

TEST REPORT

Applicant Name : Address : Zeeva International Limited Suite 1007B, 10th Floor, Exchange Tower, 33 Wang Chiu Road, Kowloon Bay, Hong Kong RA221026-49397E-RF 2ADM5-EP0642

Report Number : FCC ID:

Test Standard (s) FCC PART 15.247

Sample Description

Product Type: Test Model: Trade Mark:

Date Received:

Date of Test:

Report Date:

SP23 BT VIGOR WIRELESS EARBUDS EP-0642-AST3

2022-10-26 2022-11-12 to 2022-11-14 2022-11-16

Test Result:

Pass*

* In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Roger, Ling

Roger.Ling EMC Engineer **Approved By:**

Candry . Li

Candy Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk " \star ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China Tel: +86 755-26503290 Fax: +86 755-26503396 Web: www.atc-lab.com

Version 11: 2021-11-09

Page 1 of 58

FCC-BT

TABLE OF CONTENTS

PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	GENERAL INFORMATION		4
TEST METHODOLOGY 4 MEASUREMENT UNCERTAINTY 5 TEST FACILITY 5 SYSTEM TEST CONFIGURATION 6 DESCRIPTION OF TEST CONFIGURATION 6 EUT EXERCISE SOFTWARE 6 SPECTAL ACCESSORIES 6 EQUIPMENT MODIFICATIONS 6 SUMMARY OF TEST RESULTS 8 SUMMARY OF TEST RESULTS 8 TEST REQUIPMENT LIST 9 FCC §15.203 - ANTENNA REQUIREMENT 10 TEST RESULT 10 TEST RESULT 10 FCC §15.203 - ANTENNA REQUIREMENT 11 APPLICABLE STANDARD 11 APPLICABLE STANDARD 12 APPLICABLE STANDARD 12 EUT ESTERE 12 PEUT SETUP 13 TEST PROCEDURE 13 FC §15.207 (i), (1) - CHANNEL SEPARATION TEST 12 APPLICABLE STANDARD 12 EUT SETUP 13 FC §15.247(a) (1) -CHANNEL SEPARATION TEST 13 FC §15.247(a) (1) -CHANNEL SEPARATION TEST 13 FC §15.247(a) (1) -CHANNEL SEPARATION TEST 13 <td></td> <td></td> <td></td>			
MEASUREMENT UNCERTAINTY. 5 TEST FACILITY. 5 SYSTEM TEST CONFIGURATION 6 DESCRIPTION OF TEST CONFIGURATION 6 EUT EXERCISE SOFTWARE 6 SUPPORT EXEST CONFIGURATION 6 EUT EXERCISE SOFTWARE 6 SUPPORT FOURMENT LIST AND DETAILS 6 BLOCK DIAGRAM OF TEST RESULTS. 8 TEST EQUIPMENT LIST 9 FCC\$15.247 (i), \$1.1307 (b) - RF EXPOSURE 10 TEST RESULT 10 FCC \$15.203 - ANTENNA REQUIREMENT. 11 APPLICABLE STANDARD 11 APPLICABLE STANDARD 12 EUT SETUP 13 FCC \$15.205 & \$15.209 & \$15.247(d) - RADIATED EMISSIONS 12 EUT TSET RECLIVER & SPECTRUM ANALYZER SETUP 13 FCC \$15.207, \$15.209 & \$15.247(d) - RADIATED EMISSIONS 12 EUT TSET RECLEVER & SPECTRUM ANALYZER SETUP 13 FCC \$15.247(a) (1)-CHANNEL SEPARATION TEST 13 FC \$15.247(a) (1)-CHANNEL SEPARATION TEST 19 APPLICABLE STANDARD 19 TEST PROCEDURE 19 TEST DATA 19			
TEST FACILITY. .5 SYSTEM TEST CONFIGURATION .6 DESCRIPTION OF TEST CONFIGURATION .6 EUT EXERCISE SOFTWARE .6 SUPPORT EQUIPMENT LIST AND DETAILS .6 EQUIPMENT MODIFICATIONS .6 BLOCK DIAGRAM OF TEST SETUP. .7 SUMMARY OF TEST RESULTS. .8 TEST EQUIPMENT LIST .9 FCC \$15.247 (b), \$1.1307 (b) - RF EXPOSURE .10 TEST RESULT .10 FCC \$15.203 - ANTENNA REQUIREMENT. .11 APPILCABLE STANDARD .11 ANTENNA CONNECTOR CONSTRUCTION .11 FCC \$15.205, \$15.209 & \$15.247(d) - RADIATED EMISSIONS .12 EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP .13 TEST PROCEDURE .12 EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP .13 TEST DATA .13 FCC \$15.247(a) (1) -CHANNEL SEPARATION TEST .19 TEST DATA .13 TEST DATA .13 TEST DATA .19 TEST DATA .19 TEST DATA .19 TEST DATA .19 TES			
SYSTEM TEST CONFIGURATION			
DESCRIPTION OF TEST CONFIGURATION 6 EUT EXERCISE SOFTWARE 6 SUPCAL ACCESSORES 6 EQUIPMENT MODIFICATIONS 6 SUPPORT EQUIPMENT LIST AND DETAILS 6 BLOCK DURAGRAM OF TEST SETUP 7 SUMMARY OF TEST RESULTS 8 TEST EQUIPMENT LIST 9 FCC §15.247 (i), §1.1307 (b) – RF EXPOSURE 10 TEST RESULT 10 FCC §15.203 – ANTENNA REQUIREMENT 11 APPLICABLE STANDARD 11 ANTENNA CONNECTOR CONSTRUCTION 11 APPLICABLE STANDARD 12 EUT STUP 12 EUT STUP 12 EUT TSTUP 12 EUT TSTUP 13 FACTOR & MARGIN CALCULATION 13 TEST PROCEDURE 13 FCC §15.247 (a) (1)-CHANNEL SEPARATION TEST 19 FCC §15.247 (a) (1)-CHANNEL SEPARATION TEST 19 TEST PROCEDURE 19 TEST PROCEDURE 19 TEST PROCEDURE 22 APPLICABLE STANDARD 22 TEST DATA 23 FCC §15.2			
EUT EXERCISE SOFTWARE6SPECIAL ACCESSORIES.6EQUIPMENT MODIFICATIONS.6SUPPORT EQUIPMENT LIST AND DETAILS.6BLOCK DUAGRAM OF TEST RESULTS.7SUMMARY OF TEST RESULTS.8TEST EQUIPMENT LIST9FCC§15.247 (i), §1.1307 (b) - RF EXPOSURE.10TEST RESULT10FCC §15.203 - ANTENNA REQUIREMENT11APPLICABLE STANDARD11APPLICABLE STANDARD11FCC §15.205, §15.209 & §15.247(d) - RADIATED EMISSIONS12APPLICABLE STANDARD12EUT SETUP.13TEST DATA13TEST DATA13FCC §15.204 (a) CLICULATION13TEST DATA13FC §15.207 & MARGIN CALCULATION13TEST DATA13FCC §15.247(a) (1) - 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH22TEST PROCEDURE19TEST PROCEDURE22TEST DATA23FCC §15.247(a) (1) - 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH22TEST DATA23FCC §15.247(a) (1) - 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH22TEST DATA33FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST33APPLICABLE STANDARD33TEST PROCEDURE33TEST DATA33FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)36APPLICABLE STANDARD33TEST PROCEDURE36TEST DATA35FCC §15.247(b) (1) - PEAK O			
SPECIAL ACCESSORIES.6EQUIPMENT MODIFICATIONS6BUCK DUAGRAM OF TEST SETUP7SUMMARY OF TEST RESULTS.8TEST EQUIPMENT LIST9FCC§15.247 (i) (s) LI307 (b) - RF EXPOSURE.10TEST ERULT10FCC \$15.203 - ANTENNA REQUIREMENT.11APPLICABLE STANDARD11ANTENNA CONSCRUCTION11ANTENNA REQUIREMENT.11APPLICABLE STANDARD12EUT SETUP.12EUT SETUP.12EUT SETUP.12EUT SETUP.12EUT SETUP.13FACTOR & MAGIN CALCULATION13FACTOR & MAGIN CALCULATION13FCC \$15.247 (a) (1)-CHANNEL SEPARATION TEST19APPLICABLE STANDARD19TEST PROCEDURE19APPLICABLE STANDARD19TEST PROCEDURE22APPLICABLE STANDARD19TEST PROCEDURE22APPLICABLE STANDARD19TEST PROCEDURE22APPLICABLE STANDARD22TEST PROCEDURE22TEST PROCEDURE23FCC \$15.247(a) (1) - 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH22APPLICABLE STANDARD33TEST PROCEDURE33TEST PROCEDURE33APPLICABLE STANDARD33FCC \$15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)36APPLICABLE STANDARD36TEST DATA36FCC \$15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT36 <td></td> <td></td> <td></td>			
EQUIPMENT MODIFICATIONS 6 SUPPORT EQUIPMENT LIST AND DETAILS 6 BLOCK DIAGRAM OF TEST SETUP 7 SUMMARY OF TEST RESULTS 8 TEST EQUIPMENT LIST 9 FCC§15.247 (i), §1.1307 (b) - RF EXPOSURE 10 TEST RESULT 10 FCC§15.203 - ANTENNA REQUIREMENT 11 APPLICABLE STANDARD 11 APPLICABLE STANDARD 11 FCC §15.205, §15.209 & §15.247(d) - RADIATED EMISSIONS 12 APPLICABLE STANDARD 12 EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP 12 EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP 13 TEST PROCEDURE 13 FACTOR & MARGIN CALCULATION 13 TEST DATA 13 FCC §15.247(a) (1)-CHANNEL SEPARATION TEST 19 APPLICABLE STANDARD 19 TEST DATA 19 FCC §15.247(a) (1) - 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH 22 APPLICABLE STANDARD 22 TEST DATA 19 FCC §15.247(a) (1) (iii) -QUANTITY OF HOPPING CHANNEL TEST 33 APPLICABLE STANDARD 22			
BLOCK DIAGRAM OF TEST SETUP 7 SUMMARY OF TEST RESULTS 8 TEST EQUIPMENT LIST 9 FCC\$15.247 (i), \$1.1307 (b) - RF EXPOSURE 10 TEST RESULT 10 Test RESULT 10 FCC \$15.203 - ANTENNA REQUIREMENT 10 APPLICABLE STANDARD 11 APPLICABLE STANDARD 11 ANTENNA CONNECTOR CONSTRUCTION 11 FCC \$15.205, \$15.209 & \$15.247(d) - RADIATED EMISSIONS 12 APPLICABLE STANDARD 12 EUT SETUP 12 EUT SETUP 12 EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP 13 TEST PROCEDURE 13 FCC \$15.247(a) (1)-CHANNEL SEPARATION TEST 19 APPLICABLE STANDARD 19 PEST PROCEDURE 19 TEST DATA 13 TEST DATA 13 FCC \$15.247(a) (1) - 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH 22 APPLICABLE STANDARD 21 TEST PROCEDURE 22 TEST DATA 23 FCC \$15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST 33 <			
SUMMARY OF TEST RESULTS 8 TEST EQUIPMENT LIST 9 FCC§15.247 (i), §1.1307 (b) – RF EXPOSURE 10 TEST RESULT 10 FCC §15.203 – ANTENNA REQUIREMENT 11 APPLICABLE STANDARD 11 APPLICABLE STANDARD 11 FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS 12 APPLICABLE STANDARD 12 EUT SETUP 12 EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP 13 TEST PROCEDURE 13 FCC §15.247(a) (1)-CHANNEL SEPARATION TEST 19 APPLICABLE STANDARD 19 TEST PROCEDURE 19 TEST PROCEDURE 19 TEST PROCEDURE 19 TEST PROCEDURE 22 TEST DATA 19 FCC §15.247(a) (1) - 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH 22 TEST DATA 23 FCC §15.247(a) (1) (iii) -QUANTITY OF HOPPING CHANNEL TEST 33			
TEST EQUIPMENT LIST 9 FCC\$15.247 (i), §1.1307 (b) – RF EXPOSURE. 10 Test Result 10 FCC §15.203 – ANTENNA REQUIREMENT 11 APPLICABLE STANDARD 11 ANTENNA CONNECTOR CONSTRUCTION 11 FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS 12 APPLICABLE STANDARD 12 EUT SETUP 12 EUT SETUP 12 EUT SETUP 12 EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP 13 FACTOR & MARGIN CALCULATION 13 TEST PROCEDURE 13 FACTOR & MARGIN CALCULATION 13 TEST PROCEDURE 19 APPLICABLE STANDARD 19 PAPLICABLE STANDARD 19 TEST PROCEDURE 19 TEST PROCEDURE 19 TEST PROCEDURE 22 TEST PROCEDURE 22 TEST PROCEDURE 22 TEST DATA 23 FCC §15.247(a) (1) - 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH 22 TEST DATA 23 FCC §15.247(a) (1) (iii) -QUANTITY OF HOPPING CHANNEL TEST			
FCC\$15.247 (i), \$1.1307 (b) - RF EXPOSURE			
Test Result 10 FCC \$15.203 - ANTENNA REQUIREMENT 11 APPLICABLE STANDARD 11 ANTENNA CONNECTOR CONSTRUCTION 11 ANTENNA CONNECTOR CONSTRUCTION 11 FCC \$15.205, \$15.209 & \$15.247(d) - RADIATED EMISSIONS 12 APPLICABLE STANDARD 12 EUT SETUP 12 EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP 13 TEST PROCEDURE 13 FACTOR & MARGIN CALCULATION 13 TEST DATA 13 FCC \$15.247(a) (1)-CHANNEL SEPARATION TEST 19 APPLICABLE STANDARD 19 TEST PROCEDURE 19 TEST PROCEDURE 19 TEST PROCEDURE 19 APPLICABLE STANDARD 19 TEST PROCEDURE 19 APPLICABLE STANDARD 22 TEST PROCEDURE 23 FCC \$15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST 33 APPLICABLE STANDARD 33 TEST PROCEDURE 33 TEST PROCEDURE 33 TEST PROCEDURE 33 TEST PATA 33	TEST EQUIPMENT LIST		9
FCC §15.203 - ANTENNA REQUIREMENT. 11 APPLICABLE STANDARD 11 ANTENNA CONNECTOR CONSTRUCTION 11 FCC §15.205, §15.209 & §15.247(d) - RADIA TED EMISSIONS 12 APPLICABLE STANDARD 12 EUT SETUP 12 EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP 13 TEST PROCEDURE 13 FACTOR & MARGIN CALCULATION 13 TEST DATA 13 FCC §15.247(a) (1)-CHANNEL SEPARATION TEST 19 MAPPLICABLE STANDARD 19 TEST PROCEDURE 22 TEST PROCEDURE 22 TEST PROCEDURE 22 TEST PROCEDURE 23 FCC §15.247(a) (1) (1) 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH APPLICABLE STANDARD 22 TEST PROCEDURE 33 TEST PROCEDURE 33 TEST PROCEDURE 33	FCC§15.247 (i), §1.1307 (b) - RF EXP	OSURE	10
APPLICABLE STANDARD 11 ANTENNA CONNECTOR CONSTRUCTION 11 FCC §15.205, §15.209 & §15.247(d) - RADIATED EMISSIONS 12 APPLICABLE STANDARD 12 EUT SETUP 12 EUT SETUP 13 TEST PROCEDURE 13 FACTOR & MARGIN CALCULATION 13 TEST DATA 13 FCC §15.247(a) (1)-CHANNEL SEPARATION TEST 19 APPLICABLE STANDARD 19 TEST PROCEDURE 19 TEST DATA 19 FCC §15.247(a) (1) - 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH 22 APPLICABLE STANDARD 22 TEST DATA 23 FCC §15.247(a) (1) (10 POLONARD 33 TEST PROCEDURE 33 TEST PROCEDURE 33 TEST PROCEDURE 33 TEST PROCEDURE	TEST RESULT		10
