

TEST REPORT

Applicant Name : Address :

Report Number : FCC ID: Zeeva International Limited Suite 1007B, 10th Floor, Exchange Tower, 33 Wang Chiu Road, Kowloon Bay, Hong Kong RA230113-02474E-RF-00 2ADM5-EP-0675

Test Standard (s)

FCC PART 15.247

Sample Description

Product Type:SOLAR POWERBANK TWSModel No.:EP-0675Multiple Model(s) No.:N/ATrade Mark:N/ADate Received:2023/01/13Report Date:2023/01/19

Test Result:

Pass*

* In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Andy. YUL

Andy Yu EMC Engineer

Approved By:

Candry . Li

Candy Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "* ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data. This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to

the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China

 Tel: +86 755-26503290
 Fax: +86 755-26503396
 Web: www.atc-lab.com

Version 11: 2021-11-09

Page 1 of 51

FCC-BT

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	4
GENERAL INFORMATION	5
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	5
OBJECTIVE	5
Test Methodology	
Measurement Uncertainty Test Facility	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT EXERCISE SOFTWARE	
Special Accessories Equipment Modifications	
SUPPORT EQUIPMENT LIST AND DETAILS	
EXTERNAL I/O CABLE	
BLOCK DIAGRAM OF TEST SETUP	8
SUMMARY OF TEST RESULTS	9
	10
TEST EQUIPMENT LIST	
FCC§15.247 (I), §1.1307 (B) (3) &§2.1093 – RF EXPOSURE	11
APPLICABLE STANDARD	11
FCC §15.203 – ANTENNA REQUIREMENT	13
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.205, §15.209 & §15.247(D) - RADIATED EMISSIONS	14
APPLICABLE STANDARD	14
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
Test Procedure	
Factor & Margin Calculation Test Data	
FCC §15.247(A) (1)-CHANNEL SEPARATION TEST	
APPLICABLE STANDARD	
TEST PROCEDURE TEST DATA	
FCC §15.247(A) (1) – 20 DB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH	
APPLICABLE STANDARD	
Test Procedure Test Data	
FCC §15.247(A) (1) (III)-QUANTITY OF HOPPING CHANNEL TEST	
APPLICABLE STANDARD	
Test Procedure Test Data	
ΤΕΘΙ ΦΑΙΑ	23

Version 11: 2021-11-09

FCC-BT

FCC §15.247(A) (1) (III) - TIME OF OCCUPANCY (DWELL TIME)	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
FCC §15.247(B) (1) - PEAK OUTPUT POWER MEASUREMENT	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
FCC §15.247(D) - BAND EDGES TESTING	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
APPENDIX	29
Appendix A: 20dB Emission Bandwidth	
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	
APPENDIX C: MAXIMUM CONDUCTED OUTPUT POWER	
APPENDIX D: CARRIER FREQUENCY SEPARATION	
APPENDIX E: TIME OF OCCUPANCY	
APPENDIX F: NUMBER OF HOPPING CHANNELS	
APPENDIX G: BAND EDGE MEASUREMENTS	

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	RA230113-02474E-RF-00	Original Report	2023/01/19

GENERAL INFORMATION

SKU number* (Barcode of product)	BLACK - 7410114, GREEN - 7410115(provided by the applicant)
UPC number* (Product code of applicant's internal system)	BLACK - 1922343551164, GREEN – 1922343551171 (provided by the applicant)
Frequency Range	Bluetooth: 2402~2480MHz
Maximum conducted Peak output power	Bluetooth: 1.31dBm
Modulation Technique	Bluetooth: GFSK, $\pi/4$ -DQPSK
Antenna Specification*	2.06dBi (provided by the applicant)
Voltage Range	DC3.7V from battery
Sample serial number	1YVB-1 for Radiated Emissions Test 1YVH-4 for RF conducted Test (Assigned by ATC)
Sample/EUT Status	Good condition

Product Description for Equipment under Test (EUT)

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Measurement Uncertainty

Parameter		Uncertainty
Occupied Cha	nnel Bandwidth	5%
RF output po	wer, conducted	0.73dB
Unwanted Emi	ssion, conducted	1.6dB
AC Power Lines Conducted Emissions		2.72dB
	30MHz - 1GHz	4.28dB
Emissions, Radiated	1GHz - 18GHz	4.98dB
Raulateu	18GHz - 26.5GHz	5.06dB
Temperature		1 °C
Humidity		6%
Supply voltages		0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

EUT Exercise Software

"FCC_assist_1.0.2.2"* software was used to test and the Power level is 10*. The software and power level was provided by the applicant.

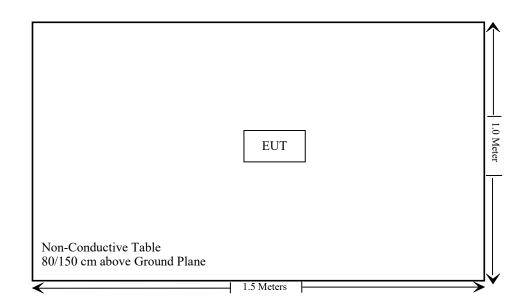
Special Accessories

No special accessory.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
/	/	/	/

External I/O Cable

Cable Description	Length (m)	From Port	То
/	/	/	/

Block Diagram of Test Setup

For Radiated Emissions:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §1.1307 (b) (3) &§2.1093	RF Exposure	Compliant
§15.203	Antenna Requirement	Compliant
§15.207(a)	AC Line Conducted Emissions	Not Applicable
§15.205, §15.209 & §15.247(d)	Radiated Emissions	Compliant
§15.247(a)(1)	20 dB Emission Bandwidth & 99% Occupied Bandwidth	Compliant
§15.247(a)(1)	Channel Separation Test	Compliant
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliant
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliant
§15.247(b)(1)	Peak Output Power Measurement	Compliant
§15.247(d)	Band edges	Compliant

Not Applicable: The Bluetooth function cannot use when charging.

