

RF Test Report

For

Applicant Name: Xwireless LLC

Address: 11565 Old Georgetown Road, Rockville, MD, USA

EUT Name: Tablet PC

Brand Name: N/A

Model Number: T10M Pro

Issued By

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.

Address: F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou

Community, Songgang Street, Bao'an District, Shenzhen, China

Report Number: BTF230506R00204 Test Standards: 47 CFR Part 15E

Test Conclusion: Pass

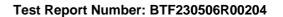
Prepared By:

FCC ID: 2ADLJ-T10MPRO

Test Date: 2023-05-06 to 2023-05-19

Date of Issue: 2023-05-22

Date: Elma. Yang/ Project Engineer


Approved By:

Ryan.CJ / EMC Manager

Elma . Kang

Date: 2023-05-22

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.



Revision History			
Version	Issue Date	Revisions Content	
R_V0	2023-05-22	Original	
Note: Once the	revision has been made, then pre	vious versions reports are invalid	

Table of Contents

1	INTF	RODUCTION	5
	1.1	Identification of Testing Laboratory	
	1.2	Identification of the Responsible Testing Location	
	1.3	Announcement	
2	PRO	DDUCT INFORMATION	
	2.1	Application Information	
	2.2 2.3	Manufacturer InformationFactory Information	
	2.3	General Description of Equipment under Test (EUT)	
	2.5	Technical Information	
3	SUN	MMARY OF TEST RESULTS	
	3.1	Test Standards	7
	3.2	Uncertainty of Test	7
	3.3	Summary of Test Result	
4	TES	ST CONFIGURATION	8
	4.1	Test Equipment List	
	4.2	Test Auxiliary Equipment	
	4.3	Test Modes	
5		ALUATION RESULTS (EVALUATION)	
	5.1	Antenna requirement	
6	RAD	DIO SPECTRUM MATTER TEST RESULTS (RF)	
	6.1	Conducted Emission at AC power line	
		6.1.1 E.U.T. Operation:	
		6.1.2 Test Setup Diagram: 6.1.3 Test Data: 6.1.3 Test Dat	
	6.2	Duty Cycle	
	0.2	6.2.1 E.U.T. Operation:	
		6.2.2 Test Data:	
	6.3	Maximum conducted output power	
		6.3.1 E.U.T. Operation:	
		6.3.2 Test Data:	
	6.4	Power spectral density	
		6.4.1 E.U.T. Operation:	
	6.5	6.4.2 Test Data:	
	6.5	Emission bandwidth and occupied bandwidth	
		6.5.1 E.U.T. Operation: 6.5.2 Test Data:	
	6.6	Band edge emissions (Radiated)	
		6.6.1 E.U.T. Operation:	
		6.6.2 Test Setup Diagram:	27
		6.6.3 Test Data:	
	6.7	Undesirable emission limits (below 1GHz)	
		6.7.1 E.U.T. Operation:	
		6.7.2 Test Setup Diagram: 6.7.3 Test Data: 6.7.3 Test Dat	
	6.8	Undesirable emission limits (above 1GHz)	
	3.0	6.8.1 E.U.T. Operation:	

	6.8.2 Test Data:	38
7	TEST SETUP PHOTOS	43
8	EUT CONSTRUCTIONAL DETAILS (EUT PHOTOS)	45
APPI	ENDIX	46

Introduction

Identification of Testing Laboratory

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.
Address: F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China	
Phone Number:	+86-0755-23146130
Fax Number:	+86-0755-23146130

1.2 Identification of the Responsible Testing Location

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
Phone Number:	+86-0755-23146130
Fax Number:	+86-0755-23146130
FCC Registration Number:	518915
Designation Number:	CN1330

1.3 Announcement

BTF Testing Lab (Shenzhen) Co., Ltd.

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2 Product Information

2.1 Application Information

Company Name:	Xwireless LLC	
Address:	11565 Old Georgetown Road, Rockville, MD, USA	

2.2 Manufacturer Information

Company Name:	Xwireless LLC
Address:	11565 Old Georgetown Road, Rockville, MD, USA

2.3 Factory Information

Co	mpany Name:	ZTECH COMMNICATION(SZ) CO LTD
۸۵	droop	FL 7 BLOCK D BAO'AN ZHIGU INNOVATION PARK YIN'TIAN ROAD NO.4
Au	dress:	XI'XIANG STR' BAO'AN DISTRICT SZ CHINA

2.4 General Description of Equipment under Test (EUT)

EUT Name:	Tablet PC
Test Model Number:	T10M Pro

2.5 Technical Information

Power Supply:	DC 3.85V from Battery	
	802.11a/n(HT20): U-NII Band 1: 5180MHz to 5240MHz; U-NII Band 2A: 5260MHz to 5320MHz; U-NII Band 3: 5745MHz to 5825MHz;	
Operation Frequency:		
	802.11n(HT40):	
	U-NII Band 1: 5190MHz to 5230MHz;	
	U-NII Band 2A: 5270MHz to 5310MHz;	
	U-NII Band 3: 5755MHz to 5795MHz;	
	802.11a/n(HT20): U-NII Band 1: 4;	
	U-NII Band 2A: 4;	
	U-NII Band 3: 5;	
Number of Channels:	o mi band o. o,	
	802.11n(HT40):	
	U-NII Band 1: 2;	
	U-NII Band 2A: 2;	
	U-NII Band 3: 2;	
Modulation Type:	802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM);	
woddiation Type.	802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM);	
Antenna Type:	PIFA Antenna	
Antenna Gain:	1.16 dBi	
Note:		

Note

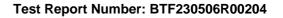
#: The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

3 Summary of Test Results

3.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15E: Unlicensed National Information Infrastructure Devices

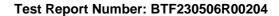

3.2 Uncertainty of Test

Item	Measurement Uncertainty
Conducted Emission (150 kHz-30 MHz)	±2.64dB

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.3 Summary of Test Result

Item	Standard	Requirement	Result
Antenna requirement	47 CFR Part 15E	Part 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15E	47 CFR Part 15.207(a)	Pass
Maximum conducted output power	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Power spectral density	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Emission bandwidth and occupied bandwidth	47 CFR Part 15E	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. 47 CFR Part 15.407(e)	Pass
Channel Availability Check Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(ii)	Pass
U-NII Detection Bandwidth	47 CFR Part 15E	47 CFR Part 15.407(h)(2)	Pass
Statistical Performance Check	47 CFR Part 15E	KDB 935210 D02, Clause 5.1 Table 2	Pass
Channel Move Time, Channel Closing Transmission Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iii)	Pass
Non-Occupancy Period Test	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iv)	Pass
DFS Detection Thresholds	47 CFR Part 15E	KDB 905462 D02, Clause 5.2 Table 3	Pass
Band edge emissions (Radiated)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass
Undesirable emission limits (below 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(9)	Pass
Undesirable emission limits (above 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass


Test Configuration

Test Equipment List

Conducted Emission	at AC power line				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	00953	2022-11-24	2023-11-23
Coaxial Switcher	SCHWARZBECK	CX210	CX210	2022-11-24	2023-11-23
V-LISN	SCHWARZBECK	NSLK 8127	01073	2022-11-24	2023-11-23
LISN	AFJ	LS16/110VAC	16010020076	2023-02-23	2024-02-22
EMI Receiver	ROHDE&SCHWA RZ	ESCI3	101422	2022-11-24	2023-11-23

Duty Cycle					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Maximum conducted	output power				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Power spectral densi	ty				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Emission bandwidth	and occupied band	lwidth			
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	1	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	1	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Channel Availability C	Check Time				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23



	MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23
--	---------------------	----------	--------	------------	------------	------------

U-NII Detection Bandwidth					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Statistical Performan	ce Check				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

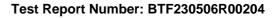
Channel Move Time, 	Channel Closing Tr	ansmission Time			
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23



WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Non-Occupancy Perio	od Test				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	1	/	/
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

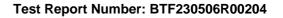
DFS Detection Thresholds							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		


Band edge emissions (Radiated)							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23		
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23		

RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

Undesirable emission	limits (below 1GH	lz)			
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	POSITIONAL SKET		1	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

Undesirable emission	limits (above 1GF	lz)			
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	1
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27



4.2 Test Auxiliary Equipment

The EUT was tested as an independent device.

4.3 Test Modes

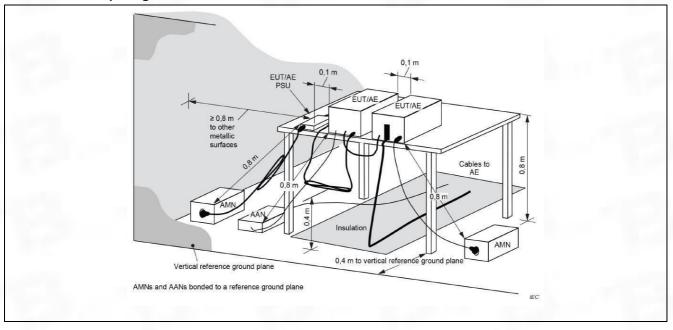
No.	Test Modes	Description
TM1	802.11a mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
TM2	802.11n mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
TM5	Normal Operating	Keep the EUT works in normal operating mode and connect to companion device

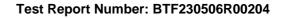
5 Evaluation Results (Evaluation)

5.1 Antenna requirement

Test Requirement:	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
-------------------	--

6 Radio Spectrum Matter Test Results (RF)

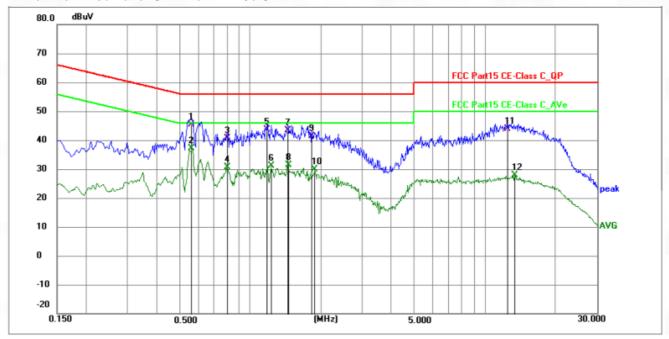

6.1 Conducted Emission at AC power line

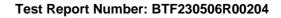

Test Requirement:	47 CFR Part 15.207(a)	47 CFR Part 15.207(a)					
Test Method:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices						
	Frequency of emission (MHz)	Conducted limit (dBµV)					
		Quasi-peak	Average				
Toot Limit:	0.15-0.5	66 to 56*	56 to 46*				
Test Limit:	0.5-5	56	46				
	5-30	60	50				
	*Decreases with the logarithm of the frequency.						

6.1.1 E.U.T. Operation:

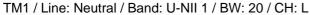
Operating Environment:		
Temperature:	25.5 °C	
Humidity:	50.6 %	
Atmospheric Pressure:	1010 mbar	

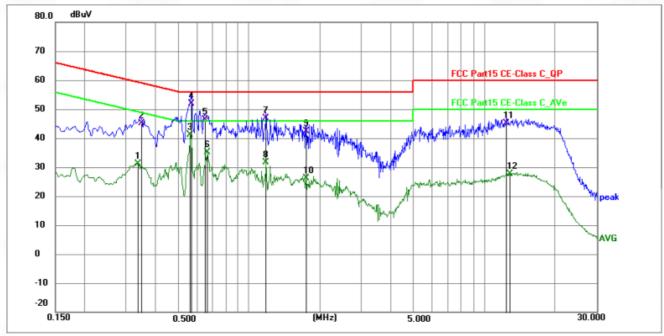
6.1.2 Test Setup Diagram:



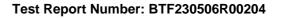


6.1.3 Test Data:


TM1 / Line: Line / Band: U-NII 1 / BW: 20 / CH: L

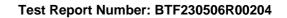


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.5639	34.69	10.65	45.34	56.00	-10.66	QP	Р	
2 *	0.5639	26.55	10.65	37.20	46.00	-8.80	AVG	Р	
3	0.7980	29.93	10.75	40.68	56.00	-15.32	QP	Р	
4	0.7980	19.94	10.75	30.69	46.00	-15.31	AVG	Р	
5	1.1849	32.99	10.76	43.75	56.00	-12.25	QP	Р	
6	1.2343	20.40	10.76	31.16	46.00	-14.84	AVG	Р	
7	1.4415	32.62	10.74	43.36	56.00	-12.64	QP	Р	
8	1.4503	20.69	10.74	31.43	46.00	-14.57	AVG	Р	
9	1.8285	30.61	10.71	41.32	56.00	-14.68	QP	Р	
10	1.8780	19.16	10.70	29.86	46.00	-16.14	AVG	Р	
11	12.4573	32.92	10.94	43.86	60.00	-16.14	QP	Р	
12	13.3393	16.87	10.93	27.80	50.00	-22.20	AVG	Р	



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.3345	20.49	10.62	31.11	49.34	-18.23	AVG	Р	
2	0.3480	34.50	10.62	45.12	59.01	-13.89	QP	Р	
3	0.5639	30.50	10.65	41.15	46.00	-4.85	AVG	Р	
4 *	0.5685	41.25	10.65	51.90	56.00	-4.10	QP	Р	
5	0.6493	35.63	10.69	46.32	56.00	-9.68	QP	Р	
6	0.6630	24.45	10.71	35.16	46.00	-10.84	AVG	Р	
7	1.1805	36.23	10.76	46.99	56.00	-9.01	QP	Р	
8	1.1805	20.79	10.76	31.55	46.00	-14.45	AVG	Р	
9	1.7475	31.68	10.71	42.39	56.00	-13.61	QP	Р	
10	1.7475	15.49	10.71	26.20	46.00	-19.80	AVG	Р	
11	12.4395	34.12	10.89	45.01	60.00	-14.99	QP	Р	
12	12.8490	16.78	10.88	27.66	50.00	-22.34	AVG	Р	

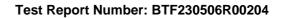
6.2 Duty Cycle


Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Method:	ANSI C63.10-2013 section 12.2 (b)
Test Limit:	No limits, only for report use.
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

6.2.1 E.U.T. Operation:

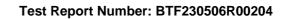
Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.2.2 Test Data:


Please Refer to Appendix for Details.

