

TEST REPORT

Applicant Name : Address :

Report Number : FCC ID: Zeeva International Limited Suite 1007B, 10th Floor, Exchange Tower, 33 Wang Chiu Road, Kowloon Bay, Hong Kong SZNS211209-63704E-RF-00 2ADM5-EP-0661

Test Standard (s)

FCC PART 15.247

Sample Description

Product Type: Model No.: Multiple Model(s) No.: Date Received: Date of Test: Report Date: TWS PRO FLAT EARBUDS EP-0661 N/A 2021/12/09 2021/12/20~2021/12/30 2022/01/04

Test Result:

Pass*

* In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

en Vang

Fan Yang EMC Engineer

Approved By:

Candy . Cr

Candy Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "* ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data. This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to

the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China

 Tel: +86 755-26503290
 Fax: +86 755-26503396
 Web: www.atc-lab.com

Version 11: 2021-11-09

Page 1 of 53

FCC-BT

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
Test Methodology Measurement Uncertainty	
MEASUREMENT UNCERTAINTY Test Facility	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT Exercise Software	
SPECIAL ACCESSORIES	
Equipment Modifications	
SUPPORT EQUIPMENT LIST AND DETAILS	
External I/O Cable Block Diagram of Test Setup	6
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	
FCC§15.247 (I), §1.1307 (B) (1) &§2.1093 – RF EXPOSURE	
APPLICABLE STANDARD	11
FCC §15.203 – ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (A) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI Test Receiver Setup Test Procedure	
TRANSD FACTOR & MARGIN CALCULATION	
TEST DATA	
FCC §15.205, §15.209 & §15.247(D) – RADIATED EMISSIONS	17
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
Test Procedure Factor & Margin Calculation	
TEST DATA	
FCC §15.247(A) (1)-CHANNEL SEPARATION TEST	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
FCC §15.247(A) (1) – 20 DB EMISSION BANDWIDTH	
APPLICABLE STANDARD	25
TEST PROCEDURE	-
TEST DATA	26

Version 11: 2021-11-09

FCC-BT

FCC §15.247(A) (1) (III)-QUANTITY OF HOPPING CHANNEL TEST	
APPLICABLE STANDARD	
TEST PROCEDURE	
ТЕЅТ DATA	
FCC §15.247(A) (1) (III) - TIME OF OCCUPANCY (DWELL TIME)	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
FCC §15.247(B) (1) - PEAK OUTPUT POWER MEASUREMENT	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
FCC §15.247(D) - BAND EDGES TESTING	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	• •
APPENDIX	
APPENDIX A: 200B EMISSION BANDWIDTH	
APPENDIX B: MAXIMUM CONDUCTED PEAK OUTPUT POWER	
APPENDIX C: CARRIER FREQUENCY SEPARATION	
APPENDIX D: TIME OF OCCUPANCY	
APPENDIX E: NUMBER OF HOPPING CHANNELS	
APPENDIX F:BAND EDGE MEASUREMENTS	

GENERAL INFORMATION

Frequency Range	Bluetooth: 2402~2480MHz
Maximum conducted Peak output power	Bluetooth: 1.98dBm
Modulation Technique	Bluetooth: GFSK, $\pi/4$ -DQPSK, 8DPSK
Antenna Specification*	-0.58dBi (provided by the applicant)
Voltage Range	DC 3.7V from battery or DC 5.0V from USB port
Sample serial number	SZNS211209-63704E-RF-S1 for CE&RE SZNS211209-63704E-RF-S2 for RF conducted (Assigned by ATC)
Sample/EUT Status	Good condition
SKU number	White: 5665039 Black: 5665040 Pink: 5665041 Green: 5665042
UPC number	White: 1922343150503 Black: 1922343150510 Pink: 1922343150527 Green: 1922343150534

Product Description for Equipment under Test (EUT)

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter		Uncertainty	
Occupied Cha	nnel Bandwidth	5%	
RF output por	wer, conducted	0.73dB	
Unwanted Emi	ssion, conducted	1.6dB	
AC Power Lines Conducted Emissions		2.72dB	
	30MHz - 1GHz	4.28dB	
Emissions, Radiated	1GHz - 18GHz	4.98dB	
Tudiated	18GHz - 26.5GHz	5.06dB	
Temperature		1 °C	
Humidity		6%	
Supply	voltages	0.4%	

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

EUT Exercise Software

"FCC_assist_1.0.2.2 "* software was used to test.

The device was tested with the Power level is 10*.

The software and power level was provided by the applicant.

Special Accessories

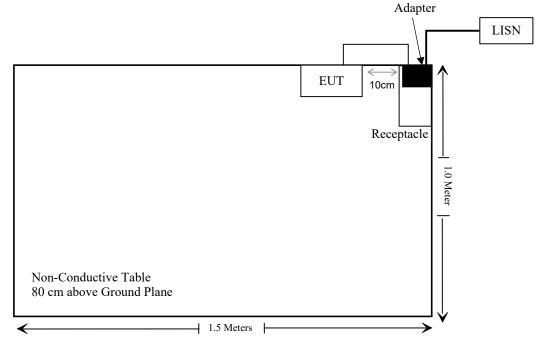
No special accessory.