Note: the left earbud and right earbud are electrical identical, pre-scan the two earbuds, the worst case Right earbud was selected to test.

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
		Radiated emiss	ion test		
Rohde& Schwarz	Test Receiver	ESR	102725	2022/11/25	2023/11/24
Rohde&Schwarz	Spectrum Analyzer	FSV40	101949	2022/11/25	2023/11/24
SONOMA INSTRUMENT	Amplifier	310 N	186131	2022/11/08	2023/11/07
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2022/11/08	2023/11/07
Quinstar	Amplifier	QLW- 18405536-J0	15964001002	2022/11/08	2023/11/07
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2022/11/30	2025/11/29
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2022/12/26	2025/12/25
Radiated Emission T	est Software: e3 19821b	(V9)			
Unknown	RF Coaxial Cable	No.10	N050	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.11	N1000	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.12	N040	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.13	N300	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.14	N800	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.15	N600	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.16	N650	2022/11/25	2023/11/24
Wainwright	High Pass Filter	WHKX3.6/18 G-10SS	5	2022/11/25	2023/11/24
RF conducted test					
Rohde&Schwarz	Spectrum Analyzer	FSV-40	101590	2022/11/25	2023/11/24
Tonscend	RF Control Unit	JS0806-2	19G8060182	2022/10/24	2023/10/23
WEINSCHEL	10dB Attenuator	5324	AU 3842	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.31	RF-01	Each time	Each time

* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Version 11: 2021-11-09

FCC§15.247 (i), §1.1307 (b) (3) &§2.1093 – RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (3), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D04 Interim General RF Exposure Guidance

SAR-Based Exemption:

SAR-based thresholds are derived based on frequency, power, and separation distance of the RF source. The formula defines the thresholds in general for either available maximum timeaveraged power or maximum time-averaged ERP, whichever is greater.

Per § 1.1307(b)(3)(i)(B), for single RF sources (i.e., any single fixed RF source, mobile device, or portable device, as defined in paragraph (b)(2) of this section): A single RF source is exempt if:

the available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold P_{th} (mW) described in the following formula. This method shall only be used at separation distances (cm) from 0.5 centimeters to 40 centimeters and at frequencies from 0.3 GHz to 6 GHz (inclusive). P_{th} is given by:

$$P_{th} (mW) = \begin{cases} ERP_{20 \ cm} (d/20 \ cm)^{x} & d \le 20 \ cm \\ ERP_{20 \ cm} & 20 \ cm < d \le 40 \ cm \end{cases}$$

Where

$$x = -\log_{10}\left(\frac{60}{ERP_{20\ cm}\sqrt{f}}\right)$$
 and f is in GHz;

and

$$ERP_{20\ cm}\ (\text{mW}) = \begin{cases} 2040f & 0.3\ \text{GHz} \le f < 1.5\ \text{GHz} \\ \\ 3060 & 1.5\ \text{GHz} \le f \le 6\ \text{GHz} \end{cases}$$

d = the separation distance (cm);

For worst case:

Exemption limit:

For f=2.48GHz, d=0.5cm, the $P_{th}=2.72$ mW

The higher of the available maximum time-averaged power or effective radiated power (ERP):

The antenna gain is 2.06dBi (-0.09Bd), 0dBd=2.15dBi

The maximum tune-up conducted power is 1.5dBm (1.41mW), which less than 2.72 mW@2480MHz exemption limit

So the stand-alone SAR evaluation can be exempted.

FCC §15.203 – ANTENNA REQUIREMENT

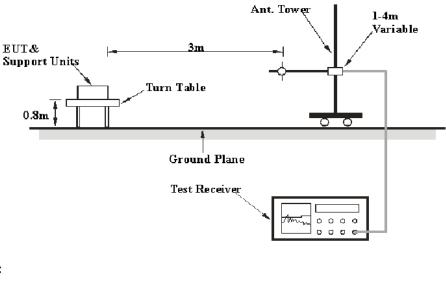
Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

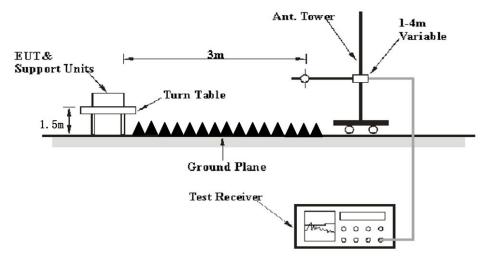
Antenna Connector Construction

The EUT has one internal Antenna arrangement, which was permanently attached and the antenna gain is 2.06dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliant.


FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS

Applicable Standard


FCC §15.205; §15.209; §15.247(d)

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz - 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	РК
Above I GHZ	1 MHz	10 Hz	/	Average

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Factor & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

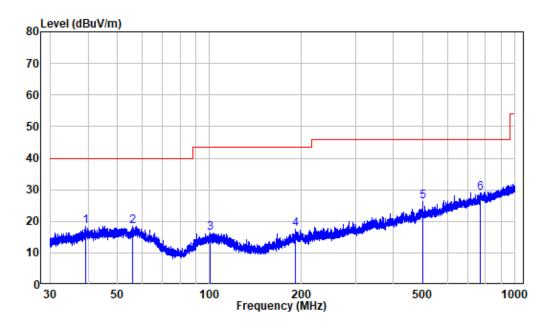
The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

Test Data

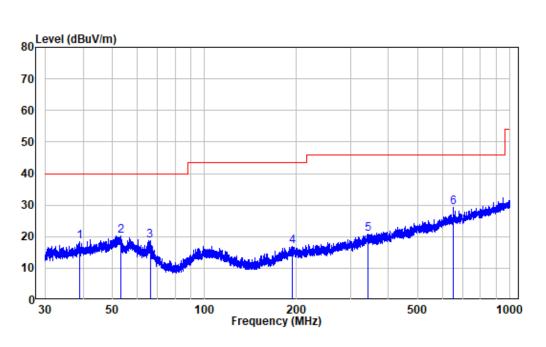
Environmental Conditions

Temperature:	24~25.5 ℃
Relative Humidity:	52~57 %
ATM Pressure:	101.0 kPa


The testing was performed by Jimi Zheng on 2023-01-17 for below 1GHz and Jason Liu on 2023-01-17 for above 1GHz.

EUT operation mode: Transmitting

30MHz-1GHz: (worst case is GFSK Mode, Low channel)


Note: When the test result of peak was less than the limit of QP more than 6dB, just peak value were recorded.

Horizontal:

Site :	chamber
Condition:	3m HORIZONTAL
Job No. :	RA230113-02474E-RF
Test Mode:	BT Transmitting

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	39.247	-10.52	28.86	18.34	40.00	-21.66	Peak
2	55.878	-10.20	28.70	18.50	40.00	-21.50	Peak
3	100.713	-11.72	28.10	16.38	43.50	-27.12	Peak
4	191.241	-11.37	28.77	17.40	43.50	-26.10	Peak
5	498.768	-4.31	30.46	26.15	46.00	-19.85	Peak
6	768.748	-0.25	29.37	29.12	46.00	-16.88	Peak

Site : chamber Condition: 3m VERTICAL Job No. : RA230113-02474E-RF Test Mode: BT Transmitting

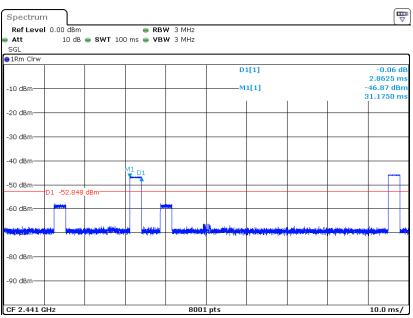
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	39.127	-10.55	29.03	18.48	40.00	-21.52	Peak
	53.015	-10.17	30.44	20.27	40.00	-19.73	Peak
3	66.295	-13.02	31.69	18.67	40.00	-21.33	Peak
4	194.028	-11.31	28.30	16.99	43.50	-26.51	Peak
5	343.632	-7.27	28.13	20.86	46.00	-25.14	Peak
6	653.086	-1.64	31.00	29.36	46.00	-16.64	Peak

Engagement	Re	ceiver	Turntable	Rx An	tenna	Factor	Corrected	Limit	Margin
Frequency (MHz)	Reading (dBµV)	PK/Ave	Angle Degree	Height (m)	Polar (H/V)	(dB/m)	Amplitude (dBµV/m)	(dBµV/m)	(dB)
Low Channel(2402MHz)									
2310	61.08	РК	355	2.3	Н	-7.24	53.84	74	-20.16
2310	60.89	PK	73	2.4	V	-7.24	53.65	74	-20.35
2390	64.05	PK	168	2.4	Н	-7.22	56.83	74	-17.17
2390	63.72	PK	186	2.3	V	-7.22	56.50	74	-17.50
4804	62.43	PK	130	1.1	Н	-3.51	58.92	74	-15.08
4804	60.28	PK	320	1.1	V	-3.51	56.77	74	-17.23
			Middle (Channel (2441 MI	Hz)			
4882	62.70	PK	258	1.3	Н	-3.37	59.33	74	-14.67
4882	60.94	РК	279	1.3	V	-3.37	57.57	74	-16.43
			High C	hannel (2	2480 MH	z)			
2483.5	64.43	PK	60	2.3	Н	-7.20	57.23	74	-16.77
2483.5	64.03	PK	274	2.4	V	-7.20	56.83	74	-17.17
2500	62.56	PK	14	1.9	Н	-7.18	55.38	74	-18.62
2500	63.52	РК	256	1.1	V	-7.18	56.34	74	-17.66
4960	62.30	РК	79	1.7	Н	-3.01	59.29	74	-14.71
4960	60.26	РК	95	1.7	V	-3.01	57.25	74	-16.75

