

TEST REPORT

Product Name	:	
Model Number	:	
FCC ID	:	

F24 TWS CLASSIC AST6

EP-0652-AST6

2ADM5-EP-0652-C

Prepared for Address	:	Zeeva International Limited Suite 1007B, 10th Floor, Exchange Tower, 33 Wang Chiu Road, Kowloon Bay, Hong Kong, China
Prepared by Address		EMTEK (DONGGUAN) CO., LTD. -1&2/F.,Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base, No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China TEL: +86-0769-22807078 FAX: +86-0769-22807079

Report Number	:	EDG2306190117E00101R
Date(s) of Tests	:	June 19,2023 to June 29,2023
Date of issue	:	June 29,2023

Table of Contents

2 EUT TECHNICAL DESCRIPTION 5 3 SUMMARY OF TEST RESULT 6 4 TEST METHODOLOGY 7 4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS 7 4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS 7 4.2 MEASUREMENT EQUIPMENT USED 7 4.3 DESCRIPTION OF TEST MODES 8 4.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING 8 5 FACILITIES AND ACCREDITATIONS 9 5.1 FACILITIES 9 5.2 EQUIPMENT 9 5.3 LABORATORY ACCREDITATIONS AND LISTINGS 9 6 TEST SYSTEM UNCERTAINTY 10 7 SETUP OF EQUIPMENT UNDER TEST. 11 7.1 RADIO FREQUENCY TEST SETUP 1 11 7.2 RADIO FREQUENCY TEST SETUP 2 11 7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 14 7.5 SUPPORT EQUIPMENT 14 8 FREQUENCY HOPPING SYSTEM REQUIREMENTS 15 8.1 Standard Applicable 15 8.2 EUT Pseudorandom Frequency Hopping Sequence 16 8.4 Frequency Hopping System 16 9.3 UNMBER OF HOPPING REQUENCIES 32 9.3 NUMBER OF HOPPING REQUENCIES 32 9.	1 TEST RESULT CERTIFICATION	3
4 TEST METHODOLOGY 7 4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS 7 4.2 MEASUREMENT EQUIPMENT USED 7 4.3 DESCRIPTION OF TEST MODES 8 4.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING 8 5 FACILITIES AND ACCREDITATIONS 9 5.1 FACILITIES 9 5.2 EQUIPMENT 9 5.3 LABORATORY ACCREDITATIONS AND LISTINGS 9 6 TEST SYSTEM UNCERTAINTY 10 7 SETUP OF EQUIPMENT UNDER TEST 11 7.1 RADIO FREQUENCY TEST SETUP 1 11 7.2 RODIO FREQUENCY TEST SETUP 2 11 7.3 CONDUCTED EMISSION TEST SETUP 2 11 7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 14 7.5 SUPPORT EQUIPMENT 14 8 FREQUENCY HOPPING SYSTEM REQUIREMENTS 15 8.1 Standard Applicable 15 8.3 Equal Hopping Frequency Hopping Sequence 16 8.4 Frequency Hopping System 16 9 TEST REQUIREMENTS 17 9.1 20D&&@9@BANDWIDTH 17 9.2 CARRIER FREQUENCY SEPARATION 29 9.3 NUMBER OF HOPPING FREQUENCIES 32 9.4 AVERAGE TIME OF OC	2 EUT TECHNICAL DESCRIPTION	5
4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS. 7 4.2 MEASUREMENT EQUIPMENT USED. 7 4.3 DESCRIPTION OF TEST MODES. 8 4.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING. 8 5 FACILITIES AND ACCREDITATIONS. 9 5.1 FACILITIES. 9 5.2 EQUIPMENT 99 5.3 LABORATORY ACCREDITATIONS AND LISTINGS. 9 6 TEST SYSTEM UNCERTAINTY. 10 7 SETUP OF EQUIPMENT UNDER TEST. 11 7.1 RADIO FREQUENCY TEST SETUP 1. 11 7.2 RADIO FREQUENCY TEST SETUP 2. 11 7.3 CONDUCTED EMISSION TEST SETUP 2. 11 7.4 SUPPORT EQUIPMENT 14 7.5 SUPPORT EQUIPMENT 14 7.5 SUPPORT EQUIPMENT 15 8.1 Standard Applicable 15 8.2 EUT Pseudorandom Frequency Hopping Sequence. 15 8.3 Equal Hopping Frequency Use 16 8.4 Frequency Hopping System 16 9 TEST REQUIREMENTS 17 9.1 20D&&\$99\$BANDWIDTH. 17 9.2 AVERAGE TIME OF COCUPANCY (DWELL TIME) 32 9.3 NUMBER OF HOPPING FREQUENCIES 32 9.4 AVERAGE TIME OF CO	3 SUMMARY OF TEST RESULT	6
4.2 MEASUREMENT EQUIPMENT USED 7 4.3 DESCRIPTION OF TEST MODES 8 4.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING 8 5 FACILITIES AND ACCREDITATIONS 9 5.1 FACILITIES 9 5.2 EQUIPMENT 9 5.3 LABORATORY ACCREDITATIONS AND LISTINGS 9 6 TEST SYSTEM UNCERTAINTY 10 7 SETUP OF EQUIPMENT UNDER TEST 11 7.1 RADIO FREQUENCY TEST SETUP 1 11 7.2 RADIO FREQUENCY TEST SETUP 2 11 7.3 CONDUCTED EMISSION TEST SETUP 1 11 7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 14 7.5 SUPPORT EQUIPMENT 14 8 FREQUENCY HOPPING SYSTEM REQUIREMENTS 15 8.1 Standard Applicable 15 8.3 Equal Hopping Frequency Use 16 8.4 Frequency Hopping System 16 8.4 Frequency Hopping System 16 9.1 20DB&99%BANDWIDTH 17 9.2 CARLER FREQUENCY SEPARATION 29 9.3 NUMBER OF HOPPING FREQUENCIES 32 9.4 AVERAGE TIME OF OCCUPANCY (DWELL TIME) 35 9.3 NUMBER OF HOPPING SEPARATION 29 9.3 NUMBER OF	4 TEST METHODOLOGY	7
5.1 FACILITIES95.2 EQUIPMENT95.3 LABORATORY ACCREDITATIONS AND LISTINGS96 TEST SYSTEM UNCERTAINTY107 SETUP OF EQUIPMENT UNDER TEST117.1 RADIO FREQUENCY TEST SETUP 1117.2 RADIO FREQUENCY TEST SETUP 2117.3 CONDUCTED EMISSION TEST SETUP 2117.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM147.5 SUPPORT EQUIPMENT148 FREQUENCY HOPPING SYSTEM REQUIREMENTS158.1 Standard Applicable158.2 EUT Pseudorandom Frequency Hopping Sequence158.4 Frequency Hopping System169 TEST REQUIREMENTS179.1 20DB&99%BANDWIDTH179.2 CARRIER FREQUENCY ESPARATION299.3 NUMBER OF HOPPING FREQUENCIES329.4 AVERAGE TIME OF OCCUPANCY (DWELL TIME)359.5 MAXIMUM PEAK CONDUCTED OUTPUT POWER419.6 CONDUCTED SUPRIOUS EMISSION589.8 CONDUCTED EMISSION TEST67	4.2 MEASUREMENT EQUIPMENT USED 4.3 DESCRIPTION OF TEST MODES	7 8
5.2 EQUIPMENT		
7 SETUP OF EQUIPMENT UNDER TEST117.1 RADIO FREQUENCY TEST SETUP 1117.2 RADIO FREQUENCY TEST SETUP 2117.3 CONDUCTED EMISSION TEST SETUP137.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM147.5 SUPPORT EQUIPMENT148 FREQUENCY HOPPING SYSTEM REQUIREMENTS158.1 Standard Applicable158.2 EUT Pseudorandom Frequency Hopping Sequence158.3 Equal Hopping Frequency Use168.4 Frequency Hopping System169 TEST REQUIREMENTS179.1 20DB&99%BANDWIDTH179.2 CARRIER FREQUENCY SEPARATION299.3 NUMBER OF HOPPING FREQUENCIES329.4 AVERAGE TIME OF OCCUPANCY (DWELL TIME)359.5 MAXIMUM PEAK CONDUCTED OUTPUT POWER419.6 CONDUCTED SUPRIOUS EMISSION489.7 RADIATED SPURIOUS EMISSION589.8 CONDUCTED EMISSION TEST67	5.2 EQUIPMENT	9
7.1 RADIO FREQUENCY TEST SETUP 1117.2 RADIO FREQUENCY TEST SETUP 2117.3 CONDUCTED EMISSION TEST SETUP137.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM147.5 SUPPORT EQUIPMENT148 FREQUENCY HOPPING SYSTEM REQUIREMENTS158.1 Standard Applicable158.2 EUT Pseudorandom Frequency Hopping Sequence158.3 Equal Hopping Frequency Use168.4 Frequency Hopping System169 TEST REQUIREMENTS179.1 20DB&99%BANDWIDTH179.2 CARRIER FREQUENCY SEPARATION299.3 NUMBER OF HOPPING FREQUENCIES329.4 AVERAGE TIME OF OCCUPANCY (DWELL TIME)359.5 MAXIMUM PEAK CONDUCTED OUTPUT POWER419.6 CONDUCTED SUPRIOUS EMISSION489.7 RADIATED SPURIOUS EMISSION589.8 CONDUCTED EMISSION TEST67	6 TEST SYSTEM UNCERTAINTY	10
7.2 RADIO FREQUENCY TEST SETUP 2		
8.1 Standard Applicable158.2 EUT Pseudorandom Frequency Hopping Sequence158.3 Equal Hopping Frequency Use168.4 Frequency Hopping System169 TEST REQUIREMENTS179.1 20DB&99%BANDWIDTH179.2 CARRIER FREQUENCY SEPARATION299.3 NUMBER OF HOPPING FREQUENCIES329.4 AVERAGE TIME OF OCCUPANCY (DWELL TIME)359.5 MAXIMUM PEAK CONDUCTED OUTPUT POWER419.6 CONDUCTED SUPRIOUS EMISSION489.7 RADIATED SPURIOUS EMISSION589.8 CONDUCTED EMISSION TEST67	7.2 RADIO FREQUENCY TEST SETUP 2 7.3 CONDUCTED EMISSION TEST SETUP 7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 7.5 SUPPORT EQUIPMENT	11 13 14 14
8.2 EUT Pseudorandom Frequency Hopping Sequence158.3 Equal Hopping Frequency Use168.4 Frequency Hopping System169 TEST REQUIREMENTS179.1 20DB&99%BANDWIDTH179.2 CARRIER FREQUENCY SEPARATION299.3 NUMBER OF HOPPING FREQUENCIES329.4 AVERAGE TIME OF OCCUPANCY (DWELL TIME)359.5 MAXIMUM PEAK CONDUCTED OUTPUT POWER419.6 CONDUCTED SUPRIOUS EMISSION489.7 RADIATED SPURIOUS EMISSION589.8 CONDUCTED EMISSION TEST67		
9.1 20DB&99%BANDWIDTH179.2 CARRIER FREQUENCY SEPARATION299.3 NUMBER OF HOPPING FREQUENCIES329.4 AVERAGE TIME OF OCCUPANCY (DWELL TIME)359.5 MAXIMUM PEAK CONDUCTED OUTPUT POWER419.6 CONDUCTED SUPRIOUS EMISSION489.7 RADIATED SPURIOUS EMISSION589.8 CONDUCTED EMISSION TEST67	8.2 EUT Pseudorandom Frequency Hopping Sequence8.3 Equal Hopping Frequency Use8.4 Frequency Hopping System	15 16 16
9.2 CARRIER FREQUENCY SEPARATION299.3 NUMBER OF HOPPING FREQUENCIES329.4 AVERAGE TIME OF OCCUPANCY (DWELL TIME)359.5 MAXIMUM PEAK CONDUCTED OUTPUT POWER419.6 CONDUCTED SUPRIOUS EMISSION489.7 RADIATED SPURIOUS EMISSION589.8 CONDUCTED EMISSION TEST67	9 TEST REQUIREMENTS	17
	 9.2 CARRIER FREQUENCY SEPARATION 9.3 NUMBER OF HOPPING FREQUENCIES	29 32 35 41 48 58

1 **TEST RESULT CERTIFICATION**

Applicant	:	Zeeva International Limited
Address	:	Suite 1007B, 10th Floor, Exchange Tower, 33 Wang Chiu Road, Kowloon Bay, Hong Kong, China
Manufacturer	:	Zeeva International Limited
Address	:	Suite 1007B, 10th Floor, Exchange Tower, 33 Wang Chiu Road, Kowloon Bay, Hong Kong, China
EUT	:	F24 TWS CLASSIC AST6
Model Name	:	EP-0652-AST6
Trademark	:	N.A

Measurement Procedure Used:

APPLICABLE STANDARDS				
STANDARD TEST RESULT				
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C	PASS			
IC RSS-GEN, Issue 5(04-2018)+A1(03-2019)+A2(02-2021) IC RSS-247 Issue 2(02-2017)	PASS			

The above equipment was tested by EMTEK(DONGGUAN) CO., LTD. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2, Part 15.247, IC RSS-247 Issue 2 and IC RSS-GEN, Issue 5.