Equipment Modifications

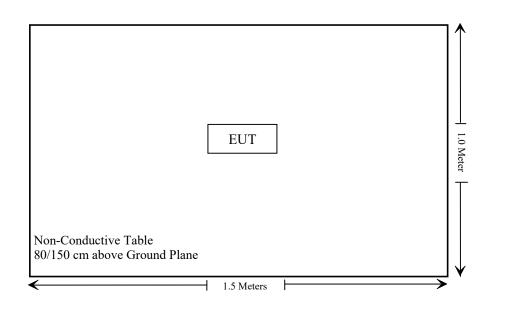
No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
TECNO	Adapter	U100TSA	BJD202010261


External I/O Cable

Cable Description	Length (m)	From Port	То
Un-shielded detachable DC Cable	0.3	Adapter	EUT


Report No.: SZNS211209-63704E-RF-00

Block Diagram of Test Setup

For conducted emission

For Radiation emission

Version 11: 2021-11-09

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC §1.1307(b) & §2.1093	RF EXPOSURE	Compliant
§15.203	Antenna Requirement	Compliant
§15.207(a)	AC Line Conducted Emissions	Compliant
§15.205, §15.209 & §15.247(d)	Radiated Emissions	Compliant
§15.247(a)(1)	20 dB Emission Bandwidth	Compliant
§15.247(a)(1)	Channel Separation Test	Compliant
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliant
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliant
§15.247(b)(1)	Peak Output Power Measurement Compli	
§15.247(d)	Band edges	Compliant

Note: the left earbud and right earbud are electrical identical, the right earbud was selected to test.

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date			
	Conducted Emissions Test							
Rohde& Schwarz	EMI Test Receiver	ESCI	100784	2021/12/13	2022/12/12			
Rohde & Schwarz	L.I.S.N.	ENV216	101314	2021/12/13	2022/12/12			
Anritsu Corp	50 Coaxial Switch	MP59B	6100237248	2021/12/13	2022/12/12			
Unknown	RF Coaxial Cable	No.17	N0350	2021/12/14	2022/12/13			
Conducted Emission	Test Software: e3 19821	b (V9)						
		Radiated Emissi	ons Test					
Rohde& Schwarz	Test Receiver	ESR	102725	2021/12/13	2022/12/12			
Rohde&Schwarz	Spectrum Analyzer	FSV40	101949	2021/12/13	2022/12/12			
SONOMA INSTRUMENT	Amplifier	310 N	186131	2021/11/09	2022/11/08			
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2021/11/09	2022/11/08			
Quinstar	Amplifier	QLW- 18405536-J0	15964001002	2021/11/11	2022/11/10			
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05			
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04			
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2020/01/05	2023/01/04			
Radiated Emission T	est Software: e3 19821b	(V9)						
Unknown	RF Coaxial Cable	No.10	N050	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.11	N1000	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.12	N040	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.13	N300	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.14	N800	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.15	N600	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.16	N650	2021/12/14	2022/12/13			
Wainwright	High Pass Filter	WHKX3.6/18 G-10SS	5	2021/12/14	2022/12/13			

Report No.: SZNS211209-63704E-RF-00

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
		RF Conducted	d Test		
Rohde & Schwarz	Spectrum Analyzer	FSV-40	101495	2021/12/13	2022/12/12
Tonscend	RF Control Unit	JS0806-2	19G8060182	2021/07/06	2022/07/05

* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.247 (i), §1.1307 (b) (1) &§2.1093 – RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

a) According to KDB 447498 D01 General RF Exposure Guidance

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] ·

 $[\sqrt{f}(GHz)] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

For worst case:

Frequency	Maximum pov	•	Calculated Distance	Calculated	Threshold	SAR Test
(MHz)	(dBm)	(mW)	(mm)	Value	(1-g SAR)	Exclusion
2402-2480	2.0	1.58	5	0.5	3.0	Yes

Result: Compliant.

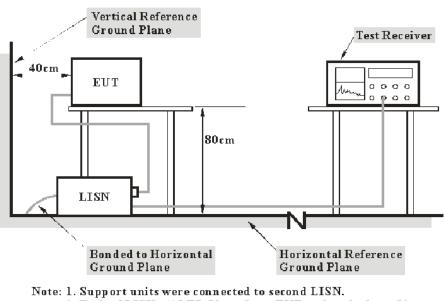
FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

The EUT has one internal Antenna arrangement, which was permanently attached and the antenna gain is -0.58dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliant.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Transd Factor & Margin Calculation

The Transd factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

Transd Factor = LISN VDF + Cable Loss

The "**Over limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an over limit of -7 dB means the emission is 7 dB below the limit. The equation for over limit calculation is as follows:

Over limit = Level - Limit Level= Reading level+ Transd Factor

Test Data

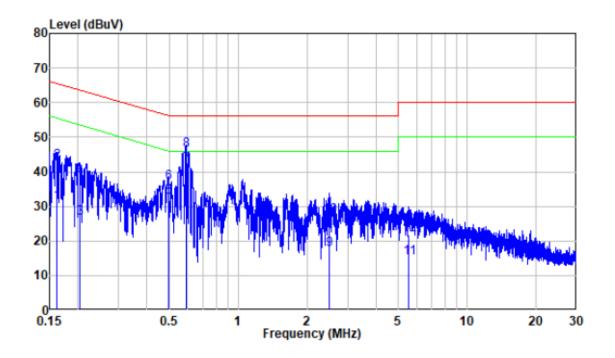
Environmental Conditions

Temperature:	23 °C
Relative Humidity:	60 %
ATM Pressure:	101.0 kPa

The testing was performed by Bin Duan on 2021-12-22.