Above 1GHz: (Scan with GFSK, $\pi/4$ -DQPSK mode, the worst case is GFSK Mode)

Field Strength of Average								
Frequency	Peak Measurement	Polar	Duty Cycle Correction	Corrected	FCC Part 15.247			
(MHz)	@3m (dBµV/m)	(H/V)	Factor (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comment	
Low Channel 2402MHz								
2310	53.84	Н	-24.84	29.00	54	-25.00	Band Edge	
2310	53.65	V	-24.84	28.81	54	-25.19	Band Edge	
2390	56.83	Н	-24.84	31.99	54	-22.01	Band Edge	
2390	56.50	V	-24.84	31.66	54	-22.34	Band Edge	
4804	58.92	Н	-24.84	34.08	54	-19.92	Harmonic	
4804	56.77	V	-24.84	31.93	54	-22.07	Harmonic	
			Middle Chann	el 2441MHz				
4882	59.33	Н	-24.84	34.49	54	-19.51	Harmonic	
4882	57.57	V	-24.84	32.73	54	-21.27	Harmonic	
			High Channe	1 2480MHz				
2483.5	57.23	Н	-24.84	32.39	54	-21.61	Band Edge	
2483.5	56.83	V	-24.84	31.99	54	-22.01	Band Edge	
2500	55.38	Н	-24.84	30.54	54	-23.46	Band Edge	
2500	56.34	V	-24.84	31.50	54	-22.50	Band Edge	
4924	59.29	Н	-24.84	34.45	54	-19.55	Harmonic	
4924	57.25	V	-24.84	32.41	54	-21.59	Harmonic	

Version 11: 2021-11-09


Note:

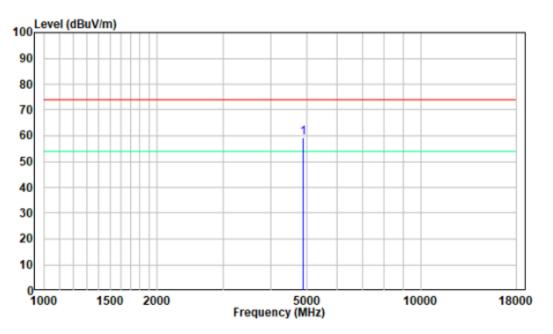
Corrected. Amplitude = Corrected Factor + Reading Margin = Corrected. Amplitude - Limit Average level= Peak level+ Duty Cycle Corrected Factor

The worst case duty cycle as below:

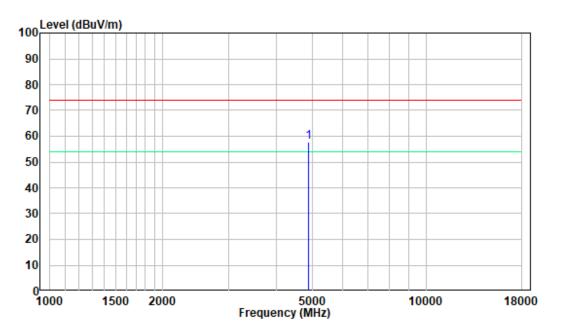
Duty cycle = Ton/100ms = 2.8625*2/100=0.05725

Duty Cycle Corrected Factor = 20lg (Duty cycle) = 20lg0.05725 = -24.84

Duty cycle

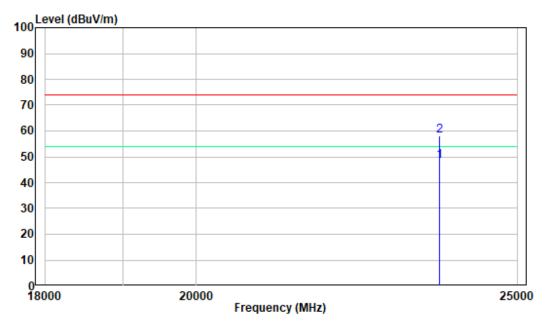

Date: 17.JAN.2023 15:22:10

1-18GHz

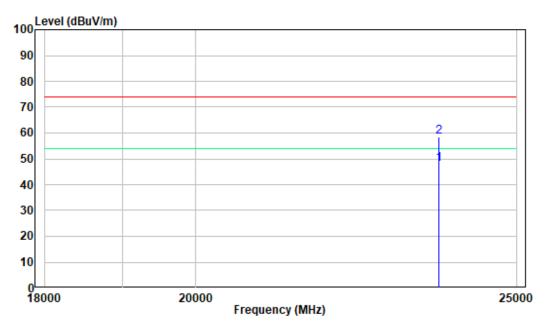

Pre-scan plot

Middle Channel

Horizontal:



18-25GHz


Pre-scan plot

Middle Channel

Vertical:

FCC §15.247(a) (1)-CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.2

- 1. Set the EUT in transmitting mode, maxhold the channel.
- 2. Set the adjacent channel of the EUT and maxhold another trace.
- 3. Measure the channel separation.

Test Data

Environmental Conditions

Temperature:	25 °C	
Relative Humidity:	60 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Glenn Jiang on 2023-01-17.