6.3 Maximum conducted output power

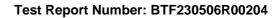
6.3 Maximum conducted output power				
	47 CFR Part 15.407(a)(1)(i)			
	47 CFR Part 15.407(a)(1)(ii)			
	47 CFR Part 15.407(a)(1)(iii)			
Test Requirement:	47 CFR Part 15.407(a)(1)(iv)			
	47 CFR Part 15.407(a)(2)			
	47 CFR Part 15.407(a)(2)			
To at Marthaud				
Test Method:	ANSI C63.10-2013, section 12.3			
	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the			
	maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).			
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.			
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.			
	Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power.			
Test Limit:	For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi.			
	Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is			
	professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.			
	For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi.			
	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.			
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.			
	directional gain of the antenna exceeds o dol.			


	For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi.
	However, fixed point-to-point U-NII devices operating in this band may employ
	transmitting antennas with directional gain greater than 6 dBi without any
	corresponding reduction in transmitter conducted power. Fixed, point-to-point
	operations exclude the use of point-to-multipoint systems, omnidirectional
	applications, and multiple collocated transmitters transmitting the same
	information. The operator of the U-NII device, or if the equipment is professionally
	installed, the installer, is responsible for ensuring that systems employing high gain
	directional antennas are used exclusively for fixed, point-to-point operations.
	Method SA-1
	a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.
	b) Set RBW = 1 MHz.
	c) Set VBW >= 3 MHz.
	d) Number of points in sweep >= [2 x span / RBW]. (This gives bin-to-bin spacing
	<= RBW / 2, so
	that narrowband signals are not lost between frequency bins.)
	e) Sweep time = auto.
	f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample
	detector mode.
	g) If transmit duty cycle < 98%, use a video trigger with the trigger level set to
	enable triggering only on full power pulses. The transmitter shall operate at maximum power control
	level for the
Procedure:	entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF
Flocedule.	intervals) or
	at duty cycle >= 98%, and if each transmission is entirely at the maximum power
	control level.
	then the trigger shall be set to "free run."
	h) Trace average at least 100 traces in power averaging (rms) mode.
	i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW
	of the signal
	using the instrument's band power measurement function, with band limits set
	equal to the
	EBW or OBW band edges. If the instrument does not have a band power function,
	then sum the
	spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB
	EBW or 99%
	OBW of the spectrum.
C24 FUT Operations	

6.3.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.3.2 Test Data:


Please Refer to Appendix for Details.

6.4 Power spectral density

6.4 Power spectral	density			
Test Requirement:	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)			
Test Method:	ANSI C63.10-2013, section 12.5			
	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.			
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.			
Test Limit:	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is			
	required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.			
	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.			
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.			
	For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter			

ns, g the
g the
;
ted by
a
,
SA-2,
,, , <u>,</u>
,
,
t
ctrum.
cable:
e duty
3.2.7,
ging
5 5
tion
vided
vided
t
l
th and
period

6.4.1 E.U.T. Operation:

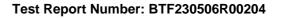
Operating Environment:		
Temperature:	25.5 °C	
Humidity:	50.6 %	
Atmospheric Pressure:	1010 mbar	

6.4.2 Test Data:

Please Refer to Appendix for Details.

6.5 Emission bandwidth and occupied bandwidth

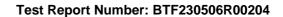
	I I NII 4 I I NII 24 I I NII 20 No limite, only for report upo				
Test Requirement:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. U-NII 3, U-NII 4: 47 CFR Part 15.407(e)				
Test Method:	ANSI C63.10-2013, section 6.9.3 & 12.4 KDB 789033 D02, Clause C.2				
Test Limit:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.				
	Emission bandwidth: a) Set RBW = approximately 1% of the emission bandwidth. b) Set the VBW > RBW. c) Detector = peak. d) Trace mode = max hold. e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.				
	Occupied bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the				
Procedure:	applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral				
	envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.				
	d) Step a) through step c) might require iteration to adjust within the specified range.				
	e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be				
	used. f) Use the 99% power bandwidth function of the instrument (if available) and report the measured				
	bandwidth. g) If the instrument does not have a 99% power bandwidth function, then the trace data points are				
	recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the				
	total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the				
	total is reached; that frequency is recorded as the upper frequency. The 99%				


power bandwidth is
the difference between these two frequencies.
h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument
display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may
be reported in addition to the plot(s).
6 dB emission bandwidth:
a) Set RBW = 100 kHz.
b) Set the video bandwidth (VBW) ≥ 3 >= RBW.
c) Detector = Peak.
d) Trace mode = max hold.
e) Sweep = auto couple.
f) Allow the trace to stabilize.
g) Measure the maximum width of the emission that is constrained by the
frequencies associated with the two outermost amplitude points (upper and lower
frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.5.1 E.U.T. Operation:

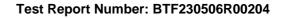
Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.5.2 Test Data:


Please Refer to Appendix for Details.

6.6 Band edge emissions (Radiated)

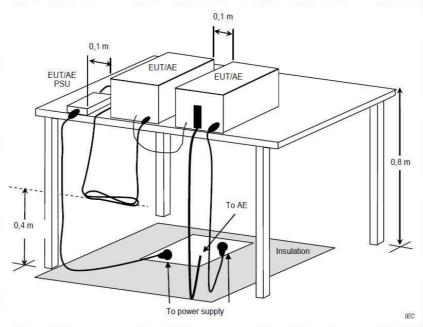
0.0 Dana eage enn	47 CFR Part 15.407(b)	(1)			
	47 CFR Part 15.407(b)				
Test Requirement:	47 CFR Part 15.407(b)				
	47 CFR Part 15.407(b)	` '			
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6				
1001111001	For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the				
	5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.				
	For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of –27 dBm/MHz.				
	3.13-3.33 GHZ ballu si	iali flot exceed all e.i.i.	p. 01 27 abili/iv	II IZ.	
	For transmitters operat	ing solely in the 5.725-	5.850 GHz band	i:	
	All emissions shall be I				
	or below the band edge				
	below the band edge, a				
	linearly to a level of 15.				
	from 5 MHz above or b	•	creasing linearly	to a level of 27	
	dBm/MHz at the band	<u> </u>	N 41 1—	CI I-	
	MHz 0.090-0.110	MHz 16.42-16.423	MHz 399.9-410	GHz 4.5-5.15	
	10.495-0.505	16.69475-16.69525		5.35-5.46	
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
	4.20725-4.20775	73-74.6	1645.5-1646.	9.3-9.5	
	1120120 1120110	70 7 110	5	0.0 0.0	
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
	6.26775-6.26825	108-121.94	1718.8-1722. 2	13.25-13.4	
Test Limit:	6.31175-6.31225	123-138	2200-2300	14.47-14.5	
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
	8.362-8.366	156.52475-156.525 25	2483.5-2500	17.7-21.4	
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
	12.57675-12.57725 13.36-13.41	322-335.4	3600-4400	(²)	
	¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.				
	² Above 38.6				
	The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using				
	measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated				
	based on the average value of the measured emissions. The provisions in §				
	15.35apply to these measurements.				
Except as provided elsewhere in this subpart, the emissions from an intentional					
Except as provided eisewhere in this subpart, the emissions from an intentional					



	radiator shall not exceed the	e field strength levels specified i	n the following table:
	Frequency (MHz)	Field strength	Measurement
		(microvolts/meter)	distance
		(**************************************	(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
		500	3
	Above 960 Above 1GHz:	500	3
Procedure:	a. For above 1GHz, the EU above the ground at a 3 medegrees to determine the potential by the EUT was set 3 meterman was mounted on the top of c. The antenna height is varied determine the maximum varied polarizations of the antenna d. For each suspected emisting the antenna was tuned to how the follow 30MHz, the antenna was turned from 0 degrees e. The test-receiver system Bandwidth with Maximum He. If the emission level of the specified, then testing could reported. Otherwise the emire-tested one by one using in a data sheet. g. Test the EUT in the lower h. The radiation measurement Transmitting mode, and four i. Repeat above procedures Remark: 1. Level= Read Level+ Cab 2. Scan from 18GHz to 400 points marked on above plottesting, so only above point emissions from the radiator need not be reported. 3. As shown in this section, are based on average limits not exceed the maximum ped B under any condition of nothan the average limit, only 4. The disturbance above 1	T was placed on the top of a rot ster fully-anechoic chamber. The osition of the highest radiation. It is away from the interference-real variable-height antenna tower ried from one meter to four meter lue of the field strength. Both how are set to make the measurement is sion, the EUT was arranged to eights from 1 meter to 4 meters has was tuned to heights 1 meter to 360 degrees to find the maximal was set to Peak Detect Functional Mode. It is easy and the peak value is sions that did not have 10dB in peak or average method as spents are performed in X, Y, Z aximut the X axis positioning which is until all frequencies measured le Loss+ Antenna Factor- Preamed It is a return to the lost of the highest emissions cost had been displayed. The amp which are attenuated more than for frequencies above 1GHz, the disturbance above 1GHz, t	e table was rotated 360 eceiving antenna, which ers above the ground to orizontal and vertical eent. its worst case and then (for the test frequency) and the rotatable table mum reading. In and Specified lower than the limit es of the EUT would be margin would be cified and then reported the Highest channel. is positioning for it is the worst case. was complete. In Pactor Hz was very low. The uld be found when litude of spurious in 20dB below the limit the field strength limits the field strength limits the field strength limits above by more than 20 those peak level is lower in the report. It is the worst case in the report. In packet is lower In the report. In the re

6.6.1 E.U.T. Operation:

Operating Environment:	Operating Environment:						
Temperature:	25.5 °C						
Humidity:	50.6 %						



Atmospheric Pressure:

1010 mbar

6.6.2 Test Setup Diagram:

6.6.3 Test Data:

I INIII 1	8 2 1	201/	E100MIU-	Horizontal
() -	α / A	/ (/I // I	:) I OUNVII IZ	1 10117 01111

• • • • • • • • • • • • • • • • • • • •	· •, _, • · · •	, . • • · · · · · · · · · · · · · · · · ·						
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5138.585	84.97	-32.30	52.67	68.20	-15.53	peak	Р
2	5150.000	85.57	-32.26	53.31	68.20	-14.89	peak	Р

UNII-1 & 2A 20M 5180MHz Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5135.486	84.00	-31.86	52.14	68.20	-16.06	peak	Р
2	5150.000	84.60	-31.82	52.78	68.20	-15.42	peak	Р

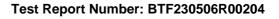
UNII-1 & 2A_20M_5320MHz_Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5350.000	87.46	-32.27	55.19	68.20	-13.01	peak	Р
2	5460.000	84.83	-32.23	52.60	68.20	-15.60	peak	Р

UNII-1 & 2A_20M_5320MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5350.000	88.46	-31.97	56.49	68.20	-11.71	peak	Р
2	5460.000	85.83	-31.93	53.90	68.20	-14.30	peak	Р

UNII-3 20M 5745MHz Horizontal


CIVIII	0_201VI_07 +01V	11 12_1 1011201	itai					
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5650.000	87.33	-30.24	57.09	68.20	-11.11	peak	Р
2	5700.000	94.81	-32.62	62.19	105.60	-43.41	peak	Р
3	5720.000	95.13	-33.54	61.59	110.8	-49.21	peak	Р

UNII-3 20M 5745MHz Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5650.000	85.33	-30.36	54.97	68.20	-13.23	peak	Р
2	5700.000	94.51	-31.14	63.37	105.60	-42.23	peak	Р
3	5720.000	93.24	-31.69	61.55	110.8	-49.25	peak	Р

UNII-3 20M 5825MHz Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F			
1	5850.000	90.23	-31.54	58.69	122.20	-63.51	peak	Р			
2	5875.000	80.51	-30.28	50.23	110.80	-60.57	peak	Р			
3	5925.000	91.54	-31.36	60.18	68.20	-8.02	peak	Р			

UNII-3	20M	5825MHz	Vertical

No	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F			
1	5850.000	87.23	-31.45	55.78	122.20	-66.42	peak	Р			
2	5875.000	95.16	-30.97	64.19	110.80	-46.61	peak	Р			
3	5925.000	97.36	-30.44	66.92	68.20	-1.28	peak	Р			

UNII-1 & 2A_40M_5190MHz_Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5136.680	85.25	-32.28	52.97	68.20	-15.23	peak	Р
2	5150.000	85.85	-32.24	53.61	68.20	-14.59	peak	Р

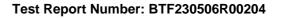
UNII-1 & 2A_40M_5190MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5134.310	84.32	-31.86	52.46	68.20	-15.74	peak	Р
2	5150.000	84.92	-31.82	53.10	68.20	-15.10	peak	Р

UNII-1 & 2A 40M 5310MHz Horizontal

	. • • - • • • • • • • • • • • • • • • •							
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5350.000	87.45	-32.19	55.26	68.20	-12.94	peak	Р
2	5460.000	84.82	-32.15	52.67	68.20	-15.53	peak	Р

UNII-1 & 2A_40M_5310MHz_Vertical


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5350.000	88.46	-32.08	56.38	68.20	-11.82	peak	Р
2	5460.000	85.83	-32.04	53.79	68.20	-14.41	peak	Р

UNII-3 40M 5755MHz Horizontal

orm o_rom_or commit_monitorities								
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5650.000	87.50	-32.01	55.49	68.20	-12.71	peak	Р
2	5700.000	94.44	-32.12	62.32	105.60	-43.28	peak	Р
3	5720.000	95.34	-32.18	63.16	110.8	-47.64	peak	Р

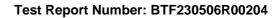
UNII-3 40M 5755MHz Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5650.000	86.49	-31.87	54.62	68.20	-13.58	peak	Р
2	5700.000	93.43	-31.98	61.45	105.60	-44.15	peak	Р
3	5720.000	94.33	-32.04	62.29	110.8	-48.51	peak	Р

UNII-3_40M_5795MHz_Horizontal

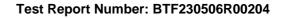
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5850.000	87.70	-31.88	55.82	122.20	-66.38	peak	Р
2	5875.000	94.64	-31.99	62.65	110.80	-48.15	peak	Р
3	5925.000	95.54	-32.05	63.49	68.20	-4.71	peak	Р

UNII-3_40M_5795MHz_Vertical

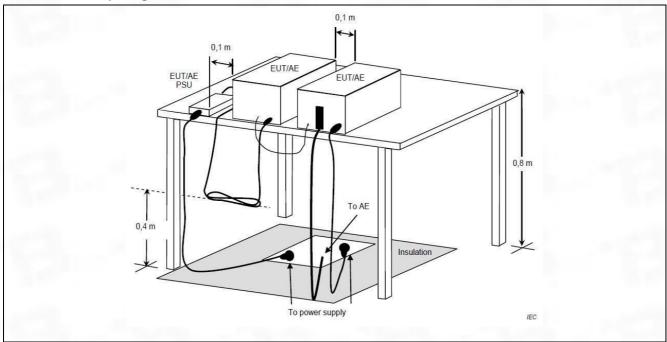

		<u> </u>							
١	Ю.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
	1	5850.000	86.72	-31.95	54.77	122.20	-67.43	peak	Р
	2	5875.000	93.66	-32.06	61.60	110.80	-49.20	peak	Р
	3	5925.000	94.56	-32.12	62.44	68.20	-5.76	peak	Р