EUT operation mode: Charging

Report No.: SZNS211209-63704E-RF-00


80 Level (dBuV) 70 60 50 40 30 20 10 0.15 2 Frequency (MHz) 0.5 1 5 10 20 30

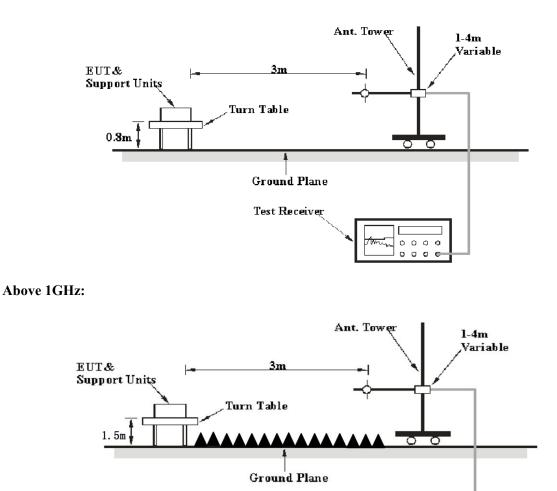
AC 120V/60 Hz, Line

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.153	9.89	21.87	31.76	55.85	-24.09	Average
2	0.153	9.89	33.12	43.01	65.85	-22.84	QP
3	0.204	9.80	20.52	30.32	53.46	-23.14	Average
4	0.204	9.80	31.18	40.98	63.46	-22.48	QP
5	0.461	9.80	20.03	29.83	46.68	-16.85	Average
6	0.461	9.80	24.78	34.58	56.68	-22.10	QP
7	0.605	9.81	28.26	38.07	46.00	-7.93	Average
8	0.605	9.81	32.46	42.27	56.00	-13.73	QP
9	2.008	9.92	15.25	25.17	46.00	-20.83	Average
10	2.008	9.92	20.34	30.26	56.00	-25.74	QP
11	5.646	10.02	8.05	18.07	50.00	-31.93	Average
12	5.646	10.02	14.94	24.96	60.00	-35.04	QP

Report No.: SZNS211209-63704E-RF-00

AC 120V/60 Hz, Neutral

			Read		Limit	Over	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.161	9.92	21.18	31.10	55.42	-24.32	Average
2	0.161	9.92	33.03	42.95	65.42	-22.47	QP
3	0.202	10.00	16.62	26.62	53.51	-26.89	Average
4	0.202	10.00	28.24	38.24	63.51	-25.27	QP
5	0.494	9.90	22.55	32.45	46.10	-13.65	Average
6	0.494	9.90	27.00	36.90	56.10	-19.20	QP
7	0.592	9.91	31.92	41.83	46.00	-4.17	Average
8	0.592	9.91	36.18	46.09	56.00	-9.91	QP
9	2.505	9.95	7.60	17.55	46.00	-28.45	Average
10	2.505	9.95	17.14	27.09	56.00	-28.91	QP
11	5.549	10.06	5.00	15.06	50.00	-34.94	Average
12	5.549	10.06	11.80	21.86	60.00	-38.14	QP


FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS

Applicable Standard

FCC §15.205; §15.209; §15.247(d)

EUT Setup

Below 1 GHz:

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.247 limits.

Test Receiver

0000

EMI Test Receiver & Spectrum Analyzer Setup

The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz - 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 CIIz	1 MHz	3 MHz	/	РК
Above 1 GHz	1 MHz	10 Hz	/	Average

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Factor & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

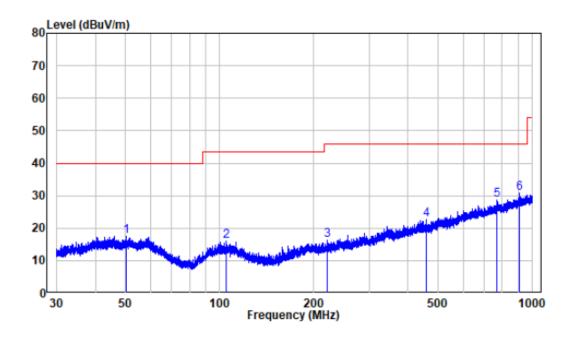
Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

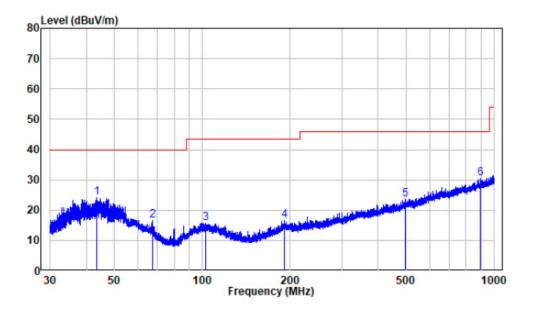
Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

Test Data

Environmental Conditions


Temperature:	25℃
Relative Humidity:	64 %
ATM Pressure:	101.0 kPa

The testing was performed by Bin Deng on 2021-12-20 for below 1GHz and 2021-12-30 for above 1GHz.


EUT operation mode: Transmitting (Pre-scan in the X,Y and Z axes of orientation, the worst case X-axis of orientation was recorded)

30MHz-1GHz: (worst case is 8DPSK Mode, High channel)

Horizontal:

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	50.21	-9.92	27.48	17.56	40.00	-22.44	Peak
2	104.81	-11.81	27.79	15.98	43.50	-27.52	Peak
3	221.00	-11.38	27.83	16.45	46.00	-29.55	Peak
4	458.31	-5.44	27.96	22.52	46.00	-23.48	Peak
5	772.13	-0.08	28.75	28.67	46.00	-17.33	Peak
6	908.07	1.67	29.09	30.76	46.00	-15.24	Peak

Vertical

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	43.51	-9.92	34.08	24.16	40.00	-15.84	Peak
2	67.59	-13.64	30.24	16.60	40.00	-23.40	Peak
3	102.94	-11.65	27.46	15.81	43.50	-27.69	Peak
4	190.41	-11.51	28.03	16.52	43.50	-26.98	Peak
5	496.80	-4.38	27.99	23.61	46.00	-22.39	Peak
6	897.78	1.17	29.18	30.35	46.00	-15.65	Peak