ANTENNA CONNECTOR CONSTRUCTION 11 FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS 12 APPLICABLE STANDARD 12 EUT SETUP 12 EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP 13 TEST PROCEDURE 13 FACTOR & MARGIN CALCULATION 13 TEST DATA 13 FCC §15.247(a) (1)-CHANNEL SEPARATION TEST 19 APPLICABLE STANDARD 19 TEST PROCEDURE 19 TEST PATA 19 FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH 22 APPLICABLE STANDARD 22 TEST DATA 23 FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST 33 APPLICABLE STANDARD 33 TEST DATA 33 TEST DATA 33 FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) 36 APPLICABLE STANDARD 36 TEST DATA<	FCC §15.203 – ANTENNA REQUIRE	MENT	11
FCC §15.205, §15.209 & §15.247(d) - RADIATED EMISSIONS 12 APPLICABLE STANDARD 12 EUT SETUP 12 EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP 13 TEST PROCEDURE 13 FACTOR & MARGIN CALCULATION 13 TEST DATA 13 FCC §15.247(a) (1)-CHANNEL SEPARATION TEST 19 APPLICABLE STANDARD 19 TEST PROCEDURE 22 TEST PROCEDURE 22 TEST PROCEDURE 22 TEST DATA 23 FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST 33 APPLICABLE STANDARD 33 TEST DATA 33 FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) 36 APPLICABLE STANDARD 36 TEST PROCEDURE 36 TEST PROCEDURE 36 TEST DATA<			
APPLICABLE STANDARD 12 EUT SETUP 12 EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP 13 TEST PROCEDURE 13 FACTOR & MARGIN CALCULATION 13 TEST DATA 13 FCC §15.247(a) (1)-CHANNEL SEPARATION TEST 19 APPLICABLE STANDARD 19 TEST PROCEDURE 19 APPLICABLE STANDARD 19 TEST DATA 19 FCC §15.247(a) (1) - 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH 22 APPLICABLE STANDARD 22 TEST PROCEDURE 22 TEST PROCEDURE 22 TEST PROCEDURE 23 FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST 33 APPLICABLE STANDARD 33 TEST DATA 33 FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) 36 APPLICABLE STANDARD 33 TEST PROCEDURE 33 TEST DATA 33 FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) 36 APPLICABLE STANDARD 36 TEST PROCEDURE 36 TEST PRO	ANTENNA CONNECTOR CONSTRUCTION	N	11
APPLICABLE STANDARD 12 EUT SETUP 12 EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP 13 TEST PROCEDURE 13 FACTOR & MARGIN CALCULATION 13 TEST DATA 13 FCC §15.247(a) (1)-CHANNEL SEPARATION TEST 19 APPLICABLE STANDARD 19 TEST PROCEDURE 19 APPLICABLE STANDARD 19 TEST DATA 19 FCC §15.247(a) (1) - 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH 22 APPLICABLE STANDARD 22 TEST PROCEDURE 22 TEST PROCEDURE 22 TEST PROCEDURE 23 FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST 33 APPLICABLE STANDARD 33 TEST DATA 33 FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) 36 APPLICABLE STANDARD 33 TEST PROCEDURE 33 TEST DATA 33 FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) 36 APPLICABLE STANDARD 36 TEST PROCEDURE 36 TEST PRO	FCC §15.205, §15.209 & §15.247(d) - 1	RADIATED EMISSIONS	12
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP 13 TEST PROCEDURE 13 FACTOR & MARGIN CALCULATION 13 Factors & MARGIN CALCULATION 13 TEST DATA 13 FCC \$15.247(a) (1)-CHANNEL SEPARATION TEST 19 APPLICABLE STANDARD 19 TEST PROCEDURE 19 TEST PROCEDURE 19 TEST DATA 19 FCC \$15.247(a) (1) - 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH 22 APPLICABLE STANDARD 22 TEST PROCEDURE 22 TEST PROCEDURE 22 TEST DATA 23 FCC \$15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST 33 APPLICABLE STANDARD 33 TEST DATA 33 FCC \$15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) 36 APPLICABLE STANDARD 36 TEST PROCEDURE 36 APPLICABLE STANDARD 36 TEST DATA 36 TEST DATA 36 FCC \$15.247(b) (1) (1) POWER MEASUREMENT			
Test Procedure 13 FACTOR & MARGIN CALCULATION 13 Test DATA 13 Test DATA 13 FCC §15.247(a) (1)-CHANNEL SEPARATION TEST 19 Applicable Standard 19 Test Procedure 19 Test Procedure 19 Test DATA 19 FCC §15.247(a) (1) - 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH 22 Applicable Standard 22 Test Procedure 23 FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST 33 Applicable Standard 33 Test Procedure 33 Test Procedure 33 Test Procedure 33 FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) 36 Applicable Standard 36 Test Procedure 36 Test Procedure 36 Test Procedure 36 Test DATA			
FACTOR & MARGIN CALCULATION 13 TEST DATA 13 FCC \$15.247(a) (1)-CHANNEL SEPARATION TEST 19 APPLICABLE STANDARD 19 TEST PROCEDURE 19 TEST DATA 19 FCC \$15.247(a) (1) - 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH 22 APPLICABLE STANDARD 22 TEST PROCEDURE 22 TEST PROCEDURE 22 TEST PROCEDURE 22 TEST DATA 23 FCC \$15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST 33 APPLICABLE STANDARD 33 TEST DATA 33 FCC \$15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) 36 APPLICABLE STANDARD 36 TEST PROCEDURE 36 TEST DATA 36 FCC \$15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) 36 APPLICABLE STANDARD 36 TEST PROCEDURE 36 TEST DATA 36 FCC \$15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT 36			
TEST DATA 13 FCC §15.247(a) (1)-CHANNEL SEPARATION TEST 19 APPLICABLE STANDARD 19 TEST PROCEDURE 19 TEST DATA 19 FCC §15.247(a) (1) - 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH 22 APPLICABLE STANDARD 22 TEST PROCEDURE 22 TEST PROCEDURE 22 TEST DATA 23 FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST 33 APPLICABLE STANDARD 33 TEST PROCEDURE 33 TEST PROCEDURE 33 TEST PROCEDURE 33 FCC §15.247(a) (1) (iii) - QUANTITY OF HOPPING CHANNEL TEST 33 APPLICABLE STANDARD 33 TEST DATA 33 FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) 36 APPLICABLE STANDARD 36 TEST DATA 36 TEST PROCEDURE 36 TEST DATA 36 FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT 36 FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT 36			
APPLICABLE STANDARD 19 TEST PROCEDURE 19 TEST DATA 19 FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH 22 APPLICABLE STANDARD 22 TEST PROCEDURE 22 TEST PROCEDURE 22 TEST DATA 23 FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST 33 APPLICABLE STANDARD 33 TEST PROCEDURE 33 TEST PROCEDURE 33 TEST PROCEDURE 33 FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) 36 APPLICABLE STANDARD 36 TEST PROCEDURE 36 TEST DATA 36 TEST PROCEDURE 36 TEST PROCEDURE 36 TEST DATA 36			
APPLICABLE STANDARD 19 TEST PROCEDURE 19 TEST DATA 19 FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH 22 APPLICABLE STANDARD 22 TEST PROCEDURE 22 TEST PROCEDURE 22 TEST DATA 23 FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST 33 APPLICABLE STANDARD 33 TEST PROCEDURE 33 TEST PROCEDURE 33 TEST PROCEDURE 33 FCC §15.247(a) (1) (iii) - QUANTITY OF HOPPING CHANNEL TEST 33 APPLICABLE STANDARD 33 TEST PROCEDURE 33 TEST DATA 33 FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) 36 APPLICABLE STANDARD 36 TEST PROCEDURE 36 TEST DATA 36 TEST DATA 36 TEST PROCEDURE 36 TEST DATA 36 </td <td>FCC §15.247(a) (1)-CHANNEL SEPA</td> <td>RATION TEST</td> <td></td>	FCC §15.247(a) (1)-CHANNEL SEPA	RATION TEST	
TEST PROCEDURE 19 TEST DATA 19 FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH 22 APPLICABLE STANDARD 22 TEST PROCEDURE 22 TEST DATA 23 FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST 33 APPLICABLE STANDARD 33 TEST PROCEDURE 33 TEST PROCEDURE 33 TEST PROCEDURE 33 TEST PROCEDURE 33 TEST DATA 33 FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) 36 APPLICABLE STANDARD 36 TEST PROCEDURE 36 TEST DATA 36 TEST DATA 36 TEST DATA 36 TEST PROCEDURE 36 TEST DATA 36			
FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH 22 APPLICABLE STANDARD 22 TEST PROCEDURE 22 TEST DATA 23 FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST 33 APPLICABLE STANDARD 33 TEST PROCEDURE 33 TEST PROCEDURE 33 TEST DATA 33 FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) 36 APPLICABLE STANDARD 36 TEST PROCEDURE 36 TEST DATA 36 TEST DATA 36 TEST PROCEDURE 36 TEST DATA 36 TEST DATA 36 TEST DATA 36 TEST DATA 36 TEST PROCEDURE 36 TEST DATA 36 TEST DATA 36 TEST DATA 36			
APPLICABLE STANDARD 22 TEST PROCEDURE 22 TEST DATA 23 FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST 33 APPLICABLE STANDARD 33 TEST PROCEDURE 33 TEST PROCEDURE 33 TEST DATA 33 FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) 36 APPLICABLE STANDARD 36 TEST PROCEDURE 36 TEST PROCEDURE 36 TEST PROCEDURE 36 TEST DATA 36 FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT 46	TEST DATA		19
Test Procedure 22 Test Data 23 FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST 33 Applicable Standard 33 Test Procedure 33 Test Data 33 FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) 36 Applicable Standard 36 Test Procedure 36 Test Procedure 36 FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) 36 FEST Procedure 36 Test Data 36 FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT 46	FCC §15.247(a) (1) – 20 dB EMISSION	N BANDWIDTH & 99% OCCUPIED BANDWIDTH	22
Test Data 23 FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST 33 APPLICABLE STANDARD 33 Test PROCEDURE 33 Test Data 33 FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) 36 APPLICABLE STANDARD 36 Test PROCEDURE 36 FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) 36 FEST PROCEDURE 36 Test PROCEDURE 36 Test PROCEDURE 36 Test Data 36 Test PROCEDURE 36 Test PROCEDURE 36 Test PROCEDURE 36 Test Data 36 FECC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT 46			
FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST 33 APPLICABLE STANDARD 33 TEST PROCEDURE 33 TEST DATA 33 FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) 36 APPLICABLE STANDARD 36 TEST PROCEDURE 36 TEST PROCEDURE 36 TEST DATA 36 TEST PROCEDURE 36 TEST DATA 36 TEST			
APPLICABLE STANDARD 33 TEST PROCEDURE 33 TEST DATA 33 FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) 36 APPLICABLE STANDARD 36 TEST PROCEDURE 36 TEST DATA 36 FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT 46			
Test Procedure 33 Test Data 33 FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) 36 Applicable Standard 36 Test Procedure 36 Test Data 36 FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT 46	FCC §15.247(a) (1) (iii)-QUANTITY C	OF HOPPING CHANNEL TEST	
Test Data 33 FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) 36 APPLICABLE STANDARD 36 Test PROCEDURE 36 Test Data 36 FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT 46			
FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) 36 APPLICABLE STANDARD 36 TEST PROCEDURE 36 TEST DATA 36 FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT			
APPLICABLE STANDARD 36 TEST PROCEDURE 36 TEST DATA 36 FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT 46			
TEST PROCEDURE 36 TEST DATA 36 FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT 46			
TEST DATA			
FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT			