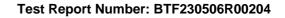
6.7 Undesirable emission limits (below 1GHz)

Test Requirement:	47 CFR Part 15.407(b)	` '						
Test Method:		ction 12.7.4, 12.7.5, 12.7.6						
Test Limit:	Unwanted emissions below 1 GHz must comply with the general field limits set forth in § 15.209. Except as provided elsewhere in this subpart, the emissions from an irradiator shall not exceed the field strength levels specified in the follow Frequency (MHz) Field strength (microvolts/meter) (meters 0.009-0.490 2400/F(kHz) GHz We assure (meters 300)							
	0.490-1.705 1.705-30.0 30-88 88-216 216-960 Above 960	24000/F(kHz) 30 100 ** 150 ** 200 ** 500	30 30 3 3 3 3					
Procedure:	above the ground at a a degrees to determine the b. The EUT was set 3 d which was mounted on c. The antenna height i determine the maximur polarizations of the antenda. For each suspected the antenna was tuned of below 30MHz, the arwas turned from 0 degree. The test-receiver system Bandwidth with Maximur f. If the emission level of specified, then testing despecified, then testing despecified, then testing despecified, the EUT in the land the testing of the testing o	EUT was placed on the top of 3 meter semi-anechoic chamber to position of the highest radiate or 10 meters away from the interest the top of a variable-height and a varied from one meter to four meters are set to make the measurements are set to make the measurements are set to make the measurement awas tuned to heights 1 meters to 360 degrees to find the stem was set to Peak Detect Fully Hold Mode. Of the EUT in peak mode was 1 could be stopped and the peakurements are performed in X, Y, defound the X axis positioning we have until all frequencies measurements are the highest emission of the Book are the highest emission of the disturbance below 3 to plots are the highest emission of the Hold Was are attenuated more of the Hold Was very low and the men testing, so only the above have the highest emission of the h	er. The table was rotated 360 cion. Inference-receiving antenna, tenna tower. Interest above the ground to both horizontal and vertical urement. Interest do its worst case and then eters (for the test frequency neter) and the rotatable table maximum reading. Inction and Specified OdB lower than the limit values of the EUT would be odB margin would be cified and then reported in a male, the Highest channel. It is the worst case. In a value of the worst case. In a value of the worst case. In a value of specified Preamp Factor OMHz was very low. The man could be found when amplitude of spurious at than 20dB below the limit tharmonics were the highest					

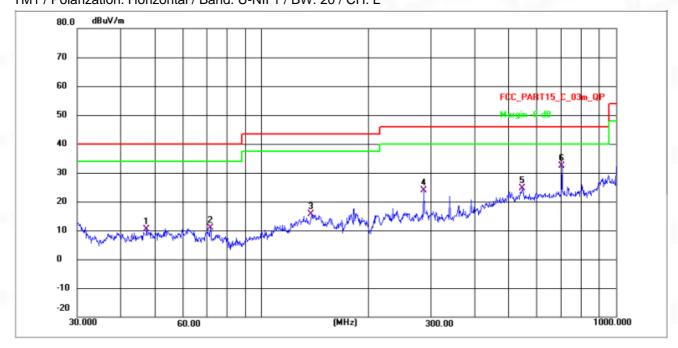


- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

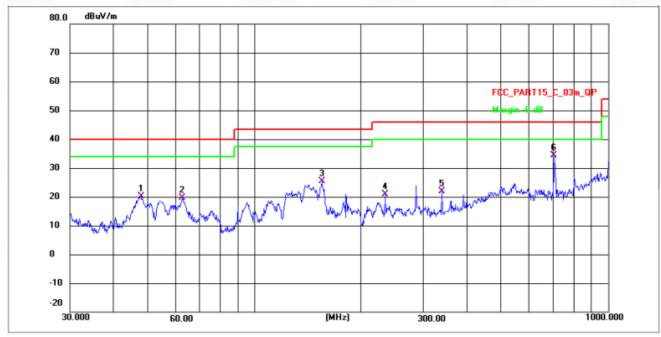

6.7.1 E.U.T. Operation:

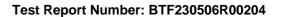

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

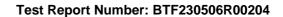
6.7.2 Test Setup Diagram:



6.7.3 Test Data:


Note: All the mode have been tested, and only the worst case mode are in the report TM1 / Polarization: Horizontal / Band: U-NII 1 / BW: 20 / CH: L

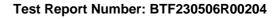

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	47.2426	28.79	-18.31	10.48	40.00	-29.52	QP	Р
2	71.4552	28.99	-18.09	10.90	40.00	-29.10	QP	Р
3	138.1449	43.43	-27.88	15.55	43.50	-27.95	QP	Р
4	285.9778	49.47	-25.55	23.92	46.00	-22.08	QP	Р
5	544.2276	46.28	-21.60	24.68	46.00	-21.32	QP	Р
6 *	705.4619	55.81	-23.52	32.29	46.00	-13.71	QP	Р


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	47.6586	40.52	-20.37	20.15	40.00	-19.85	QP	Р
2	62.6507	39.66	-20.12	19.54	40.00	-20.46	QP	Р
3	155.0922	53.21	-27.73	25.48	43.50	-18.02	QP	Р
4	234.1682	46.76	-25.98	20.78	46.00	-25.22	QP	Р
5	338.4001	46.98	-25.12	21.86	46.00	-24.14	QP	Р
6 *	705.4619	57.81	-23.52	34.29	46.00	-11.71	QP	Р

6.8 Undesirable emission limits (above 1GHz)

	47 CED Doub 45 407(b)								
	47 CFR Part 15.407(b)								
Test Requirement:	47 CFR Part 15.407(b)								
·	47 CFR Part 15.407(b)								
	47 CFR Part 15.407(b)	\ /							
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6 For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the								
		nall not exceed an e.i.r.							
		ting in the 5.25-5.35 GH							
	5.15-5.35 GHZ band si	nall not exceed an e.i.r.	p. of -27 aBm/lv	IHZ.					
	For transmitters energy	ting cololy in the E 70E	E OFO CHT bond						
	All emissions shall be l	ting solely in the 5.725 -							
	or below the band edge	and from 25 MHz above							
	linearly to a level of 15								
	from 5 MHz above or b								
	dBm/MHz at the band		reasing inleany	to a level of 21					
	MHz	MHz	MHz	GHz					
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15					
	¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46					
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75					
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5					
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2					
	4.20725-4.20775	73-74.6	1645.5-1646.	9.3-9.5					
			5	0.0 0.0					
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7					
	6.26775-6.26825	108-121.94	1718.8-1722.	13.25-13.4					
			2						
To at Limits	6.31175-6.31225	123-138	2200-2300	14.47-14.5					
Test Limit:	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2					
	8.362-8.366	156.52475-156.525	2483.5-2500	17.7-21.4					
		25							
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12					
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0					
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8					
	12.51975-12.52025		3345.8-3358	36.43-36.5					
	12.57675-12.57725	322-335.4	3600-4400	(²)					
	13.36-13.41								
	1								
	Until February 1, 1999), this restricted band s	hall be 0.490-0.5	510 MHz.					
	² Above 38.6								
	The field strength of or		in the cooking and	and banda aball not					
		missions appearing with							
	exceed the limits show MHz, compliance with								
	•	_		•					
	measurement instrume	with the emission limit							
	based on the average								
	15.35apply to these me		omissions. THE	Provisions in 3					
	10.00appiy to these ill	oasaroments.							
	Except as provided els	ewhere in this subpart,	the emissions fr	rom an intentional					
	radiator shall not excee								
	Frequency (MHz)	Field strength	·	Measurement					
	1.104001103 (1911 12)	oid oli oli gili		5454151110111					

		(microvolts/meter)	distance
	0.000 5.155	0.400/5/1	(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960 Above 1GHz:	500	3
Procedure:	above the ground at a degrees to determine b. The EUT was set 3 was mounted on the formal c. The antenna heigh determine the maximic polarizations of the air d. For each suspected the antenna was tune of below 30MHz, the swas turned from 0 dee. The test-receiver suspecified, then testing reported. Otherwise the re-tested one by one in a data sheet. g. Test the EUT in the h. The radiation measurements and the shove process are shown as the second shown as the se	I of the EUT in peak mode was 1 g could be stopped and the peak he emissions that did not have 10 using peak or average method as a lowest channel, the middle charsurements are performed in X, Y, and found the X axis positioning we dures until all frequencies meas + Cable Loss+ Antenna Factor-Fato 40GHz, the disturbance above plots are the highest emission a points had been displayed. The diator which are attenuated more	c. The table was rotated 360 ion. ice-receiving antenna, which ower. meters above the ground to the horizontal and vertical urement. ed to its worst case and then eters (for the test frequency neter) and the rotatable table maximum reading. Inction and Specified OdB lower than the limit values of the EUT would be odB margin would be a specified and then reported anel, the Highest channel. Z axis positioning for which it is the worst case. Inction and Specified and then reported anel, the Highest channel. The Highest channel are the second be found when amplitude of spurious ethan 20dB below the limit


6.8.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower

than the average limit, only the peak measurement is shown in the report. 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been

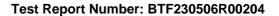
displayed.

6.8.2 Test Data:

UNII-1 & 2A_20M_5180MHz_Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	1792.490	78.06	-28.96	49.10	68.20	-19.10	peak	Р
2	3670.489	79.80	-29.47	50.33	68.20	-17.87	peak	Р
3	5699.783	81.46	-29.69	51.77	68.20	-16.43	peak	Р
4	7359.639	82.76	-30.47	52.29	68.20	-15.91	peak	Р
5	9728.379	83.47	-30.96	52.51	68.20	-15.69	peak	Р
6	12565.350	84.32	-33.35	50.97	68.20	-17.23	peak	Р

UNII-1 & 2A 20M 5180MHz Vertical


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	1888.616	79.05	-28.81	50.24	68.20	-17.96	peak	Р
2	3766.615	80.79	-29.32	51.47	68.20	-16.73	peak	Р
3	5795.909	82.45	-29.54	52.91	68.20	-15.29	peak	Р
4	7455.765	83.75	-30.32	53.43	68.20	-14.77	peak	Р
5	9824.505	84.46	-30.81	53.65	68.20	-14.55	peak	Р
6	12661.476	85.31	-33.20	52.11	68.20	-16.09	peak	Р

UNII-1 & 2A_20M_5240MHz_Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2092.689	78.34	-28.95	49.39	68.20	-18.81	peak	Р
2	3970.688	80.08	-29.46	50.62	68.20	-17.58	peak	Р
3	5999.982	81.74	-29.68	52.06	68.20	-16.14	peak	Р
4	7659.838	83.04	-30.46	52.58	68.20	-15.62	peak	Р
5	10028.578	83.75	-30.95	52.80	68.20	-15.40	peak	Р
6	12865.549	84.60	-33.34	51.26	68.20	-16.94	peak	Р

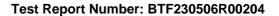
UNII-1 & 2A_20M_5240MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2114.622	78.50	-28.81	49.69	68.20	-18.51	peak	Р
2	3992.621	80.24	-29.32	50.92	68.20	-17.28	peak	Р
3	6021.915	81.90	-29.54	52.36	68.20	-15.84	peak	Р
4	7681.771	83.20	-30.32	52.88	68.20	-15.32	peak	Р
5	10050.511	83.91	-30.81	53.10	68.20	-15.10	peak	Р
6	12887.482	84.76	-33.20	51.56	68.20	-16.64	peak	Р

UNII-1 & 2A_20M_5320MHz_Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2202.716	78.95	-27.51	51.44	68.20	-16.76	peak	Р
2	4080.715	80.69	-28.02	52.67	68.20	-15.53	peak	Р
3	6110.009	82.35	-28.24	54.11	68.20	-14.09	peak	Р
4	7769.865	83.65	-29.02	54.63	68.20	-13.57	peak	Р
5	10138.605	84.36	-29.51	54.85	68.20	-13.35	peak	Р
6	12975.576	85.21	-31.90	53.31	68.20	-14.89	peak	Р

UNII-1 & 2A_20M_5320MHz_Vertical


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2256.619	78.80	-27.40	51.40	68.20	-16.80	peak	Р
2	4134.618	80.54	-27.91	52.63	68.20	-15.57	peak	Р
3	6163.912	82.20	-28.13	54.07	68.20	-14.13	peak	Р
4	7823.768	83.50	-28.91	54.59	68.20	-13.61	peak	Р
5	10192.508	84.21	-29.40	54.81	68.20	-13.39	peak	Р
6	13029.479	85.06	-31.79	53.27	68.20	-14.93	peak	Р

UNII-3_20M_5745MHz_Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2277.019	78.28	-27.76	50.52	68.20	-17.68	peak	Р
2	4155.018	80.02	-28.27	51.75	68.20	-16.45	peak	Р
3	6184.312	81.68	-28.49	53.19	68.20	-15.01	peak	Р
4	7844.168	82.98	-29.27	53.71	68.20	-14.49	peak	Р
5	10212.908	83.69	-29.76	53.93	68.20	-14.27	peak	Р

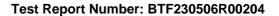
UNII-3 20M 5745MHz Vertical

	01111-3_20111_5/45111112_Vertical									
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F		
1	2337.019	79.44	-27.98	51.46	68.20	-16.74	peak	Р		
2	4215.018	81.18	-28.49	52.69	68.20	-15.51	peak	Р		
3	6244.312	82.84	-28.71	54.13	68.20	-14.07	peak	Р		
4	7904.168	84.14	-29.49	54.65	68.20	-13.55	peak	Р		
5	10272.908	84.85	-29.98	54.87	68.20	-13.33	peak	Р		
6	13109.879	85.70	-32.37	53.33	68.20	-14.87	peak	Р		