Report No.: SZNS211209-63704E-RF-00

D	Receiver		T	Rx An	tenna	Corrected	Absolute	T • • •	. ·	
Frequency (MHz)	Reading (dBµV)	PK/QP/Ave.	Turntable Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
	Low Channel (2402 MHz)									
2310	68.44	PK	147	2.2	Н	-7.24	61.20	74	-12.80	
2310	52.97	Ave.	147	2.2	Н	-7.24	45.73	54	-8.27	
2310	67.40	PK	199	1.6	V	-7.24	60.16	74	-13.84	
2310	52.96	Ave.	199	1.6	V	-7.24	45.72	54	-8.28	
2390	68.47	PK	355	1.5	Н	-7.22	61.25	74	-12.75	
2390	54.29	Ave.	355	1.5	Н	-7.22	47.07	54	-6.93	
2390	68.97	PK	195	1.7	V	-7.22	61.75	74	-12.25	
2390	54.24	Ave.	195	1.7	V	-7.22	47.02	54	-6.98	
4804	56.66	PK	228	2.1	Н	-3.51	53.15	74	-20.85	
4804	56.10	РК	168	1.3	V	-3.51	52.59	74	-21.41	
			Middle C	hannel ((2441 M	IHz)				
4882	56.99	PK	55	1.2	Н	-3.38	53.61	74	-20.39	
4882	55.07	РК	214	2.5	V	-3.38	51.69	74	-22.31	
			High Cł	nannel (2	2480 MI	Hz)				
2483.5	69.17	РК	30	1.9	Н	-7.2	61.97	74	-12.03	
2483.5	55.50	Ave.	30	1.9	Н	-7.2	48.3	54	-5.7	
2483.5	68.95	PK	113	2.1	V	-7.2	61.75	74	-12.25	
2483.5	55.48	Ave.	113	2.1	V	-7.2	48.28	54	-5.72	
2500	68.34	РК	169	1.4	Н	-7.18	61.16	74	-12.84	
2500	54.32	Ave.	169	1.4	Н	-7.18	47.14	54	-6.86	
2500	69.21	PK	218	2.4	V	-7.18	62.03	74	-11.97	
2500	54.35	Ave.	218	2.4	V	-7.18	47.17	54	-6.83	
4960	56.48	PK	121	1.6	Н	-3.01	53.47	74	-20.53	
4960	54.77	PK	226	2.4	V	-3.01	51.76	74	-22.24	

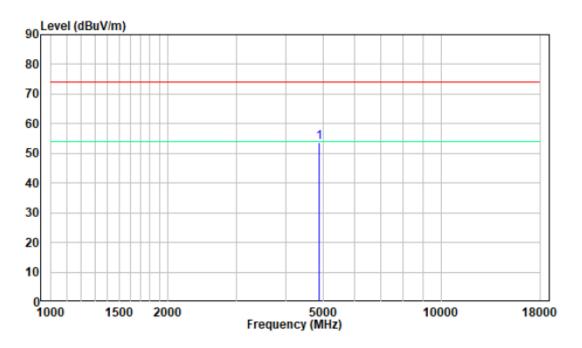
Above 1GHz: (Scan with GFSK, $\pi/4$ -DQPSK, 8DPSK mode, the worst case is 8DPSK Mode)

Note:

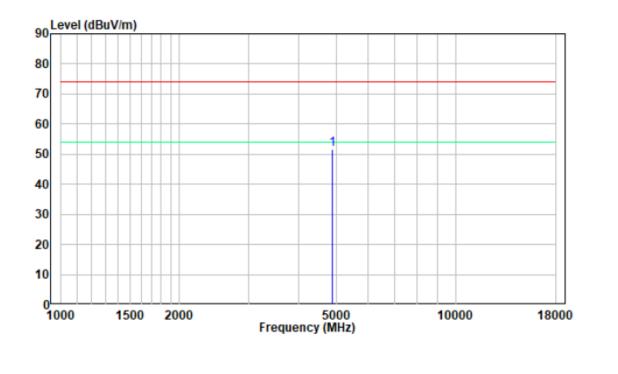
Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor Corrected Amplitude = Corrected Factor + Reading

Margin = Corrected. Amplitude - Limit

The other spurious emission is in the noise floor level was not recorded.


The test result of peak was less than the limit of average, so just peak value were recorded.

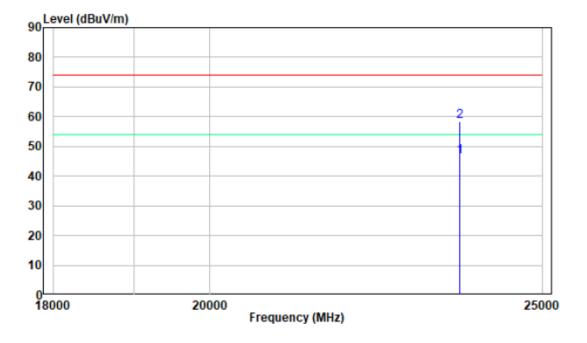
1-18GHz


Pre-scan plots

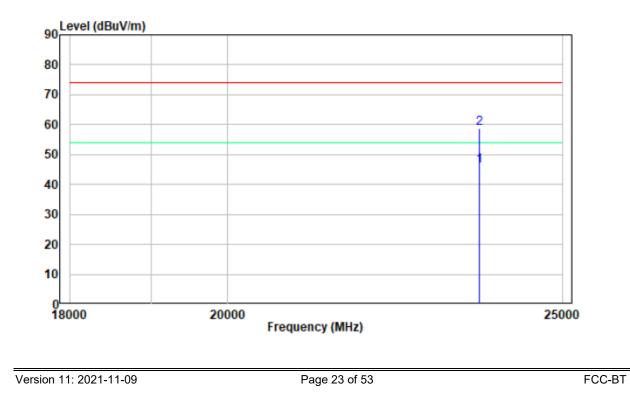
Middle Channel

Horizontal:

Vertical:



18-25GHz


Pre-scan plots

Middle Channel

Horizontal:

Vertical:

FCC §15.247(a) (1)-CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test Procedure

- 1. Set the EUT in transmitting mode, maxhold the channel.
- 2. Set the adjacent channel of the EUT and maxhold another trace.
- 3. Measure the channel separation.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

The testing was performed by Fan Yang on 2021-12-29.

