

FCC PART 15.247 TEST REPORT

For

Zeeva International Limited

Suite 1007B,10th Floor, Exchange Tower, 33 Wang Chiu Road, Kowloon Bay, Hong Kong

FCC ID: 2ADM5-EP-0529

Report Type:		Product Type:
Original Report		BT VORTEX EARBUDS AST
Report Number:	RSZ171120830	-00
Report Date:	2017-12-14	
Reviewed By:	Xiangguang Ko EMC Engineer	ng Kiangguang Kong
Prepared By:	Bay Area Comp 6/F., West Wing	3320018 3320008

Note: This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

Bay Area Compliance Laboratories Corp. (Shenzhen)

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	
Test Methodology Measurement Uncertainty	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
SUPPORT EQUIPMENT LIST AND DETAILS External I/O Cable	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	
FCC§15.247 (i), §1.1307 (b) (1) &§2.1093 – RF EXPOSURE	
APPLICABLE STANDARD	
FCC §15.203 – ANTENNA REQUIREMENT	
APPLICABLE STANDARD	11
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI Test Receiver Setup Test Procedure	
CORRECTED FACTOR & MARGIN CALCULATION	
TEST RESULTS SUMMARY	
TEST DATA	13
FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS	16
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP Test Procedure	
CORRECTED AMPLITUDE & MARGIN CALCULATION	17
TEST RESULTS SUMMARY	
TEST DATA	17
FCC §15.247(a) (1)-CHANNEL SEPARATION TEST	
APPLICABLE STANDARD	23
TEST PROCEDURE	
TEST DATA	
FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	

FCC Part 15.247

Page 2 of 50

Bay Area Compliance Laboratories Corp. (Shenzhen)

FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST	
APPLICABLE STANDARD	
TEST PROCEDURE	
ТЕЅТ ДАТА	
FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)	
Applicable Standard	
Test Procedure	
TEST DATA	
FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT	45
Applicable Standard	
Test Procedure	
TEST DATA	
FCC §15.247(d) - BAND EDGES TESTING	46
Applicable Standard	
Test Procedure	
TEST DATA	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The Zeeva International Limited's product, model number: *EP-0529 (FCC ID: 2ADM5-EP-0529, UPC Number: 400029419959)* in this report is a *BT VORTEX EARBUDS AST*, which was measured approximately: 60 cm (L) * 1.2 cm (W)*1.4(H), rated with input voltage: DC 3.7 V battery.

* All measurement and test data in this report was gathered from production sample serial number: 20171120 (Assigned by BACL, Shenzhen). The EUT supplied by the applicant was received on 2017-11-20.

Objective

This test report is prepared on behalf of *Zeeva International Limited* in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

No Related Submittal(s)/Grant(s).

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter	uncertainty
Occupied Channel Bandwidth	±5%
RF Output Power with Power meter	±0.5dB
RF conducted test with spectrum	±1.5dB
AC Power Lines Conducted Emissions	±1.95dB
All emissions, radiated	±4.88dB
Temperature	±3°C
Humidity	±6%
Supply voltages	±0.4%

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China.

Bay Area Compliance Laboratories Corp. (Shenzhen) has been accredited to ISO/IEC 17025 by CNAS(Lab code: L2408). And accredited to ISO/IEC 17025 by NVLAP(Lab code: 200707-0), the FCC Designation No. CN5001 under the KDB 974614 D01.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Bay Area Compliance Laboratories Corp. (Shenzhen) was registered with ISED Canada under ISED Canada Registration Number 3062B.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in engineering mode.

EUT Exercise Software

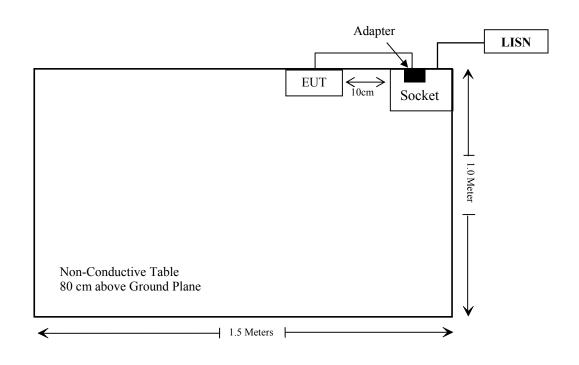
"FCCAssist_1.5.exe" software was used.

Special Accessories

No special accessory.

Equipment Modifications

No modification was made to the EUT tested.


Support Equipment List and Details

Manufacturer	r Description N		Serial Number
SPY	Adapter	716D-0501000	N/A

External I/O Cable

Cable Description	Length (m)	From Port	То
Un-shielding Detachable USB Cable	0.2	EUT	Adapter

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §2.1093	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.207(a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209 & §15.247(d)	Radiated Emissions	Compliance
§15.247(a)(1)	20 dB Emission Bandwidth	Compliance
§15.247(a)(1)	Channel Separation Test	Compliance
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliance
§15.247(b)(1)	Peak Output Power Measurement	Compliance
§15.247(d)	Band edges	Compliance

TEST EQUIPMENT LIST

Manufacturer Description		Model	Serial Number	Calibration Date	Calibration Due Date
	Condu	ted Emissions Test			
Rohde & Schwarz	EMI Test Receiver	ESCS30	100176	2017-08-04	2018-08-04
Rohde & Schwarz	Rohde & Schwarz LISN		3560.6650.12- 101613-Yb	2016-12-07	2017-12-07
Rohde & Schwarz	Transient Limiter	ESH3Z2	DE25985	2017-02-14	2017-08-15
Rohde & Schwarz	CE Test software	EMC 32	V8.53.0	NCR	NCR
N/A	Conducted Emission Cable	N/A	UF A210B-1- 0720-504504	2017-11-12	2018-05-12
	Radia	ated Emission T	est		
Sunol Sciences	Horn Antenna	DRH-118	A052604	2014-12-29	2017-12-28
Rohde & Schwarz	Signal Generator	FSIQ26	8386001028	2017-04-24	2018-04-24
Mini	Pre-amplifier	ZVA-183-S+	5969001149	2017-02-14	2018-02-14
HP	Amplifier	HP8447E	1937A01046	2017-11-19	2018-05-21
Anritsu	Signal Generator	68369B	004114	2016-12-05	2017-12-05
Sunol Sciences	Broadband Antenna	JB1	A040904-2	2014-12-17	2017-12-16
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2016-12-07	2017-12-07
		UFA210A-1- 4724-30050U	MFR64369 223410-001	2017-11-19	2018-05-21
Ducommun technologies	RF Cable	104PEA	218124002	2017-11-19	2018-05-21
Ducommun technologies	RF Cable	RG-214	1	2017-11-19	2018-05-21
Ducommun technologies	RF Cable	RG-214	2	2017-11-22	2018-05-22
Sinoscite	Band Reject Filter	BSF2402- 2480MN- 0898-001	N/A	2017-05-21	2018-05-21
	RF	Conducted Tes	t		
Agilent	P-Series Power Meter	N1912A	MY5000448	2016-12-05	2017-12-05
Agilent	Wideband Power Sensor	N1921A	MY54210016	2016-12-05	2017-12-05
WEINSCHEL	10dB Attenuator	5324	AU 3842	2017-11-22	2018-05-22
Ducommun technologies	RF Cable	RG-214	3	2017-11-22	2018-05-22
Rohde & Schwarz	EMI Test Receiver	ESR	1316.3003K03 -101746-zn	2017-08-17	2018-08-17
Rohde & Schwarz	SPECTRUM ANALYZER	FSU26	200120	2016-12-05	2017-12-05
WEINSCHEL	3dB Attenuator	N/A	N/A	2017-05-23	2017-11-22