UNII-3_20M_5785MHz_Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2537.019	78.64	-26.53	52.11	68.20	-16.09	peak	Р
2	4415.018	80.38	-27.04	53.34	68.20	-14.86	peak	Р
3	6444.312	82.04	-27.26	54.78	68.20	-13.42	peak	Р
4	8104.168	83.34	-28.04	55.30	68.20	-12.90	peak	Р
5	10472.908	84.05	-28.53	55.52	68.20	-12.68	peak	Р
6	13309.879	84.90	-30.92	53.98	68.20	-14.22	peak	Р

UNII-3_20M_5785MHz_Vertical


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2057.023	79.28	-28.19	51.09	68.20	-17.11	peak	Р
2	3935.022	81.02	-28.70	52.32	68.20	-15.88	peak	Р
3	5964.316	82.68	-28.92	53.76	68.20	-14.44	peak	Р
4	7624.172	83.98	-29.70	54.28	68.20	-13.92	peak	Р
5	9992.912	84.69	-30.19	54.50	68.20	-13.70	peak	Р
6	12829.883	85.54	-32.58	52.96	68.20	-15.24	peak	Р

UNII-3_20M_5825MHz_Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2226.649	79.34	-28.13	51.21	68.20	-16.99	peak	Р
2	4112.047	82.34	-29.71	52.63	68.20	-15.57	peak	Р
3	6440.061	85.30	-30.01	55.29	68.20	-12.91	peak	Р
4	8440.046	85.63	-30.11	55.52	68.20	-12.68	peak	Р
5	10162.060	86.34	-30.17	56.17	68.20	-12.03	peak	Р
6	11806.057	87.29	-33.66	53.63	68.20	-14.57	peak	Р

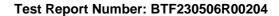
UNII-3 20M 5825MHz Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2333.316	78.67	-28.44	50.23	68.20	-17.97	peak	Р
2	4218.714	81.67	-30.02	51.65	68.20	-16.55	peak	Р
3	6546.728	84.63	-30.32	54.31	68.20	-13.89	peak	Р
4	8546.713	84.96	-30.42	54.54	68.20	-13.66	peak	Р
5	10268.727	85.67	-30.48	55.19	68.20	-13.01	peak	Р
6	11912.724	86.62	-33.97	52.65	68.20	-15.55	peak	Р

UNII-1 & 2A_40M_5190MHz_Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2468.612	78.08	-28.54	49.54	68.20	-18.66	peak	Р
2	4354.010	81.08	-30.12	50.96	68.20	-17.24	peak	Р
3	6682.024	84.04	-30.42	53.62	68.20	-14.58	peak	Р
4	8682.009	84.37	-30.52	53.85	68.20	-14.35	peak	Р
5	10404.023	85.08	-30.58	54.50	68.20	-13.70	peak	Р
6	12048.020	86.03	-34.07	51.96	68.20	-16.24	peak	Р

UNII-1 & 2A_40M_5190MHz_Vertical


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2554.649	77.07	-27.64	49.43	68.20	-18.77	peak	Р
2	4440.047	80.07	-29.22	50.85	68.20	-17.35	peak	Р
3	6768.061	83.03	-29.52	53.51	68.20	-14.69	peak	Р
4	8768.046	83.36	-29.62	53.74	68.20	-14.46	peak	Р
5	10490.060	84.07	-29.68	54.39	68.20	-13.81	peak	Р
6	12134.057	85.02	-33.17	51.85	68.20	-16.35	peak	Р

UNII-1 & 2A 40M 5310MHz Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2637.601	78.08	-28.86	49.22	68.20	-18.98	peak	Р
2	4522.999	81.08	-30.44	50.64	68.20	-17.56	peak	Р
3	6851.013	84.04	-30.74	53.30	68.20	-14.90	peak	Р
4	8850.998	84.37	-30.84	53.53	68.20	-14.67	peak	Р
5	10573.012	85.08	-30.90	54.18	68.20	-14.02	peak	Р
6	12217.009	86.03	-34.39	51.64	68.20	-16.56	peak	Р

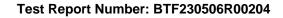
UNII-1 & 2A_40M_5310MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2704.306	76.91	-27.56	49.35	68.20	-18.85	peak	Р
2	4589.704	79.91	-29.14	50.77	68.20	-17.43	peak	Р
3	6917.718	82.87	-29.44	53.43	68.20	-14.77	peak	Р
4	8917.703	83.20	-29.54	53.66	68.20	-14.54	peak	Р
5	10639.717	83.91	-29.60	54.31	68.20	-13.89	peak	Р
6	12283.714	84.86	-33.09	51.77	68.20	-16.43	peak	Р

UNII-3_40M_5755MHz_Horizontal

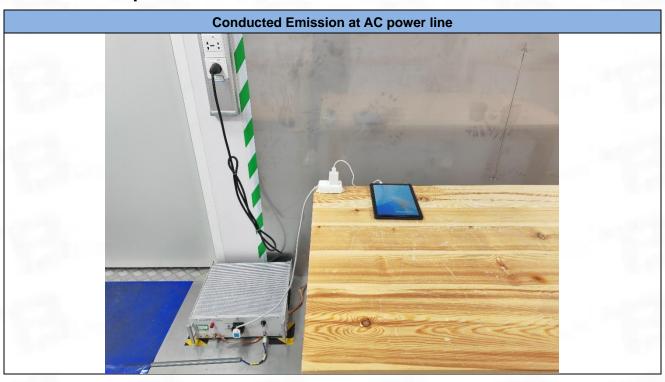
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	1947.341	76.97	-26.54	50.43	68.20	-17.77	peak	Р
2	3832.739	79.97	-28.12	51.85	68.20	-16.35	peak	Р
3	6160.753	82.93	-28.42	54.51	68.20	-13.69	peak	Р
4	8160.738	83.26	-28.52	54.74	68.20	-13.46	peak	Р
5	9882.752	83.97	-28.58	55.39	68.20	-12.81	peak	Р
6	11526.749	84.92	-32.07	52.85	68.20	-15.35	peak	Р

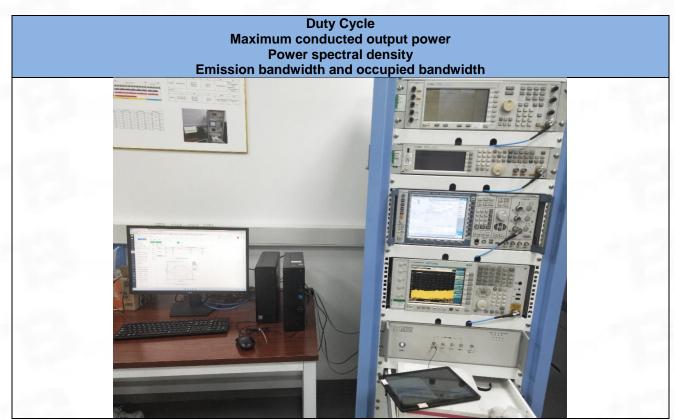
UNII-3_40M_5755MHz_Vertical

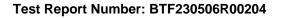

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4937.319	76.91	-24.64	52.27	68.20	-15.93	peak	Р
2	6822.717	79.91	-26.22	53.69	68.20	-14.51	peak	Р
3	9150.731	82.87	-26.52	56.35	68.20	-11.85	peak	Р
4	11150.716	83.20	-26.62	56.58	68.20	-11.62	peak	Р
5	12872.730	83.91	-26.68	57.23	68.20	-10.97	peak	Р
6	14516.727	84.86	-30.17	54.69	68.20	-13.51	peak	Р

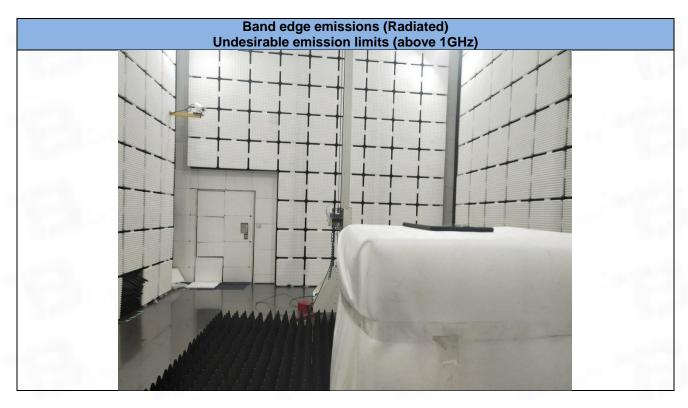
UNII-3_40M_5795MHz_Horizontal

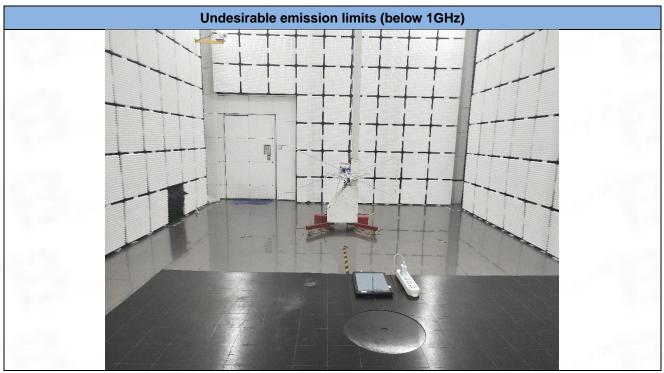
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4826.540	77.37	-27.57	49.80	68.20	-18.40	peak	Р
2	6711.938	80.37	-29.15	51.22	68.20	-16.98	peak	Р
3	9039.952	83.33	-29.45	53.88	68.20	-14.32	peak	Р
4	11039.937	83.66	-29.55	54.11	68.20	-14.09	peak	Р
5	12761.951	84.37	-29.61	54.76	68.20	-13.44	peak	Р
6	14405.948	85.32	-33.10	52.22	68.20	-15.98	peak	Р

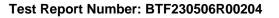

UNII-3 40M 5795MHz Vertical

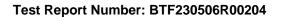

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4157.579	77.14	-28.00	49.14	68.20	-19.06	peak	Р
2	6042.977	80.14	-29.58	50.56	68.20	-17.64	peak	Р
3	8370.991	83.10	-29.88	53.22	68.20	-14.98	peak	Р
4	10370.976	83.43	-29.98	53.45	68.20	-14.75	peak	Р
5	12092.990	84.14	-30.04	54.10	68.20	-14.10	peak	Р
6	13736.987	85.09	-33.53	51.56	68.20	-16.64	peak	Р

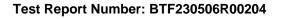



7 Test Setup Photos





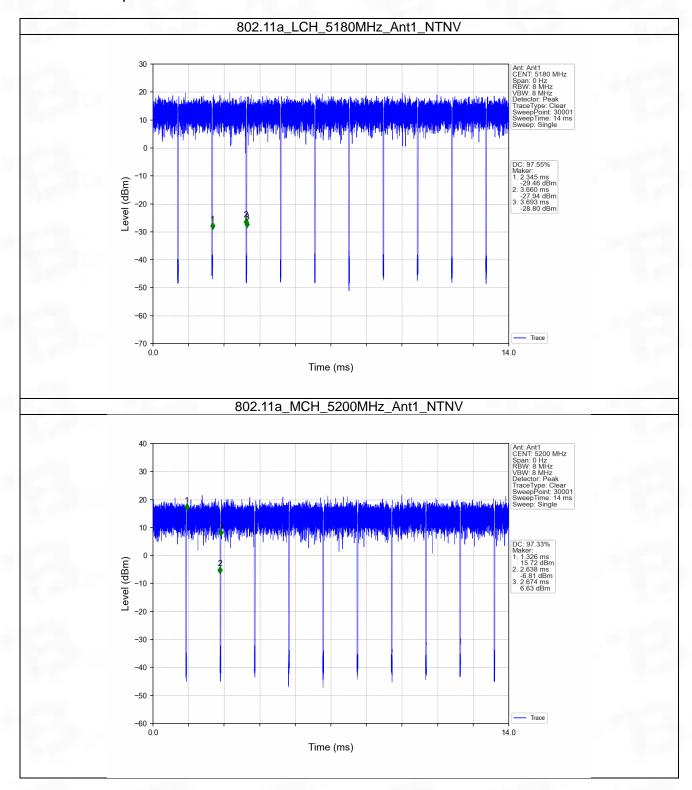



8 EUT Constructional Details (EUT Photos)

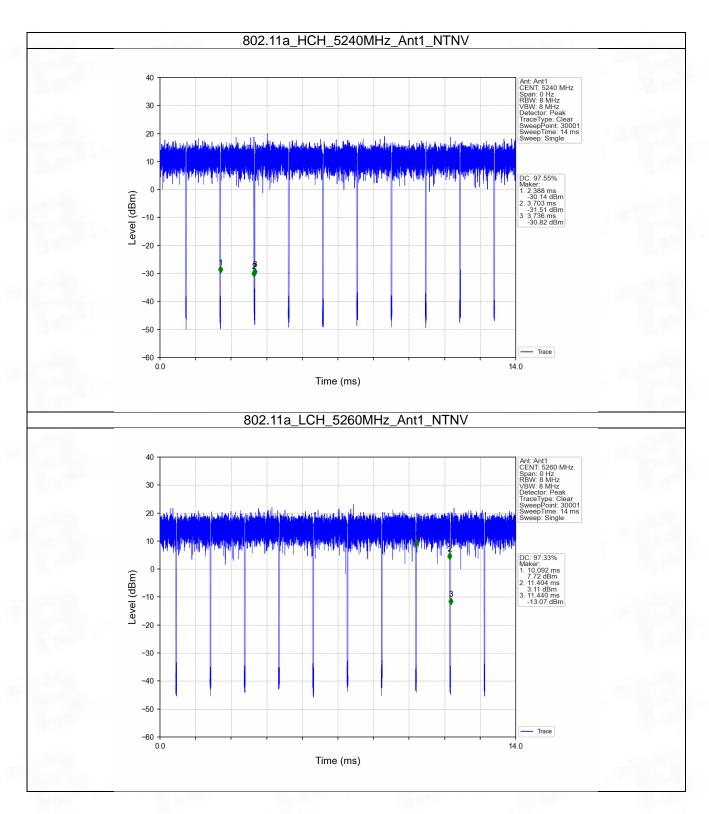
Please refer to the report No.BTF230506R00201