Report No.: RA221026-49397E-RF

Applicable Standard	
Test Procedure	
TEST DATA	
FCC §15.247(d) - BAND EDGES TESTING	
APPLICABLE STANDARD	
Test Procedure	
Test Data	

GENERAL INFORMATION

Product	SP23 BT VIGOR WIRELESS EARBUDS	
Tested Model	EP-0642-AST3	
	BLACK – 7265071	
	NAVY – 7265072	
SKU	PURPLE – 7265073	
	PINK - 7265074	
	BLACK - 1922342000328	
UPC	NAVY – 1922342000335	
ore	PURPLE – 1922342000342	
	PINK - 1922342000359	
Frequency Range	2402~2480MHz	
Maximum conducted Peak output power	-1.97dBm	
Modulation Technique	BDR(GFSK)/EDR(π/4-DQPSK)/EDR(8DPSK)	
Antenna Specification*	Internal Antenna:1.15 dBi	
Voltage Range	DC 3.7V from battery	
Sample number	RA221026-49397E-RF-S1 (Assigned by ATC, Shenzhen)	
Sample/EUT Status	Good condition	

Product Description for Equipment under Test (EUT)

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter		Uncertainty
Occupied Char	nnel Bandwidth	5%
RF Fre	equency	$0.082^{*10^{-7}}$
RF output pov	wer, conducted	0.73dB
Unwanted Emis	ssion, conducted	1.6dB
AC Power Lines C	onducted Emissions	2.72dB
	9kHz - 30MHz	2.66dB
	30MHz - 1GHz	4.28dB
Emissions, Radiated	1GHz - 18GHz	4.98dB
Rudiated	18GHz - 26.5GHz	5.06dB
	26.5GHz - 40GHz	4.72dB
Temperature		1 °C
Humidity		6%
Supply	voltages	0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189.

Accredited by American Association for Laboratory Accreditation (A2LA). The Certificate Number is 4297.01

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0016. The Registration Number is 5077A.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

EUT Exercise Software

Software "BT_Tool V1.1.0"* was used during testing and the power level was Power level 5*.

Special Accessories

N/A.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
/	/	/	/

External I/O Cable

Cable Description	Length (m)	From/Port	То
/	/	/	/

Block Diagram of Test Setup

For Radiated Emission:

	EUT	— 1.0 Meter
Non-Conductive Table 80/150 cm above Ground Plane	1.5 Meters	

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §1.1307 (b)	RF EXPOSURE	Compliant
§15.203	Antenna Requirement	Compliant
§15.207(a)	AC Line Conducted Emissions	Not applicable
\$15.205, \$15.209 & \$15.247(d)	Radiated Emissions	Compliant
§15.247(a)(1)	20 dB Emission Bandwidth	Compliant
§15.247(a)(1)	Channel Separation Test	Compliant
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliant
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliant
§15.247(b)(1)	Peak Output Power Measurement	Compliant
§15.247(d)	Band edges	Compliant

Note: The device is powered by battery only when operating with Bluetooth.

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
		Radiated Emissions T	`est		
Rohde & Schwarz	Test Receiver	ESR	102725	2021/12/13	2022/12/12
Rohde & Schwarz	Spectrum Analyzer	FSV40	101949	2021/12/13	2022/12/12
SONOMA INSTRUMENT	Amplifier	310 N	186131	2022/11/08	2023/11/07
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2022/11/08	2023/11/07
Quinstar	Amplifier	QLW-18405536-J0	15964001002	2022/11/08	2023/11/07
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2020/01/05	2023/01/04
Unknown	RF Coaxial Cable	No.10	N050	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.11	N1000	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.12	N040	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.13	N300	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.14	N800	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.15	N600	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.16	N650	2021/12/14	2022/12/13
Wainwright	High Pass Filter	WHKX3.6/18G-10 SS	5	2021/12/14	2022/12/13
Radiated Emission Test Software: e3 19821b (V9)					
RF Conducted Test					
Rohde & Schwarz	Spectrum Analyzer	FSV-40	101495	2021/12/13	2022/12/12
Rohde & Schwarz	Open Switch and Control Unit	OSP120 + OSP-B157	101244 + 100866	2021/12/13	2022/12/12
WEINSCHEL	10dB Attenuator	5324	AU 3842	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.33	RF-03	Eacl	n time

* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.247 (i), §1.1307 (b) – RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D04 Interim General RF Exposure Guidance v01, clause 2.1.2 – 1-mW test Exemption:

Per § 1.1307(b)(3)(i)(A), a single RF source is exempt RF device (from the requirement to show data demonstrating compliance to RF exposure limits, as previously mentioned) if the available maximum time-averaged power is no more than 1 mW, regardless of separation distance.

This exemption applies to all operating configurations and exposure conditions, for the frequency range 100 kHz to 100 GHz, regardless of fixed, mobile, or portable device exposure conditions. This is a standalone exemption, and it cannot be applied in conjunction with any other test exemption.

Test Result

For worst case:

Mode	Frequency	Maximum Tune-up Conducted Power		1-mW test Exemption
	(MHz)	(dBm)	(mW)	
BDR/EDR	2402-2480	-1.5	0.71	Yes

Note 1: The tune-up power was declared by the applicant.

Result: Compliant.

FCC §15.203 – ANTENNA REQUIREMENT

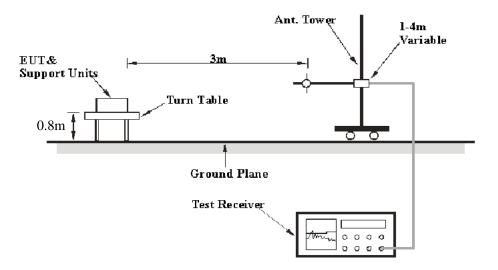
Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

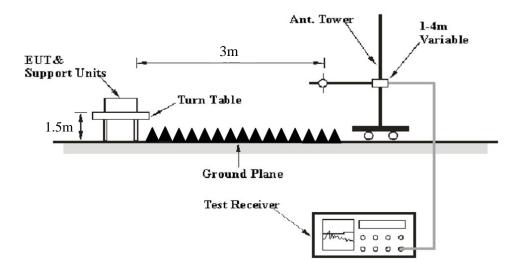
Antenna Connector Construction

The EUT has one internal antenna arrangement, which was permanently attached and the antenna gain is 1.15dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliant.


FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS

Applicable Standard


FCC §15.205; §15.209; §15.247(d)

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	РК

For average measurement:

Use the duty cycle factor correction factor method per 15.35(c). Duty cycle=On time/100milliseconds, On time=N1*L1+N2*L2+...Nn-1*Ln-1+Nn*Ln, Where N1 is number of type 1 pulses, L1 is length of type 1 pulse, etc. Average Emission Level=Peak Emission Level+20*log(Duty cycle)

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

If the maximized peak measured value complies with the limit, then it is unnecessary to perform an QP/Average measurement

Factor & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

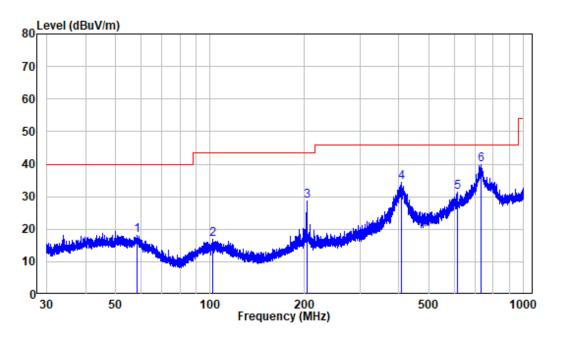
Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

Test Data

Environmental Conditions

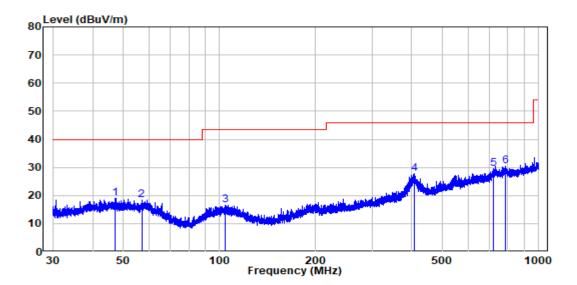

Temperature:	24°C
Relative Humidity:	60%
ATM Pressure:	101kPa

The testing was performed by Level Li on 2022-11-14..

EUT operation mode: BT Transmitting

(Scan with GFSK, $\pi/4$ -DQPSK, 8DPSK mode at X axis, Y axis, Z axis, the worst case is 8DPSK Mode at X axis)

Below 1GHz: 8DPSK Middle Channel



Horizontal

Site : chamber Condition: 3m HORIZONTAL Job No. : RA221026-49397E-RF Test Mode: BT

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	58.305	-10.01	27.99	17.98	40.00	-22.02	Peak
2	101.912	-11.58	28.57	16.99	43.50	-26.51	Peak
3	203.166	-11.68	40.32	28.64	43.50	-14.86	Peak
4	407.157	-6.56	41.08	34.52	46.00	-11.48	Peak
5	616.642	-2.48	33.98	31.50	46.00	-14.50	Peak
6	731.279	-0.85	40.57	39.72	46.00	-6.28	Peak

Site : chamber Condition: 3m VERTICAL Job No. : RA221026-49397E-RF Test Mode: BT

	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	47.036	-10.00	29.13	19.13	40.00	-20.87	Peak
2	56.966	-10.05	28.59	18.54	40.00	-21.46	Peak
3	104.170	-11.76	28.30	16.54	43.50	-26.96	Peak
4	406.266	-6.63	34.29	27.66	46.00	-18.34	Peak
5	720.146	-1.35	31.01	29.66	46.00	-16.34	Peak
6	786.127	-0.05	30.59	30.54	46.00	-15.46	Peak

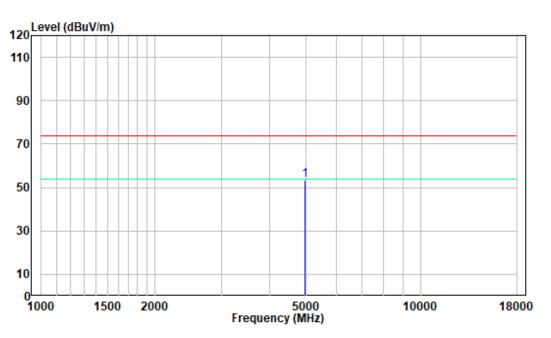
Above 1GHz	(worst case	for 8DPSK):
------------	-------------	-------------

Frequency	Receiver		Turntable Angle	Rx An	tenna	Factor	Absolute Level	Limit	Margin
(MHz)	Reading	PK/AV	Degree	Height	Polar	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)
	(dBuV)	ΓΛ/Αν	Degree	(m)	(H/V)		````		
				Low Ch	annel				
2310	46.03	PK	281	1.8	Н	-7.23	38.8	74	-35.2
2310	46.18	РК	262	1.7	V	-7.23	38.95	74	-35.05
2390	50.72	РК	163	2.0	Н	-7.21	43.51	74	-30.49
2390	48.75	РК	354	1.1	V	-7.21	41.54	74	-32.46
4804	54.45	РК	89	1.6	Н	-3.52	50.93	74	-23.07
4804	50.68	РК	135	1.5	V	-3.52	47.16	74	-26.84
				Middle C	hannel				
4882	55.8	РК	123	1.2	Н	-3.37	52.43	74	-21.57
4882	51.87	РК	330	1.7	V	-3.37	48.5	74	-25.5
				High Ch	annel				
2483.5	55.52	РК	156	1.7	Н	-7.2	48.32	74	-25.68
2483.5	53.52	РК	234	1.1	V	-7.2	46.32	74	-27.68
2500	45.83	РК	159	1.0	Н	-7.18	38.65	74	-35.35
2500	47.42	РК	313	1.6	V	-7.18	40.24	74	-33.76
4960	56.61	РК	226	1.5	Н	-3.01	53.6	74	-20.4
4960	52.78	РК	356	1.5	V	-3.01	49.77	74	-24.23

Note:

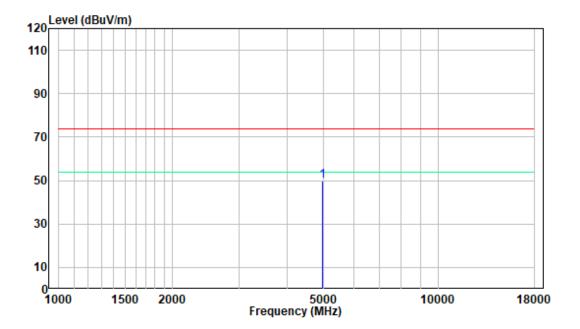
Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor

Absolute Level (Corrected Amplitude) = Factor + Reading

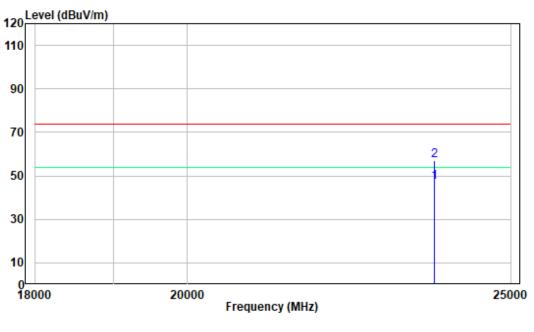

Margin = Absolute Level (Corrected Amplitude) – Limit

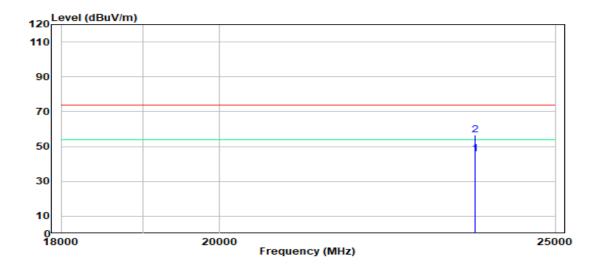
The other spurious emission which is in the noise floor level was not recorded.

For above 1GHz, the test result of peak was 20dB below to the limit of peak, which can be compliant to the average limit, so just peak value was recorded.


1 GHz - 18 GHz: (Pre-Scan plots)

Worst case for 8DPSK High Channel:

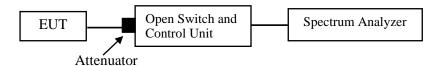

Vertical


18-25GHz: (Pre-Scan plots)

Worst case for 8DPSK High Channel:

Horizontal

Vertical


FCC §15.247(a) (1)-CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test Procedure

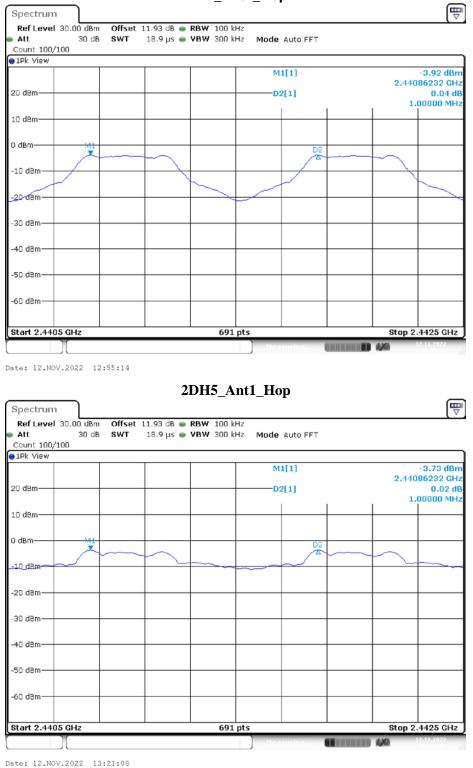
- 1. Set the EUT in transmitting mode, maxhold the channel.
- 2. Set the adjacent channel of the EUT and maxhold another trace.
- 3. Measure the channel separation.

Test Data

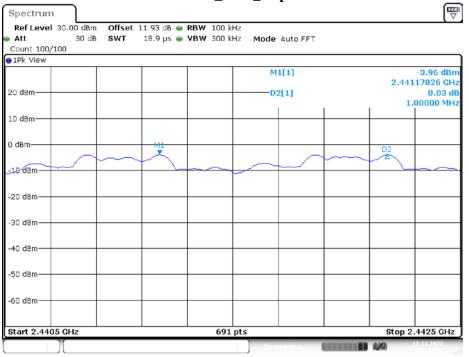
Environmental Conditions

Temperature:	24°C
Relative Humidity:	48%
ATM Pressure:	101kPa

The testing was performed by Glenn Jiang on 2022-11-12.


EUT operation mode: Transmitting

Test Result: Compliant.


Test Mode	Antenna	Channel	Result[MHz]	Limit[MHz]	Verdict
DH5	Ant1	Нор	1	>=0.630	PASS
2DH5	Ant1	Нор	1	>=0.830	PASS
3DH5	Ant1	Нор	1	>=0.868	PASS

Note: The limit = (2/3) * 20dB bandwidth

Please refer to the below plots:

DH5_Ant1_Hop

3DH5_Ant1_Hop

Date: 12.NOV.2022 14:06:44

FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH

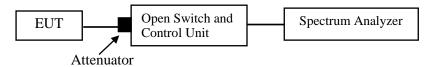
Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

The following conditions shall be observed for measuring the occupied bandwidth and 20 dB bandwidth:

• The transmitter shall be operated at its maximum carrier power measured under normal test conditions.


• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / 20 dB bandwidth if the device is not transmitting continuously.

• The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / 20 dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

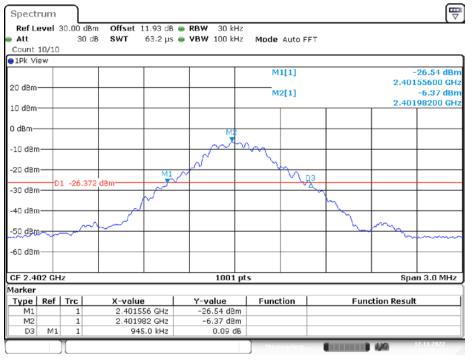
Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

Test Data

Environmental Conditions

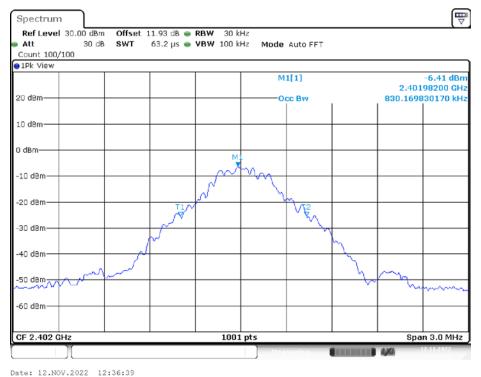
Temperature:	24°C
Relative Humidity:	48 %
ATM Pressure:	101kPa

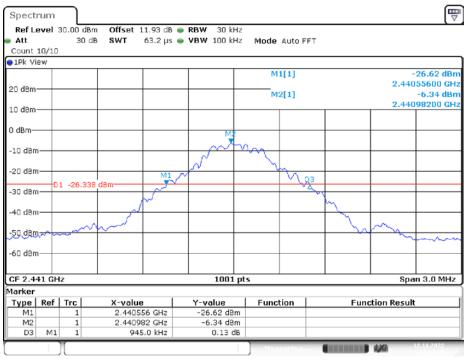

The testing was performed by Glenn Jiang on 2022-11-12.

