
| 10 dBm                |                  |                                     |               | M2[1]       |         | -42.84 dBn         |
| ) dBm                 |                  |                                     |               | 112[2]      |         | 2.483500 GH        |
|                       | T                |                                     |               |             |         |                    |
| -10 dBm               | Λ                |                                     |               |             |         |                    |
|                       | 11               |                                     |               |             |         |                    |
| 20 dBm —              |                  |                                     |               |             |         |                    |
|                       | 01 -24.51        | LO dBm                              |               |             |         |                    |
| 30 dBm —              |                  |                                     |               |             |         |                    |
|                       | M2               |                                     | M3 M4         |             |         |                    |
| -40 dBm               |                  | and the second second second second |               | menteren    | moundar | newswerkheresunder |
| 50 dBm                |                  |                                     |               |             |         |                    |
|                       |                  |                                     |               |             |         |                    |
| 60 dBm                |                  |                                     |               |             |         |                    |
|                       |                  |                                     |               |             |         |                    |
| 70 dBm —              |                  |                                     |               |             |         |                    |
|                       |                  |                                     |               |             |         |                    |
| tart 2.47 0           | Hz               |                                     | 691 pts       |             |         | Stop 2.55 GHz      |
| larker                |                  |                                     |               |             |         |                    |
| Type   Ref            | Trc              | X-value                             | Y-value       | Function    | Fund    | tion Result        |
| M1                    | 1                | 2.48001 GHz                         | -4.51 dBm     |             |         |                    |
| M2                    | 1                | 2.4835 GHz                          | -42.84 dBm    |             |         |                    |
| MЗ                    | 1                | 2.5 GHz                             | -43.38 dBm    |             |         |                    |
| M4                    | 1                | 2.509188 GHz                        | -41.76 dBm    |             |         |                    |
|                       | 1                |                                     |               |             | <b></b> | 29.12.2022         |

# Single

Date: 29.DEC.2022 10:04:12

# \*\*\*\*\* END OF REPORT \*\*\*\*\*