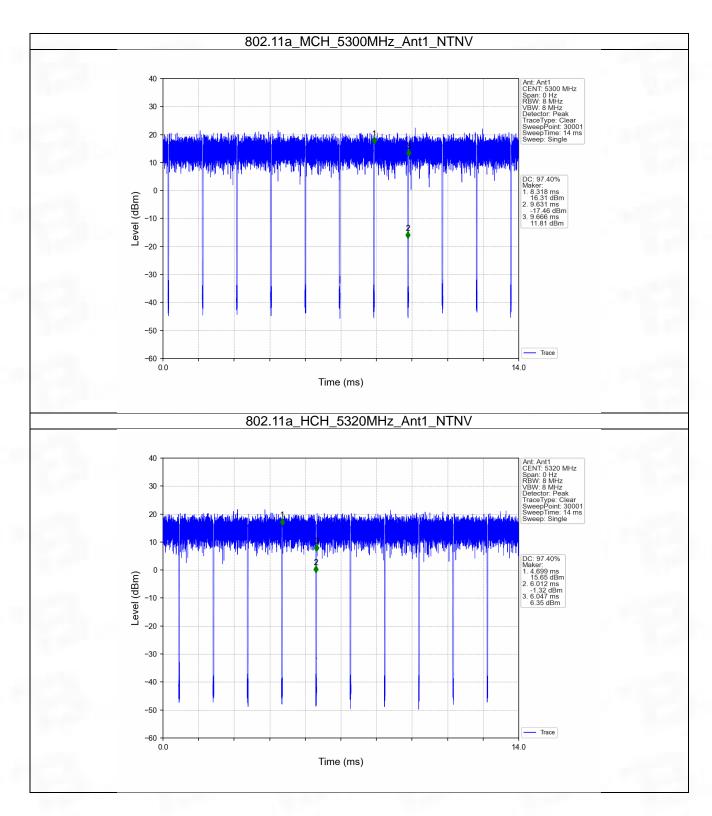
Appendix

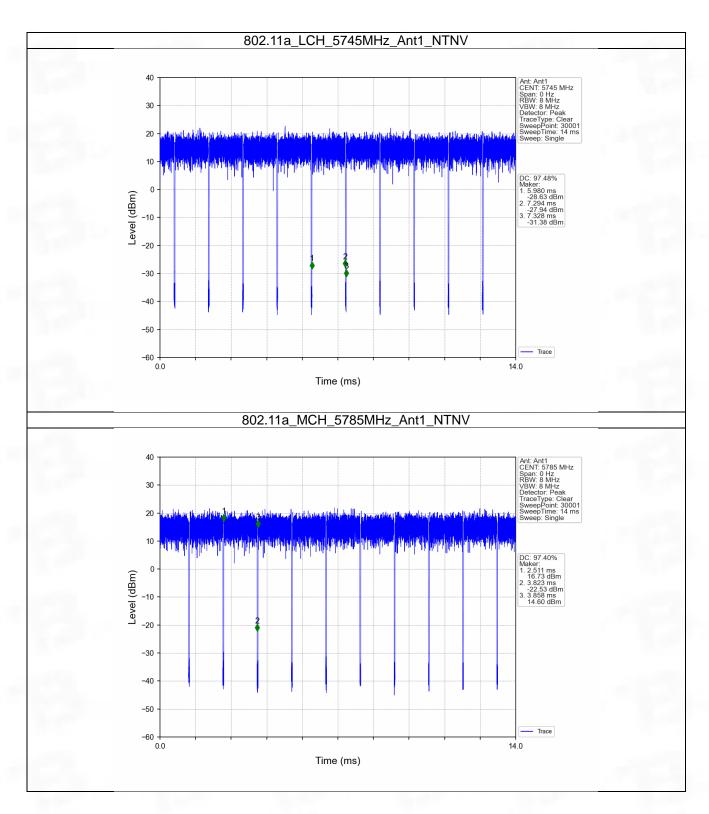
1. Duty Cycle

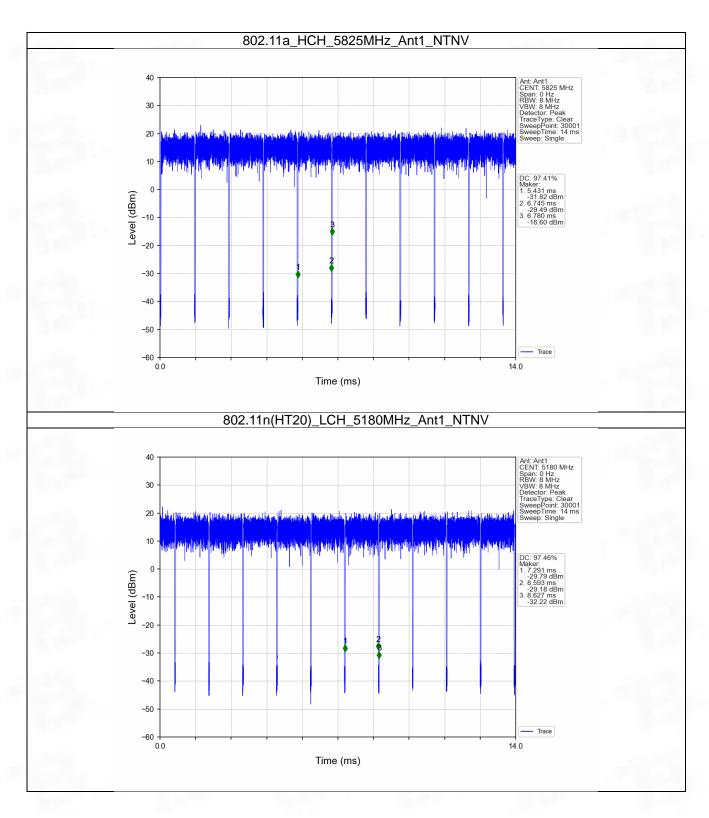

1.1 Ant1

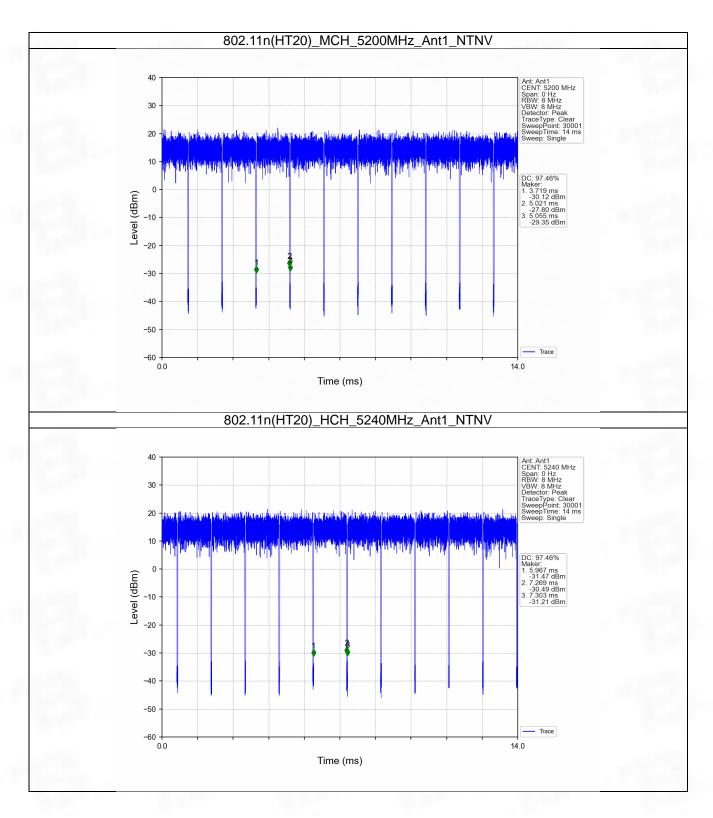
1.1.1 Test Result

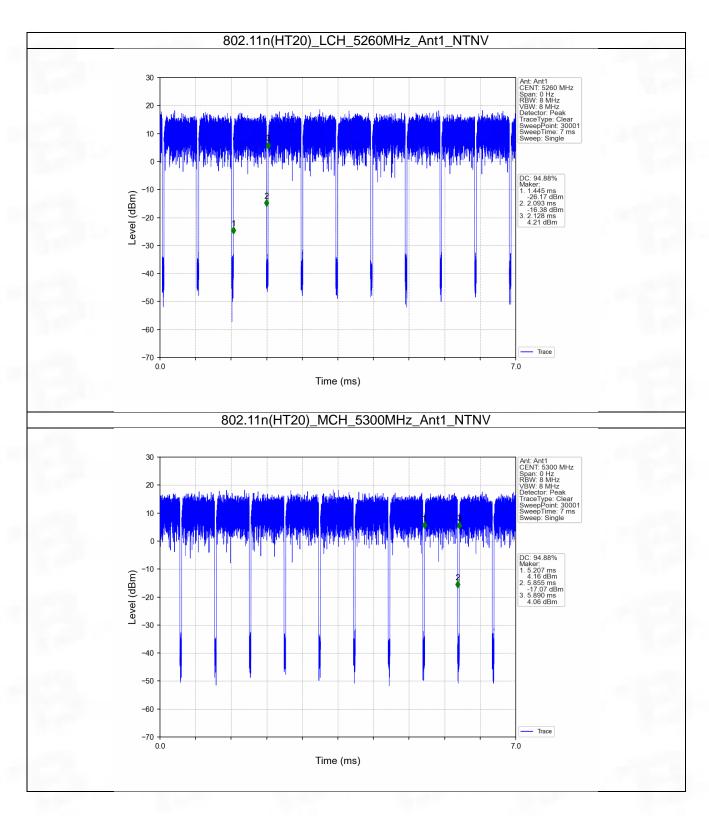

					Ant1		
Mode	TX	Frequency	T_on	Period	Duty Cycle	Duty Cycle	Max. DC
Mode	Type	(MHz)	(ms)	(ms)	(%)	Correction Factor (dB)	Variation (%)
		5180	1.315	1.348	97.55	0.11	0.03
		5200	1.312	1.348	97.33	0.12	0.03
		5240	1.315	1.348	97.55	0.11	0.03
		5260	1.312	1.348	97.33	0.12	0.07
802.11a	SISO	5300	1.313	1.348	97.40	0.11	0.03
		5320	1.313	1.348	97.40	0.11	0.03
		5745	1.314	1.348	97.48	0.11	0.07
		5785	1.312	1.347	97.40	0.11	0.03
		5825	1.314	1.349	97.41	0.11	0.10
		5180	1.302	1.336	97.46	0.11	0.03
		5200	1.302	1.336	97.46	0.11	0.03
		5240	1.302	1.336	97.46	0.11	0.07
000 11 =		5260	0.648	0.683	94.88	0.23	0.07
802.11n (HT20)	SISO	5300	0.648	0.683	94.88	0.23	0.07
(11120)		5320	0.648	0.683	94.88	0.23	0.03
		5745	1.302	1.336	97.46	0.11	0.07
		5785	1.300	1.336	97.31	0.12	0.07
		5825	1.300	1.335	97.38	0.12	0.07
		5190	0.648	0.683	94.88	0.23	0.03
		5230	0.648	0.683	94.88	0.23	0.03
802.11n	SISO	5270	0.648	0.683	94.88	0.23	0.07
(HT40)	3130	5310	0.648	0.683	94.88	0.23	0.03
		5755	0.648	0.683	94.88	0.23	0.07
		5795	0.649	0.683	95.02	0.22	0.03