EUT operation mode: Transmitting

Test Result: Compliant.

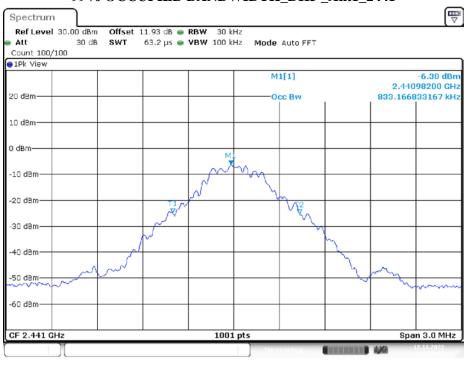
Test Mode	Antenna	Channel	20db EBW[MHz]	99% OCCUPIED BANDWIDTH[MHz]	Verdict
		2402	0.945	0.830	PASS
DH5	Ant1	2441	0.945	0.833	PASS
		2480	0.945	0.830	PASS
	Ant1	2402	1.245	1.151	PASS
2DH5		2441	1.245	1.148	PASS
		2480	1.242	1.148	PASS
		2402	1.302	1.175	PASS
3DH5	Ant1	2441	1.302	1.172	PASS
		2480	1.299	1.175	PASS

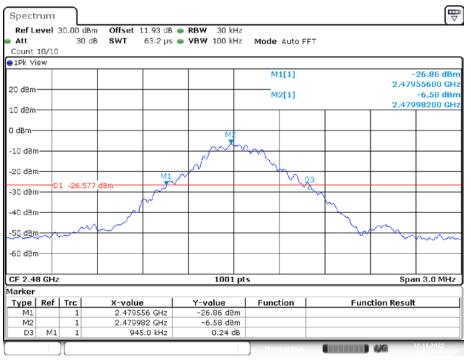

Please refer to the below plots:



20 dB EMISSION BANDWIDTH_DH5_Ant1_2402

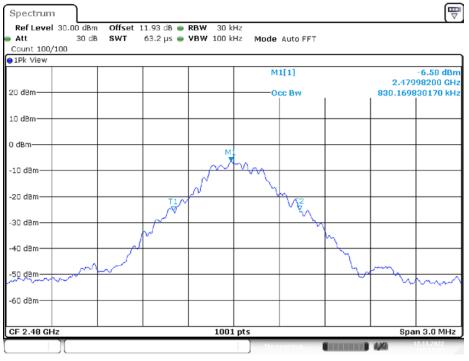
Date: 12.NOV.2022 12:36:22

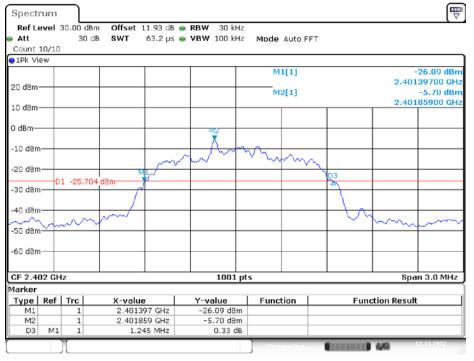



20 dB EMISSION BANDWIDTH_DH5 _Ant1_2441

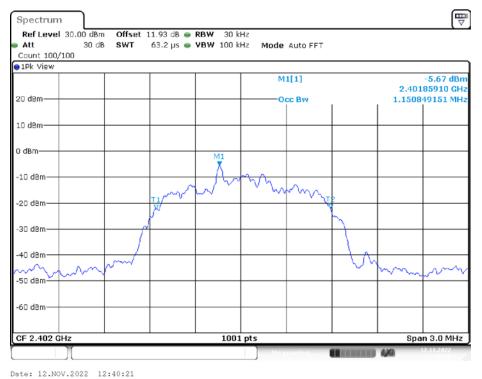
Date: 12.NOV.2022 12:37:48

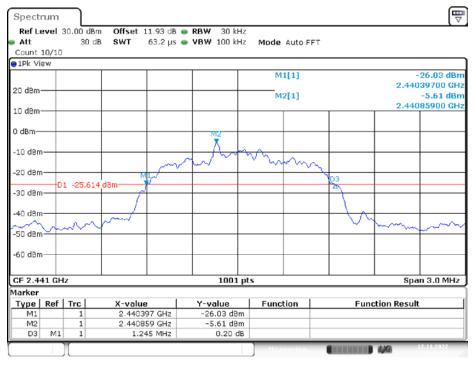
99% OCCUPIED BANDWIDTH_DH5 _Ant1_2441


Date: 12.NOV.2022 12:38:05


20 dB EMISSION BANDWIDTH_DH5 _Ant1_2480

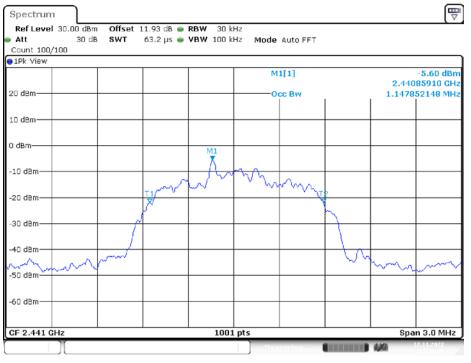
Date: 12.NOV.2022 12:38:45


Date: 12.NOV.2022 12:39:02

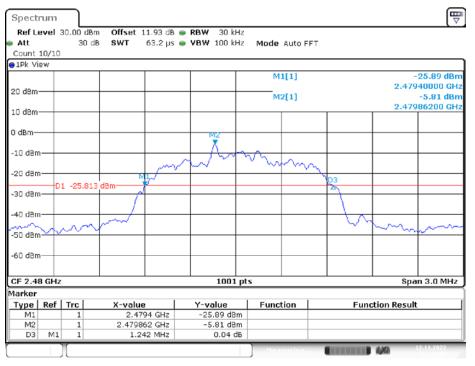

20 dB EMISSION BANDWIDTH_2DH5 _Ant1_2402

Date: 12.NOV.2022 12:40:04

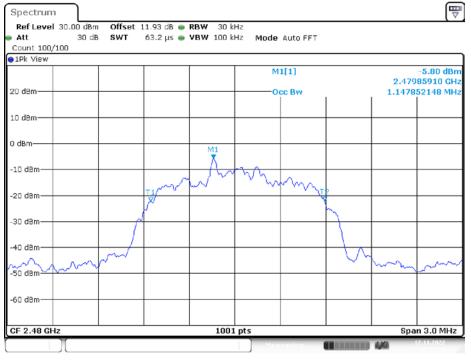
99% OCCUPIED BANDWIDTH_2DH5 _Ant1_2402



20 dB EMISSION BANDWIDTH_2DH5 _Ant1_2441



Date: 12.NOV.2022 12:41:32

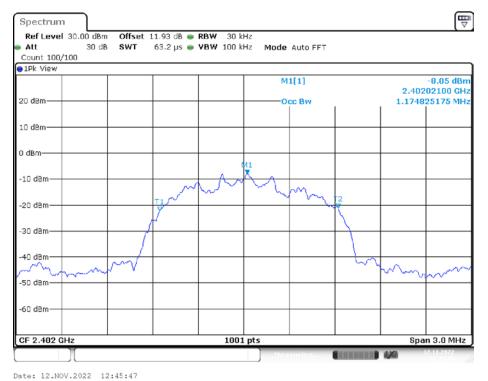


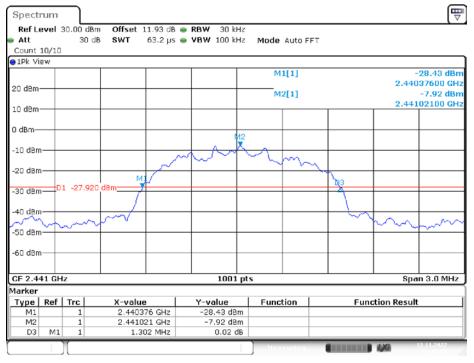
Date: 12.NOV.2022 12:41:49


20 dB EMISSION BANDWIDTH _2DH5_Ant1_2480

Date: 12.NOV.2022 12:43:10

99% OCCUPIED BANDWIDTH _2DH5_Ant1_2480

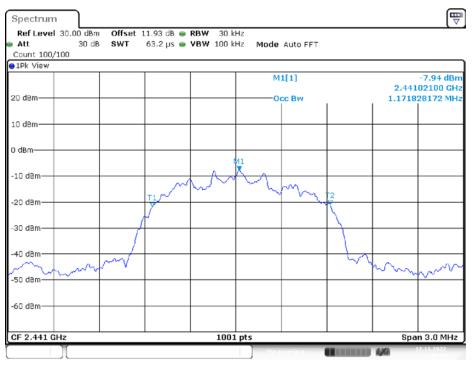

Date: 12.NOV.2022 12:43:27

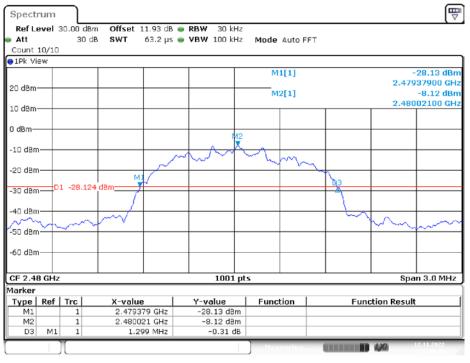


20 dB EMISSION BANDWIDTH_3DH5_Ant1_2402

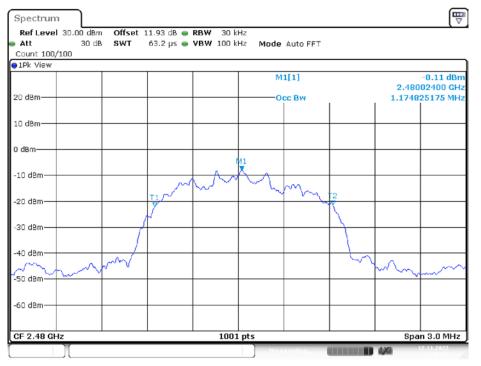
Date: 12.NOV.2022 12:45:30

99% OCCUPIED BANDWIDTH_3DH5_Ant1_2402




20 dB EMISSION BANDWIDTH_3DH5_Ant1_2441

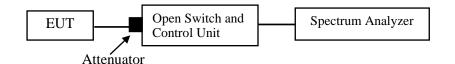
Date: 12.NOV.2022 12:47:03


Date: 12.NOV.2022 12:47:19

20 dB EMISSION BANDWIDTH_3DH5_Ant1_2480

Date: 12.NOV.2022 12:49:45

Date: 12.NOV.2022 12:50:02


FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

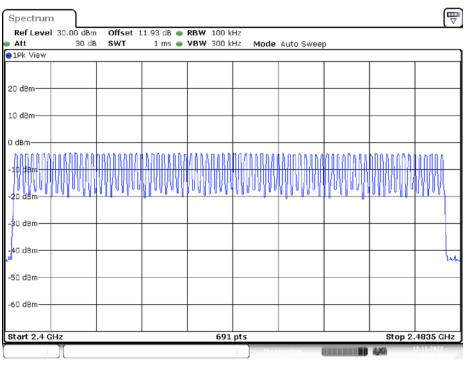
- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

Test Data

Environmental Conditions

Temperature:	24°C
Relative Humidity:	48%
ATM Pressure:	101kPa

The testing was performed by Glenn Jiang on 2022-11-12.