EUT operation mode: Transmitting

FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH

Applicable Standard

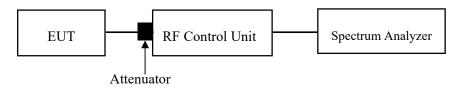
Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.7 & Clause 6.9.2

The following conditions shall be observed for measuring the occupied bandwidth and 20 dB bandwidth:

• The transmitter shall be operated at its maximum carrier power measured under normal test conditions.


• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / 20 dB bandwidth if the device is not transmitting continuously.

• The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / 20 dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

Test Data

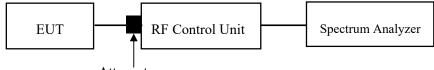
Environmental Conditions

Temperature:	25 °C	
Relative Humidity:	60 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Glenn Jiang on 2023-01-17.

EUT operation mode: Transmitting

FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST


Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.3

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

Attenuator

Test Data

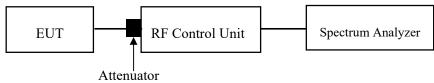
Environmental Conditions

Temperature:	25 °C	
Relative Humidity:	60 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Glenn Jiang on 2023-01-17.

EUT operation mode: Transmitting

FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)


Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.4

- 1. The EUT was worked in channel hopping.
- 2. Set the RBW to: 1MHz.
- 3. Set the VBW $\geq 3 \times RBW$.
- 4. Set the span to 0Hz.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Recorded the time of single pulses

Test Data

Environmental Conditions

Temperature:	25 °C	
Relative Humidity:	60 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Glenn Jiang on 2023-01-17.

EUT operation mode: Transmitting

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.5

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Attenuator

Test Data

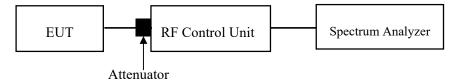
Environmental Conditions

Temperature:	25 ℃	
Relative Humidity:	60 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Glenn Jiang on 2023-01-17.

EUT operation mode: Transmitting

FCC §15.247(d) - BAND EDGES TESTING


Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in \$15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in \$15.205(a), must also comply with the radiated emission limits specified in \$15.209(a) (see \$15.205(c)).

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.6 & Clause 6.10

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

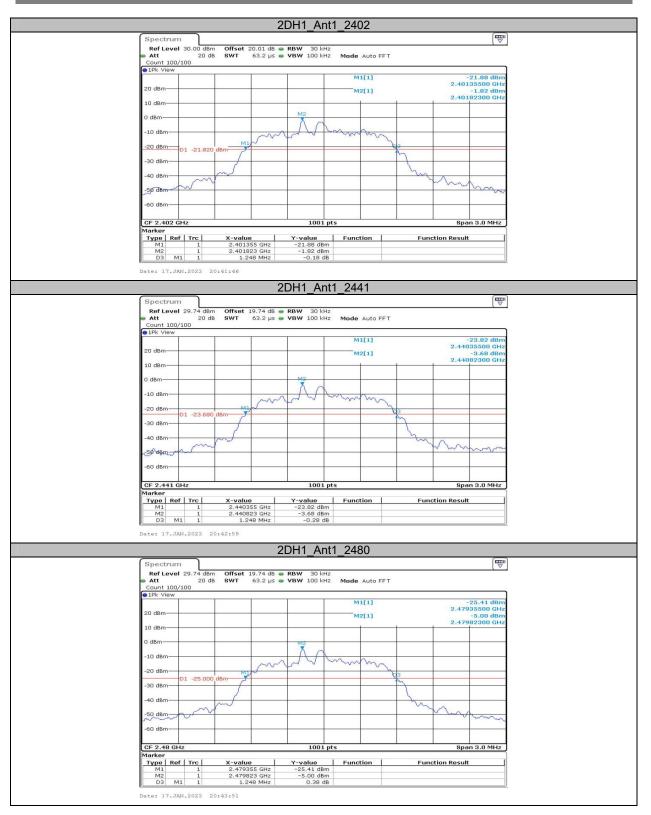
Environmental Conditions

Temperature:	25 °C	
Relative Humidity:	60 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Glenn Jiang on 2023-01-17.