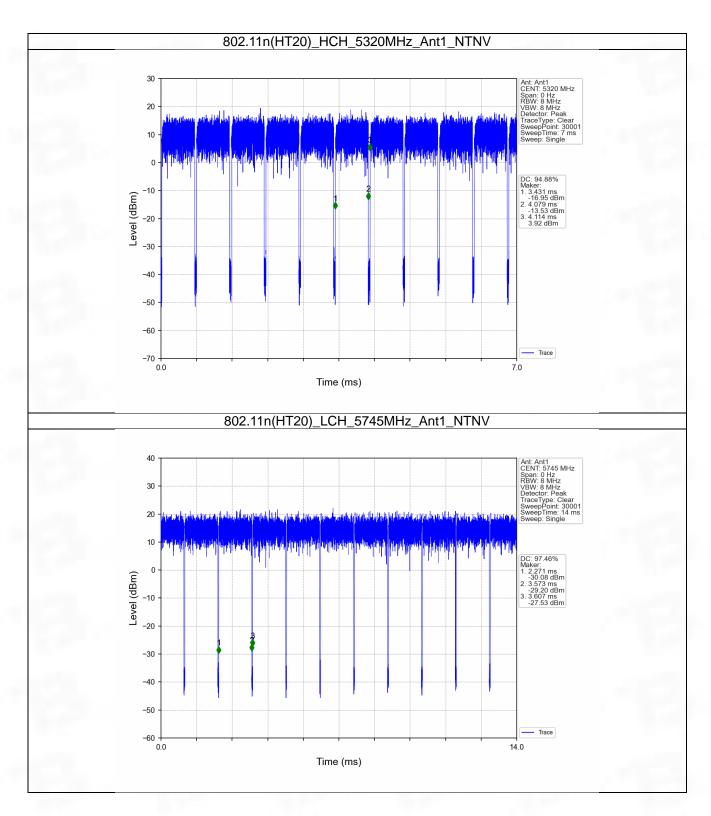

1.1.2 Test Graph

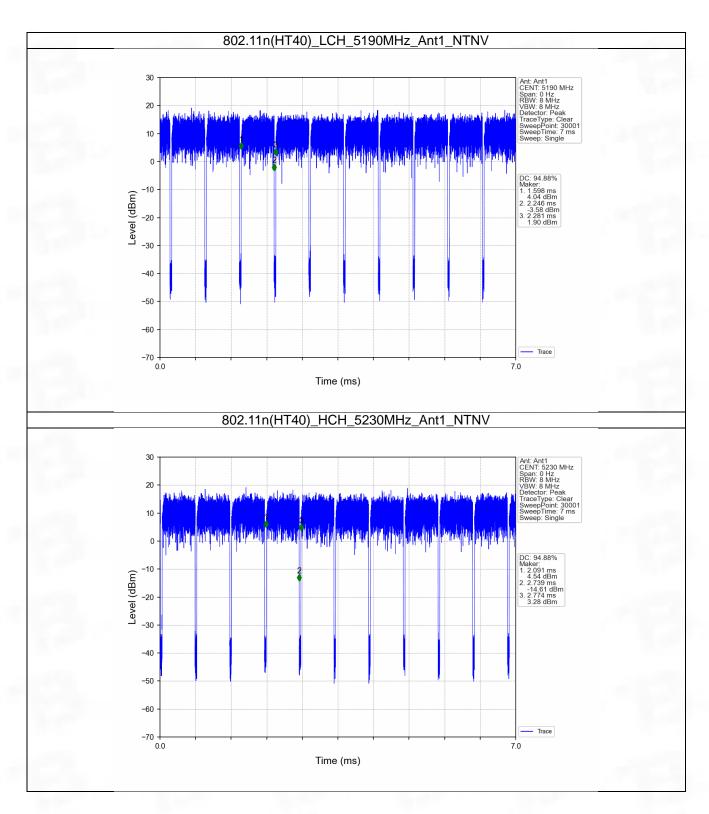


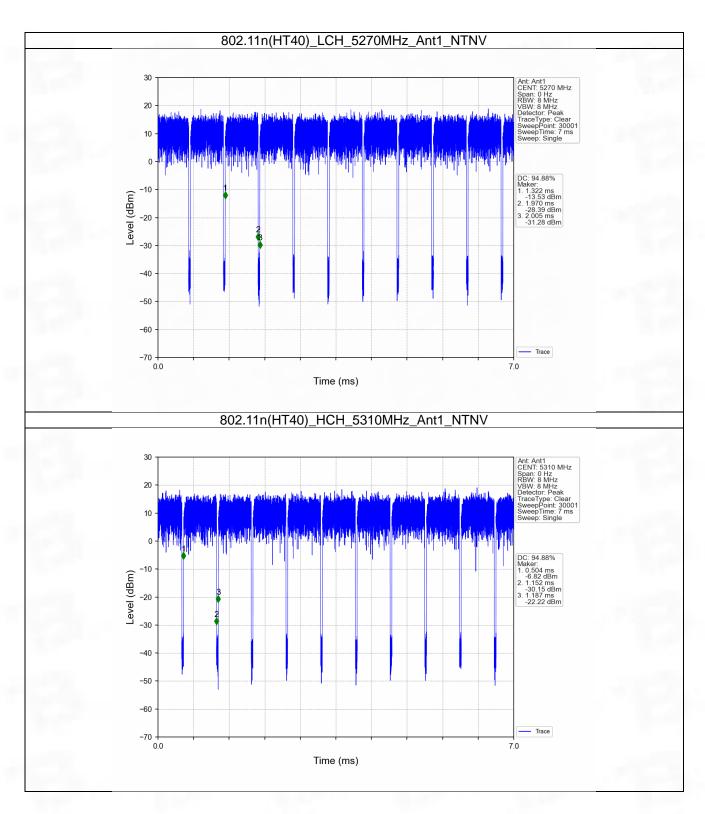


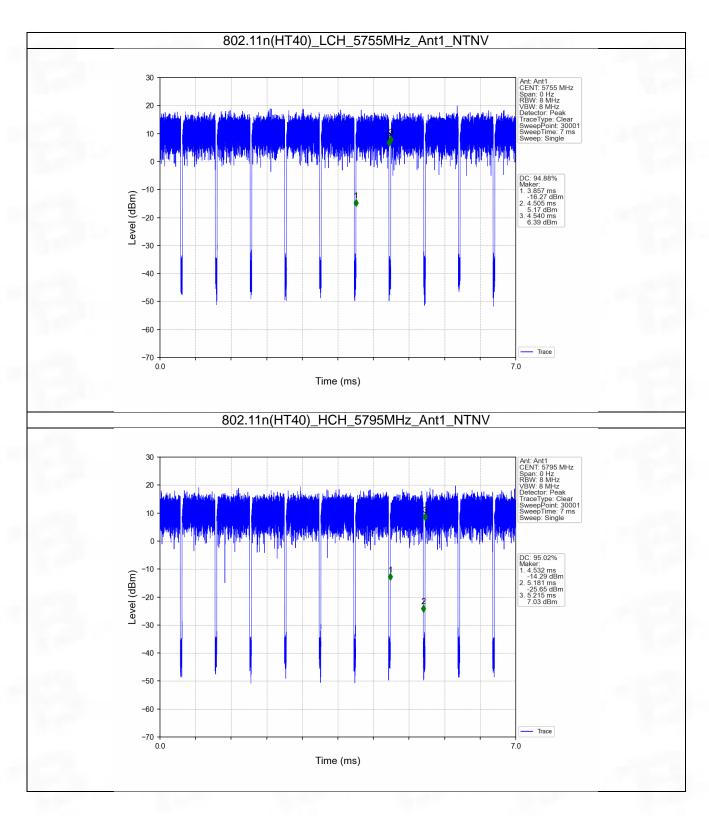


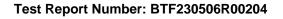




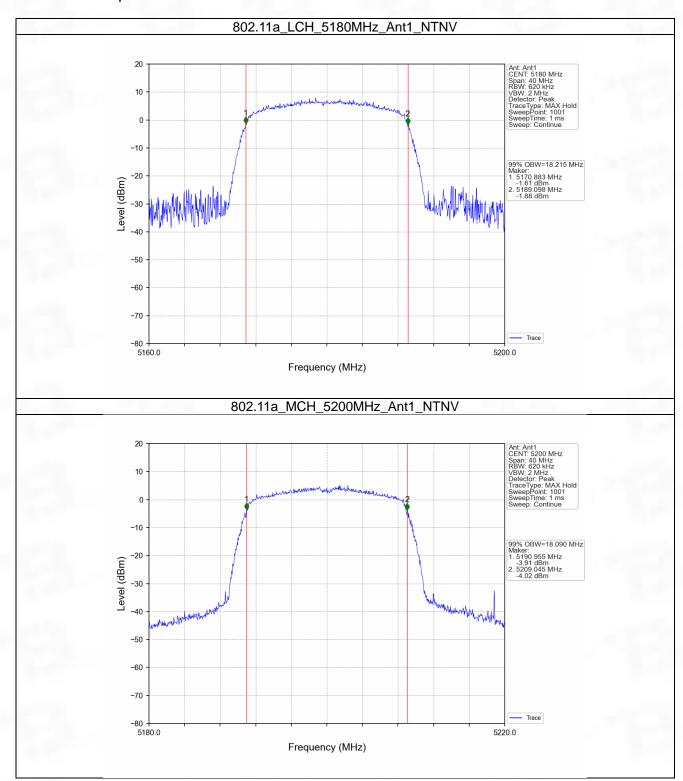




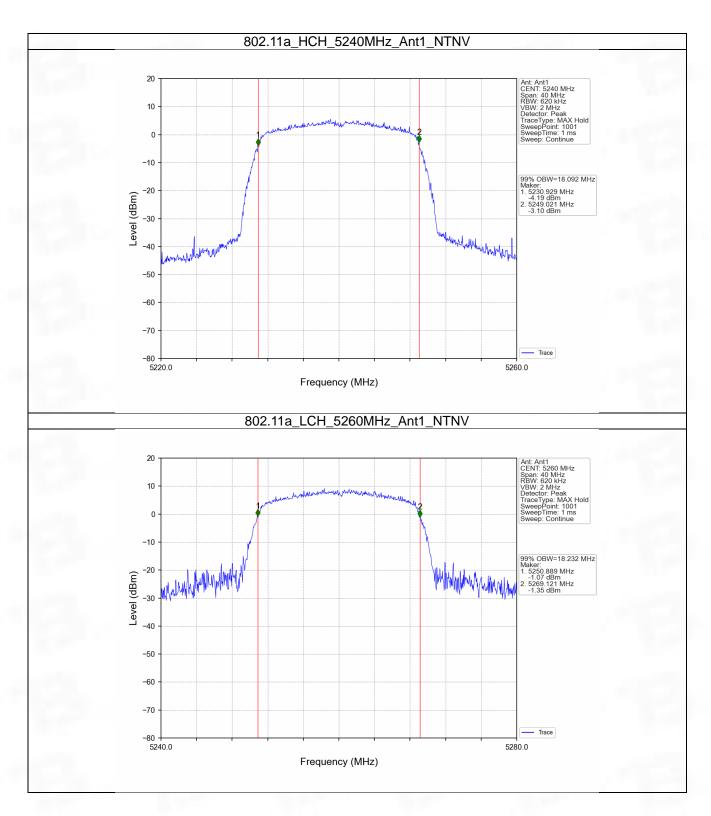


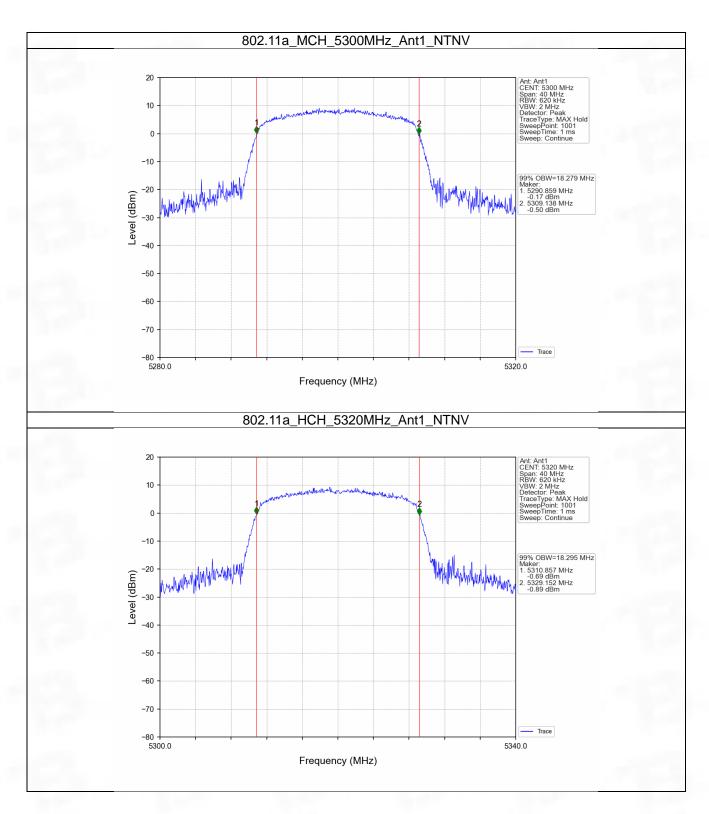


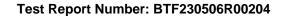
2. Bandwidth

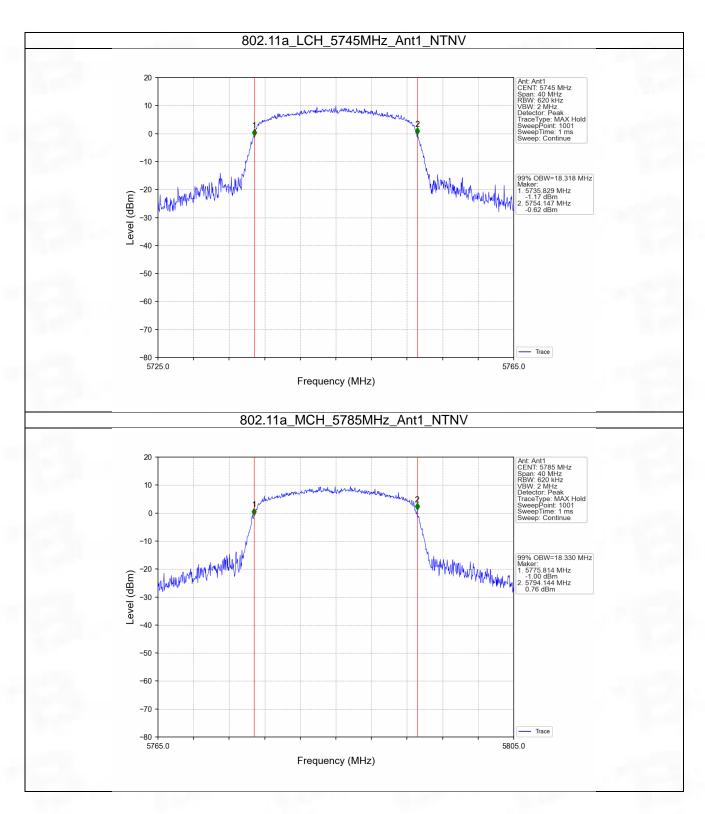

2.1 OBW

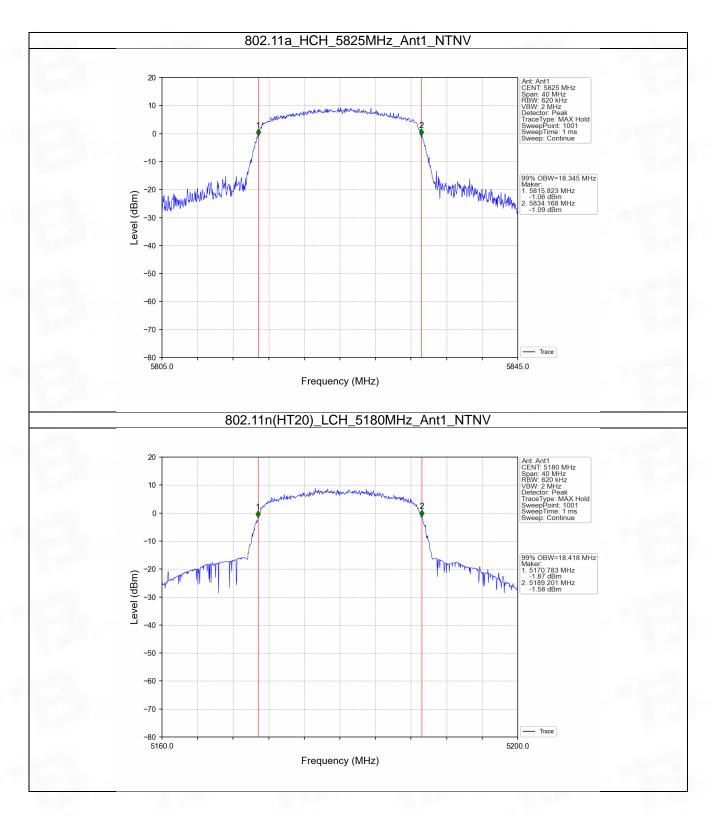
2.1.1 Test Result

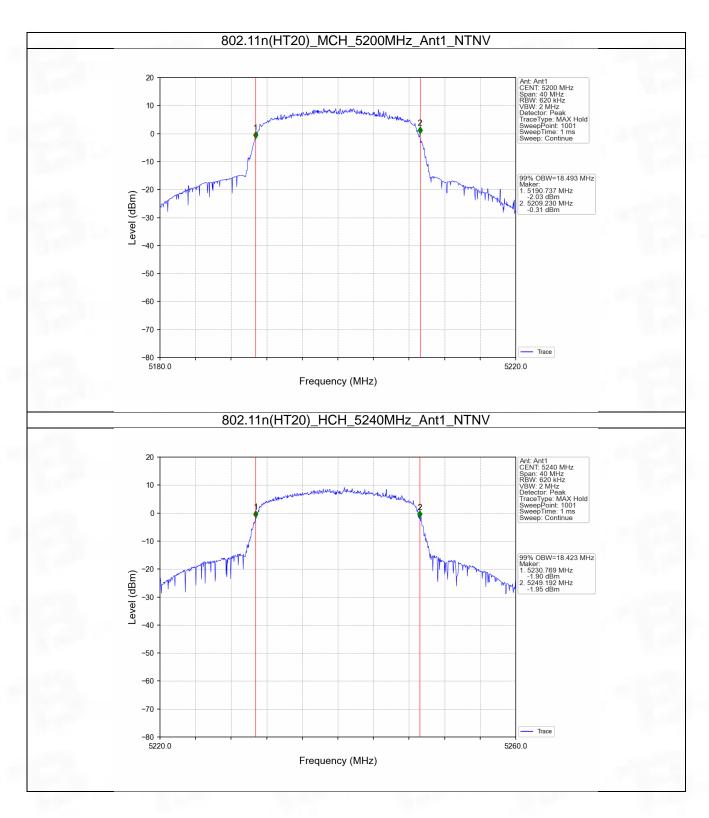

Mode	TX	Frequency	ANT	99% Occupied Bandwidth (MHz)	\/ordiot
Mode	Type	(MHz)	AINT	Result	Verdict
		5180	1	18.215	Pass
		5200	1	18.090	Pass
		5240	1	18.092	Pass
		5260	1	18.232	Pass
802.11a	SISO	5300	1	18.279	Pass
		5320	1	18.295	Pass
		5745	1	18.318	Pass
		5785	1	18.330	Pass
		5825	1	18.345	Pass
		5180	1	18.418	Pass
		5200	1	18.493	Pass
		5240	1	18.423	Pass
000 11 _p		5260	1	36.068	Pass
802.11n (HT20)	SISO	5300	1	36.041	Pass
(11120)		5320	1	36.143	Pass
		5745	1	18.509	Pass
		5785	1	18.518	Pass
		5825	1	18.552	Pass
		5190	1	36.838	Pass
		5230	1	36.895	Pass
802.11n	SISO	5270	1	36.963	Pass
(HT40)	3130	5310	1	36.894	Pass
		5755	1	36.983	Pass
		5795	1	37.005	Pass