EUT operation mode: Transmitting

Test Result: Compliant.

Test Mode	Antenna	Channel	Result[Num]	Limit[Num]	Verdict
DH5	Ant1	Нор	79	>=15	PASS
2DH5	Ant1	Нор	79	>=15	PASS
3DH5	Ant1	Нор	79	>=15	PASS

Please refer to the below plots:

Date: 12.NOV.2022 12:55:44

2DH5_Ant1_Hop

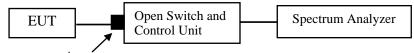
Ref Level Att	30.00 dB 30 (11.93 dB 👄	RBW 100 k VBW 300 k		Auto Sweep	.		
1Pk View	55 1	ab 5 11	1 115	1011 300 1	ine mode	Auto Sweet	,		
20 dBm									
10 dBm									
D dBm									
	NAMAN	MINA	NMMM	ANASAAA	MANANA	MARANA	VWWW	MAANA	MM
20 dBm									
30 dBm									
40 dBm									4m
-50 dBm									
-60 dBm									
Start 2.4 G	Hz			691	pts			Stop 2	.4835 GHz

Date: 12.NOV.2022 13:22:01

3DH5_Ant1_Hop

Ref Level Att	30.00 dBm 30 dB		11.93 dB 👄 1 ms 👄				Auto Sweep			
1Pk View										
20 dBm										
LO dBm										
dBm										
MMMM	1444AAAA	WWW	MMM	WW	WW	www	www	MMMAA	NAMA	MM
20 dBm										
30 dBm										
40 d8m										ų
50 dBm										
60 dBm										
start 2.4 GI	Hz				691	nts			Ston 2	4835 GHz

Date: 12.NOV.2022 14:08:31


FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 1. The EUT was worked in channel hopping.
- 2. Set the RBW to: 1MHz.
- 3. Set the VBW \geq 3×RBW.
- 4. Set the span to 0Hz.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Recorded the time of single pulses

Attenuator

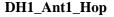
Test Data

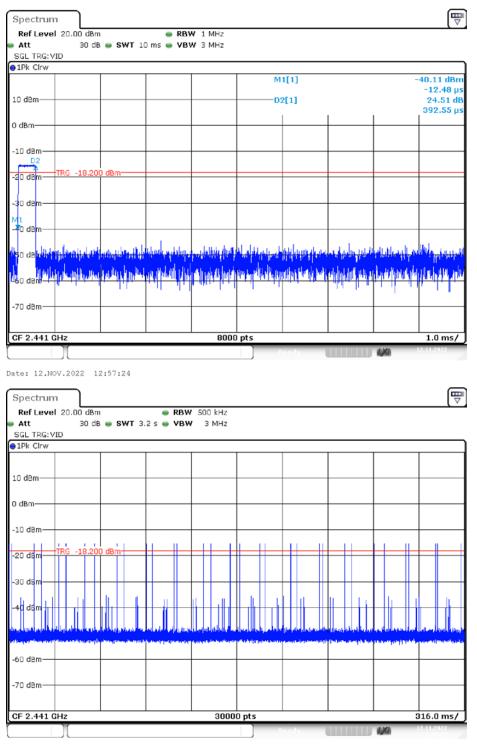
Environmental Conditions

Temperature:	24°C
Relative Humidity:	48%
ATM Pressure:	101kPa

The testing was performed by Glenn Jiang on 2022-11-12.

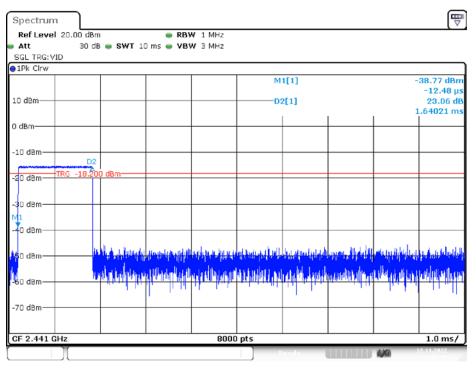
EUT operation mode: Transmitting

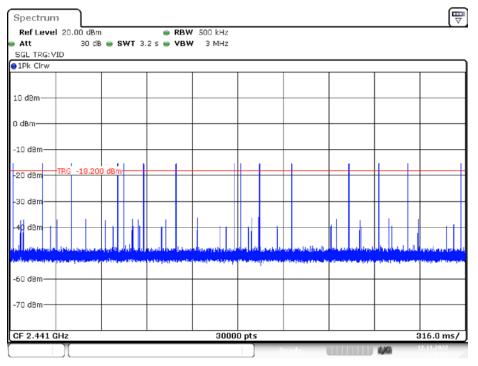

Test Result: Compliant.


Test Mode	Antenna	Channel	Burst Width [ms]	Total Hops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.39	330	0.130	<=0.4	PASS
DH3	Ant1	Нор	1.64	160	0.262	<=0.4	PASS
DH5	Ant1	Нор	2.88	100	0.288	<=0.4	PASS
2DH1	Ant1	Нор	0.40	320	0.128	<=0.4	PASS
2DH3	Ant1	Нор	1.65	140	0.231	<=0.4	PASS
2DH5	Ant1	Нор	2.89	110	0.318	<=0.4	PASS
3DH1	Ant1	Нор	0.40	330	0.132	<=0.4	PASS
3DH3	Ant1	Нор	1.65	170	0.281	<=0.4	PASS
3DH5	Ant1	Нор	2.89	110	0.318	<=0.4	PASS

Note 1: A period time=0.4*79=31.6(s), Result=Burst Width*Total Hops

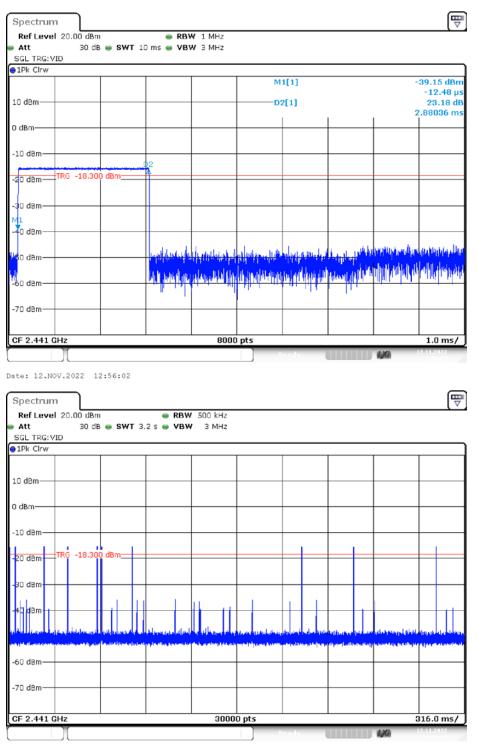
Note 2: Total Hops =Hopping Number in 3.16s*10


Note 3: Hoping Number in 3.16s=Total of highest signals in 3.16s (Second high signals were other channel)