The test results of this report relate only to the tested sample identified in this report

Date of Test :

June 19,2023 to June 29,2023

Prepared by :

Reviewer :

arren Deng

Warren Deng /Editor

)) a l

Tim Dong /Supervisor

Approve & Authorized Signer :

Sam Lv / Manager

EMTEK (Dongguan) Co., Ltd.

Modified History

Version	Report No.	Revision Date	Summary
	EDG2306190117E00101R	/	Original Report

东莞市信测科技有限公司 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn EMTEK (Dongguan) Co., Ltd. Add: -182/F , Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base .No.9. Xincheng Avenue Songshanky High-technology Industrial Development Zong Add: -182/F , Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base , No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China Http://www.emtek.com.cn E-mail: project@emtek.com.cn

2 **EUT TECHNICAL DESCRIPTION**

Characteristics	Description		
Product:	F24 TWS CLASSIC AST6		
Model Number:	EP-0652-AST6		
SKU:	9096850, 9096851, 9096852, 9096853, 9096854		
UPC:	922342841457, 1922342841464, 1922342841471, 1922342841488, 922342841495		
COLOR:	BLACK, WHITE, BLUE, PINK, DARK RED		
Sample:	1#		
Data Rate:	1Mbps for GFSK modulation 2Mbps for π/4-DQPSK modulation 3Mbps for 8DPSK modulation		
Modulation:	GFSK, π/4-DQPSK, 8DPSK		
Operating Frequency Range(s) :	2402-2480MHz		
Number of Channels:	79 channels		
Transmit Power Max:	1.04 dBm(0.001271 W)		
Antenna Type:	Bipolar Antenna		
Antenna Gain:	-1.3 dBi		
Power supply:	DC 5V from USB DC 3.7V from battery		
Product SW/HW version:	HW: V1.1 SW: s563		
Radio SW/HW version:	HW: V1.1 SW: s563		
Temperature Range:	-10°C ~ +45°C		

Note1: for more details, please refer to the User's manual of the EUT.

FCC Part Clause	IC Part Clause	Test Parameter	Verdict	Remark
15.247(a)(1)	RSS-247.5.1 RSS-Gen.6.7	Emission Bandwidth	PASS	
15.247(a)(1)	RSS-247.5.1	Carrier Frequency Separation	PASS	
15.247(a)(1)	RSS-247.5.1	Number of Hopping Frequencies	PASS	
15.247(a)(1)	RSS-247.5.1	Average Time of Occupancy (Dwell Time)	PASS	
15.247(b)(1)	RSS-247.5.4 RSS-Gen 6.12	Maximum Peak Conducted Output Power	PASS	
15.247(d)	RSS-247 5.5	Conducted Spurious Emissions	PASS	
15.247(d) 15.209 15.205	RSS-Gen 8.9 RSS-Gen 8.10 RSS-Gen 6.13 RSS-247 3.3 RSS-247 5.5	Radiated Spurious Emissions	PASS	
15.207	RSS-Gen 8.8	Conducted Emission	PASS	
15.203 15.247(b)	RSS-Gen 6.8 RSS-247 5.4	Antenna Application	PASS	
15.247 (a) (1)/g/h	-	Frequency Hopping System	PASS	

SUMMARY OF TEST RESULT 3

NOTE1: N/A (Not Applicable)

NOTE2: According to FCC OET KDB 558074, the report use radiated measurements in the restricted frequency bands. In addition, the radiated test is also performed to ensure the emissions emanating from the device cabinet also comply with the applicable limits.

RELATED SUBMITTAL(S) / GRANT(S):

This submittal(s) (test report) is intended for FCC ID: 2ADM5-EP-0652-C filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

TEST METHODOLOGY 4

GENERAL DESCRIPTION OF APPLIED STANDARDS 4.1

According to its specifications, the EUT must comply with the requirements of the following standards: FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C IC RSS-GEN, Issue 5(04-2018)+A1(03-2019)+A2(02-2021) IC RSS-247 Issue 2(02-2017) FCC KDB 558074 D01 15.247 Meas Guidance v05r02

4.2 MEASUREMENT EQUIPMENT USED

Conducted Emission Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
EMI Test Receiver	Rohde&Schwarz	ESCI	100137	2023/5/11	1Year
AMN	Rohde&Schwarz	ENV216	101209	2023/5/11	1Year
AMN	Rohde&Schwarz	ENV216	100017	2023/5/11	1Year
RF Switching Unit	CDS	RSU-M2	38401	2023/5/11	1Year
AMN	Schwarzbeck	NNLK8121	8121-641	2023/5/11	1Year
AMN	Rohde&Schwarz	ESH3-Z6	101101	2023/5/11	1Year
AMN	Rohde&Schwarz	ESH3-Z6	101102	2023/5/11	1Year
Power Splitters & Dividers	Weinschel Associates	WA1506A	A1066	2023/5/11	1Year
Current Probe	FCC	F-52	8377	2023/5/11	1Year
Passive voltage probe	Rohde&Schwarz	ESH2-Z3	100122	2023/5/11	1Year

For Spurious Emissions Test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
EMI Test Receiver	Rohde&Schwarz	ESCI	101415	2023/5/11	1Year
Bi-log Hybrid Antenna	Schwarzbeck	VULB9163	141	2023/5/15	1Year
Pre-Amplifie	HP	8447F	OPTH64	2023/5/11	1 Year
Signal Analyzer	R&S	FSV30	103039	2023/5/11	1 Year
Horn Antenna	Schwarzbeck	BBHA9120D	1272	2023/5/15	1Year
Horn Antenna	Schwarzbeck	BBHA9170	9170-567	2023/5/15	1Year
Pre-Amplifie	LUNAR EM	PM1-18-40	J1010000081	2023/5/11	1Year
Loop antenna	Schwarzbeck	FMZB1519	1519-012	2023/5/15	1Year

For other test items:

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Wireless Connectivity Tester	R&S	CMW270	102543	2023/05/11	1Year
Automatic Control Unit	Tonscend	JS0806-2	2118060480	2023/05/11	1Year
Signal Analyzer	KEYSIGHT	N9010B	MY60242456	2023/05/11	1Year
Analog Signal Generator	KEYSIGHT	N5173B	MY61252625	2023/05/11	1Year
UP/DOWN-Converter	R&S	CMW-Z800A	100274	2023/05/11	1Year
Vector Signal Generator	KEYSIGHT	N5182B	MY61252674	2023/05/11	1Year
Frequency Extender	KEYSIGHT	N5182BX07	MY59362541	2023/05/11	1Year
Temperature&Humidity test chamber	ESPEC	EL-02KA	12107166	2023/05/11	1 Year

4.3 DESCRIPTION OF TEST MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation(DH5); 2Mbps for π /4-DQPSK modulation(2DH5); 3Mbps for 8DPSK modulation(3DH5);)were used for all test.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

requercy and channel list of Didetooth									
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)				
0	2402	39	2441						
1	2403	40	2442	76	2478				
2	2404	41	2443	77	2479				
				78	2480				
Note: fc=2402MHz+k×1MHz k=0 to 78									

Frequency and Channel list for Bluetooth

Test Frequency and channel for Bluetooth

Lowest F	Frequency	Middle F	Middle Frequency		st Frequency
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	39	2441	78	2480

4.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

During testing, channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN

Test software version:		bt_tool_v1.1.2	
Frequency (MHz)	2402	2441	2480
GFSK	6	6	6
π/4-DQPSK	6	6	6
8DPSK	6	6	6

EMTEK (Dongguan) Co., Ltd.

FACILITIES AND ACCREDITATIONS 5

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at:

EMTEK (DONGGUAN) CO., LTD.

-1&2/F.,Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base, No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with preselectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 LABORATORY ACCREDITATIONS AND LISTINGS

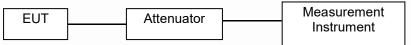
Site Description EMC Lab.	 Accredited by CNAS, 2020.08.27 The certificate is valid until 2024.07.05 The Laboratory has been assessed and proved to be in compliance with CNAS-CL01:2018 The Certificate Registration Number is L3150 Accredited by FCC Designation Number: CN1300 Test Firm Registration Number: 945551 Accredited by A2LA, April 05, 2021 The Certificate Registration Number is 4321.02 Accredited by Industry Canada The Certificate Registration Number is CN0113
Name of Firm	: EMTEK (DONGGUAN) CO., LTD.
Site Location	 -1&2/F.,Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base, No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China

6 **TEST SYSTEM UNCERTAINTY**

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Parameter	Measurement Uncertainty
Radio Frequency	±1x10^-5
Maximum Peak Output Power Test	±1.0dB
Conducted Emissions Test	±2.0dB
Radiated Emission Test	±2.0dB
Power Density	±2.0dB
Occupied Bandwidth Test	±1.0dB
Band Edge Test	±3dB
All emission, radiated	±3dB
Antenna Port Emission	±3dB
Temperature	±0.5°C
Humidity	±3%

Measurement Uncertainty for a level of Confidence of 95%


东莞市信测科技有限公司 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn EMTEK (Dongguan) Co., Ltd. Add: -182/F "Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Rase No.9. Xincheng Avenue Spracebasky kitch technology Industriel Development Zone Add: -182/F ., Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base , No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China Http://www.emtek.com.cn E-mail: project@emtek.com.cn

SETUP OF EQUIPMENT UNDER TEST 7

7.1 RADIO FREQUENCY TEST SETUP 1

The Bluetooth component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements.

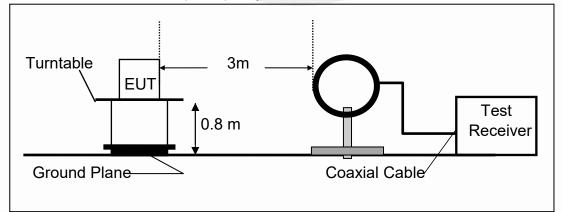
7.2 RADIO FREQUENCY TEST SETUP 2

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

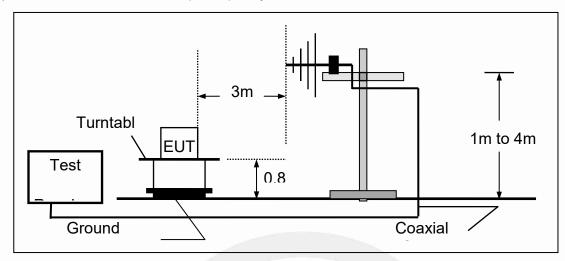
Below 30MHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. The center of the loop shall be 1 m above the ground. For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT.