EUT operation mode: Transmitting

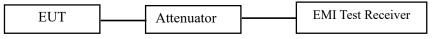
FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

The following conditions shall be observed for measuring the occupied bandwidth and 20 dB bandwidth:


• The transmitter shall be operated at its maximum carrier power measured under normal test conditions.

• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / 20 dB bandwidth if the device is not transmitting continuously.

• The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / 20 dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

The testing was performed by Fan Yang on 2021-12-29.

EUT operation mode: Transmitting

FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

The testing was performed by Fan Yang on 2021-12-29.

EUT operation mode: Transmitting

FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 4. The EUT was worked in channel hopping.
- 5. Set the RBW to: 1MHz.
- 6. Set the VBW $\geq 3 \times RBW$.
- 7. Set the span to 0Hz.
- 8. Detector = peak.
- 9. Sweep time = auto couple.
- 10. Trace mode = max hold.
- 11. Allow trace to fully stabilize.
- 12. Recorded the time of single pulses

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

The testing was performed by Fan Yang on 2021-12-29.

EUT operation mode: Transmitting

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Test Procedure

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

The testing was performed by Fan Yang on 2021-12-29.

EUT operation mode: Transmitting

FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in \$15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in \$15.205(a), must also comply with the radiated emission limits specified in \$15.209(a) (see \$15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

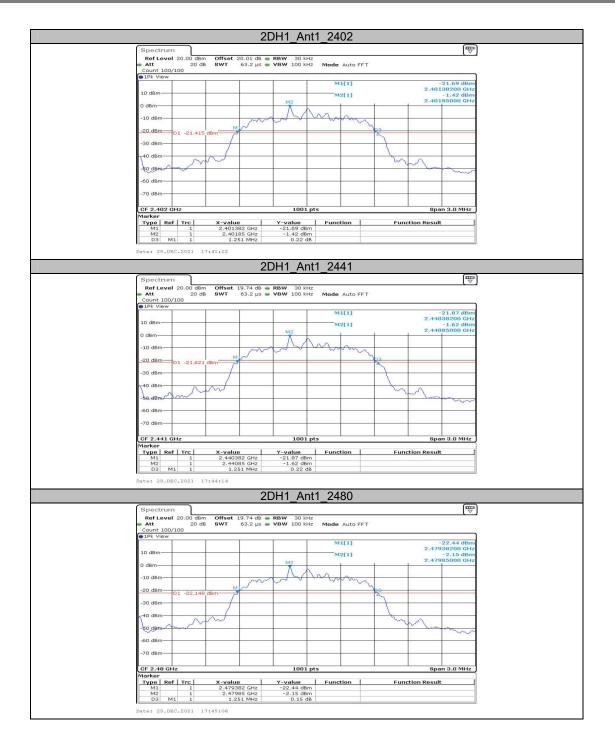
Test Data

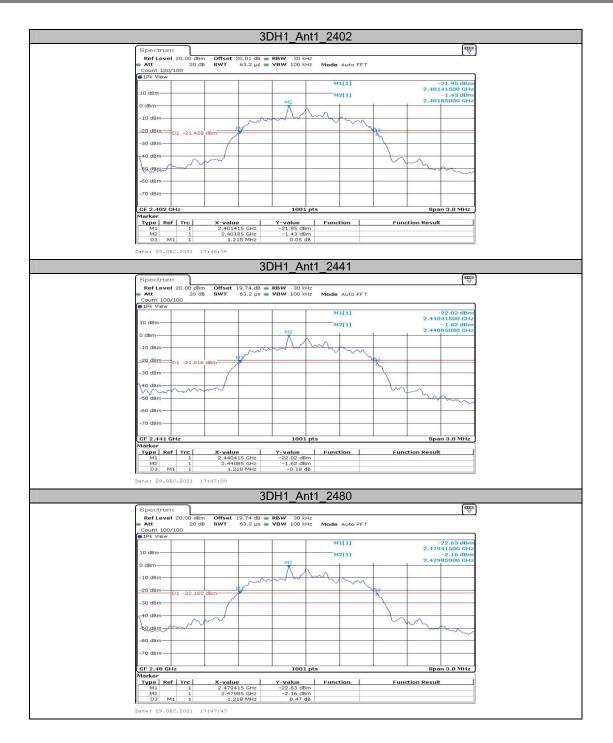
Environmental Conditions

Temperature:	25 °C
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

The testing was performed by Fan Yang on 2021-12-29.

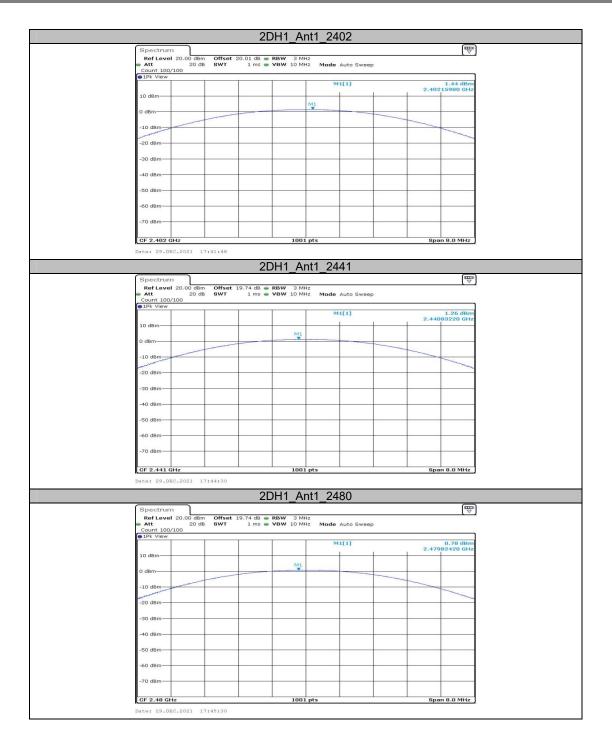
EUT operation mode: Transmitting


APPENDIX


Appendix A: 20dB Emission Bandwidth Test Result

Test Mode	Antenna	Channel	20db EBW[MHz]	Limit[MHz]	Verdict
		2402	0.882		PASS
DH1	Ant1	2441	0.882		PASS
		2480	0.882		PASS
		2402	1.251		PASS
2DH1	Ant1	2441	1.251		PASS
		2480	1.251		PASS
		2402	1.218		PASS
3DH1	Ant1	2441	1.218		PASS
		2480	1.218		PASS