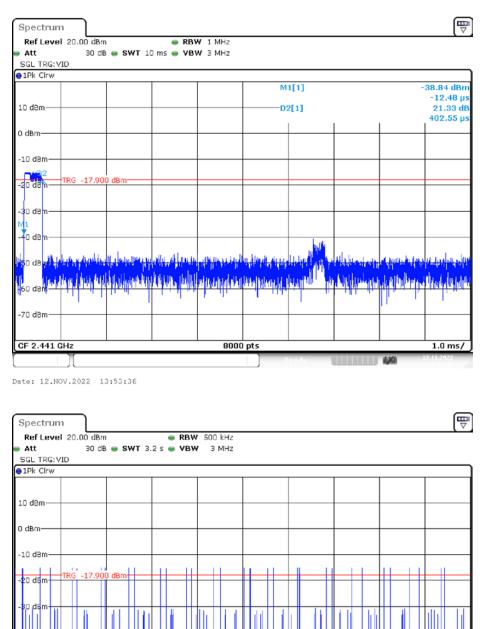


Date: 12.NOV.2022 12:57:30

DH3_Ant1_Hop



Date: 12.NOV.2022 12:56:49

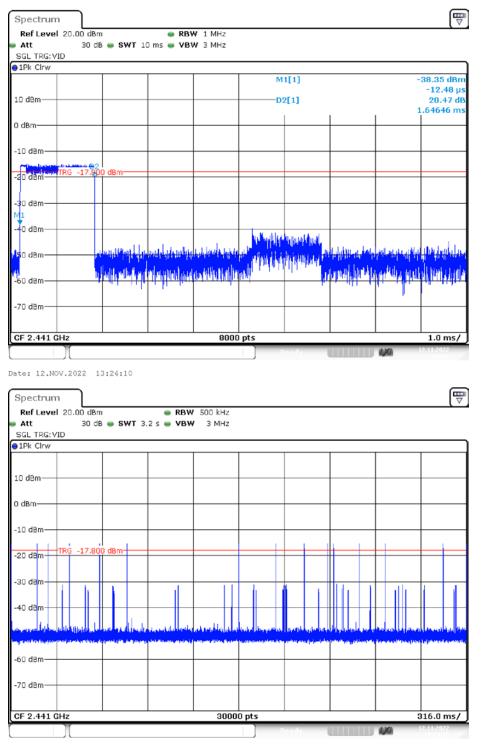

Date: 12.NOV.2022 12:56:55

Date: 12.NOV.2022 12:56:07

2DH1_Ant1_Hop

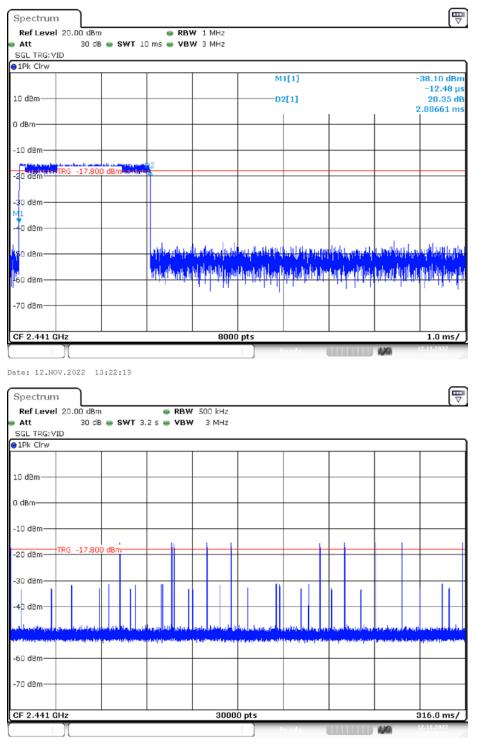
-60 dBm--70 dBm-

CF 2.441 GHz

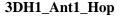

Date: 12.NOV.2022 13:53:42

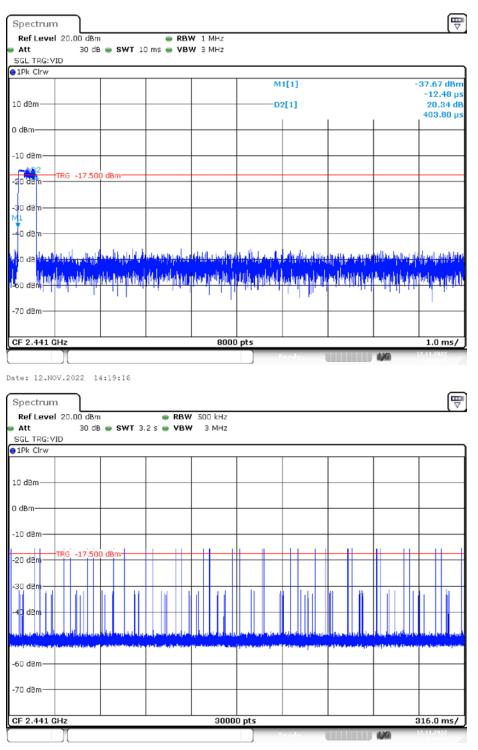
30000 pts

316.0 ms/

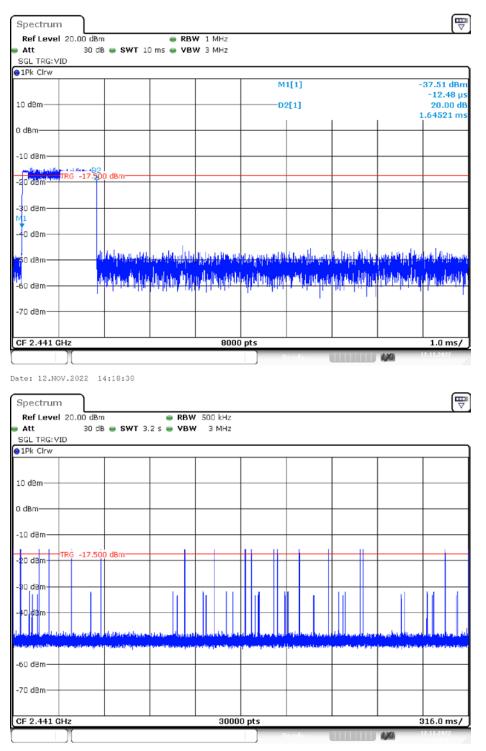

110

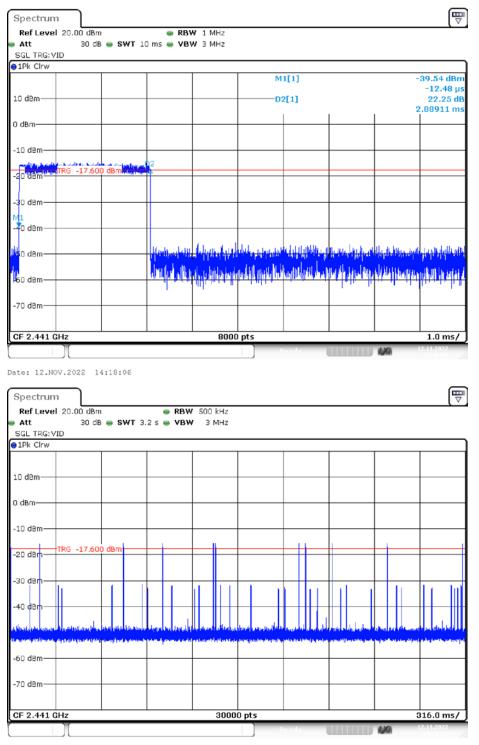
2DH3_Ant1_Hop




Date: 12.NOV.2022 13:24:16

2DH5_Ant1_Hop


Date: 12.NOV.2022 13:22:24

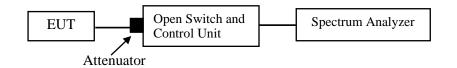

Date: 12.NOV.2022 14:19:21

3DH3_Ant1_Hop

Date: 12.NOV.2022 14:18:43

3DH5_Ant1_Hop

Date: 12.NOV.2022 14:18:11


FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

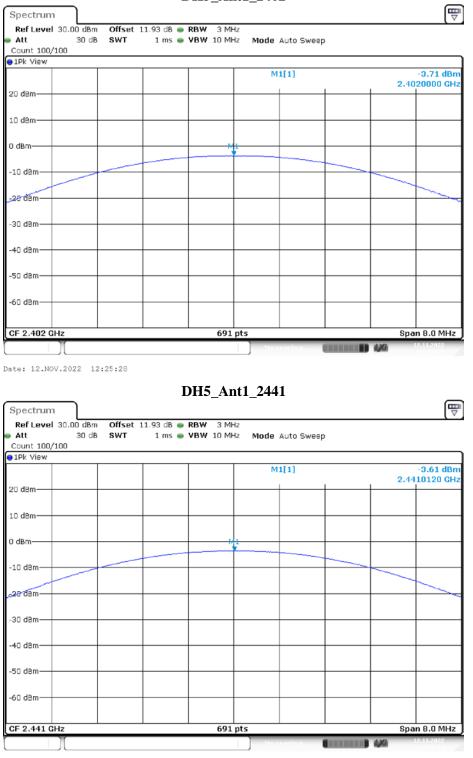
Test Procedure

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

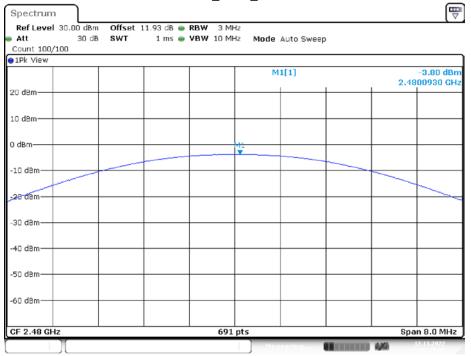
Environmental Conditions

Temperature:	24°C
Relative Humidity:	48%
ATM Pressure:	101kPa


The testing was performed by Glenn Jiang on 2022-11-12.

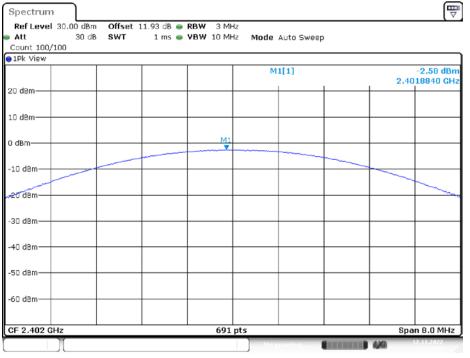
EUT operation mode: Transmitting

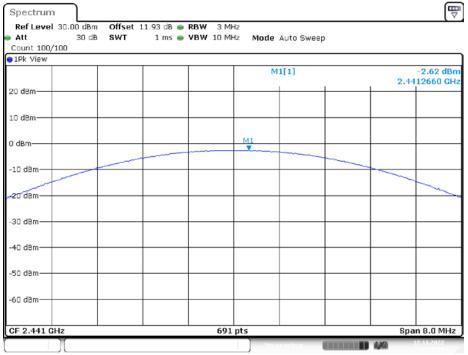
Test Result: Compliant.


Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		2402	-3.71	<=20.97	PASS
DH5	Ant1	2441	-3.61	<=20.97	PASS
		2480	-3.80	<=20.97	PASS
	Ant1	2402	-2.58	<=20.97	PASS
2DH5		2441	-2.62	<=20.97	PASS
		2480	-2.80	<=20.97	PASS
		2402	-2.04	<=20.97	PASS
3DH5	Ant1	2441	-1.97	<=20.97	PASS
		2480	-2.25	<=20.97	PASS

Please refer to the below plots:

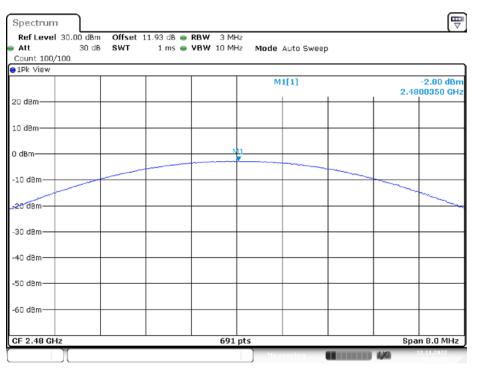
DH5_Ant1_2402

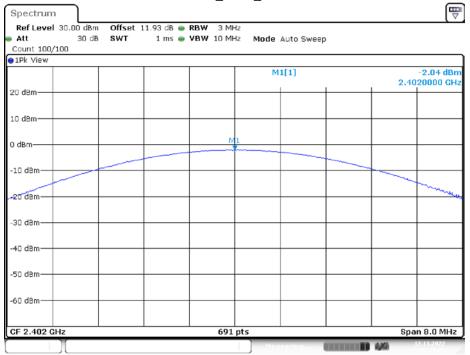

Date: 12.NOV.2022 12:26:14


DH5_Ant1_2480

Date: 12.NOV.2022 12:27:16

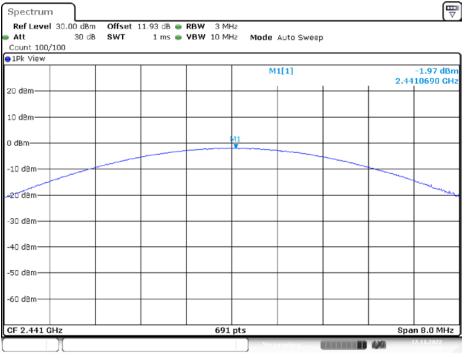
2DH5_Ant1_2402

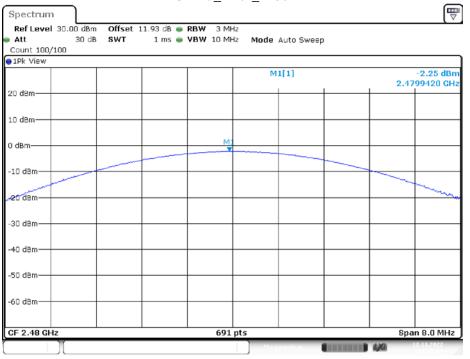

Date: 12.NOV.2022 12:31:20


2DH5_Ant1_2441

Date: 12.NOV.2022 12:32:00

2DH5_Ant1_2480


Date: 12.NOV.2022 12:32:50


3DH5_Ant1_2402

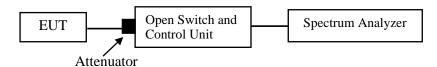
Date: 12.NOV.2022 12:33:26

3DH5_Ant1_2441

Date: 12.NOV.2022 12:34:47

3DH5_Ant1_2480

Date: 12.NOV.2022 12:35:19


FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

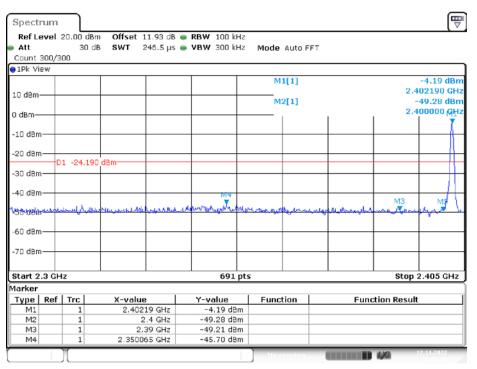
Environmental Conditions

Temperature:	24°C
Relative Humidity:	48%
ATM Pressure:	101kPa

The testing was performed by Glenn Jiang on 2022-11-12.