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC Part 15.247

Page 9 of 50

FCC§15.247 (i), §1.1307 (b) (1) &§2.1093 – RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D01 General RF Exposure Guidance

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] ·

 $[\sqrt{f}(GHz)] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

For worst case:

Frequency	Maximum couducted Tune-up power		Calculated Distance	Calculated	Threshold	SAR Test
(MHz)	Power (dBm)	Power (mW)	(mm)	value	(1-g SAR)	Exclusion
2402	-2.40	0.58	5	0.18	3.0	Yes

Result: No SAR test is required

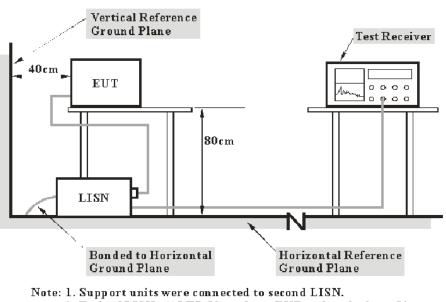
FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

The EUT has one PCB antenna arrangement which was permanently attached and the antenna gain is 0dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliance.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W	
150 kHz – 30 MHz	9 kHz	

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Correction Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207.

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level complies with the limit if

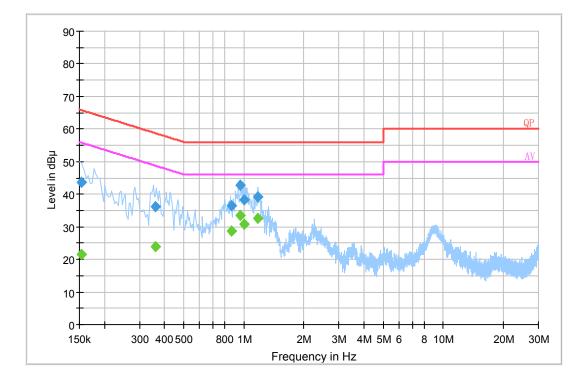
 $L_{\rm m} + U_{(L{\rm m})} \leq L_{\rm lim} + U_{\rm cispr}$

In BACL, $U_{(Lm)}$ is less than U_{cispr} , if L_{m} is less than L_{lim} , it implies that the EUT complies with the limit.

Test Data

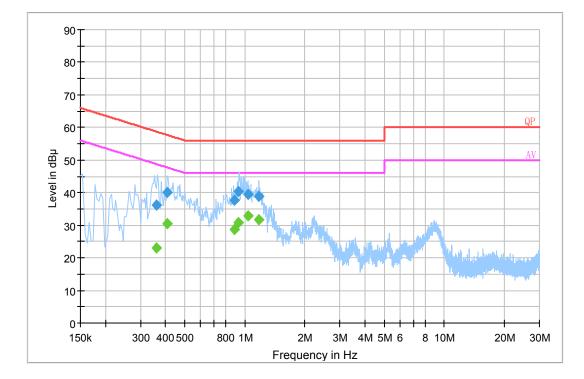
Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	101.0 kPa


The testing was performed by Vincent Zheng on 2017-11-27.

Bay Area Compliance Laboratories Corp. (Shenzhen)

Report No.: RSZ171120830-00


EUT operation mode: Transmitting & Charging

AC 120V/60 Hz, Line:

Frequency (MHz)	Corrected Amplitude (dBµV)	Corrected Factor (dB)	Limit (dBµV)	Margin (dB)	Remark (PK/QP/Ave.)
0.154000	43.8	20.2	65.8	22.0	QP
0.359310	36.0	20.2	58.7	22.7	QP
0.865130	36.4	20.1	56.0	19.6	QP
0.959510	42.8	20.1	56.0	13.2	QP
1.002730	38.2	20.1	56.0	17.8	QP
1.176330	39.2	20.1	56.0	16.8	QP
0.154000	21.5	20.2	55.8	34.3	Ave.
0.359310	24.0	20.2	48.7	24.7	Ave.
0.865130	28.8	20.1	46.0	17.2	Ave.
0.959510	33.4	20.1	46.0	12.6	Ave.
1.002730	30.8	20.1	46.0	15.2	Ave.
1.176330	32.5	20.1	46.0	13.5	Ave.

Report No.: RSZ171120830-00

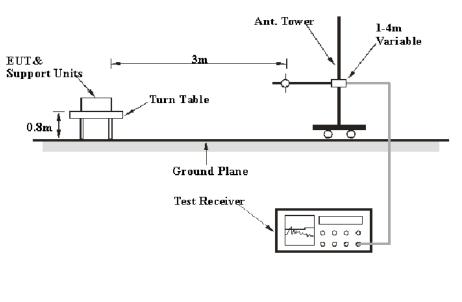
AC 120V/60 Hz, Neutral

Frequency (MHz)	Corrected Amplitude (dBµV)	Corrected Factor (dB)	Limit (dBµV)	Margin (dB)	Remark (PK/QP/Ave.)
0.360510	36.3	20.2	58.7	22.4	QP
0.407850	39.9	20.2	57.7	17.8	QP
0.888770	37.7	20.1	56.0	18.3	QP
0.931990	40.2	20.1	56.0	15.8	QP
1.038490	39.4	20.1	56.0	16.6	QP
1.176330	38.9	20.1	56.0	17.1	QP
0.360510	23.0	20.2	48.7	25.7	Ave.
0.407850	30.6	20.2	47.7	17.1	Ave.
0.888770	28.8	20.1	46.0	17.2	Ave.
0.931990	30.9	20.1	46.0	15.1	Ave.
1.038490	32.9	20.1	46.0	13.1	Ave.
1.176330	31.7	20.1	46.0	14.3	Ave.