Test Graphs



Appendix B: Maximum conducted Peak output power Test Result

Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		2402	0.63	≤20.97	PASS
DH1	Ant1	2441	0.52	≤20.97	PASS
		2480	-0.06	≤20.97	PASS
		2402	1.44	≤20.97	PASS
2DH1	Ant1	2441	1.26	≤20.97	PASS
		2480	0.78	≤20.97	PASS
		2402	1.98	≤20.97	PASS
3DH1	Ant1	2441	1.81	≤20.97	PASS
		2480	1.33	≤20.97	PASS

Test Graphs

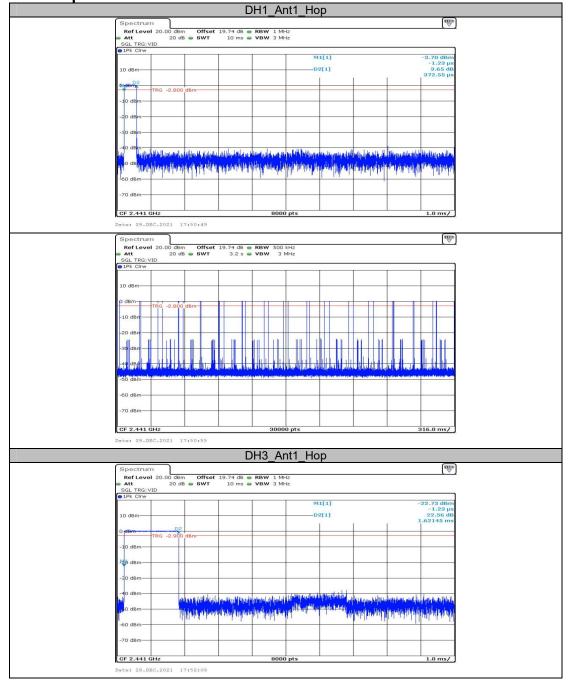
		DH1_Ant1	_2402			
Spectrum Ref Level 20.0	dBm Offset 20.0	1 dB 👄 RBW 3 MHz				
Att Count 100/100	20 dB SWT	1 ms 👄 VBW 10 MHz	Mode Auto Swee	q		
			M1[1]		2.401	0.63 dBm 76820 GHz
10 dBm		MI				
0 dBm						
-10 dBm						/
-20 dBm						
-30 dBm						
-40 dBm						
-50 dBm						-
-60 dBm						
-70 dBm						
CF 2.402 GHz		1001 pt	s		Spa	n 8.0 MHz
Date: 29.DEC.202	1 17:38:49					
		DH1_Ant1	_2441			
Spectrum Ref Level 20.0	dBm Offset 19.7	4 dB 🖷 RBW 3 MHz				
Att Count 100/100	20 dB SWT	1 ms 👄 VBW 10 MHz	Mode Auto Swee	q		
●1Pk View			M1[1]		2.44	0.52 dBm 88010 GHz
10 dBm		MI		2		
0 dBm						
-10 dBm						-
-20 dBm						
-30 dBm						
-40 dBm-						
-50 dBm				-		
-60 dBm						
-70 dBm						
CF 2.441 GHz		1001 pt	s		Spe	n 8.0 MHz
Date: 29.DEC.202	1 17:39:46					
		DH1_Ant1	_2480			
Spectrum Ref Level 20.0	dBm Offset 19.7	4 dB 🖷 RBW 3 MHz				
Att Count 100/100	20 dB SWT	1 ms 👄 VBW 10 MHz	Mode Auto Swee	ep.		
●1Pk View			M1[1]		2.479	-0.06 dBm 86410 GHz
10 dBm		MI				
0 dBm-				-		
-10 dBm						
-20 dBm						
-30 dBm						
-40 dBm						
-50 dBm	_					
-60 dBm						
-70 dBm						
				1	1	
CF 2.48 GHz		1001 pt	s		Spa	n 8.0 MHz

Appendix C: Carrier frequency separation Test Result

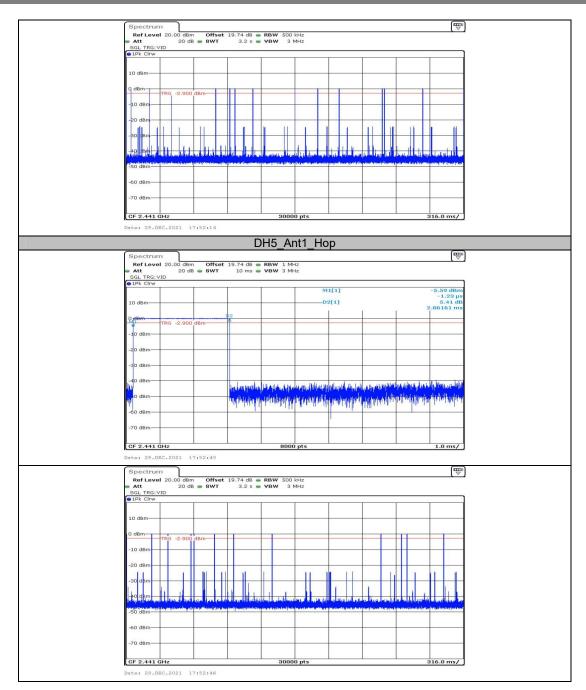
Test Mode	Antenna	Channel	Result[MHz]	Limit[MHz]	Verdict
DH1	Ant1	Нор	1.003	≥0.588	PASS
2DH1	Ant1	Нор	1.003	≥0.834	PASS
3DH1	Ant1	Нор	1.000	≥0.812	PASS