Above 30MHz:

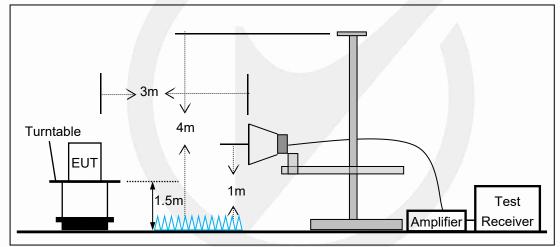

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

Above 1GHz:


(Note: the FCC's permission to use 1.5m as an alternative per TCBC Conf call of Dec. 2, 2014.)

The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

(a) Radiated Emission Test Set-Up, Frequency Below 30MHz



(b) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(c) Radiated Emission Test Set-Up, Frequency above 1000MHz

 东第市信测科技有限公司

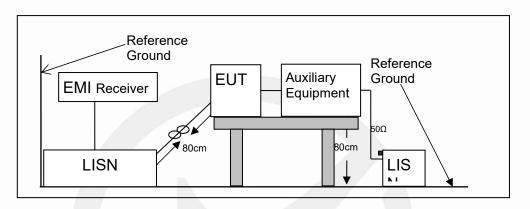
 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn

 EMTEK(Dongguan) Co., Ltd

 Add: -182/F .,Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songshanhu High-technology Industrial Development Zone,

 Dongguan, Guangdong,China

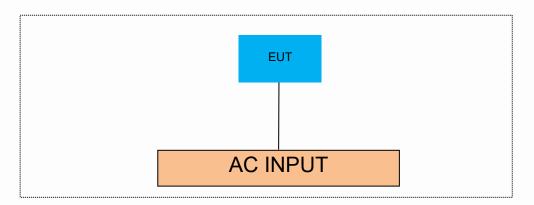
 Http://www.emtek.com.cn



7.3 CONDUCTED EMISSION TEST SETUP

The mains cable of the EUT (Perfect Share Mini) must be connected to LISN. The LISN shall be placed 0.8m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN.

Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.8m.


According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

EMTEK (Dongguan) Co., Ltd.

7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

7.5 SUPPORT EQUIPMENT

EUT Cable List and Details						
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite			
1	/	1	1			

Cable Description Length	n (m) Shielded/Unshield	ded With / Without Ferrite
	1	1

Auxiliary Equipment List and Details								
Description	Manufacturer	Model	Serial Number					
Notebook Lenovo		E46L	11S168003748Z0LR06E0HG					
Adaptor	Apple	1	1					
	1	1						

Notes:

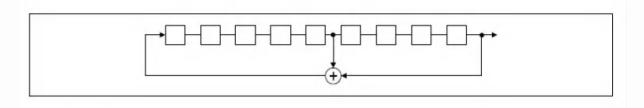
- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

FREQUENCY HOPPING SYSTEM REQUIREMENTS 8

8.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

(g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.


(h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

8.2 EUT Pseudorandom Frequency Hopping Sequence

The channel is represented by a pseudo-random hopping sequence hopping through the 79 RF channels. The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master; the phase in the hopping sequence is determined by the Bluetooth clock of the master. The channel is divide into time slots where each slot corresponds to an RF hop frequency. Consecutive hops correspond to different RF hop frequencies. The normal hop is 1 600 hops/s.

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage, and the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. Number of shift register stages: 9

Length of pseudo-random sequence: 29-1 = 511 bits Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

0246	62 64 78 1	73 75 77

ITEK (Dongguan) Co., Ltd.

Each frequency used equally on the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

8.3 Equal Hopping Frequency Use

All Bluetooth units participating in the piconet are time and hop-synchronized to the channel.

Example of a 79 hopping sequence in data mode:

35, 27, 6, 44, 14, 61, 74, 32, 1, 11, 23, 2, 55, 65, 29, 3, 9, 52, 78, 58, 40, 25, 0, 7, 18, 26, 76, 60, 47, 50, 2, 5, 16, 37, 70, 63, 66, 54, 20, 13, 4, 8, 15, 21, 26, 10, 73, 77, 67, 69, 43, 24, 57, 39, 46, 72, 48, 33, 17, 31, 75, 19, 41, 62, 68, 28, 51, 66, 30, 56, 34, 59, 71, 22, 49, 64, 38, 45, 36, 42, 53 Each Frequency used equally on the average by each transmitter

8.4 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule.

This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1.600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH- enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

9 TEST REQUIREMENTS

9.1 20DB&99%BANDWIDTH

9.1.1 **Applicable Standard**

According to FCC Part 15.247(a)(1) and KDB 558074 D01 15.247 MEAS GUIDANCE v05r02 According to IC RSS-247.5.1 and RSS-Gen.6.7

9.1.2 **Conformance Limit**

No limit requirement.

9.1.3 **Test Configuration**

Test according to clause 7.1 radio frequency test setup 1

9.1.4 **Test Procedure**

The EUT was operating in Bluetooth mode and controlled its channel. Printed out the test result from the spectrum by hard copy function.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously

Set RBW = 30 kHz.

Set the video bandwidth (VBW) =100 kHz.

Set Span= approximately 2 to 3 times the 20 dB bandwidth

Set Detector = Peak.

Set Trace mode = max hold.

Set Sweep = auto couple.

The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the markerdelta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission.

If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation.

Measure and record the results in the test report.

Test Results

Temperature:	25° C
Relative Humidity:	45%
ATM Pressure:	1011 mbar

Note: N/A

20dB Emission Bandwidth

TestMode	Antenna	Frequency[MHz]	20db EBW[мнz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
DH5	Ant1	2402	0.975	2401.481	2402.456		
DH5	Ant1	2441	0.960	2440.496	2441.456		
DH5	Ant1	2480	0.972	2479.481	2480.453		
2DH5	Ant1	2402	1.278	2401.340	2402.618		
2DH5	Ant1	2441	1.284	2440.340	2441.624		
2DH5	Ant1	2480	1.278	2479.340	2480.618		
3DH5	Ant1	2402	1.284	2401.328	2402.612		
3DH5	Ant1	2441	1.281	2440.331	2441.612		
3DH5	Ant1	2480	1.281	2479.328	2480.609		

EMTEK (Dongguan) Co., Ltd.

pectrum Analyzer 1 wept SA Ö + Frequency Input Z: 50 Ω Corr CCorr Freq Ref. Int (S) KEYSIGHT Input RF Center Frequency Settings + Align Auto 2,402000000 GHz рррррр L)XI Span AMkr3 975 kHz 1 Spectrum 3.00000000 MHz ۲ Ref LvI Offset 12.20 dB Ref Level 30.00 dBm Scale/Div 10 dB 0.05 dE Swept Span Zero Span Full Span Start Freq 2.400500000 GHz **3**∆1 01~ 1-23.86 dE Stop Freq 2.403500000 GHz AUTO TUNE Center 2.402000 GHz #Video BW 100 kHz Span 3.000 MHz CF Step #Res BW 30 kHz Sweep 1.07 ms (1001 pts) 300.000 kHz 5 Marker Table ÷. Auto Man Trace Scale Х Y Function Function Width Function Value Mode 2.401 481 GHz -23.93 dBm 2.401 967 GHz -3.860 dBm N N Freq Offset 0 Hz Δ1 (Δ) 975 kHz (Δ) 0.04528 dB Local X Axis Scale Log Lin 手 っ c i ? Jun 19, 2023 💬 X .:: 📎 DH5-Ant1-2402 Spectrum Analyzer 1 Swept SA Ö + Frequency #Atten: 40 dB PNO: Best Wide µW Path: Standard Gate: Off IF Gain: Low Sig Track: Off #Avg Type: Power (RMS 1 2 3 4 5 6 Trig: Free Run Input Z: 50 Ω Corr CCorr Freq Ref. Int (S) KEYSIGHT Input RF Center Frequency 2.441000000 GHz Settings + Align: Auto MWWWW рррррр LXI. pan AMkr3 960 kHz 1 Spectrum 3.00000000 MHz Ref LvI Offset 11.97 dB Ref Level 30.00 dBm -0.07 dE Scale/Div 10 dB Swept Span Zero Span Full Span 3∆1 Start Freq 2.439500000 GHz 01 1 23 03 d Stop Freq 2.442500000 GHz AUTO TUNE enter 2.441000 GHz #Video BW 100 kHz Span 3.000 MHz #Res BW 30 kHz Sweep 1.07 ms (1001 pts) CF Step 300.000 kHz 5 Marker Table Auto Man X Y 2.440 496 GHz -23.17 dBm 2.440 964 GHz -3.034 dBm 960 kHz (Δ)-0.06585 dB Trace Scale Function Function Width Function Value Mode N Freq Offset 0 Hz Δ1 (Δ) Local X Axis Scale Log Lin 日う C¹ 「? Jun 19, 2023 … X .:: 📎 DH5-Ant1-2441

EMTEK (Dongguan) Co., Ltd.

EMTEK (Dongguan) Co., Ltd.

pectrum Analyzer 1 wept SA Ö + Frequency Input Z: 50 Ω Corr CCorr Freq Ref. Int (S) KEYSIGHT Input RF Center Frequency Settings Align Auto 2,441000000 GHz рррррр L)XI Span ΔMkr3 1.284 MHz 1 Spectrum 3.00000000 MHz ۲ Ref LvI Offset 11.97 dB Ref Level 30.00 dBm Scale/Div 10 dB 0.42 dt Swept Span Zero Span Full Span Start Freq 2.439500000 GHz 3∆1 L<mark>1 23 19 d</mark>E Stop Freq 2.442500000 GHz AUTO TUNE Center 2.441000 GHz #Video BW 100 kHz Span 3.000 MHz CF Step #Res BW 30 kHz Sweep 1.07 ms (1001 pts) 300.000 kHz 5 Marker Table ÷. Auto Man Mode Trace Scale Х Y Function Function Width Function Value 2.440 340 GHz -23.67 dBm 2.440 961 GHz -3.187 dBm NN Freq Offset 0 Hz 1.284 MHz (Δ) 0.4224 dB Δ1 (Δ) Local X Axis Scale Log Lin X 2DH5-Ant1-2441 Spectrum Analyzer 1 Wept SA Ö + Frequency #Atten: 40 dB PNO Best Wide μW Path: Standard Gate. Off IF Gain: Low Sig Track: Off #Avg Type: Power (RMS 1 2 3 4 5 6 Trig: Free Run Input Z: 50 Ω Corr CCorr Freq Ref. Int (S) KEYSIGHT Input RF Center Frequency 2.480000000 GHz Settings Align: Auto MWWWW рррррр LNI . ban ΔMkr3 1.278 MHz 1 Spectrum 3.00000000 MHz Ref LvI Offset 12.04 dB Ref Level 30.00 dBm 0.41 dE Scale/Div 10 dB Swept Span Zero Span Full Span Start Freq 2.478500000 GHz 1-24-15 di Stop Freq 2.481500000 GHz AUTO TUNE enter 2.480000 GHz #Video BW 100 kHz Span 3.000 MHz #Res BW 30 kHz Sweep 1.07 ms (1001 pts) CF Step 300.000 kHz 5 Marker Table Auto Man Trace Scale Function Function Width Function Value Mode
 Λ
 I

 2.479 340 GHz
 -24.62 dBm

 2.479 964 GHz
 -4.146 dBm

 1.278 MHz (Δ)
 0.4105 dB
 N Freq Offset 0 Hz Δ1 (Δ) Local X Axis Scale Log Lin H ら で 「 ? Jun 19, 2023
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 Size:10 PM
 X .:: 📎 2DH5-Ant1-2480

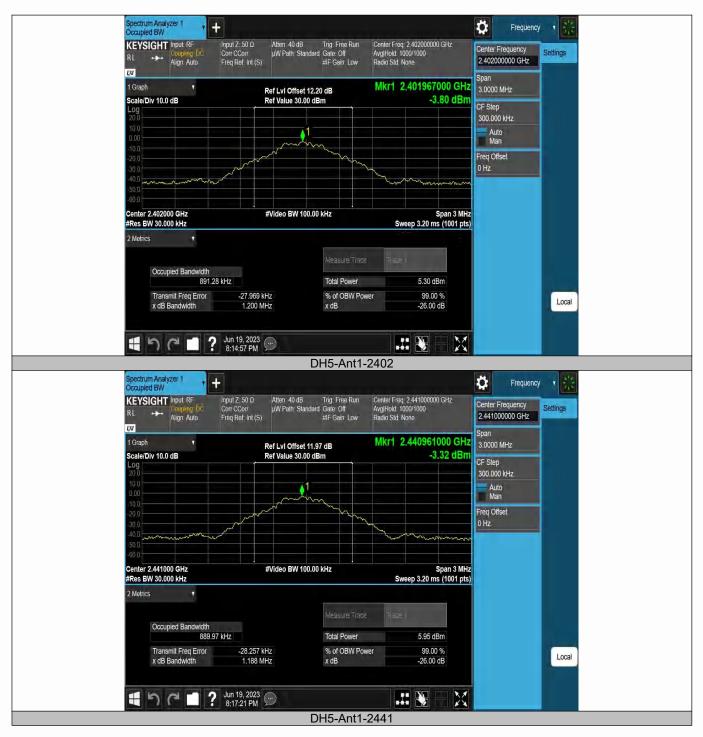
EMTEK (Dongguan) Co., Ltd.