EUT operation mode: Transmitting

APPENDIX

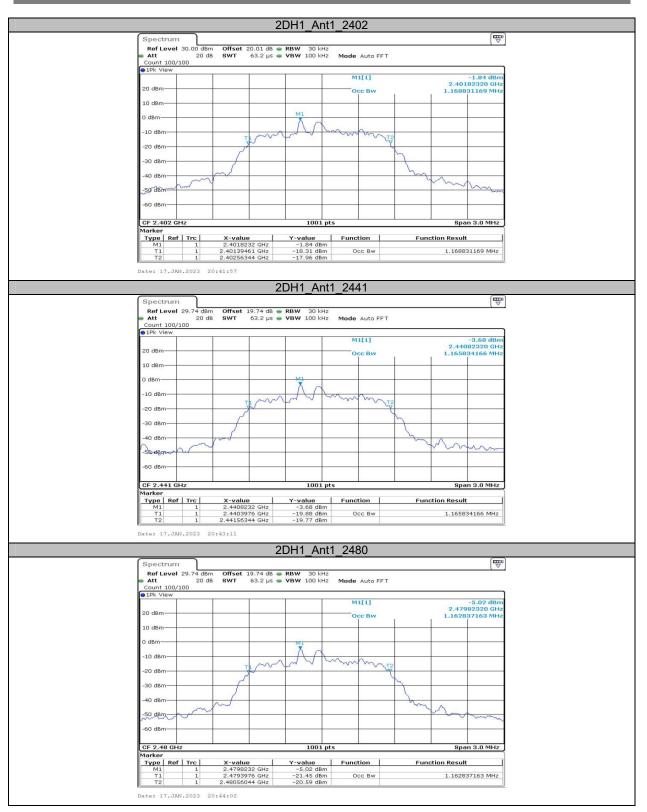

Appendix A: 20dB Emission Bandwidth Test Result

Test Mode	Antenna	Freq(MHz)	20dB EBW[MHz]	Limit[MHz]	Verdict
	Ant1	2402	0.89		
DH1		2441	0.89		
		2480	0.89		
2DH1	Ant1	2402	1.25		
		2441	1.25		
		2480	1.25		

Test Graphs

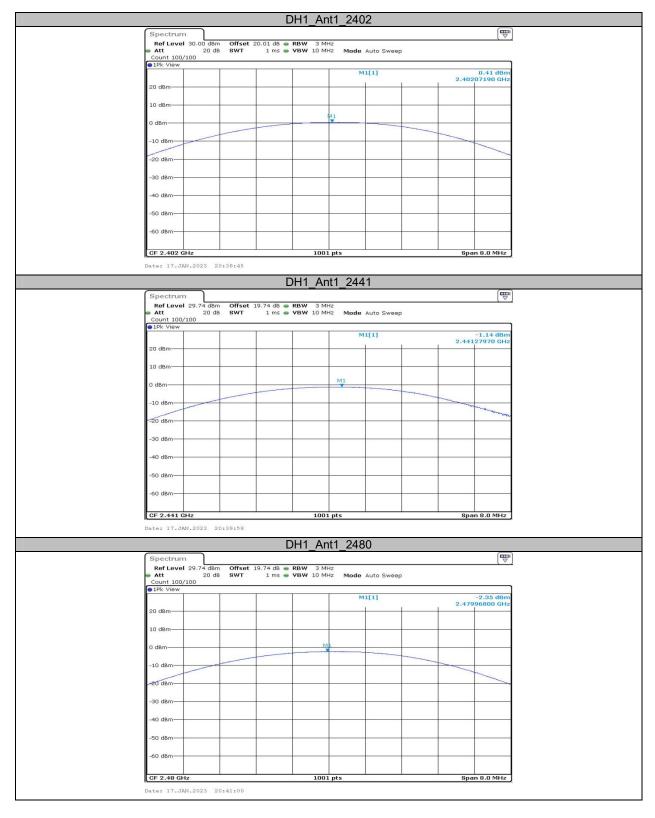
Report No.: RA230113-02474E-RF-00

Appendix B: Occupied Channel Bandwidth Test Result


Test Mode	Antenna	Freq(MHz)	OCB [MHz]	Limit[MHz]	Verdict
DH1		2402	0.848		
	Ant1	2441	0.854		
		2480	0.851		
2DH1	Ant1	2402	1.169		
		2441	1.166		
		2480	1.163		

Test Graphs

Version 11: 2021-11-09


Report No.: RA230113-02474E-RF-00


Appendix C: Maximum conducted output power Test Result

Test Mode	Antenna	Freq(MHz)	Conducted Peak Power [dBm]	Conducted Limit [dBm]	Verdict
DH1	Ant1	2402	0.41	≤20.97	PASS
		2441	-1.14	≤20.97	PASS
		2480	-2.35	≤20.97	PASS
2DH1	Ant1	2402	1.31	≤20.97	PASS
		2441	-0.25	≤20.97	PASS
		2480	-1.47	≤20.97	PASS

Test Graphs

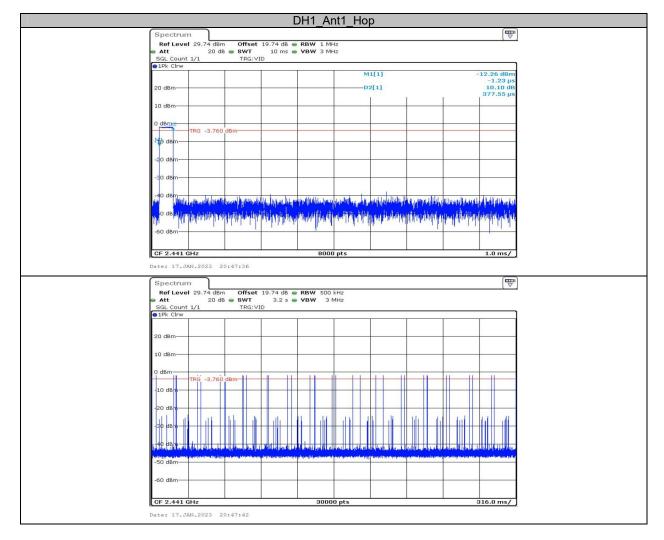
Report No.: RA230113-02474E-RF-00

Appendix D: Carrier frequency separation Test Result

Test Mode	Antenna	Freq(MHz)	Result[MHz]	Limit[MHz]	Verdict
DH1	Ant1	Нор	1	≥0.593	PASS
2DH1	Ant1	Нор	1	≥0.833	PASS