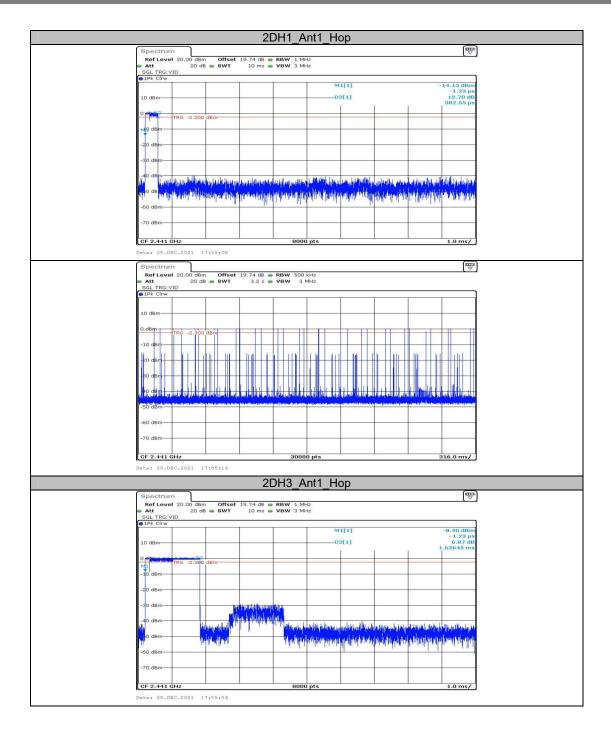
Test Graphs

Appendix D: Time of occupancy Test Result

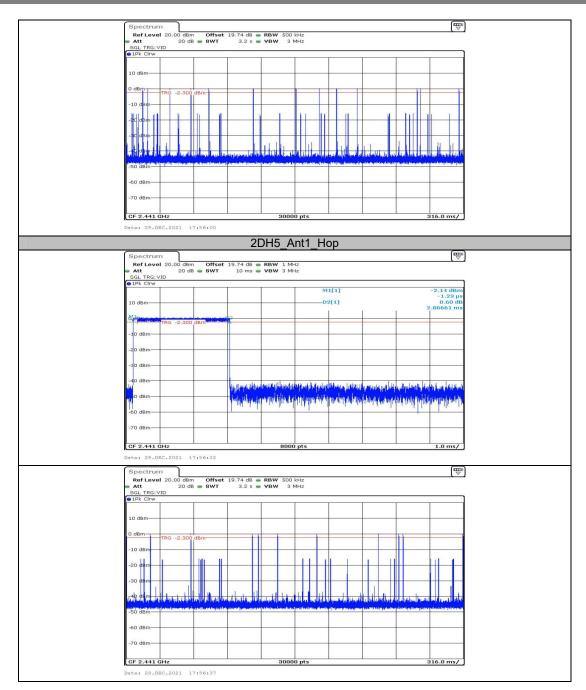

Test Mode	Antenna	Channel	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.37	330	0.122	≤0.4	PASS
DH3	Ant1	Нор	1.62	140	0.227	≤0.4	PASS
DH5	Ant1	Нор	2.86	120	0.343	≤0.4	PASS
2DH1	Ant1	Нор	0.38	330	0.125	≤0.4	PASS
2DH3	Ant1	Нор	1.63	140	0.228	≤0.4	PASS
2DH5	Ant1	Нор	2.87	110	0.316	≤0.4	PASS
3DH1	Ant1	Нор	0.38	320	0.122	≤0.4	PASS
3DH3	Ant1	Нор	1.63	160	0.261	≤0.4	PASS
3DH5	Ant1	Нор	2.87	120	0.344	≤0.4	PASS