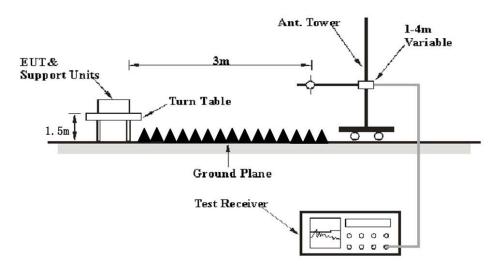
Note:

Corrected Amplitude = Reading + Correction Factor
Correction Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

3) Margin = Limit – Corrected Amplitude


FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS

Applicable Standard


FCC §15.205; §15.209; §15.247(d)

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI ANSI C63.10-2013. The specification used was the FCC 15.209, 205 and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	РК
	1 MHz	10 Hz	/	Ave.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.247.

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level complies with the limit if

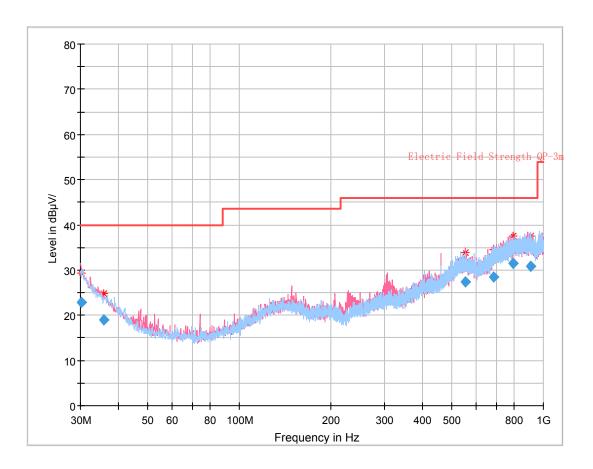
$$L_{\rm m} + U_{(Lm)} \leq L_{\rm lim} + U_{\rm cispr}$$

In BACL, $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	101.0 kPa


The testing was performed by Vincent Zheng on 2017-11-29.

EUT operation mode: Transmitting(Scan with GFSK, $\pi/4$ -DQPSK, the worst case is BDR Mode (GFSK))

FCC Part 15.247

Report No.: RSZ171120830-00

30 MHz - 1GHz:

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna height (cm)	Antenna Polarity	Turntable position (degree)	Correction Factor (dB/m)	Limit (dBµV/m)	Margin (dB)
30.231375	22.79	145.0	V	299.0	0.1	40.00	17.21
35.758000	18.95	334.0	V	275.0	-3.4	40.00	21.05
554.192875	27.39	255.0	V	287.0	4.8	46.00	18.61
683.863375	28.47	401.0	V	54.0	5.9	46.00	17.53
796.075125	31.43	396.0	V	41.0	8.9	46.00	14.57
909.324625	30.87	366.0	Н	229.0	9.4	46.00	15.13

Bay Area Compliance Laboratories Corp. (Shenzhen)

Report No.: RSZ171120830-00

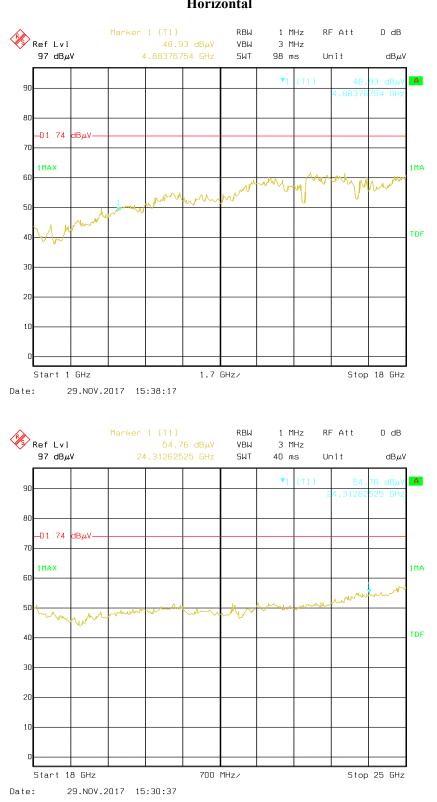
1 GHz – 25 GHz:

Frequency	Meas	surement	Turntable	Rx An	itenna		Corrected		C Part //205/209
(MHz)	Reading (dBµV)	PK/QP/Ave.	Degree	Height (m)	Polar (H/V)	Factor (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
	Low Channel (2402 MHz)								
2402.00	61.22	PK	204	1.1	Н	33.92	95.14	/	/
2402.00	47.82	Ave.	204	1.1	Н	33.92	81.74	/	/
2402.00	60.75	PK	49	1.4	V	33.92	94.67	/	/
2402.00	46.33	Ave.	49	1.4	V	33.92	80.25	/	/
2311.56	27.91	PK	337	1.5	V	33.83	61.74	74	12.26
2311.56	10.76	Ave.	337	1.5	V	33.83	44.59	54	9.41
2323.61	26.17	PK	117	2.1	V	33.83	60.00	74	14.00
2323.61	11.02	Ave.	117	2.1	V	33.83	44.85	54	9.15
2479.25	26.28	РК	180	1.4	V	34.08	60.36	74	13.64
2479.25	10.69	Ave.	180	1.4	V	34.08	44.77	54	9.23
4804.00	47.83	PK	266	1.9	Н	5.84	53.67	74	20.33
4804.00	28.67	Ave.	266	1.9	Н	5.84	34.51	54	19.49
			Middle C	hannel	(2441 N	/IHz)			
2441.00	62.15	PK	327	2.2	Н	33.92	96.07	/	/
2441.00	46.36	Ave.	327	2.2	Н	33.92	80.28	/	/
2441.00	61.05	PK	263	1.5	V	33.92	94.97	/	/
2441.00	45.91	Ave.	263	1.5	V	33.92	79.83	/	/
2318.79	26.83	PK	194	1.3	V	33.83	60.66	74	13.34
2318.79	10.73	Ave.	194	1.3	V	33.83	44.56	54	9.44
2359.14	25.31	РК	121	1.1	V	33.92	59.23	74	14.77
2359.14	10.59	Ave.	121	1.1	V	33.92	44.51	54	9.49
2491.57	26.19	РК	328	1.2	V	34.08	60.27	74	13.73
2491.57	11.45	Ave.	328	1.2	V	34.08	45.53	54	8.47
4882.00	48.93	РК	139	1.8	Н	6.21	55.14	74	18.86
4882.00	27.88	Ave.	139	1.8	Н	6.21	34.09	54	19.91