Test Graphs

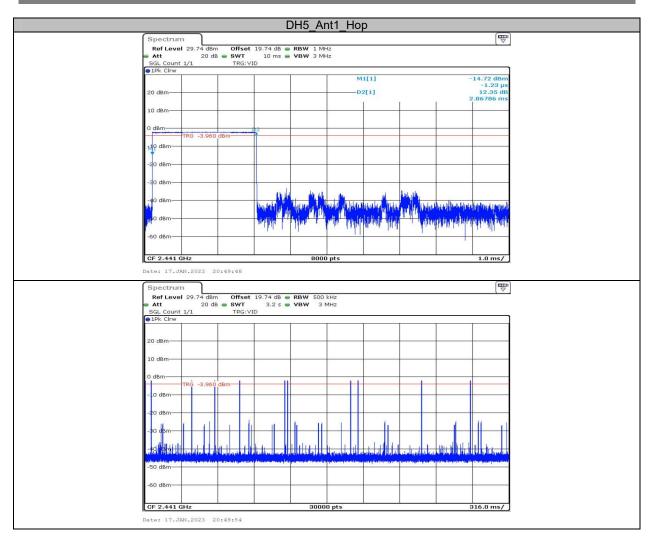
Appendix E: Time of occupancy Test Result


Test Mode	Antenna	Freq(MHz)	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.38	320	0.122	≤0.4	PASS
DH3	Ant1	Нор	1.63	150	0.245	≤0.4	PASS
DH5	Ant1	Нор	2.87	110	0.316	≤0.4	PASS
2DH1	Ant1	Нор	0.39	320	0.125	≤0.4	PASS
2DH3	Ant1	Нор	1.63	150	0.245	≤0.4	PASS
2DH5	Ant1	Нор	2.87	130	0.373	≤0.4	PASS

Note 1: A period time=0.4*79=31.6(S), Result=BurstWidth*Totalhops

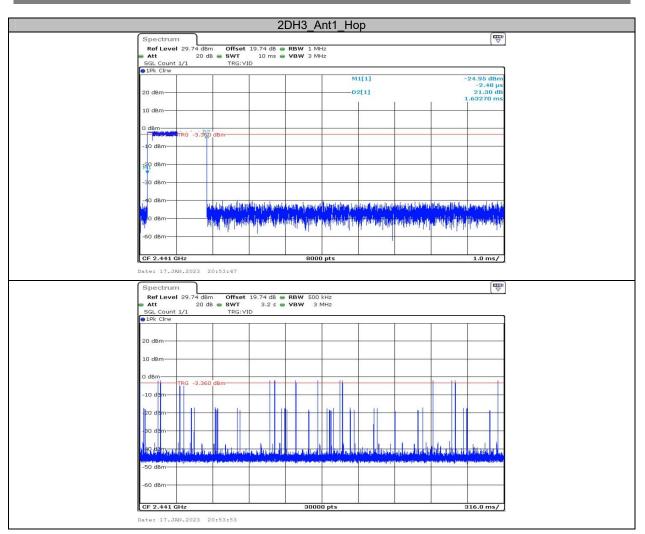
Note 2: Totalhops=Hopping Number in 3.16s*10

Note 3: Hopping Number in 3.16s=Total of highest signals in 3.16s(Second high signals were other channel)