EMTEK (Dongguan) Co., Ltd.

pectrum Analyzer 1 wept SA Ö + Frequency Input Z: 50 Ω Corr CCorr Freq Ref. Int (S) KEYSIGHT Input RF Center Frequency 2.480000000 GHz Settings Align Auto рррррр LNI Span ΔMkr3 1.281 MHz 1 Spectrum Ref LvI Offset 12.04 dB Ref Level 30.00 dBm 3.00000000 MHz Scale/Div 10 dB 0.02 dE Swept Span Zero Span og Full Span $\Diamond 2$ Start Freq 2.478500000 GHz 3∆1 1-24.16 dE Stop Freq 2.481500000 GHz AUTO TUNE Span 3.000 MHz Sweep 1.07 ms (1001 pts) Center 2.480000 GHz #Video BW 100 kHz #Res BW 30 kHz CF Step 300.000 kHz 5 Marker Table ×. Auto Man Mode Trace Scale Х Y Function Function Width Function Value 2.479 328 GHz -24.32 dBm 2.479 964 GHz -4.164 dBm N N Freq Offset 0 Hz 1.281 MHz (Δ) 0.02107 dB Δ1 (Δ) Local X Axis Scale Log Lin 🕂 🖒 🥂 🖬 ? Jun 19, 2023 X 3DH5-Ant1-2480

EMTEK (Dongguan) Co., Ltd.

Occupied Channel Bandwidth


TestMode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
DH5	Ant1	2402	0.89128	2401.5264	2402.4177		
DH5	Ant1	2441	0.88997	2440.5268	2441.4167		
DH5	Ant1	2480	0.89548	2479.5237	2480.4192		
2DH5	Ant1	2402	1.1717	2401.3835	2402.5552		
2DH5	Ant1	2441	1.1731	2440.3835	2441.5566		
2DH5	Ant1	2480	1.1754	2479.3813	2480.5567		
3DH5	Ant1	2402	1.1822	2401.3788	2402.5610		
3DH5	Ant1	2441	1.1831	2440.3787	2441.5618		
3DH5	Ant1	2480	1.1858	2479.3748	2480.5606		

东莞市信测科技有限公司 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn EMTEK (Dongguan) Co., Ltd. Add: -182/F , Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base .No.9. Xincheng Avenue Songshanky High-technology Industrial Development Zong Add: -182/F ., Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base , No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China Http://www.emtek.com.cn E-mail: project@emtek.com.cn

pectrum Analyzer 1 Occupied BW Ö + Frequency Input Z: 50 Ω Corr CCorr Freq Ref. Int (S) Atten: 40 dB Trig: Free Run µW Path: Standard Gate: Off #IF Gain: Low Center Freq: 2.441000000 GHz KEYSIGHT Input RF Center Frequency 2.441000000 GHz Avg|Hold: 1000/100 Radio Std: None Settings Align Auto L)XI Span Mkr1 2,440961000 GHz 1 Graph 3.0000 MHz Ref LvI Offset 11.97 dB Ref Value 30.00 dBm Scale/Div 10.0 dB -3.08 dBm CF Step 300.000 kHz Auto Man Freq Offset 0 Hz Span 3 MHz Sweep 3.20 ms (1001 pts) #Video BW 100.00 kHz Center 2.441000 GHz #Res BW 30.000 kHz 2 Metrics Occupied Bandwidth 1.1731 MHz Total Power 5.59 dBm Transmit Freq Error x dB Bandwidth -29.915 kHz % of OBW Power x dB 99.00 % Local 1.371 MHz -26.00 dB モッペロ? Jun 19, 2023 💬 X .: 📎 2DH5-Ant1-2441 Spectrum Analyzer 1 Occupied BW Ö + 1 Frequency Input Z: 50 Ω Corr CCorr Freq Ref. Int (S) Atten: 40 dB Trig: Free Run µW Path: Standard Gate: Off #IF Gain: Low Center Freq: 2.480000000 GHz Avg|Hold: 1000/1000 Radio Std. None KEYSIGHT Input RF Center Frequency 2.480000000 GHz Settings Align: Auto LNI | Span Mkr1 2.479967000 GHz 1 Graph 3.0000 MHz Ref LvI Offset 12.04 dB Ref Value 30.00 dBm -4.19 dBm Scale/Div 10.0 dB CF Step 300.000 kHz Auto Man Δ1 Freq Offset 0 Hz Center 2.480000 GHz #Res BW 30.000 kHz #Video BW 100.00 kHz Span 3 MHz Sweep 3.20 ms (1001 pts) 2 Metrics Occupied Bandwidth 1.1754 MHz Total Power 4.43 dBm -31.002 kHz % of OBW Power Transmit Freq Error 99.00 % Local x dB Bandwidth 1.370 MHz x dB -26.00 dB モーク C* ニ ? Jun 19, 2023 💬 X .:: 📎 2DH5-Ant1-2480

pectrum Analyzer 1 Occupied BW Ö + Frequency Input Z: 50 Ω Corr CCorr Freq Ref. Int (S) Atten: 40 dB Trig: Free Run µW Path Standard Gate. Off #IF Gain. Low Center Freq: 2.402000000 GHz KEYSIGHT Input RF Center Frequency 2.402000000 GHz Avg|Hold: 1000/1000 Radio Std: None Settings Align Auto L)XI Span Mkr1 2,401964000 GHz 1 Graph 3.0000 MHz Ref LvI Offset 12.20 dB Ref Value 30.00 dBm Scale/Div 10.0 dB -3.79 dBm CF Step 300.000 kHz Auto Man Freq Offset 0 Hz Center 2.402000 GHz #Res BW 30.000 kHz Span 3 MHz Sweep 3.20 ms (1001 pts) #Video BW 100.00 kHz 2 Metrics Occupied Bandwidth 1.1822 MHz Total Power 5.12 dBm Transmit Freq Error x dB Bandwidth -30.140 kHz % of OBW Power x dB 99.00 % Local 1.369 MHz -26.00 dB X .:: 📎 3DH5-Ant1-2402 Spectrum Analyzer 1 Occupied BW Ö + Frequency Input Z: 50 Ω Corr CCorr Freq Ref. Int (S) Atten: 40 dB Trig: Free Run µW Path: Standard Gate: Off #IF Gain: Low Center Freq: 2.441000000 GHz Avg|Hold: 1000/1000 Radio Std. None KEYSIGHT Input RF Center Frequency 2.441000000 GHz Settings Align: Auto LNI | Span Mkr1 2,440967000 GHz 1 Graph 3.0000 MHz Ref LvI Offset 11.97 dB Ref Value 30.00 dBm -3.13 dBm Scale/Div 10.0 dB CF Step 300.000 kHz Auto Man Freq Offset 0 Hz Center 2.441000 GHz #Res BW 30.000 kHz #Video BW 100.00 kHz Span 3 MHz Sweep 3.20 ms (1001 pts) 2 Metrics Occupied Bandwidth 1.1831 MHz Total Power 5.77 dBm % of OBW Power Transmit Freq Error -29.768 kHz 99.00 % Local x dB Bandwidth 1.370 MHz x dB -26.00 dB モッペロ? Jun 19, 2023 💬 X .:: 📎 3DH5-Ant1-2441

Spectrum Analyzer 1 Occupied BW KEYSIGHT Input RF	+ Input Z: 50 Ω Atten: 40 dB Corr CCorr μW Path: Star	Trig: Free Run Idard Gate: Off	Center Freq Avg Hold: 10	2.480000000 GHz	Center	Frequency Frequency	Settings
RL +++ Coupling: DC Align: Auto 1 Graph •	Freq Ref. Int (S) Ref LvI Offset	#IF Gain Low	Radio Std. N	one 479964000 GI	Span 3.0000	000000 GHz	Boungo
Scale/Div 10.0 dB	Ref Value 30.0	0 dBm		-4.28 dB	CF Ste 300.00		
10.0 D.00		1			AL Mi	ito	
-10.0 -20.0 -30.0		mann			Freq O 0 Hz	iffset	
-40.0 -50.0 -60.0			L.m.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~		
Center 2.480000 GHz #Res BW 30.000 kHz	+ #Video BW 10	0.00 kHz	Sw	Span 3 M eep 3.20 ms (1001 p			
2 Metrics •		Measure Trace	Trase				
1.18	58 MHz	Total Power		4.61 dBm			
Transmit Freq Error x dB Bandwidth	-32.345 kHz 1.373 MHz	% of OBW Pow x dB	er	99.00 % -26.00 dB			Local
4 n c 1	? Jun 19, 2023 💬						
		3DH5-Ant1-	2480				

9.2 CARRIER FREQUENCY SEPARATION

9.2.1 **Applicable Standard**

According to FCC Part 15.247(a)(1) and KDB 558074 D01 15.247 MEAS GUIDANCE v05r02 According to IC RSS-247.5.1

9.2.2 **Conformance Limit**

Frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20dB bandwidth of the hopping channel, whichever is greater.

In case of an output power less than 125mW, the frequency hopping system may have channels separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

9.2.3 **Test Configuration**

Test according to clause 7.1 radio frequency test setup 1

9.2.4 **Test Procedure**

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

Set VBW =300kHz. Set the RBW =300kHz.

Set the span = wide enough to capture the peaks of two adjacent channels

Set Sweep time = auto couple.

Set Detector = peak. Set Trace mode = max hold.

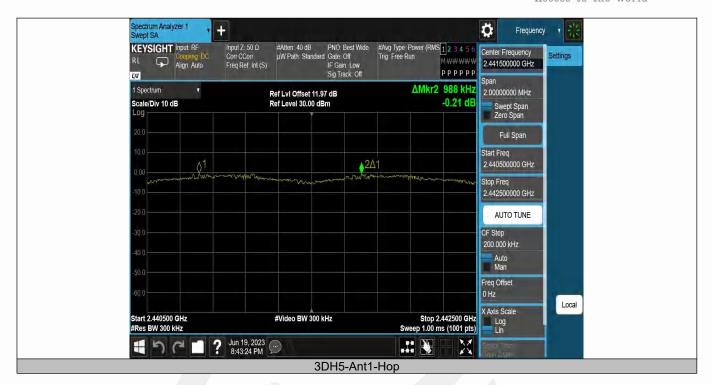
Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section. Submit this plot.