Report No.: RSZ171120830-00

Frequency	Meas	surement	Turntable	Rx Ar	itenna		Corrected	15.247	C Part //205/209
(MHz)	Reading (dBµV)	PK/QP/Ave.	Degree	Height (m)	Polar (H/V)	Factor (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			High Ch	annel (2480 M	Hz)			
2480.00	61.19	РК	24	2.2	Н	34.08	95.27	/	/
2480.00	45.86	Ave.	24	2.2	Н	34.08	79.94	/	/
2480.00	60.37	РК	24	1.7	V	34.08	94.45	/	/
2480.00	46.29	Ave.	24	1.7	V	34.08	80.37	/	/
2361.15	27.94	РК	293	1.2	V	33.92	61.86	74	12.14
2361.15	12.36	Ave.	293	1.2	V	33.92	46.28	54	7.72
2484.60	26.73	РК	220	2.0	V	34.08	60.81	74	13.19
2484.60	11.03	Ave.	220	2.0	V	34.08	45.11	54	8.89
2492.17	25.88	РК	248	1.7	V	34.08	59.96	74	14.04
2492.17	11.29	Ave.	248	1.7	V	34.08	45.37	54	8.63
4960.00	47.35	РК	61	1.2	Н	7.82	55.17	74	18.83
4960.00	25.83	Ave.	61	1.2	Η	7.82	33.65	54	20.35

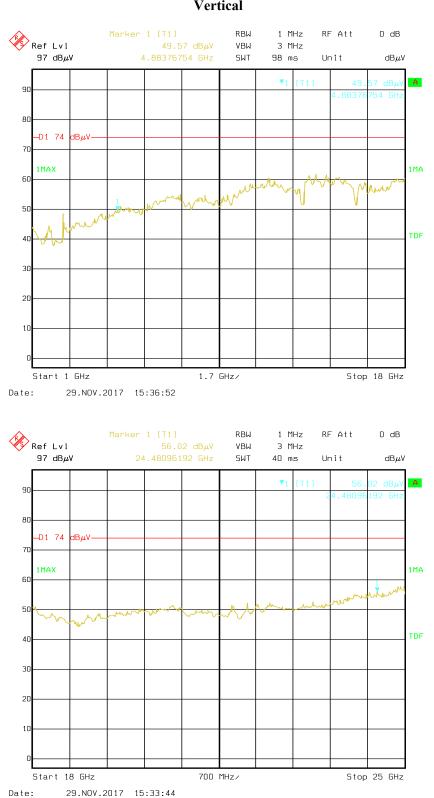
Note:


Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor

Corrected Amplitude = Corrected Factor + Reading Margin = Limit - Corrected. Amplitude

The other spurious emission which is 20dB to the limit was not recorded.

And for the pre-scan is performed with the 2400-2483.5MHz band filter.


Report No.: RSZ171120830-00

Pre-scan with 2480 MHz Horizontal

FCC Part 15.247

Page 21 of 50

Vertical

FCC Part 15.247

Page 22 of 50

Bay Area Compliance Laboratories Corp. (Shenzhen)

FCC §15.247(a) (1)-CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW.

Test Procedure

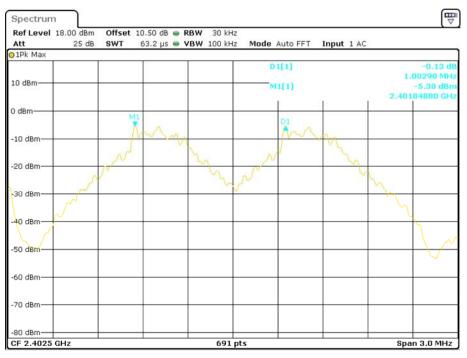
- 1.
- Set the EUT in transmitting mode, maxhold the channel. Set the adjacent channel of the EUT and maxhold another trace. 2.
- 3. Measure the channel separation.

Test Data

Environmental Conditions

Temperature:	25 °C	
Relative Humidity:	57 %	
ATM Pressure:	101.0 kPa	

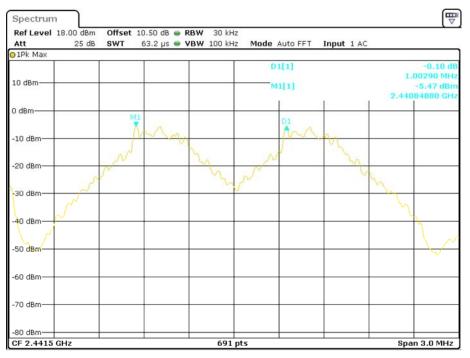
The testing was performed by Vincent Zheng on 2017-11-25.


Bay Area Compliance Laboratories Corp. (Shenzhen)

EUT operation mode: Transmitting

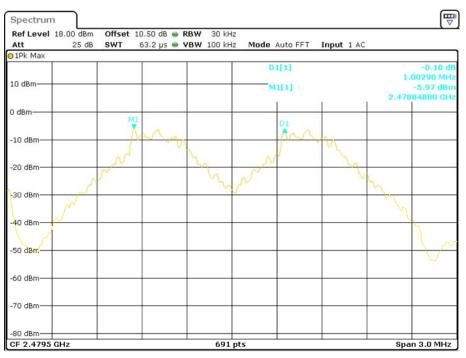
Test Result: Compliance.	Please refer	• to following tab	le and plots
--------------------------	--------------	--------------------	--------------

Mode	Channel	Frequency (MHz)	Channel Separation (MHz)	≥Limit (MHz)	Result
	Low	2402	1.003	0.615	Pass
	Adjacent	2403	1.005	0.015	r ass
BDR	Middle	2441	1.002	0.591	Decc
(GFSK)	Adjacent	2442	1.003	0.391	Pass
	High	2480	1.002	0.613	Pass
	Adjacent	2479	1.003	0.015	r ass
	Low	2402	1.003	0.945	Dese
	Adjacent	2403	1.003	0.845	Pass
EDR	Middle	2441	1.003	0.843	Pass
(π/4-DQPSK)	Adjacent	2442			
	High	2480	1.002	0.945	Daga
	Adjacent	2479	1.003	0.845	Pass