Test Graphs

Report No.: RA230113-02474E-RF-00

			DH3_A	t1 Ho	`			
Gausta	_				5			(IIII)
Spectrum Ref Level 2	9.74 dBm Offse	t 19.74 dB 🖷	RBW 1 M	12				
🕳 Att	20 dB 💿 SWT	10 ms 🖷	VBW 3 M					
SGL Count 1/	'1 TRG:	VID						
				M	1[1]		-	22.03 dBm -1.23 µs
20 dBm				D	2[1]			19.67 dB
						()	1	.62645 ms
10 dBm								
0 dBm	02	_						
	G -3.860 dBm							
-10 dBm								
120 dBm								
-30 dBm								-
-40 dBm								
ett.	and the second	and the first	datebradere	Phylaphylaphy	a Mandaparta	align property of the	a di Manana	unipplication
din O dBm	whether the day	dia da biar	Philipping	adia panya panja di ka	n dia amin'ny fanitra	und thin which	AT ALL ALL ALL ALL ALL ALL ALL ALL ALL A	i indiada in
-60 dBm	1 10		dist.		e ve tilu	1	er en ber Hi	a taka a
CF 2.441 GH	z		8000	pts				1.0 ms/
Date: 17.JAN.	2023 20:48:32							
Spectrum Ref Level 2	9.74 dBm Offse	t 19.74 dB 🖷	RBW 500	kHz				
Ref Level 2 Att	20 dB 👄 SWT		RBW 500 VBW 31					
Ref Level 2	20 dB 👄 SWT	3.2 s 🖷						
Ref Level 2 Att SGL Count 1/	20 dB 👄 SWT	3.2 s 🖷						
Ref Level 2 Att SGL Count 1/	20 dB 👄 SWT	3.2 s 🖷						
Ref Level 2 Att SGL Count 1/ 1Pk Cirw 20 dBm	20 dB 👄 SWT	3.2 s 🖷						
Ref Level 2 Att SGL Count 1/ 1Pk Clrw	20 dB 👄 SWT	3.2 s 🖷						
Ref Level 2 Att SGL count 1/ P1Pk Clrw 20 dBm 10 dBm	20 dB • SWT 1 TRG:	3.2 s 🖷						
Ref Level 2 Att SGL Count 1/ 9 1Pk Clrw 20 dBm 10 dBm 0 dBm	20 dB 👄 SWT	3.2 s 🖷						
Ref Level 2 Att SGL count 1/ P1Pk Clrw 20 dBm 10 dBm	20 dB • SWT 1 TRG:	3.2 s 🖷						
Ref Level 2 Att SGL Count 1/ 9 1Pk Clrw 20 dBm 10 dBm 0 dBm	20 dB • SWT 1 TRG:	3.2 s 🖷						
Ref Level 2 Att SGL Count 1/ IPk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	20 dB • SWT 1 TRG:	3.2 s 🖷						
Ref Level 2 Att SGL Count 1// SGL Count 1// 1Pk Clrw 20 dBm 20 dBm 10 dBm 10 dBm TR -10 dBm	20 dB • SWT 1 TRG:	3.2 s 🖷						
Ref Level 2 Att SGL Count 1/ IPk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	20 dB • SWT 1 TRG:	3.2 s 🖷						
Ref Level 2 Att SGL Count 1/ SGL Count 1/ 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -31 dBm -40 dBm	20 dB • SWT 1 TRG:	3.2 s 🖷						
Ref Level 2 Att SGL Count 1// SGL Count 1// 1Pk Clrw 20 dBm 10 dBm 10 dBm - - -10 dBm - - -20 dBm - - -31 dBm - -	20 dB • SWT 1 TRG:	3.2 s 🖷						
At Level 2 Att SGL Count 1/ © 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	20 dB • SWT 1 TRG:	3.2 s 🖷						
Ref Level 2 Att SGL Count 1/ SGL Count 1/ 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -31 dBm -40 dBm	20 dB • SWT 1 TRG:	3.2 s 🖷						
At Level 2 Att SGL Count 1/ © 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	20 dB • SWT 1 TRG: G -3.860 dBm	3.2 s 🖷						


Report No.: RA230113-02474E-RF-00

Report No.: RA230113-02474E-RF-00

	2DH1_A	.nt1_Hop	
SGL Count 1/1	m Offset 19.74 dB RBW 1 MH B SWT 10 ms VBW 3 MH TRG:VID		
1Pk Cirw 20 dBm		M1[1] D2[1]	-13.38 dBm -1.23 µs 9.90 dB 387.55 µs
10 dBm			
	0 dBm		
-30 dBm			
n to a high the state of the st	i hadi balah ya sa nga nga nga nga nga nga nga nga nga ng	<mark>(1) be all be all a stand a stand a sea and a sea a An a sea and a sea and</mark>	ana nganangan nganangan nganangan ngan Tang nganangan nganangan nganangan nganangan nganangan nganangan nganang
-60 dBm	8000) pts	1.0 ms/
Date: 17.JAN.2023		<u>.</u>	
	m Offset 19.74 dB ● RBW 500 B ● SWT 3.2 5 ● VBW 3 1 TRG:VID		
SGL Count 1/1 IPk Clrw	TRG: VID		
20 dBm			
0 dBm	0_dBm-+		
-10 dBm			
-30 dBm		arte, il a la	tanta pingan Kantaa kuuluu
-50 dBm		n ann a hann ann an hann an thar an de fan an de san de	
CF 2.441 GHz	3000	0 pts	316.0 ms/

Report No.: RA230113-02474E-RF-00

Report No.: RA230113-02474E-RF-00

	2DH5_/	Ant1_Hop		
SGL Count 1/1 TRG:VI	19.74 dB • RBW 11 10 ms • VBW 31	MHz		
1Pk Clrw 20 dBm		M1[1]		-22.85 dBm -2.48 µs 18.89 dB
10 dBm				2.87286 ms
0 dBm	2 *			
-10 dBm				
-30 dBm				
	A plate of a part of a star of a plate of a	All a science pipel arrange at the science of a data data. A bristantical	anganasan ing pangana Tangan sa	an lind a suit
-60 dBm	and dates of the second se	ան շրջանությունը։	n l'att i line e c	ook talaa ku oo
CF 2.441 GHz Date: 17.JAN.2023 20:54:58	80	DO pts		1.0 ms/
Spectrum				
	19.74 dB • RBW 50 3.2 s • VBW 3 D			
20 dBm				
10 dBm				
0 dBm				
-50 dBm	lane ma fara gan an tifang ang ang ang ang ang ang ang ang ang	an paraman ang pangangan ang pangangan pangangan pangangan pangangan pangangan pangangan pangangan pangangan pa		n daenn en polet en difeige
CF 2.441 GHz	300	100 pts		316.0 ms/
	000	iou pea		010.0 1113/

Appendix F: Number of hopping channels Test Result

Test Mode	Antenna	Freq(MHz)	Result[Num]	Limit[Num]	Verdict
DH1	Ant1	Нор	79	≥15	PASS
2DH1	Ant1	Нор	79	≥15	PASS

Test Graphs

Appendix G: Band edge measurements Test Graphs

Report No.: RA230113-02474E-RF-00

Report No.: RA230113-02474E-RF-00

***** END OF REPORT *****