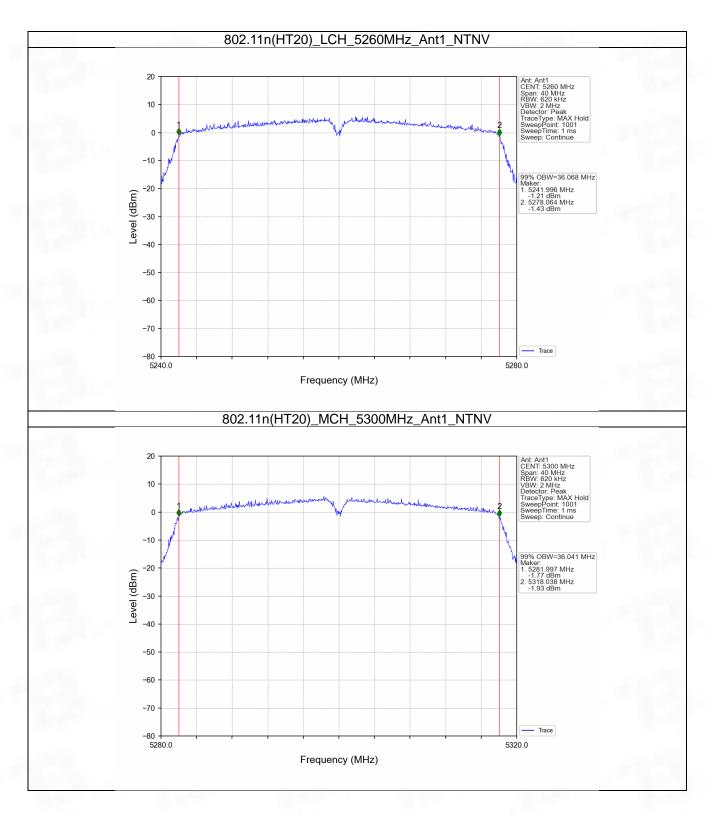

2.1.2 Test Graph

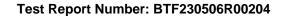


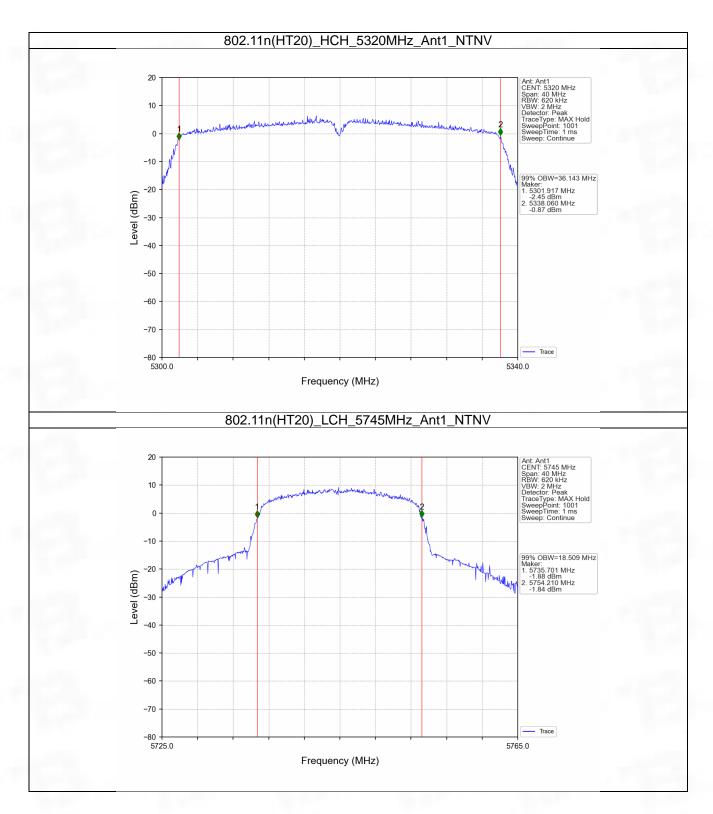


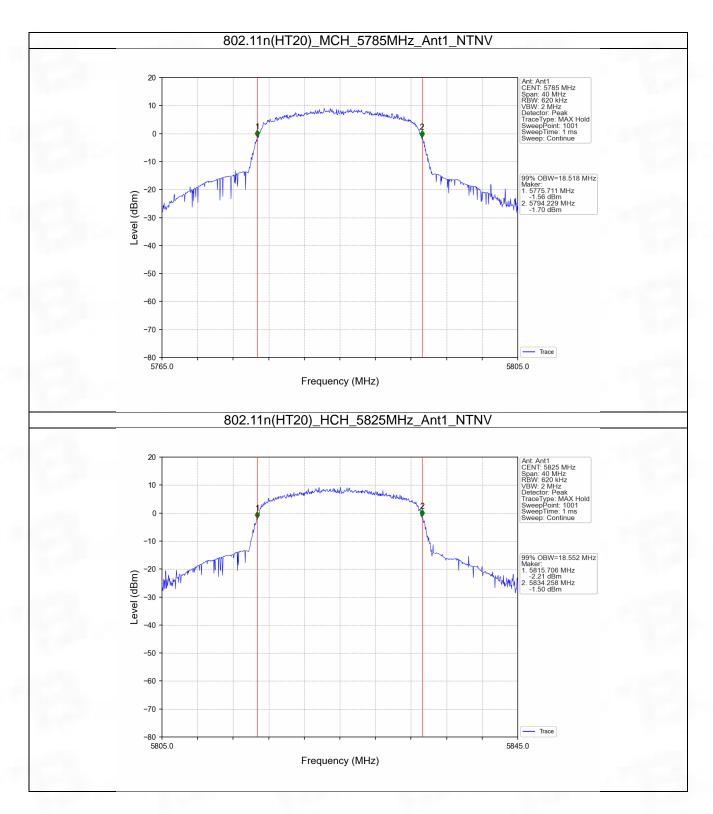


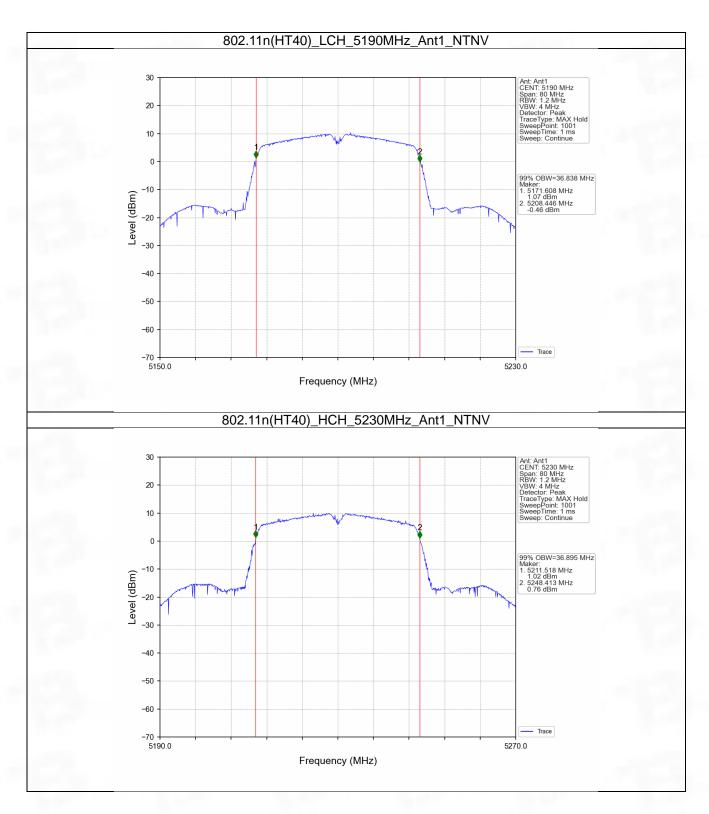


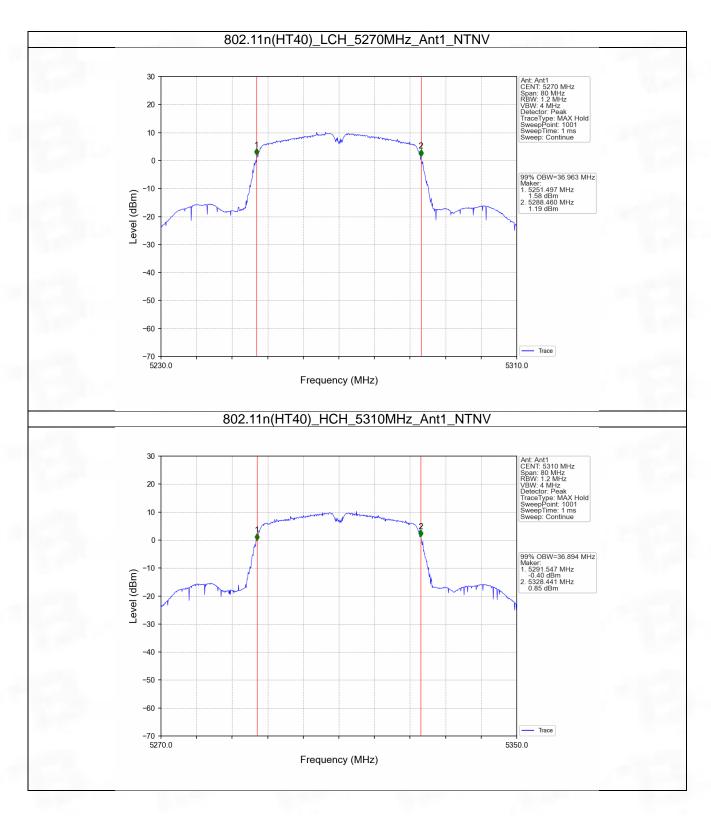


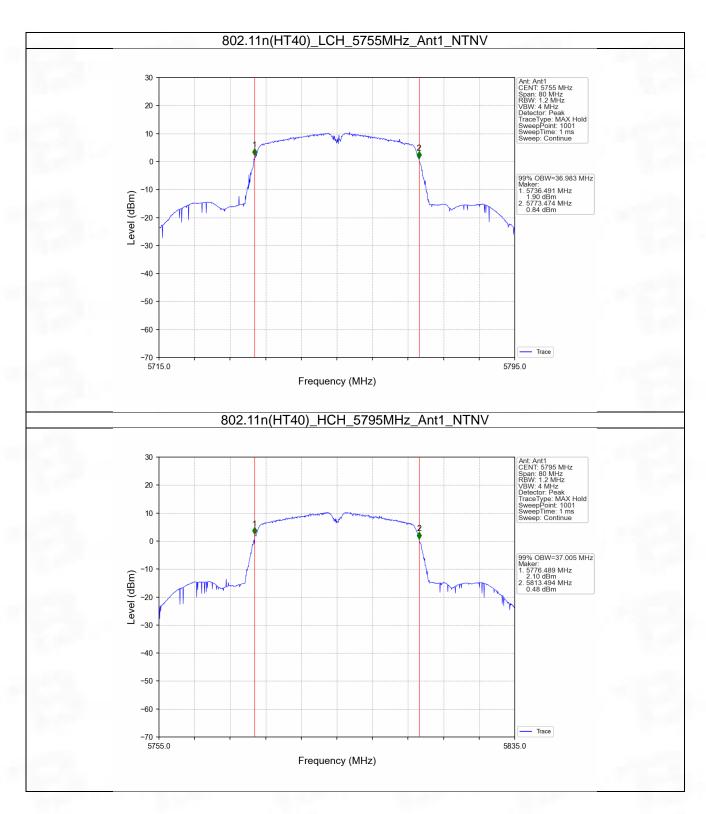


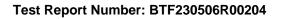


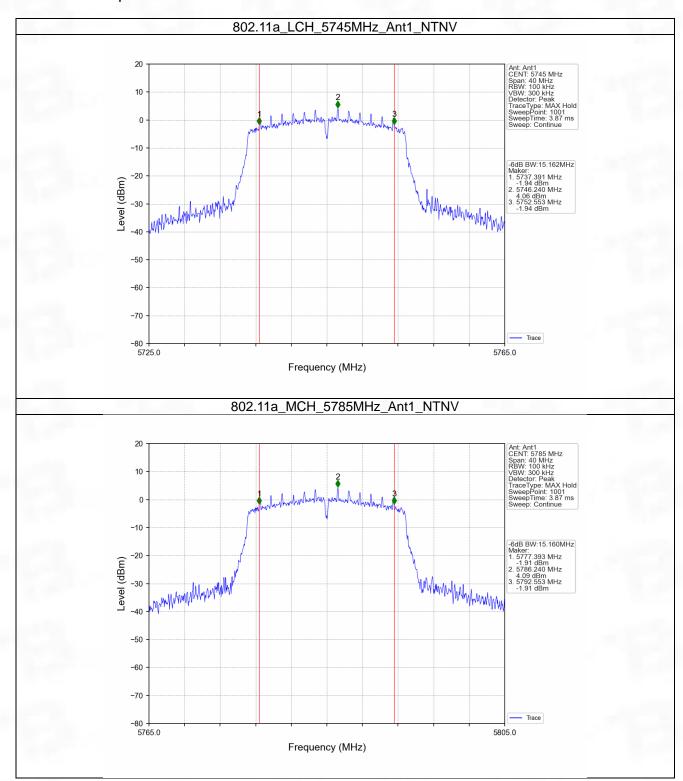




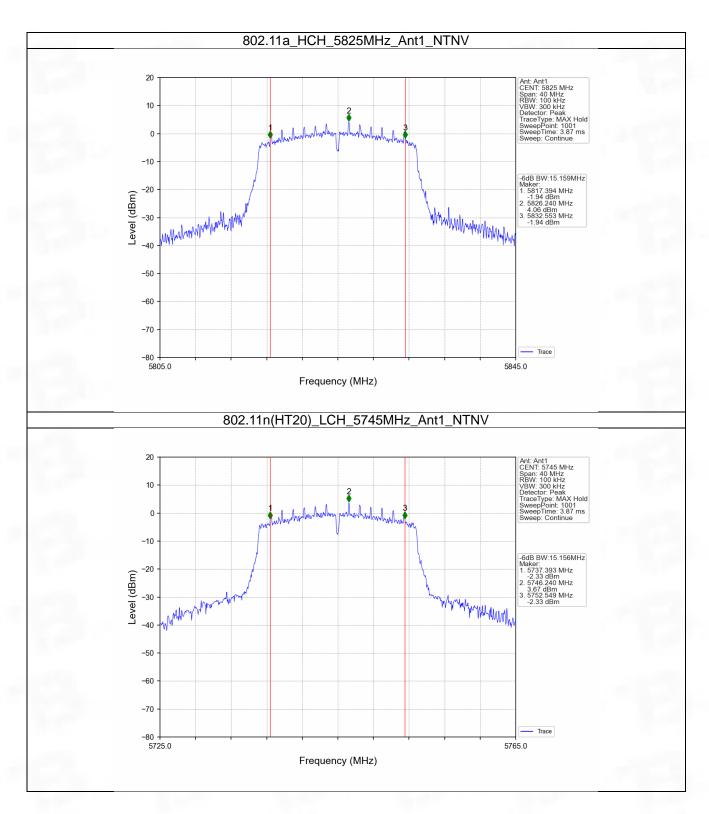


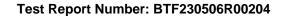




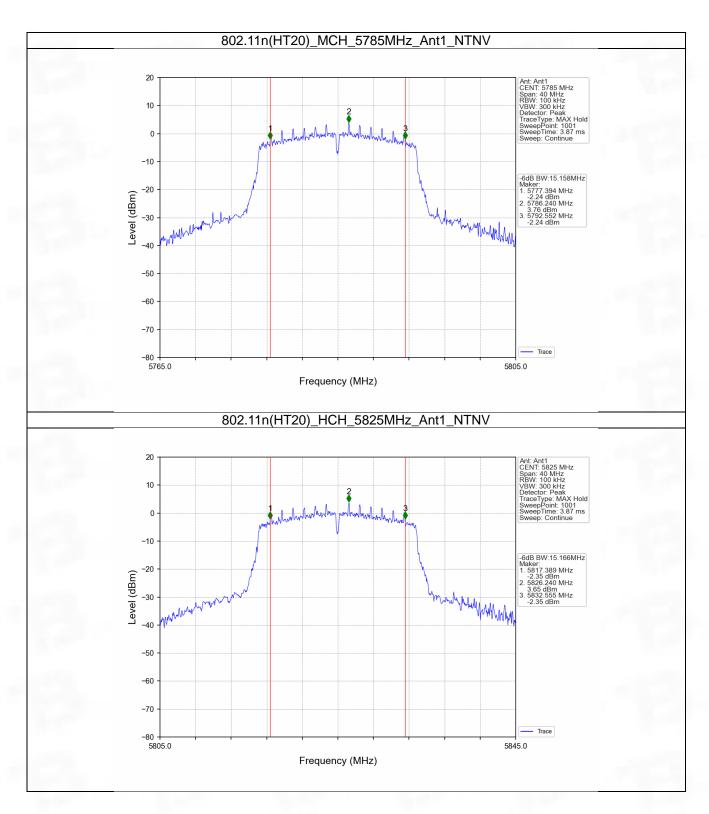

2.2 6dB BW

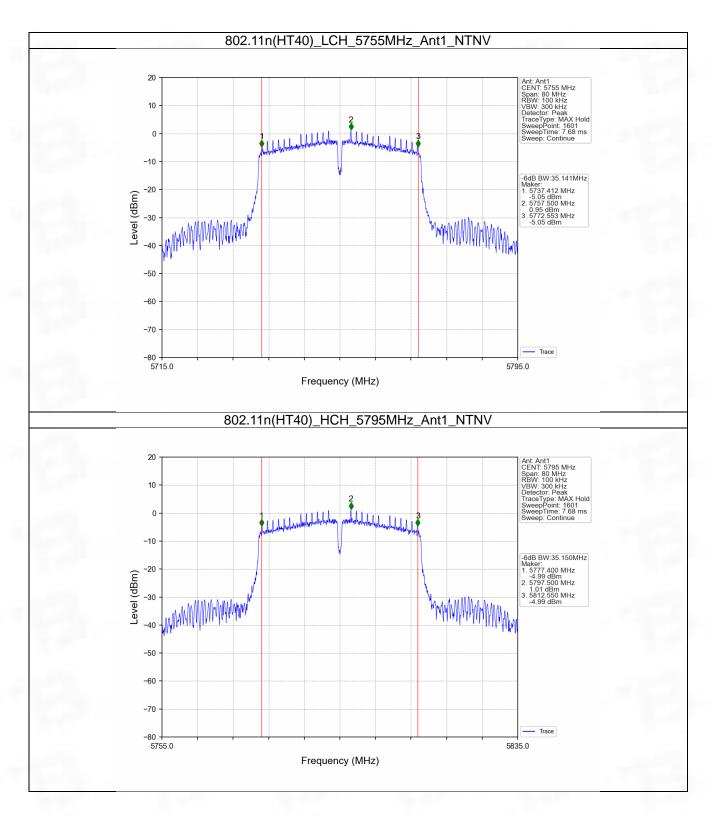
2.2.1 Test Result

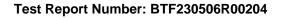

Mode	TX	Frequency (MHz)	ANT	6dB Bandwidth (MHz)		Vardiet
	Type			Result	Limit	Verdict
802.11a		5745	1	15.162	>=0.5	Pass
	SISO	5785	1	15.160	>=0.5	Pass
		5825	1	15.159	>=0.5	Pass