Note: Limit = 20 dB bandwidth *2/3

BDR (GFSK): Low Channel

Date: 25.NOV.2017 13:24:34

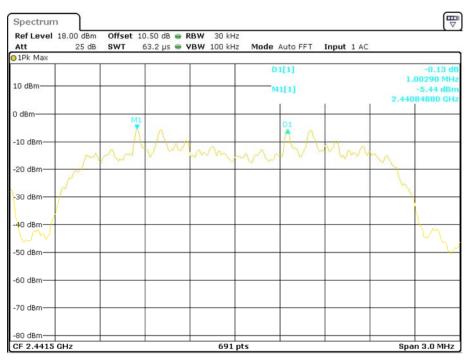


Date: 25.NOV.2017 13:25:21

FCC Part 15.247

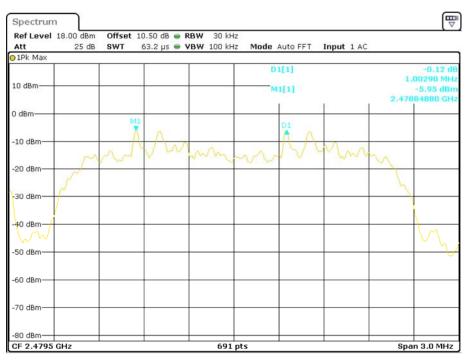
Page 25 of 50

BDR (GFSK): High Channel


Date: 25.NOV.2017 13:26:06

EDR (π /4-DQPSK): Low Channel

Date: 25.NOV.2017 13:26:43


FCC Part 15.247

EDR (π/4-DQPSK): Middle Channel

Date: 25.NOV.2017 13:27:58

EDR (π /4-DQPSK): High Channel

Date: 25.NOV.2017 13:28:33

FCC Part 15.247

Page 27 of 50

FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH

Applicable Standard

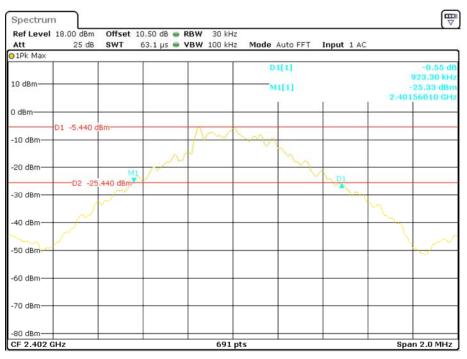
Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

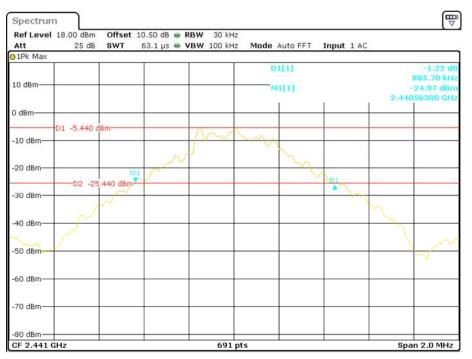
Environmental Conditions


Temperature:	25 °C
Relative Humidity:	57 %
ATM Pressure:	101.0 kPa

The testing was performed by Vincent Zheng on 2017-11-25.

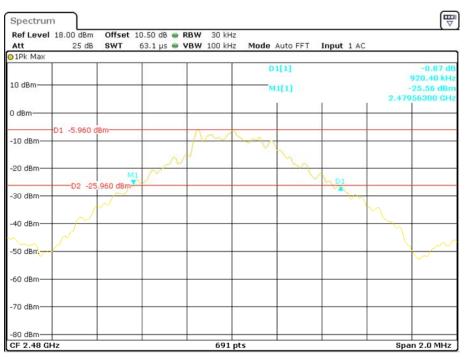
EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following table and plots.


Mode	Channel	Frequency (MHz)	20 dB Emission Bandwidth (MHz)
	Low	2402	0.923
BDR (GFSK)	Middle	2441	0.886
(GI SIX)	High	2480	0.920
	Low	2402	1.268
EDR (π/4-DQPSK)	Middle	2441	1.265
(High	2480	1.268

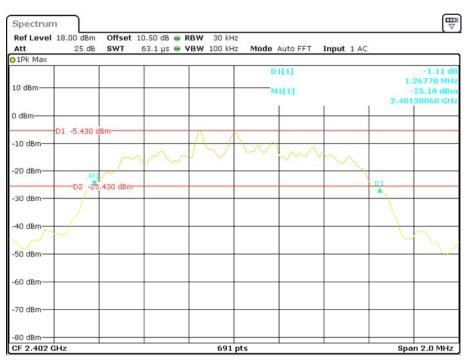
BDR (GFSK): Low Channel

Date: 25.NOV.2017 13:16:45



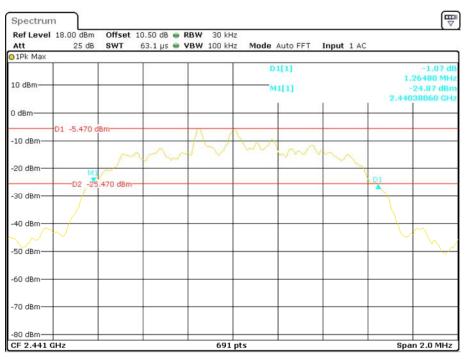
Date: 25.NOV.2017 13:17:38

FCC Part 15.247


Page 29 of 50

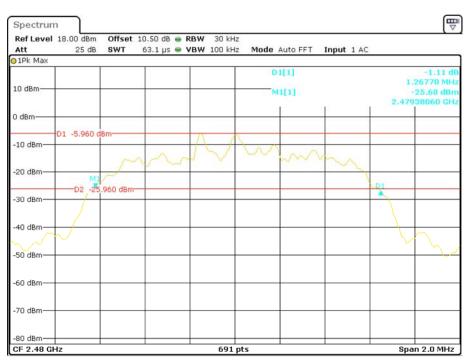
BDR (GFSK): High Channel

Date: 25.NOV.2017 13:18:55


EDR (π/4-DQPSK): Low Channel

Date: 25.NOV.2017 13:20:25

FCC Part 15.247


Page 30 of 50

EDR (π/4-DQPSK): Middle Channel

Date: 25.NOV.2017 13:21:27

EDR (π/4-DQPSK): High Channel

Date: 25.NOV.2017 13:22:42

FCC Part 15.247

Page 31 of 50

FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

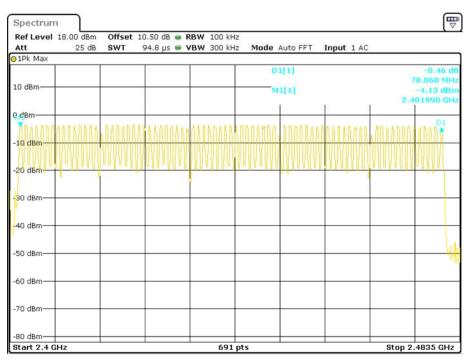
Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

Test Data

Environmental Conditions


Temperature:	25 °C	
Relative Humidity:	57 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Vincent Zheng on 2017-11-25.

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following table and plots.