Test Results

Temperature:	25° C
Relative Humidity:	45%
ATM Pressure:	1011 mbar

Note: For Limit = 20dB bandwidth * 2/3

TestMode	Antenna	Frequency[MHz]	Result[MHz]	Limit[MHz]	Verdict
DH5	Ant1	Нор	0.984	≥0.975	PASS
2DH5	Ant1	Нор	0.986	≥0.856	PASS
3DH5	Ant1	Нор	0.988	≥0.856	PASS


EMTEK (Dongguan) Co., Ltd.

EMTEK (Dongguan) Co., Ltd.

EMTEK (Dongguan) Co., Ltd.

9.3 NUMBER OF HOPPING FREQUENCIES

9.3.1 **Applicable Standard**

According to FCC Part 15.247(a)(1) and KDB 558074 D01 15.247 MEAS GUIDANCE v05r02 According to IC RSS-247.5.1

9.3.2 **Conformance Limit**

Frequency hopping systems operating in the 2400-2483.5MHz band shall use at least 15 channels.

9.3.3 **Test Configuration**

Test according to clause 7.1 radio frequency test setup 1

9.3.4 **Test Procedure**

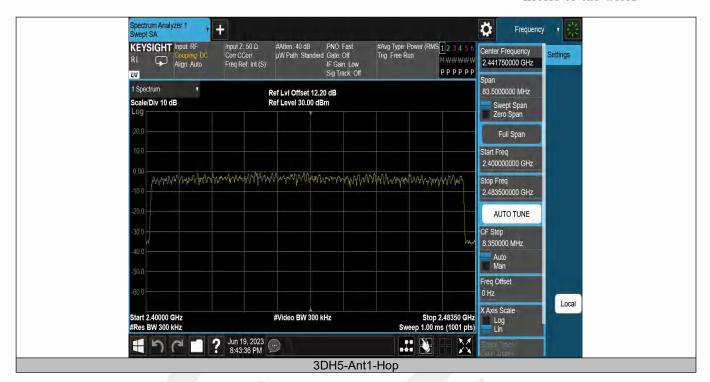
The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation (2400-2483.5MHz) RBW = 300 KHzVBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. It may prove necessary to break the span up to sections, in order to clearly show all of the hopping frequencies.

Test Results

Temperature:	25° C
Relative Humidity:	45%
ATM Pressure:	1011 mbar

Note: N/A

TestMode	Antenna	Freq(MHz)	Result[Num]	Limit[Num]	Verdict
DH5	Ant1	Нор	79	≥15	PASS
2DH5	Ant1	Нор	79	≥15	PASS
3DH5	Ant1	Нор	79	≥15	PASS


EMTEK (Dongguan) Co., Ltd.

EMTEK (Dongguan) Co., Ltd.

EMTEK (Dongguan) Co., Ltd.

9.4 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

9.4.1 **Applicable Standard**

According to FCC Part 15.247(a)(1) and KDB 558074 D01 15.247 MEAS GUIDANCE v05r02 According to IC RSS-247.5.1

9.4.2 **Conformance Limit**

For frequency hopping systems operating in the 2400-2483.5MHz band, the average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

9.4.3 **Test Configuration**

Test according to clause 7.1 radio frequency test setup 1

9.4.4 **Test Procedure**

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

Span = zero span, centered on a hopping channel

RBW = 1 MHz

VBW ≥ RBW

Sweep = as necessary to capture the entire dwell time per hopping channel

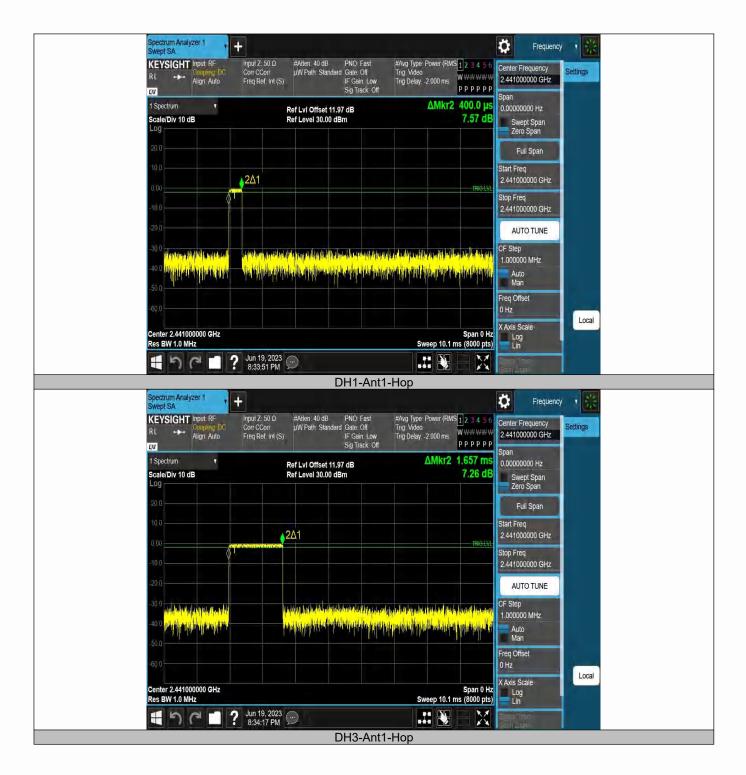
Detector function = peak

Trace = max hold

If possible, use the marker-delta function to determine the dwell time. If this value

varies with different modes of operation (e.g., data rate, modulation format, etc.),

repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section.

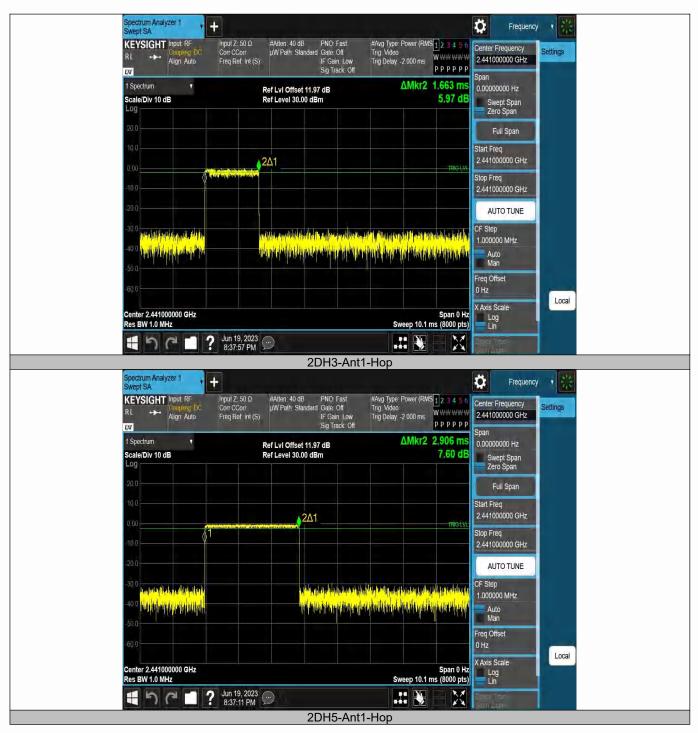

9.4.5 **Test Results**

Temperature:	25° C
Relative Humidity:	45%
ATM Pressure:	1011 mbar

Note: TotalHops(DH1)=(1600/2/79)*31.6 TotalHops(DH3)=(1600/4/79)*31.6 TotalHops(DH5)=(1600/6/79)*31.6 Dwell Time= BurstWidth* TotalHops

TestMode	Antenna	Frequency[MHz]	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.400	320	0.128	≤0.4	PASS
DH3	Ant1	Нор	1.657	160	0.265	≤0.4	PASS
DH5	Ant1	Нор	2.906	106.67	0.31	≤0.4	PASS
2DH1	Ant1	Нор	0.412	320	0.132	≤0.4	PASS
2DH3	Ant1	Нор	1.663	160	0.266	≤0.4	PASS
2DH5	Ant1	Нор	2.906	106.67	0.31	≤0.4	PASS
3DH1	Ant1	Нор	0.413	320	0.132	≤0.4	PASS
3DH3	Ant1	Нор	1.663	160	0.266	≤0.4	PASS
3DH5	Ant1	Нор	2.913	106.67	0.311	≤0.4	PASS

EMTEK (Dongguan) Co., Ltd.





pectrum Analyzer 1 wept SA Ö + Frequency #Atten: 40 dB PNO: Fast pW Path Standard Gate: Off IF Gain Low Sig Track: Off Input Z: 50 Ω Corr CCorr Freq Ref. Int (S) #Avg Type: Power (RMS 1 2 3 4 5 6 Trig. Video Trig Delay. -2.000 ms KEYSIGHT Input RF Center Frequency 2.441000000 GHz Settings Align Auto рррррр LNI. Span ΔMkr2 2.913 ms 1 Spectrum 0.00000000 Hz Ref LvI Offset 11.97 dB Ref Level 30.00 dBm Scale/Div 10 dB 6.24 dE Swept Span Zero Span _00 Full Span Start Freq 2.441000000 GHz <u>2</u>∆1 Stop Freq 2.441000000 GHz AUTO TUNE CF Step 1.000000 MHz and the light of the state of the in the state **WEATHARD** Auto Man Freq Offset 0 Hz Local X Axis Scale Center 2.441000000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 10.1 ms (8000 pts) Log Lin ? Jun 19, 2023 💬 50 X 3DH5-Ant1-Hop

EMTEK (Dongguan) Co., Ltd.

9.5 MAXIMUM PEAK CONDUCTED OUTPUT POWER

9.5.1 **Applicable Standard**

According to FCC Part 15.247(b)(1) and KDB 558074 D01 15.247 MEAS GUIDANCE v05r02 According to IC RSS-247.5.4 and RSS-Gen 6.12

9.5.2 **Conformance Limit**

The max For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

9.5.3 **Test Configuration**

Test according to clause 7.1 radio frequency test setup 1

9.5.4 **Test Procedure**

As an alternative to a peak power measurement, compliance with the limit can be based on a measurement of the maximum conducted output power.

Use the following spectrum analyzer settings:

Set Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel (about 8MHz)

Set RBW > the 20 dB bandwidth of the emission being measured (about 3MHz)

Set VBW ≥ RBW

Set Sweep = auto

Set Detector function = peak

Set Trace = max hold

Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission to determine the peak amplitude level.

Test Results

Temperature:	25° C
Relative Humidity:	45%
ATM Pressure:	1011 mbar

Note: N/A

EMTEK (Dongguan) Co., Ltd.

Test Mode	Antenna	Frequency[MHz]	Conducted Peak Powert[dBm]	Conducted Limit[dBm]	Verdict
DH5	Ant1	2402	-0.63	≤20.97	PASS
DH5	Ant1	2441	0.03	≤20.97	PASS
DH5	Ant1	2480	-1.12	≤20.97	PASS
2DH5	Ant1	2402	0.09	≤20.97	PASS
2DH5	Ant1	2441	0.51	≤20.97	PASS
2DH5	Ant1	2480	-0.64	≤20.97	PASS
3DH5	Ant1	2402	0.32	≤20.97	PASS
3DH5	Ant1	2441	1.04	≤20.97	PASS
3DH5	Ant1	2480	-0.09	≤20.97	PASS

 东第市信測科技有限公司

 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn

 EMTEK (Dongguan) Co., Ltd.

 Add: -1&2/F , Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base , No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone,

 Dongguan, Guangdong, China Http://www.emtek.com.cn E-mail: project@emtek.com.cn





9.6 CONDUCTED SUPRIOUS EMISSION

9.6.1 **Applicable Standard**

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 MEAS GUIDANCE v05r02 According to IC RSS-247 5.5

9.6.2 **Conformance Limit**

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted, provided the transmitter demonstrates compliance with the peak conducted power limits.