802.11n (HT20)	SISO	5745	1	15.156	>=0.5	Pass
		5785	1	15.158	>=0.5	Pass
		5825	1	15.166	>=0.5	Pass
802.11n (HT40)	SISO	5755	1	35.141	>=0.5	Pass
		5795	1	35.150	>=0.5	Pass

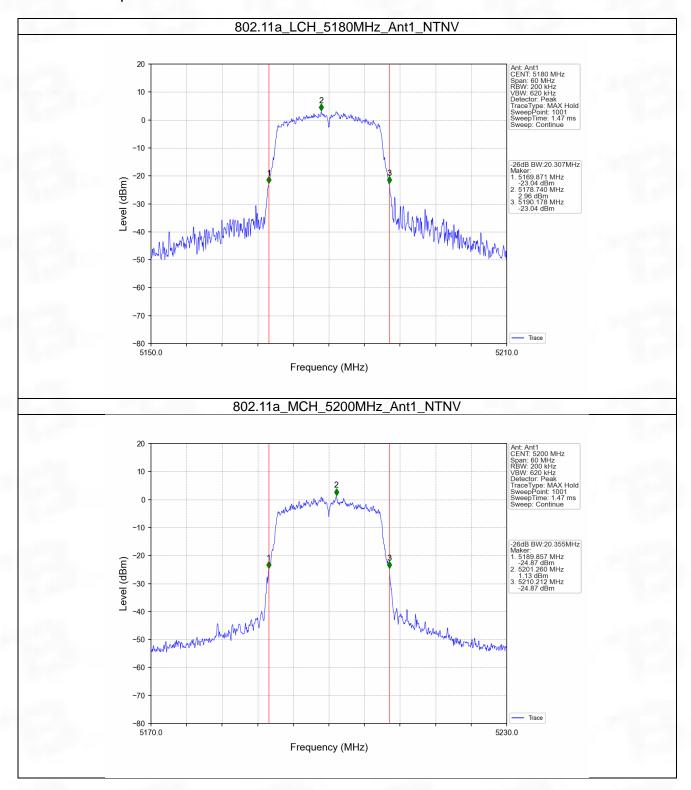


2.2.2 Test Graph

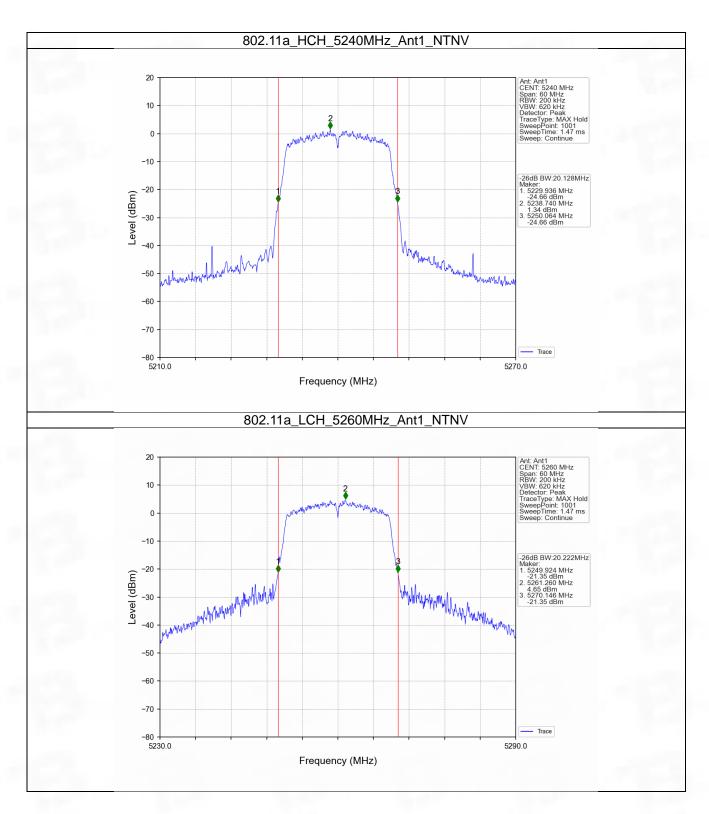


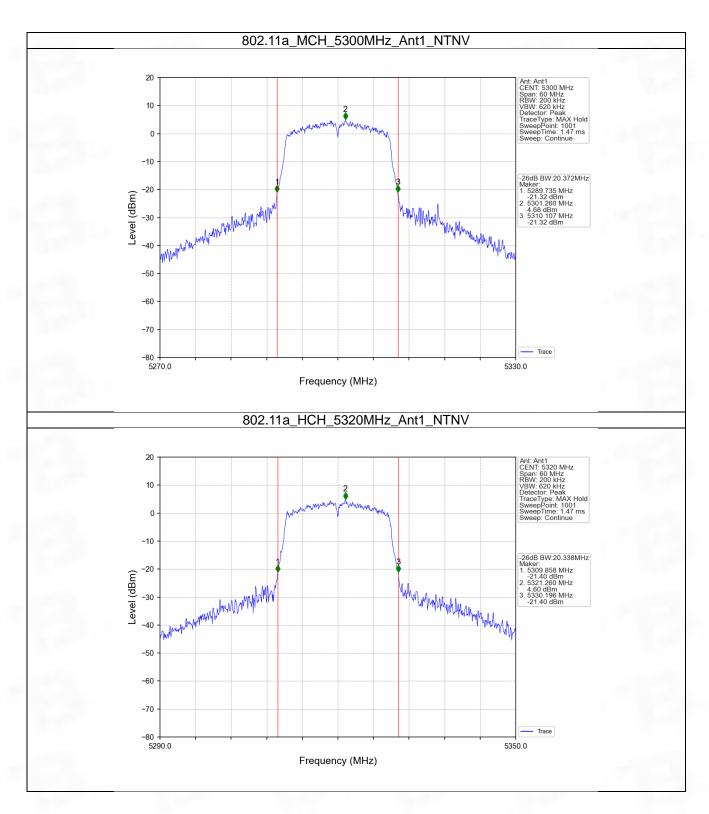





2.3 26dB BW

2.3.1 Test Result


Mode	TX	Frequency	ANT	26dB Bandwidth (MHz)	\/o.rdiot
	Type	(MHz) ANT		Result	Verdict
802.11a	SISO	5180	1	20.307	Pass
		5200	1	20.355	Pass
		5240	1	20.128	Pass
		5260	1	20.222	Pass
		5300	1	20.372	Pass
		5320	1	20.338	Pass
802.11n (HT20)	SISO	5180	1	20.271	Pass
		5200	1	20.329	Pass
		5240	1	20.230	Pass
		5260	1	39.515	Pass
		5300	1	39.437	Pass
		5320	1	39.748	Pass
	SISO	5190	1	40.211	Pass
802.11n (HT40)		5230	1	40.916	Pass
		5270	1	40.959	Pass
		5310	1	40.463	Pass


2.3.2 Test Graph