Mode	Frequency Range (MHz)	Number of Hopping Channel (CH)	Limit (CH)	
BDR (GFSK)	2400-2483.5	79	≥15	
EDR (π/4-DQPSK)	2400-2483.5	79	≥15	

BDR (GFSK): Number of Hopping Channels

Date: 25.NOV.2017 13:14:03

01Pk Max 01[1] -0.62 d 78.060 MH	Ref Level Att	25 dB	SWT		RBW 100 kH VBW 300 kH		Auto FFT	Input 1 AC		
-10 dBm						D	1[1]		1	-3.58 dBn
30 dBm	NOLANO	MMM	MMN	MMM	punnu	MMM	MANAN	MMM	MANAN	
40 dBm	-20 dBm									
-60 dBm										
	-50 dBm									<u> </u>
70 dBm	-60 dBm									
	-70 dBm									

Date: 25.NOV.2017 13:12:06

FCC Part 15.247

Page 33 of 50

FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

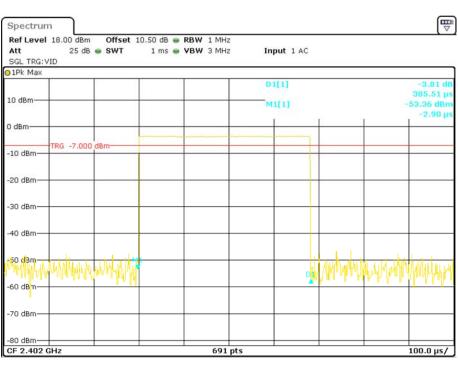
The EUT was worked in channel hopping; Spectrum SPAN was set as 0. Sweep was set as 0.4 X channel no. (s), the quantity of pulse was get from single sweep. In addition, the time of single pulses was tested.

Test Data

Environmental Conditions

Temperature:	25 °C		
Relative Humidity:	57 %		
ATM Pressure:	101.0 kPa		

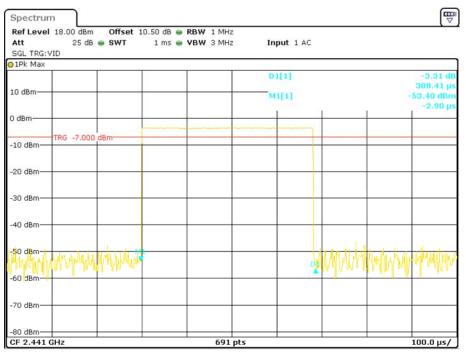
The testing was performed by Vincent Zheng on 2017-11-25.


EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following table and plots.

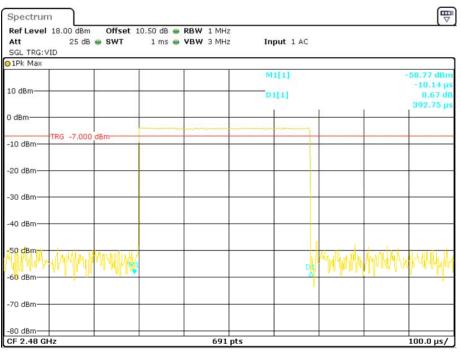
Bay Area Compliance Laboratories Corp. (Shenzhen)

Report No.: RSZ171120830-00


Mode		Channel	Pulse Width (ms)	Dwell Time (S)	Limit (S)	Result	
		Low	0.386	0.124	0.4	Pass	
	DH 1	Middle	0.388	0.124	0.4	Pass	
	DET	High	0.393	0.126	0.4	Pass	
		Note: DH1:Dwell time = Pulse time* $(1600/2/79)$ *31.6S					
		Low	1.683	0.269	0.4	Pass	
BDR	DH 3	Middle	1.665	0.266	0.4	Pass	
(GFSK)	DED	High	1.661	0.266	0.4	Pass	
		Note: DH3:Dwell time = Pulse time*(1600/4/79)*31.6S					
		Low	2.913	0.311	0.4	Pass	
	DH 5	Middle	2.913	0.311	0.4	Pass	
EDR	DH 3	High	2.928	0.312	0.4	Pass	
		Note: DH5:Dwell time = Pulse time*(1600/6/79)*31.6S					
	2DH 1	Low	0.396	0.127	0.4	Pass	
		Middle	0.401	0.128	0.4	Pass	
		High	0.400	0.128	0.4	Pass	
		Note: 2DH1:Dwell time = Pulse time*(1600/2/79)*31.6S					
	2DH 3	Low	1.661	0.266	0.4	Pass	
		Middle	1.678	0.268	0.4	Pass	
$(\pi/4-DQPSK)$		High	1.678	0.268	0.4	Pass	
_		Note: 2DH3:Dwell time = Pulse time*(1600/4/79)*31.6S					
	2DH 5	Low	2.928	0.312	0.4	Pass	
		Middle	2.928	0.312	0.4	Pass	
		High	2.913	0.311	0.4	Pass	
		Note:2	DH5:Dwell time = I	Pulse time*(1600/	'6/79)*31.6S		

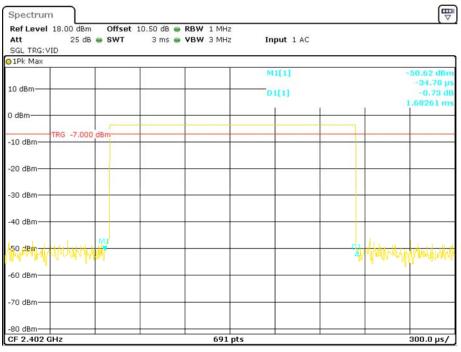
BDR (GFSK): Pulse time, Low Channel, DH1