Note 1: A period time=0.4*79=31.6(S), Result=BurstWidth*Totalhops

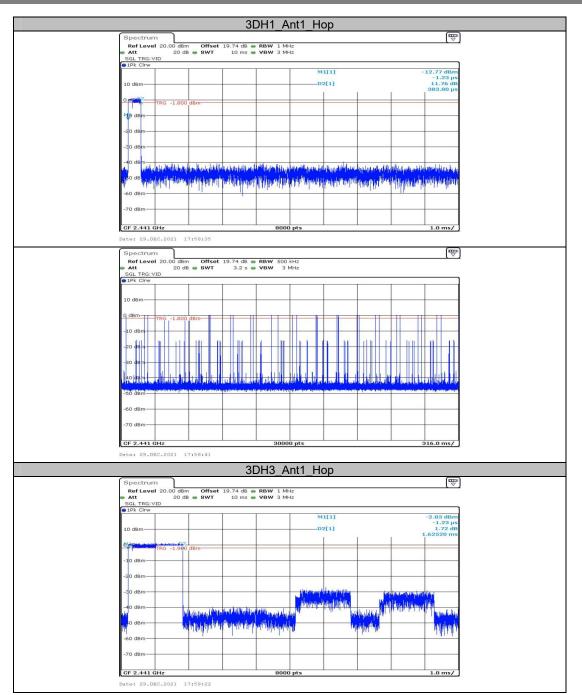

Note 2: Totalhops=Hopping Number in 3.16s*10

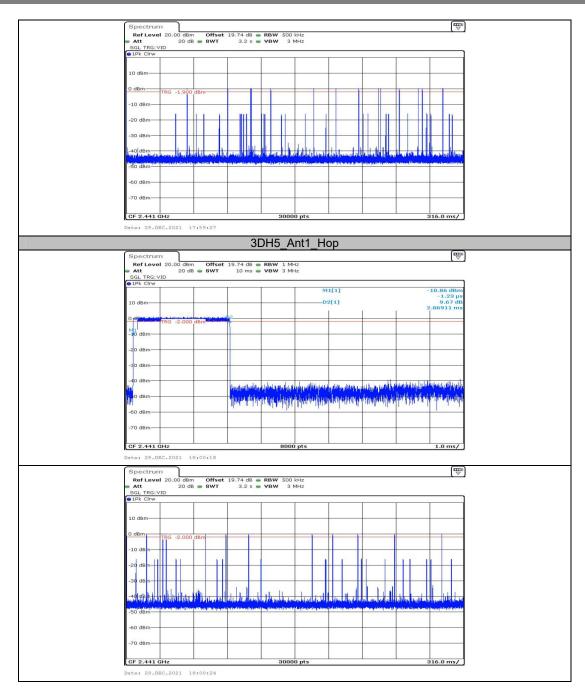

Note 3: Hopping Number in 3.16s=Total of highest signals in 3.16s(Second high signals were other channel)

Test Graphs



Report No.: SZNS211209-63704E-RF-00

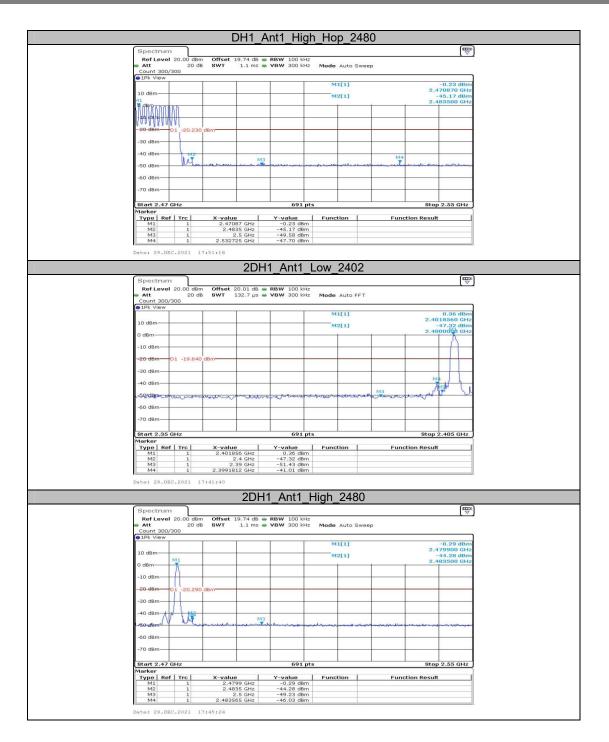



Report No.: SZNS211209-63704E-RF-00

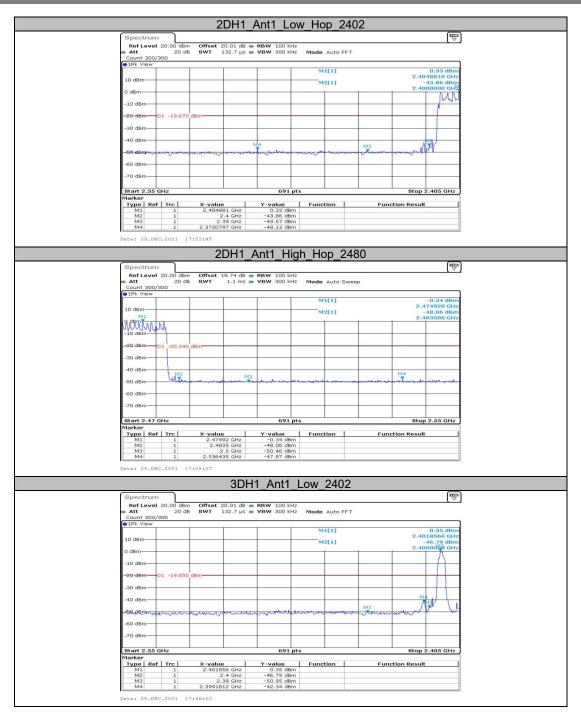
Report No.: SZNS211209-63704E-RF-00

Report No.: SZNS211209-63704E-RF-00


Appendix E: Number of hopping channels Test Result


Test Mode	Antenna	Channel	Result[Num]	Limit[Num]	Verdict
DH1	Ant1	Нор	79	≥15	PASS
2DH1	Ant1	Нор	79	≥15	PASS
3DH1	Ant1	Нор	79	≥15	PASS

Test Graphs


DH1_Ant1_Hop
Spectrum Image: Constraint of the second seco
IPk View
10 dBm
Ja takan kana kana kana kana kana kana ka
-20 dBm
-BO dBm
-50 dBm
-60 dBm
-70 dBm
Start 2.4 GHz 691 pts Stop 2.4635 GHz
Date: 29.DEC.2021 17:50:38
2DH1_Ant1_Hop
Spectrum Image: Constraint of the second seco
Att 20 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep Phk View
10 dBm
o la company a company
-10 d8m
-20 dBm
-50 d8m
-50 dBm
-70 dBm
Start 2.4 GHz 691 pts Stop 2.4835 GHz
Bater 2-9 LBC.2021 17:54:57
3DH1_Ant1_Hop
Spectrum
Att 20 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep P1Pk View
10 dBm
o laanna aanaa maana ay aa ahaana a
-10 dBm
-20 dBm
-30 d8m
j40 dBm
-50 dBm
-70 dBm
Start 2.4 GHz 691 pts Stop 2.4835 GHz

Appendix F:Band edge measurements Test Graphs

Report No.: SZNS211209-63704E-RF-00

Report No.: SZNS211209-63704E-RF-00

***** END OF REPORT *****