9.6.3 **Test Configuration**

Test according to clause 7.1 radio frequency test setup 1

9.6.4 **Test Procedure**

The transmitter output (antenna port) was connected to the spectrum analyzer

Reference level measurement

Establish a reference level by using the following procedure:

Set instrument center frequency to DSS channel center frequency.

Set Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel.

Set the RBW = 100 kHz. Set the VBW \ge 3 x RBW.

Set Detector = peak. Set Sweep time = auto couple.

Set Trace mode = max hold. Allow trace to fully stabilize.

Use the peak marker function to determine the maximum Maximum conduceted level.

Note that the channel found to contain the maximum conduceted level can be used to establish the reference level.

Band-edge measurement

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the emission operating on the channel closest to the band-edge, as well as any modulation products which fall outside of the authorized band of operation

Set RBW \geq 1% of the span=100kHz Set VBW \geq 3 x RBW

Set Sweep = auto Set Detector function = peak Set Trace = max hold

Allow the trace to stabilize. Set the marker on the emission at the bandedge, or on the highest modulation product outside of the band, if this level is greater than that at the bandedge. Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission. The marker-delta value now displayed must comply with the limit specified in this Section.

Now, using the same instrument settings, enable the hopping function of the EUT. Allow the trace to stabilize. Follow the same procedure listed above to determine if any spurious emissions caused by the hopping function also comply with the specified limit.

Emission level measurement

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. (30MHz to 25GHz). Set RBW = 100 kHz Set VBW ≥ RBW

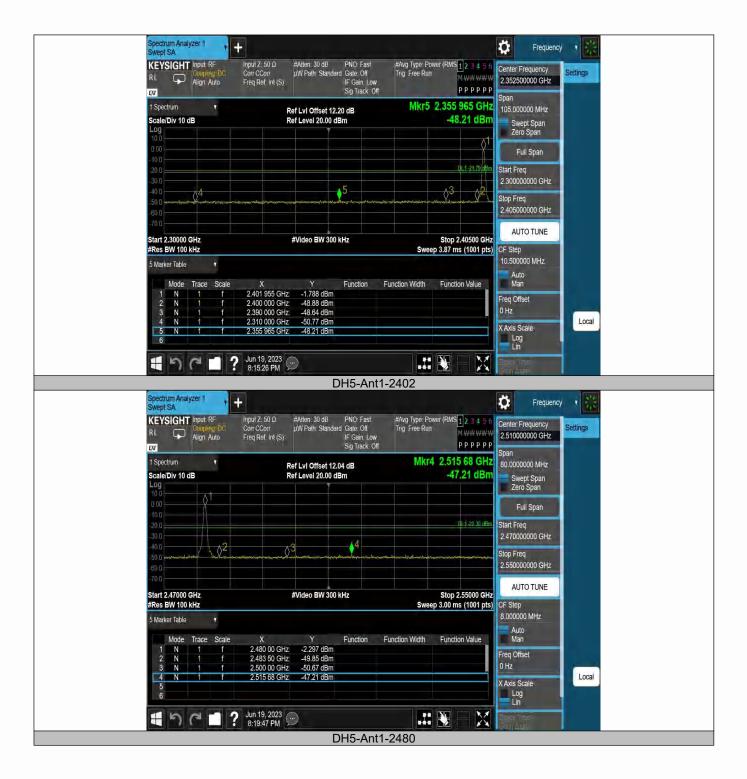
Set Sweep = auto Set Detector function = peak Set Trace = max hold

Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded. The level displayed must comply with the limit specified in this Section.

9.6.5 Test Results

Temperature:	25°C
Relative Humidity:	45%
ATM Pressure:	1011 mbar

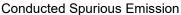
Note: N/A


All the antenna and modes mode have been tested, and the worst result recorded was report as below:

Band edge measurements

TestMode	Antenna	ChName	Frequency[MHz]	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
DH5	Ant1	Low	2402	-1.79	-48.21	≤-21.79	PASS
DH5	Ant1	High	2480	-2.30	-47.21	≤-22.3	PASS
DH5	Ant1	Low	Hop_2402	-2.02	-46.63	≤-22.02	PASS
DH5	Ant1	High	Hop_2480	-2.04	-47.67	≤-22.04	PASS

东莞市信测科技有限公司 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn EMTEK (Dongguan) Co., Ltd. Add: -182/F "Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Rase No.9. Xincheng Avenue Spracebasky kitch technology Industriel Development Zone Add: -182/F ., Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base , No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China Http://www.emtek.com.cn E-mail: project@emtek.com.cn



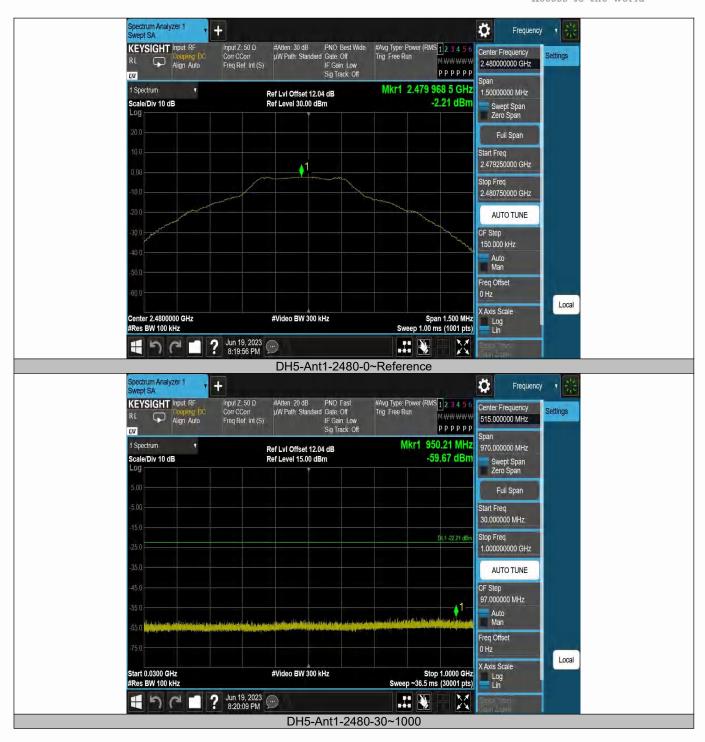
pectrum Analyzer 1 wept SA Ö + Frequency #Avg Type: Power (RMS 12 3 4 5 6 Trig: Free Run #Atten: 30 dB PNO Fast µW Path Standard Gate Off IF Gain Low Sig Track: Off Input Z: 50 Ω Corr CCorr Freq Ref. Int (S) KEYSIGHT Input RF Center Frequency Settings Align Auto MWWWW 2.352500000 GHz рррррр L)XI Span Mkr5 2.344 520 GHz 1 Spectrum 105.000000 MHz ۲ Ref LvI Offset 11.94 dB Ref Level 20.00 dBm Scale/Div 10 dB -46.63 dBn Swept Span Zero Span og Full Span Start Freq 2.300000000 GHz 1-22.02 5 \$3 δ^4 Stop Freq 2.405000000 GHz AUTO TUNE Start 2.30000 GHz #Video BW 300 kHz Stop 2.40500 GHz #Res BW 100 kHz Sweep 3.87 ms (1001 pts) CF Step 10.500000 MHz 5 Marker Table ÷. Auto Man Mode Trace Scale Х v Function Function Width Function Value -2.018 dBm -49.22 dBm -49.15 dBm -51.51 dBm 2.403 950 GHz 2.400 000 GHz 2.390 000 GHz 2.310 000 GHz NNN Freq Offset 23 Local X Axis Scale N 2 344 520 GHz -46.63 dBm Log Lin 目ってこ? Jun 19, 2023 💬 X DH5-Ant1-Hop 2402 Spectrum Analyzer 1 Wept SA Ö x 3, + Frequency #Avg Type: Power (RMS123456 Trig Free Run #Atten: 30 dB PNO: Fast pW Path: Standard Gate: Off IF Gain: Low Sig Track: Off Input Z: 50 Ω Corr CCorr Freq Ref. Int (S) KEYSIGHT Input RF Center Frequency Settings RL 🗭 Align Auto MWWWW 2.510000000 GHz рррррр LXI. pan Mkr4 2,512 00 GHz 1 Spectrum 80.0000000 MHz Ref LvI Offset 11.99 dB Ref Level 20.00 dBm -47.67 dBm Scale/Div 10 dB Swept Span Zero Span Full Span 00 DI 1-22.04 dE Start Freq 2.470000000 GHz 4 02 b^{3} Stop Freq 2.550000000 GHz AUTO TUNE start 2.47000 GHz #Video BW 300 kHz Stop 2.55000 GHz #Res BW 100 kHz Sweep 3.00 ms (1001 pts) CF Step 8.000000 MHz 5 Marker Table Auto Man Trace Scale Function Function Width Function Value Mode х -2.039 dBm -50.02 dBm -49.99 dBm 2.470 00 GHz 2.483 50 GHz 2.500 00 GHz NNN Freq Offset -47.67 dBi Local 2.512 00 0 X Axis Scale Log Lin 6 E 5 C 2 3 Jun 19, 2023 X .:: 📎 DH5-Ant1-Hop 2480

EMTEK (Dongguan) Co., Ltd.


RefLevel Result FreqRange Limit TestMode Antenna Frequency[MHz] Verdict [MHz] [dBm] [dBm] [dBm] DH5 Ant1 2402 0~Reference -1.69 -1.69 PASS ___ DH5 Ant1 2402 30~1000 -1.69 -59.42 ≤-21.69 PASS DH5 Ant1 2402 1000~26500 -1.69 -48.78 ≤-21.69 PASS PASS DH5 Ant1 2441 0~Reference -1.05 -1.05 ---DH5 2441 30~1000 ≤-21.05 PASS Ant1 -1.05 -60.14 DH5 Ant1 2441 1000~26500 -1.05 -49.33 ≤-21.05 PASS DH5 Ant1 2480 0~Reference -2.21 -2.21 PASS ----2.21 DH5 Ant1 2480 30~1000 -59.68 ≤-22.21 PASS DH5 Ant1 2480 1000~26500 -2.21 -49.93 ≤-22.21 PASS

EMTEK (Dongguan) Co., Ltd.

Access to the World



EMTEK (Dongguan) Co., Ltd.

Access to the World

EMTEK (Dongguan) Co., Ltd.

9.7 RADIATED SPURIOUS EMISSION

9.7.1 Applicable Standard

According to FCC Part 15.247(d), 15.205, 15.209 and KDB 558074 D01 15.247 MEAS GUIDANCE v05r02 According to IC RSS-Gen and RSS-247

9.7.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

According to FCC Part15.205, Restricted bands							
MHz	MHz	MHz	GHz				
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15				
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46				
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75				
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5				
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2				
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5				
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7				
6.26775-6.26825	123-138	2200-2300	14.47-14.5				
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2				
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4				
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12				
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0				
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8				
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5				
12.57675-12.57725	322-335.4	3600-4400	(2)				
13.36-13.41							

According to FCC Part15.205, the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009-0.490	2400/F(KHz)	20 log (uV/m)	300
0.490-1.705	0.490-1.705 24000/F(KHz)		30
1.705-30	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

9.7.3 Test Configuration

Test according to clause 7.2 radio frequency test setup 2

9.7.4 Test Procedure

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

For Above 1GHz:

The EUT was placed on a turn table which is 1.5m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz

 $VBW \ge RBW$

Sweep = auto

 东莞市信濃科技有限公司
 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn

 EMTEK (Dongguan) Co., Ltd.
 Add: -18.2/F , Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base , No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone,

 Dongguan, Guangdong, China
 Http://www.emtek.com.cn
 E-mail: project@emtek.com.cn

Detector function = peak Trace = max hold For Below 1GHz: The EUT was placed on a turn table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Span = wide enough to fully capture the emission being measured RBW = 100 kHz for $VBW \ge RBW$ Sweep = auto Detector function = peak Trace = max hold For Below 30MHz: The EUT was placed on a turn table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Span = wide enough to fully capture the emission being measured RBW = 9kHz $VBW \ge RBW$ Sweep = auto Detector function = peak Trace = max hold For Below 150KHz: The EUT was placed on a turn table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Span = wide enough to fully capture the emission being measured RBW = 200Hz $VBW \ge RBW$ Sweep = auto Detector function = peak Trace = max hold Follow the guidelines in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT,

measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b). Submit this data.

Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

Repeat above procedures until all frequency measured was complete.

9.7.5 Test Results

Spurious Emission below 30MHz (9KHz to 30MHz)

Temperature:	22° C
Relative Humidity:	45%
ATM Pressure:	1011 mbar

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m	(dBuV/m)	Over(dB)	
(MHz)	H/V	PK È	AÝ	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor

 家
 市信調科技有限公司
 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层,第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn

 EMTEK (Dongguan) Co., Ltd.
 Add: -182/F , Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base , No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China Http://www.emtek.com.cn

Spurious Emission Above 1GHz (1GHz to 25GHz)

All the antenna(Antenna 1) and modes(GFSK, π /4-DQPSK, 8DPSK) mode have been tested, and the worst(Antenna 1, GFSK) result recorded was report as below:

Test mode:	GFS	К	Freque	ency:	y: Channel 0: 2402MHz		
Freq. (MHz)			Limit 3m(dBuV/m)		Over(dB)		
	H/V	PK	AV	PK	AV	PK	AV
7784.729	V	59.7	44.89	45.42	54	14.28	-9.11
10393.71	V	59.25	44.44	74	54	-14.75	-9.56
14079.08	V	58.78	44	74	54	-15.22	-10.00
8024.608	Н	58.93	44.14	74	54	-15.07	-9.86
10772.98	Н	59.64	44.83	74	54	-14.36	-9.17
12326.27	Н	59.36	44.55	74	54	-14.64	-9.45

Test mode: **GFSK** Frequency:

Channel 39: 2441MHz

Freq.	Ant.Pol.	Emission Lev	Emission Level(dBuV/m) Limit 3m(dBuV/m)		Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV
7818.553	V	59.28	44.49	74	54	-14.72	-9.51
11056.9	V	58.69	43.88	74	54	-15.31	-10.12
14433.43	V	57.83	43.01	74	54	-16.17	-10.99
7836.653	Н	59.22	44.41	74	54	-14.78	-9.59
10652.23	Н	59.7	44.91	74	54	-14.30	-9.09
12545.52	Н	58.44	43.63	74	54	-15.56	-10.37

Test mode:	GFS	K	Frequency: Channel 7		78: 2480MHz		
Freq.	Ant.Pol.	Emission Lev	Emission Level(dBuV/m) Limit 3n		Limit 3m(dBuV/m)		(dB)
(MHz)	H/V	PK	AV	PK	AV	PK	AV
7818.553	V	59.28	44.5	74	54	-14.72	-9.50
11056.9	V	59.19	44.38	74	54	-14.81	-9.62
13949.46	V	58.17	43.36	74	54	-15.83	-10.64
7836.653	Н	58.72	43.91	74	54	-15.28	-10.09
10652.23	Н	59.2	44.41	74	54	-14.80	-9.59
12545.52	Н	57.94	43.12	74	54	-16.06	-10.88

Note:

(1) All Readings are Peak Value (VBW=3MHz) and Average Value (VBW=10Hz).

(2) Emission Level= Reading Level+Correct Factor.

(3) Correct Factor= Ant_F + Cab_L - Preamp

(4) The reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

EMTEK (Dongguan) Co., Ltd.

■ Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz

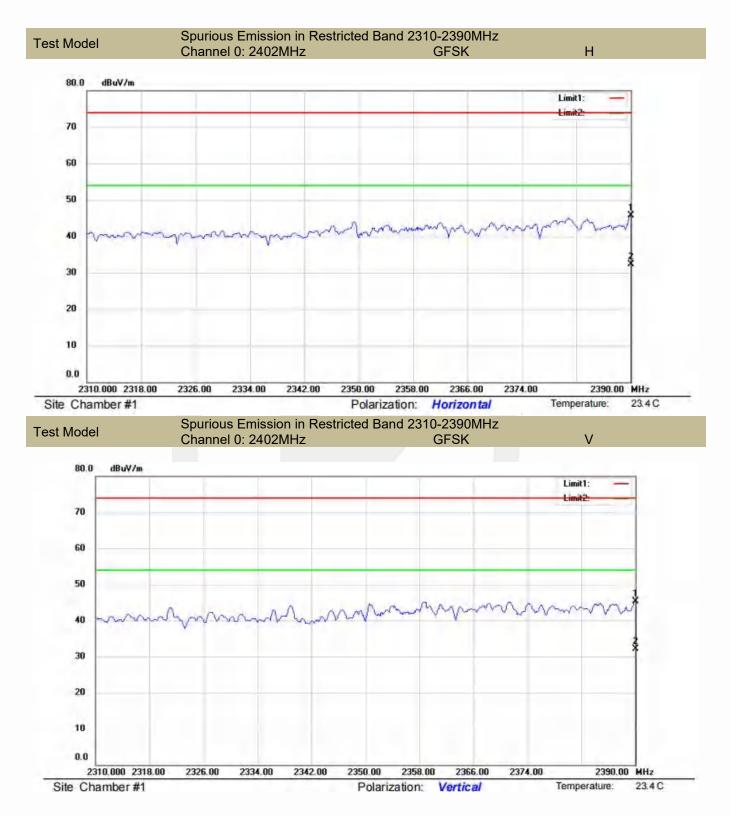
All the antenna(Antenna 1) and modes(GFSK, π/4-DQPSK, 8DPSK, Hopping) mode have been tested, and the worst(Antenna 1, GFSK, Hopping) result recorded was report as below:

Test mode:	GFSK	Frequenc	cy: Ch	Channel 0: 2402MHz		
Frequency (MHz)	Polarity H/V	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)	
2390	Н	45.79	74	32.25	54	
2390	V	45.35	74	32.04	54	

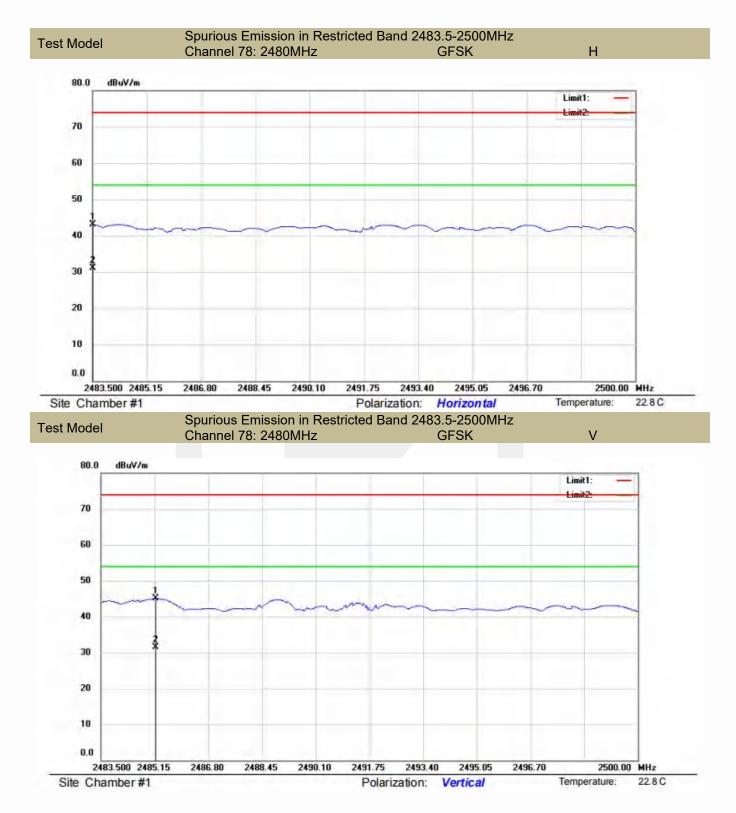
Test mode:	est mode: GFSK		cy: Ch	Channel 78: 2480MHz			
Frequency (MHz)	Polarity H/V	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)		
2483.5	н	43.18	74	31.02	54		
2485.183	V	45.05	74	31.49	54		

Test mode:	GFSK	Frequenc	pping		
Frequency (MHz)	Polarity H/V	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)
2396.26	Н	45.44	74	31.28	54
2400	Н	48.37	74	34.26	54
2483.5	Н	43.56	74	29.38	54
2395.5	V	45.62	74	31.41	54
2400	V	50.04	74	35.93	54
2483.5	V	44.41	74	30.32	54

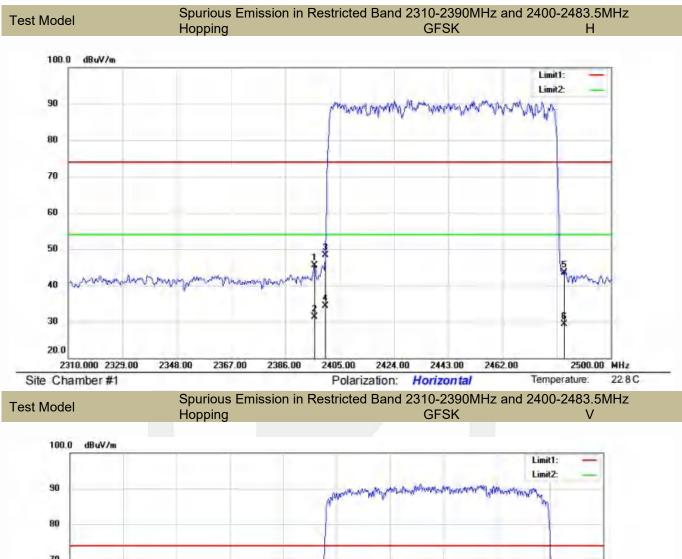
(1) All Readings are Peak Value (VBW=3MHz) and Average Value (VBW=10Hz). Note:

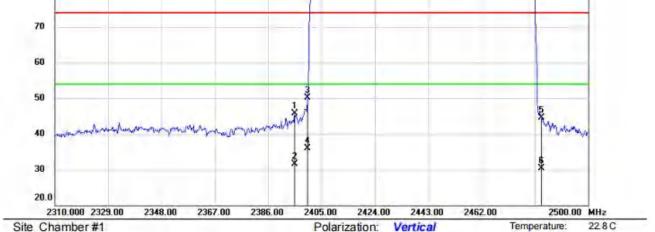

(2) Emission Level= Reading Level+Correct Factor.

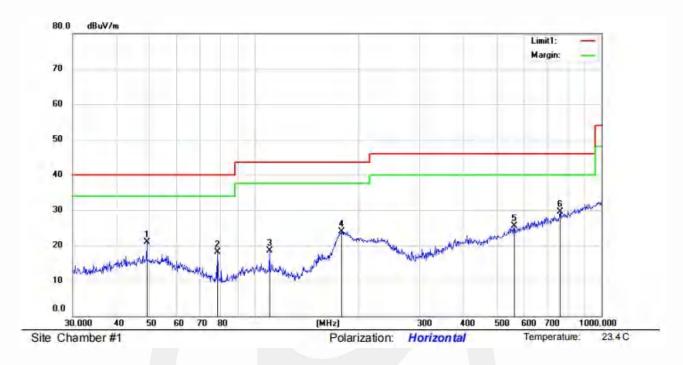
(3) Correct Factor= Ant_F + Cab_L - Preamp


(4) The reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

EMTEK (Dongguan) Co., Ltd.