Date: 25.NOV.2017 13:41:02

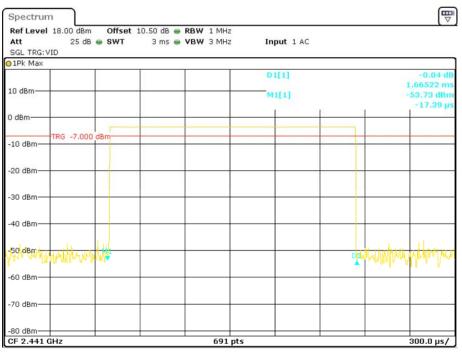


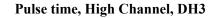
Date: 25.NOV.2017 13:41:30

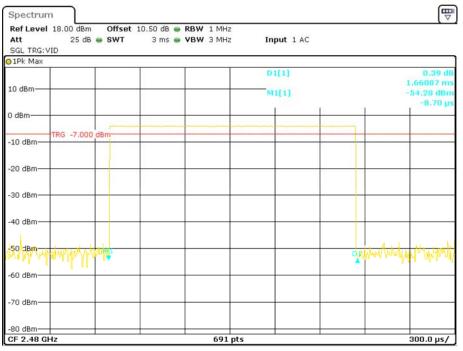
FCC Part 15.247


Page 36 of 50

Pulse time, High Channel, DH1

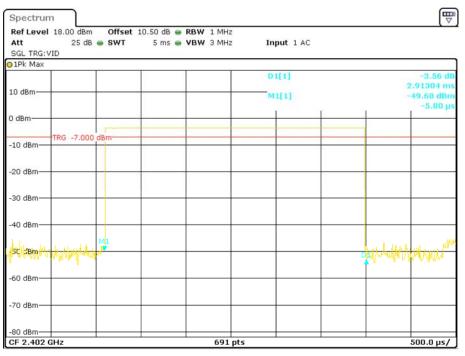

Date: 25.NOV.2017 13:42:00


Date: 25.NOV.2017 13:45:04


FCC Part 15.247

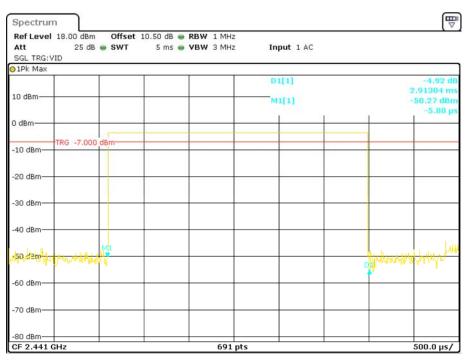
Pulse time, Middle Channel, DH3

Date: 25.NOV.2017 13:45:33



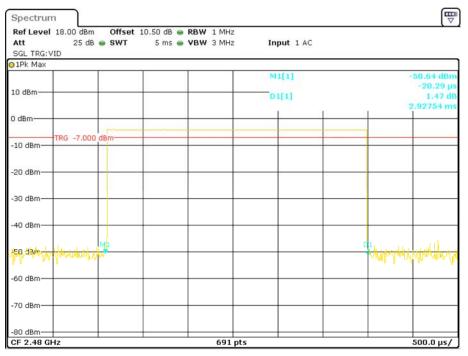
Date: 25.NOV.2017 13:44:30

FCC Part 15.247


Page 38 of 50

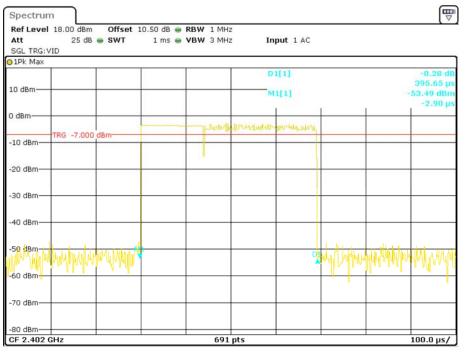
Pulse time, Low Channel, DH5

Date: 25.NOV.2017 13:48:17

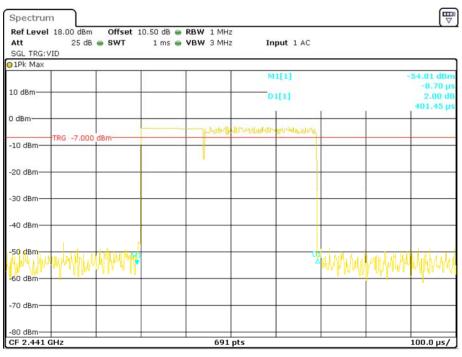


Date: 25.NOV.2017 13:48:40

FCC Part 15.247

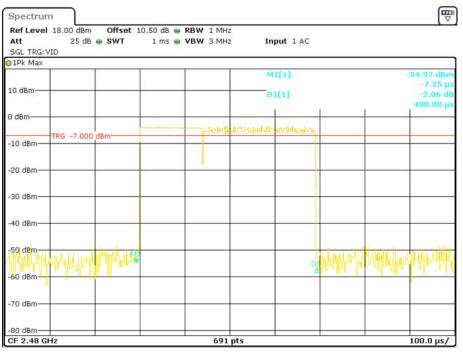

Page 39 of 50

Date: 25.NOV.2017 13:49:10


EDR (π/4-DQPSK): Pulse time, Low Channel, 2DH1

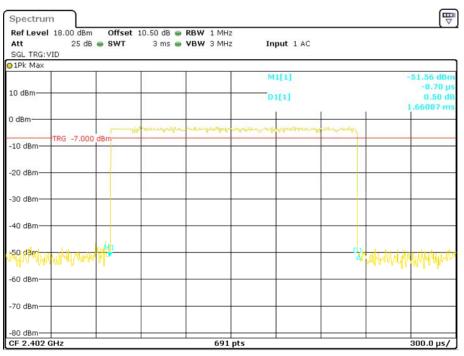
Date: 25.NOV.2017 13:42:32

FCC Part 15.247


Page 40 of 50

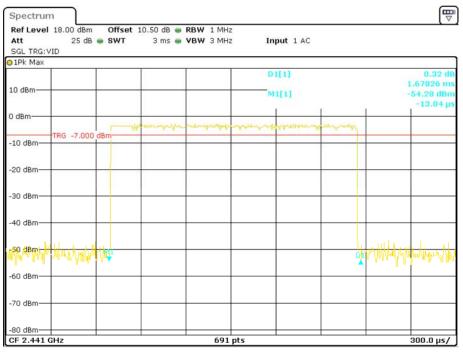
Pulse time, Middle Channel, 2DH1

Date: 25.NOV.2017 13:42:59


Pulse time, High Channel, 2DH1

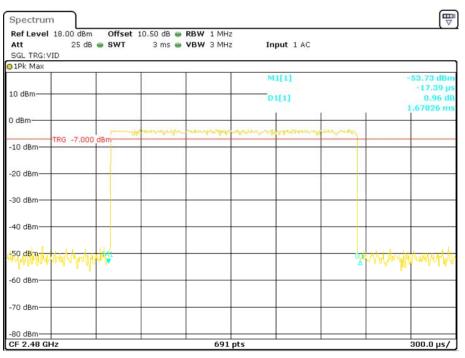
Date: 25.NOV.2017 13:43:28

FCC Part 15.247


Page 41 of 50

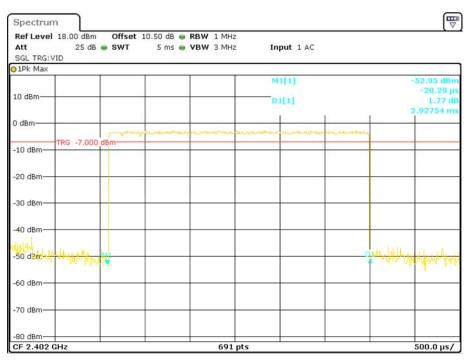
Pulse time, Low Channel, 2DH3

Date: 25.NOV.2017 13:46:20


Pulse time, Middle Channel, 2DH3

Date: 25.NOV.2017 13:46:51

FCC Part 15.247

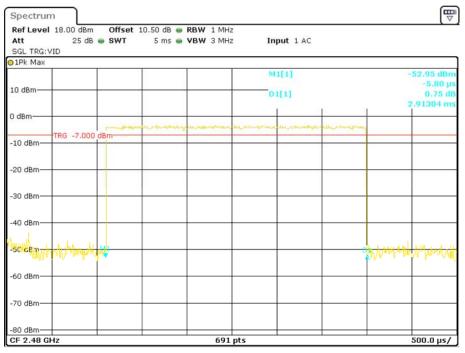

Page 42 of 50

Pulse time, High Channel, 2DH3

Date: 25.NOV.2017 13:47:22

Date: 25.NOV.2017 13:49:37

FCC Part 15.247


Page 43 of 50

Pulse time, Middle Channel, 2DH5

Date: 25.NOV.2017 13:49:58

Pulse time, High Channel, 2DH5

Date: 25.NOV.2017 13:50:41

FCC Part 15.247

Page 44 of 50

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Test Procedure

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	25 °C	
Relative Humidity:	56 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Vincent Zheng on 2017-11-29.