EUT operation mode: Transmitting

Test Result: Compliant


Please refer to the below plots:

DH5: Band Edge-Left Side Hopping

Spectrum						U ↓
Ref Level						
Att	30	dB SWT 246.5µs (VBW 300 kHz	Mode Auto F	FT	
Count 300/3	300					
∋1Pk View						
				M1[1]		-3.97 dBn
10 dBm						2.401880 GH
				M2[1]		-48.05 dBn
0 dBm						2.400000 <mark> GH</mark>
						TAL TAL
-10 dBm						
-20 dBm	01 -23.97	70 d9m				
-30 d8m-	1 -23.97	/u ubiii				
-30 dBm						
-40 dBm			1014			
						M3 M2
-50 d8m	Mar and a second	menyreturnerun		mound	manne	una and and make
-60 d8m					_	
-70 dBm						
Start 2.3 G	lz		691 pts			Stop 2.405 GHz
4arker						
Type Ref	Trc	X-value	Y-value	Function	Fun	iction Result
M1	1	2.40188 GHz	-3.97 dBm			
M2	1	2.4 GHz	-48.05 dBm			
M3	1	2.39 GHz	-47.98 dBm			
M4	1	2.350522 GHz	-45.57 dBm			
				Meneuvine	COLUMN 1	12.11.2022

Date: 12.NOV.2022 12:53:41

Single

Date: 12.NOV.2022 12:36:54

			порри	-6		
Spectrum						F
Ref Level	20.00 dB	m Offset 11.93 dB	RBW 100 kHz			
Att	30 d	B SWT 1.1 ms	VBW 300 kHz	Mode Auto S	weep	
Count 300/3	300					
1Pk View						
				M1[1]		-3.99 dBr
						2.479900 GH
LO dBm				M2[1]		-43.01 dBr
) dBm	M1					2.483500 GH
dBm	. Y				1	
(ALLAQUAL	M					
ทุกหนายาม						
20 dBm	<u> </u>					
	01 -23.99	0 dBm				
30 d8m						
				M4		
40 dBm —	M2	M M	3		d at his and a	and the have been and the second second
	0,000	and the second s				
50 dBm —						
60 dBm						
70 dBm						
Start 2.47 (GHZ		691 pts			Stop 2.55 GHz
larker						
Type Ref	Trc	X-value	Y-value	Function	Fund	tion Result
M1	1	2.4799 GHz	-3.99 dBm			
M2	1	2.4835 GHz	-43.01 dBm			
MЗ	1	2.5 GHz	-43.35 dBm			
M4	1	2.516493 GHz	-41.57 dBm			
	27					

DH5: Band Edge- Right Side Hopping

Date: 12.NOV.2022 12:58:28

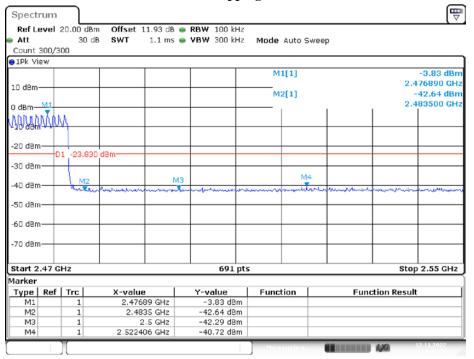
₽ Spectrum Ref Level 20.00 dBm Offset 11.93 dB 🖷 RBW 100 kHz Att 30 dB SWT 1.1 ms 👄 VBW 300 kHz 🛛 Mode Auto Sweep Count 300/300 ●1Pk View -4.20 dBm 2.479900 GHz M1[1] 10 dBm M2[1] -44.55 dBm 2.483500 GHz 0 dBm--10 dBm -20 d8m-D1 -24.200 d8m--30 d8m М -40 dBm w.t. 4.5 400 abran متعليهم menen al. un w.s. -50 d8m -60 d8m--70 d8m-Start 2.47 GHz 691 pts Stop 2.55 GHz Marker Type Ref Trc Function Function Result X-value Y-value 2.4799 GHz 2.4835 GHz 2.5 GHz 2.541188 GHz -4.20 dBm -44.55 dBm Μ1 1 M2 1 ΜЗ -44.03 dBm 1 M4 -41.67 dBm 1 4/9

Single

Date: 12.NOV.2022 12:39:17

2DH5: Band Edge-Left Side Hopping

Spectrum									E ↓
Ref Level				RBW 100 kHz					
Att Count 300/3		dB SWT	246.5 µs	VBW 300 kHz	Mode Aut	O FFT			
1Pk View	000								
JICK VIEW					M1[1]				-4.21 dBn
10 dBm								2.4	01880 GH
IU dBm					M2[1]				46.78 dBn
0 dBm								. 2.4	ម <mark>ារ</mark> ត្តពល
									I IN
-10 dBm									1 199
-20 d8m									
	1 -24.2	210 dBm							
-30 d8m									
-40 d8m						- M4		M3	Ma
-50 dBm	sens.	mangan	hours	man	muno	my	underlyper	and the second	wind
-60 dBm									
-70 dBm									
-/U UBIII									
Start 2.3 GF	1			691 pt:				Oton	 2.405 GHz
Aarker	12			091 pt:	>			acup	2.403 GHZ
	Trc	X-valu	a	Y-value	Function	1	Fun	ction Result	•
M1	1		88 GHz	-4.21 dBm					-
M2	1		2.4 GHz	-46.78 dBm					
MЗ	1		39 GHz	-47.36 dBm					
M4	1	2.371	37 GHz	-45.07 dBm					
					Measuri	ng		100	12.11.2022


Date: 12.NOV.2022 13:02:56

Single

	evel	20.00 d			• RBW 100 kHz				
Att	/		dB SWT 246	.5 μs 🧉	• VBW 300 kHz	Mode Auto F	FT		
Count	<u> </u>	00							
) IPK VI	ew							-5.34	10
						M1[1]		2.401880	
10 dBm	-					M2[1]		-49.38	
						[[[2[1]		2.400000	
) dBm—	-						1	2.400000	<u>м</u> 1.
10 dBm									1
TO GBI	·								
20 d8m	<u> </u>								11
		1 -25.3	40 dBm						1
30 dBm									++
									Л
40 dBm	י—ר	M4							H
a berry of	l .		he have the other of		moundance	A State of the second state of the second		M3 M3	FI
St den	1 Contraction			C D COLORED O			and the second		
60 dBm									
00 480									
70 dBm	<u> </u>								
	.								
start 2	2.04	17						Stop 2.405 0	2117
larker	.0 01	12			091 pt3			3000 2.403 0	31.12
Type	Ref	Trc	X-value	1	Y-value	Function	Fund	tion Result	
M1	1101	1	2.40188	GHz	-5.34 dBm	rundton	- Tune	Rion Resolu	
M2		1	2.4		-49.38 dBm				
MЗ		1	2.39	GHz	-49.33 dBm				
M4		1	2.317348	GHz	-45.84 dBm				

Date: 12.NOV.2022 12:40:36

2DH5: Band Edge- Right Side Hopping

Date: 12.NOV.2022 14:02:26

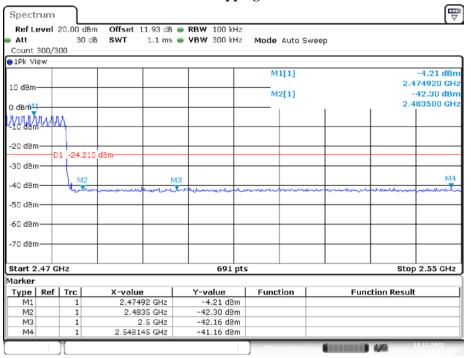
Single

Ref Le	evel	20.00 df	Sm Offset 1	1.93 dB	BRBW 100 kHz				<u> </u>
Att		30	dB SWT	1.1 ms	• VBW 300 kHz	Mode Auto	Sweep		
Count	300/3	00							
1Pk Vi	ew								_
						M1[1]		-4.12 (dBn
10 dBm-								2.479900	GH
to usin-						M2[1]		-43.25 (dBn
) dBm—		41						2.483500	GH
o doni		Ъ							
-10 d8m		А	_						
20 dBm			-						
		1 -24.13	20 dBm						
30 d8m									
-40 d8m	. J	4 M2		м	3				M
-40 UBII	and	The.	amarane	werende	a formation and	meter and marken	would mener	ener and man march	~
-50 d8m	-								
60 dBm			_						
-70 dBm	·								
Start 2	.47 G	Hz			691 pt	s		Stop 2.55 G	Hz
1arker									_
Type	Ref	Trc	X-value	.	Y-value	Function	F	unction Result	
M1		1	2.479	99 GHz	-4.12 dBm				
M2		1		35 GHz	-43.25 dBm				
MЗ		1		.5 GHz	-43.89 dBm				
M4		1	2.54872	25 GHz	-41.73 dBm		1		

Date: 12.NOV.2022 12:43:42

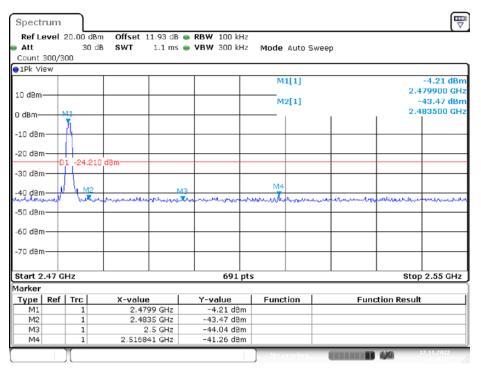
3DH5: Band Edge-Left Side Hopping

Spectrum											
Ref Level					100 kHz						
Att Count 300/3		dB SWT	246.5 µs	ARM	300 kHz	Mode	Auto F	FT			
1Pk View	500										
			1			M	1[1]				-4.84 dBn
10 dBm										2.4	101880 GH
10 08111						M:	2[1]				-48.13 dBn
0 dBm										2.4	100000 <mark>,GH</mark>
											լ Ն
-10 dBm											1 100
-20 d8m											
	01 -24.8	340 dBm		_							
-30 dBm											
-40 d8m				M4							
				Y						M3	M2
-50 dBm	myn	menum	g and a	warmer	mound	mun	your	moun	m	al and the second	man
-60 dBm											
-70 d8m											
Start 2.3 GF	Ηz		1		691 pts					Stop	2.405 GHz
larker											
Type Ref	Trc	X-valu	e	Y-v	alue	Funct	tion		Func	tion Resul	t
M1	1		.88 GHz		4.84 dBm						
M2	1		2.4 GHz		3.13 dBm						
M3 M4	1		39 GHz 39 GHz		3.06 dBm 4.05 dBm						
1714	1 1	2.3412	.59 GHZ	-44	+.05 ubin			1			


Date: 12.NOV.2022 14:05:07

Single

Att	evel	20.00 30		B 🖷 RBW 100 kHz Is 🖷 VBW 300 kHz	Mode Auto F	FT	
Count : 1Pk Vi	<u> </u>	00					
) IPK VI	ew				M1[1]		-4.12 dBn
10 dBm-							2.401880 GH
10 000					M2[1]		-49.11 dBn
) dBm—	-					1 1	2.400000 <mark>ទ្</mark> រុជ្
10 dBm							Ι Ι
10 080							
20 d8m							
		1 -24.	120 dBm				
30 dBm	·+-						
40 dBm							يا لي
				M4			M3 M2
90/d8h	rente	ساري هنگسون	Martin Martine Contraction	un a bar market when when	Annormation and the second	المعددية فالمتحد مرهقت	www.www.ww.www.www.www.www.www.www.www
60 dBm							
	·						
70 d8m							
start 2	.3 GH	Iz		691 pts	5		Stop 2.405 GHz
larker							
	Ref	Trc	X-value	Y-value	Function	Functi	on Result
M1		1	2.40188 GHz				
M2 M3		1	2.4 GHz 2.39 GHz				
M3 M4		1	2.39 GHz 2.350674 GHz				


Date: 12.NOV.2022 12:46:02

3DH5: Band Edge- Right Side Hopping

Date: 12.NOV.2022 14:21:14

Single

Date: 12.NOV.2022 12:50:17

***** END OF REPORT *****