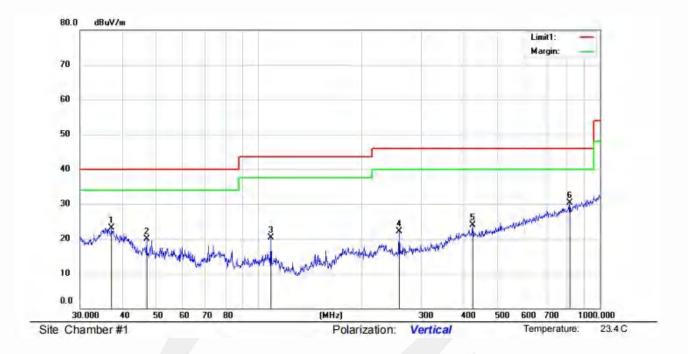




Spurious Emission below 1GHz (30MHz to 1GHz)

All the antenna(Antenna 1) and modes(GFSK, π /4-DQPSK, 8DPSK) mode have been tested, and the worst(Antenna 1, 8DPSK) result recorded was report as below:

No.	Mk.	Freq.	Reading Level	Ant. Factor	Pre Amp Gain	Cable loss	Measure- ment	Limit	Over		н	Degree	
		MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	Detector	cm	deg.	Comment
1		49.0145	36.66	13.96	30.48	0.76	20.90	40.00	-19.10	QP			
2		78.4133	39.55	8.09	30.58	1.06	18.12	40.00	-21.88	QP			
3	1	110.5687	36.68	11.4	30.83	1.16	18.41	43.50	-25.09	QP			
4	-	178.1327	43.18	9.66	30.48	1.59	23.95	43.50	-19.55	QP			
5	ł	560.6928	33.25	19.14	29.9	3.11	25.60	46.00	-20.40	QP			
6	* 7	760.7036	35.00	20.91	30.19	3.78	29.50	46.00	-16.50	QP			


*:Maximum data x:Over limit

I:over margin

Operator: Ccyf

EMTEK (Dongguan) Co., Ltd.

No.	Mk.	Freq.	Reading Level	Ant Factor	Pre Amp Gain	Cable loss	Measure- ment	Limit	Over		н	Degree	
		MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	Detector	cm	deg.	Comment
1		37.1550	40.95	12.1	30.54	0.61	23.12	40.00	-16.88	QP			
2		46.9948	35.85	13.88	30.49	0.73	19.97	40.00	-20.03	QP			
3		108.6470	38.58	11.5	30.84	1.14	20.38	43.50	-23.12	QP			
4	- 4	258.3264	36.84	13.15	30.05	2.13	22.07	46.00	-23.93	QP		_	
5		423.5403	33.95	16.58	29.82	3.22	23.93	46.00	-22.07	QP			
6	+ 8	815.9678	34.72	21.89	30.18	3.83	30.26	46.00	-15.74	QP	-		

*:Maximum data x:Over limit l:over margin Operator: Ccyf

Remark:

- 1. Measurement (dBµV/m) = Antenna Factor(dB) Amp Factor(dB) + Cable Loss(dB) + Reading(dBµV/m)
- 2. Over (dB) = Measurement (dBµV/m) Limit (dBµV/m)

EMTEK (Dongguan) Co., Ltd.

9.8 CONDUCTED EMISSION TEST

9.8.1 **Applicable Standard**

According to FCC Part 15.207 According to IC RSS-Gen 8.8

9.8.2 **Conformance Limit**

Conducted Emission Limit									
Frequency(MHz) Quasi-peak Average									
0.15-0.5	66-56	56-46							
0.5-5.0	56	46							
5.0-30.0	60	50							
Note: 4. The law and insit shall apply at	the transition fragmancies								

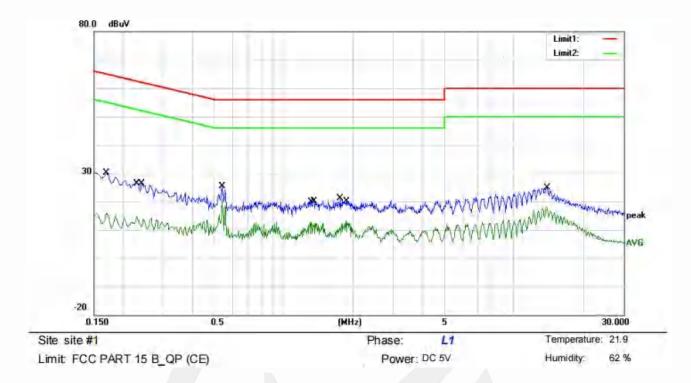
Note: 1. The lower limit shall apply at the transition frequencies 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

9.8.3 **Test Configuration**

Test according to clause 7.3 conducted emission test setup

9.8.4 **Test Procedure**

The EUT was placed on a table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Repeat above procedures until all frequency measured were complete.


9.8.5 **Test Results**

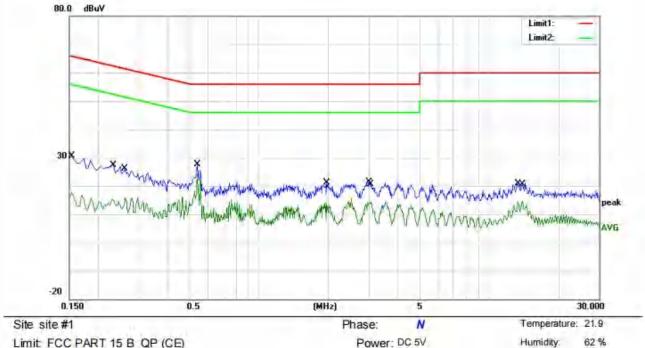
Pass

The AC120V &240V voltage have been tested, and the worst result recorded was report as below:

EMTEK (Dongguan) Co., Ltd.

Note:

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Över	-	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1700	20.53	9.50	30.03	64.96	-34.93	QP	
2	0.1700	6.48	9.50	15.98	54.96	-38.98	AVG	
3	0.2300	5.41	9.50	14.91	52.45	-37.54	AVG	
4	0 2420	16.85	9.51	26.36	62.03	-35.67	QP	
5	0.5420	15.69	9.63	25.32	56.00	-30.68	QP	
6 *	0.5420	11.32	9.63	20.95	46.00	-25.05	AVG	
7	1.3220	3.19	9.50	12.69	46.00	-33.31	AVG	
8	1.3540	10.59	9.50	20.09	56.00	-35.91	QP	
9	1.7700	11.60	9.54	21.14	56.00	-34.86	QP	
10	1.8620	3.49	9.55	13.04	46.00	-32.96	AVG	
11	13.8460	8.64	9.38	18.02	50.00	-31.98	AVG	
12	13.9580	15.52	9.38	24.90	60.00	-35.10	QP	


*:Maximum data x:Over limit Lover margin

Comment: Factor build in receiver.

Operator: Lennard Lio

东莞市信测科技有限公司 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn EMTEK (Dongguan) Co., Ltd. Add: -182/F "Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Rase No.9. Xincheng Avenue Spracebasky kitch technology Industriel Development Zone Add: -182/F ., Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base , No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China Http://www.emtek.com.cn E-mail: project@emtek.com.cn

Limit FCC PART 15 B_QP (CE)

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	-	0.1540	21.00	9.52	30.52	65.78	-35.26	QP	
2		0.1540	8.05	9.52	17.57	55.78	-38.21	AVG	
3		0.2340	17.94	9.50	27.44	62.31	-34.87	QP	
4	1	0.2620	6.39	9.52	15.91	51.37	-35.46	AVG	
5		0.5420	17.98	9.63	27.61	56.00	-28.39	QP	
6	•	0.5420	14.40	9.63	24.03	46.00	-21.97	AVG	
7		1.9540	4.75	9.56	14.31	46.00	-31.69	AVG	
8		1.9740	11.46	9.56	21.02	56.00	-34.98	QP	
9		3.0140	11.91	9.54	21,45	56.00	-34.55	QP	
10		3.0700	4.74	9.54	14.28	46.00	-31.72	AVG	
11		13.3820	11.37	8.39	20.76	60.00	-39.24	QP	
12		13.9460	5.21	9.38	14.59	50.00	-35.41	AVG	

*: Maximum data

x:Over limit Lover margin Comment: Factor build in receiver.

Operator: Lennard Lio

Remark:

- 1. Measurement (dBµV) = AMN Factor (dB) + Cable Loss (dB) + Reading (dBµV)
- 2. Over (dB) = Measurement (dB μ V) Limit (dB μ V)

EMTEK (Dongguan) Co., Ltd.

9.9 ANTENNA APPLICATION

9.9.1 **Antenna Requirement**

Standard	Requirement
FCC CRF Part 15.203	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.
FCC 47 CFR Part 15.247 (b)	If transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.
RSS-Gen Section 6.8	The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.
RSS-247 Section 5.4	If the transmitter employs an antenna system that emits multiple directional beams, but does not emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device (i.e. the sum of the power supplied to all antennas, antenna elements, staves, etc., and summed across all carriers or frequency channels) shall not exceed the applicable output power limit. However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi. The directional antenna gain shall be computed as the sum of 10 log (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.

9.9.2 Result

PASS.

- Note: \checkmark Antenna use a permanently attached antenna which is not replaceable.
 - Not using a standard antenna jack or electrical connector for antenna replacement
 - The antenna has to be professionally installed (please provide method of installation)

Please refer to the attached document Internal Photos to show the antenna connector.

Frequency(MHz)	Ant_F(dB)	Cab_L(dB)	Preamp(dB)	Correct Factor(dB)	
0.009	20.6	0.03	\	20.63	
0.15	20.7	0.1	\	20.8	
1	20.9	0.15	\	21.05	
10	20.1	0.28	\	20.38	
30	18.8	0.45	\	19.25	
30	11.7	0.62	27.9	-15.58	
100	12.5	1.02	27.8	-13.38	
300		1.02			
	12.9		27.5 27	-12.69	
600	19.2	2.92		-4.88	
800	21.1	3.54	26.6	-1.96	
1000	22.3	4.17	26.2	0.27	
1000	25.6	1.76	41.4	-14.04	
3000	28.9	3.27	43.2	-11.03	
5000	31.1	4.2	44.6	-9.3	
8000	36.2	5.95	44.7	-2.55	
10000	38.4	6.3	43.9	0.8	
12000	38.5	7.14	42.3	3.34	
15000	40.2	8.15	41.4	6.95	
18000	45.4	9.02	41.3	13.12	
18000	37.9	1.81	47.9	-8.19	
21000	37.9	1.95	48.7	-8.85	
25000	39.3	2.01	42.8	-1.49	
28000	39.6	2.16	46.0	-4.24	
31000	41.2	2.24	44.5	-1.06	
34000	41.5	2.29	46.6	-2.81	
37000	43.8	2.30	46.4	-0.3	
40000	43.2	2.50	42.2	3.5	

Detail of factor for radiated emission

*** End of Report ***

声 明

Statement

1. 本报告无授权批准人签字及"检验检测专用章"无效;

This report will be void without authorized signature or special seal for testing report.

2. 未经许可本报告不得部分复制;

This report shall not be copied partly without authorization.

3. 本报告的检测结果仅对送测样品有效,委托方对样品的代表性和资料的真实性负责;

The test results or observations are applicable only to tested sample. Client shall be responsible for representativeness of the sample and authenticity of the material.

 本检测报告中检测项目标注有特殊符号则该项目不在资质认定范围内,仅作为客户委托、科研、教学或内部 质量控制等目的使用;

The observations or tests with special mark fall outside the scope of accreditation, and are only used for purpose of commission, research, training, internal quality control etc.

5. 本检测报告以实测值进行符合性判定,未考虑不确定度所带来的风险,本实验室不承担相关责任,特别约定、 标准或规范中有明确规定的除外;

The test results or observations are provided in accordance with measured value, without taking risks caused by uncertainty into account. Without explicit stipulation in special agreements, standards or regulations, EMTEK shall not assume any responsibility.

6. 对本检测报告若有异议,请于收到报告之日起 20 日内提出;

Objections shall be raised within 20 days from the date receiving the report.