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following table.

Mode	Channel	Frequency (MHz)	Peak Output Power		Limit
			(dBm)	(mW)	(mW)
	Low	2402	-3.41	0.46	1000
BDR (GFSK)	Middle	2441	-3.41	0.46	1000
	High	2480	-3.89	0.41	1000
	Low	2402	-2.42	0.57	1000
EDR (π/4-DQPSK)	Middle	2441	-2.80	0.52	1000
	High	2480	-2.99	0.50	1000

FCC §15.247(d) - BAND EDGES TESTING

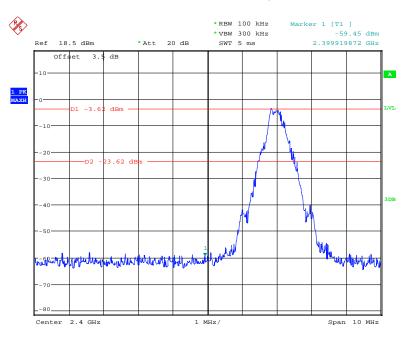
Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

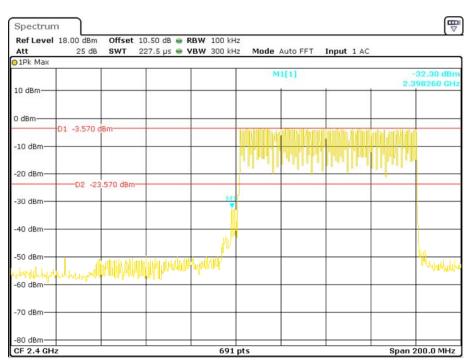
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Set the EUT to the hopping mode, repeat step 3 and 4.
- 6. Repeat above procedures until all measured frequencies were complete.

Test Data


Environmental Conditions

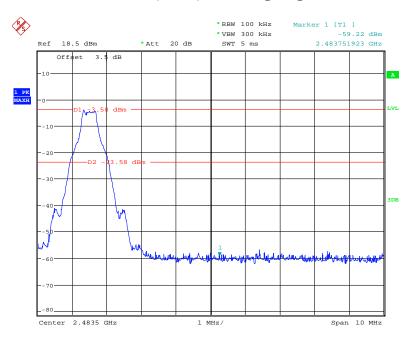
Temperature:	25 °C
Relative Humidity:	57 %
ATM Pressure:	101.0 kPa

The testing was performed by Vincent Zheng on 2017-11-25 and 2017-12-14.

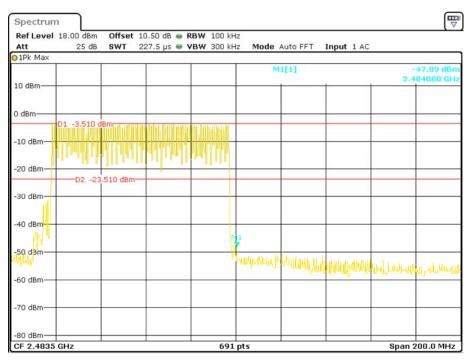

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following plots.

BDR (GFSK): Band Edge-Left Side

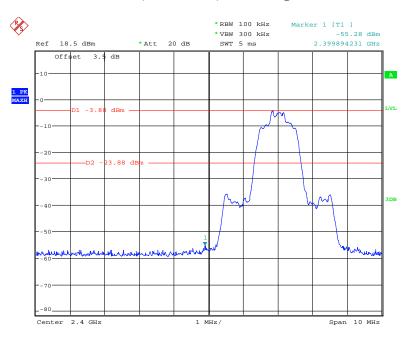

Date: 14.DEC.2017 16:20:14

Date: 25.NOV.2017 13:39:27

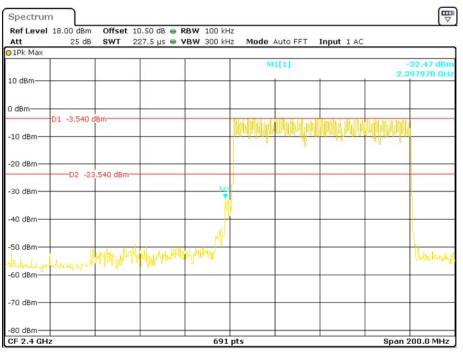

FCC Part 15.247

Page 47 of 50

BDR (GFSK): Band Edge-Right Side

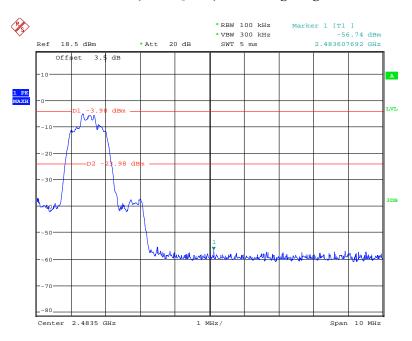

Date: 14.DEC.2017 16:22:09

Date: 25.NOV.2017 13:37:55

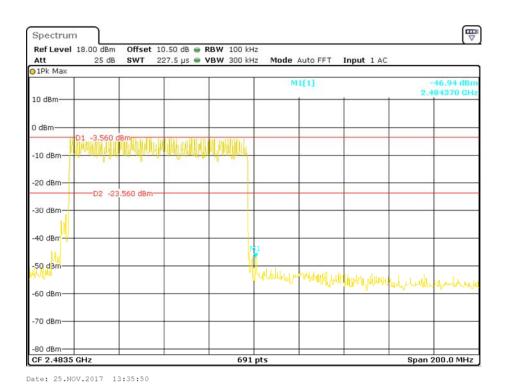

FCC Part 15.247

Page 48 of 50

EDR (π/4-DQPSK): Band Edge-Left Side


Date: 14.DEC.2017 16:41:38

Date: 25.NOV.2017 13:33:51


FCC Part 15.247

Page 49 of 50

EDR (π/4-DQPSK): Band Edge-Right Side

Date: 14.DEC.2017 16:40:30

FCC Part 15.247

Page 50 of 50

***** END OF REPORT *****