

Address:

RF Test Report

For

Applicant Name: Xwireless LLC

Address: 11565 Old Georgetown Road, Rockville, MD, USA

EUT Name: Mobile Phone

Brand Name: Vortex Model Number: HD67

Issued By

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen,

(Shenzh

China

Report Number: BTF231220R00404 Test Standards: 47 CFR Part 15E

Test Conclusion: Pass

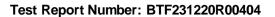
FCC ID: 2ADLJ-HD67

Test Date: 2023-12-21 to 2024-01-19

Date of Issue: 2024-01-23

Prepared By:

Approved By:

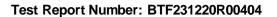

Chris Liu / Project Engineer

Date: 2024-01-23

Ryan.CJ / EMC Manager

Date: 2024-01-23

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.



Revision History				
Version	Issue Date	Revisions Content		
R_V0	2024-01-23	Original		
Note: Once the revision has been made, then previous versions reports are invalid.				

Table of Contents

1	INTR	ODUCTION	5
	1.1	Identification of Testing Laboratory	5
	1.2	Identification of the Responsible Testing Location	5
	1.3	Announcement	5
2	PRO	DUCT INFORMATION	6
	2.1	Application Information	6
	2.2	Manufacturer Information	
	2.3	Factory Information	6
	2.4	General Description of Equipment under Test (EUT)	6
	2.5	Technical Information	6
3	SUM	MARY OF TEST RESULTS	7
	3.1	Test Standards	7
	3.2	Uncertainty of Test	
	3.3	Summary of Test Result	
4	TES	CONFIGURATION	8
	4.1	Test Equipment List	
	4.2	Test Auxiliary Equipment	
	4.3	Test Modes	
5	FVΔI	.UATION RESULTS (EVALUATION)	
	5.1	Antenna requirement	
6	•	O SPECTRUM MATTER TEST RESULTS (RF)	
0		· ·	
	6.1	Conducted Emission at AC power line	
		6.1.1 E.U.T. Operation:	
		6.1.2 Test Setup Diagram: 6.1.3 Test Data:	
	6.2	Duty Cycle	
	0.2	6.2.1 E.U.T. Operation:	
		6.2.2 Test Data:	
	6.3	Maximum conducted output power	
	0.5	6.3.1 E.U.T. Operation:	
		6.3.2 Test Data:	
	6.4	Power spectral density	
	• • •	6.4.1 E.U.T. Operation:	
		6.4.2 Test Data:	
	6.5	Emission bandwidth and occupied bandwidth	
		6.5.1 E.U.T. Operation:	
		6.5.2 Test Data:	
	6.6	Band edge emissions (Radiated)	25
		6.6.1 E.U.T. Operation:	26
		6.6.2 Test Setup Diagram:	27
		6.6.3 Test Data:	
	6.7	Undesirable emission limits (below 1GHz)	
		6.7.1 E.U.T. Operation:	
		6.7.2 Test Setup Diagram:	
		6.7.3 Test Data:	
	6.8	Undesirable emission limits (above 1GHz)	
		6.8.1 E.U.T. Operation:	36

	6.8.2	Test Data:	
7	TEST SETUI	P PHOTOS	4(
		TRUCTIONAL DETAILS (EUT PHOTOS)	
		· · · · · · · · · · · · · · · · · · ·	

1 Introduction

1.1 Identification of Testing Laboratory

		BTF Testing Lab (Shenzhen) Co., Ltd.
		F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
Phone Number: +86-0755-23146130 Fax Number: +86-0755-23146130		+86-0755-23146130
		+86-0755-23146130

1.2 Identification of the Responsible Testing Location

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.	
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China	
Phone Number: +86-0755-23146130		
Fax Number:	+86-0755-23146130	
FCC Registration Number:	518915	
Designation Number:	CN1330	

1.3 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2 **Product Information**

Application Information

Company Name:	Xwireless LLC
Address:	11565 Old Georgetown Road, Rockville, MD, USA

2.2 **Manufacturer Information**

Company Name:	Xwireless LLC
Address:	11565 Old Georgetown Road, Rockville, MD, USA

2.3 Factory Information

	Company Name:	ZTECH COMMNICATION(SZ) CO LTD
Add	Address:	FL 7 BLOCK D BAO'AN ZHIGU INNOVATION PARK YIN'TIAN ROAD NO.4
	Addi 633.	XI'XIANG STR' BAO'AN DISTRICT SZ CHINA

General Description of Equipment under Test (EUT) 2.4

EUT Name:	Mobile Phone	
Test Model Number:	HD67	
Hardware Version:	N/A	
Software Version:	N/A	

Technical Information 2.5

Power Supply:	DC 3.85V form battery
Operation Frequency	U-NII Band 1: 5.18~5.24 GHz
Range	U-NII Band 3: 5.745~5.825 GHz
Fragues av Black	U-NII Band 1: 5.15~5.25 GHz
Frequency Block	U-NII Band 3: 5.725~5.85 GHz
	802.11a: 20 MHz
Channel Bandwidth	802.11n: 20 MHz, 40 MHz
	802.11ac: 20 MHz, 40 MHz, 80 MHz
Antenna Type:	FPC Antenna
Antenna Gain:	1.05dBi
11.6	

Note:

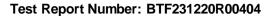
^{#:} The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

3 Summary of Test Results

3.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15E: Unlicensed National Information Infrastructure Devices


3.2 Uncertainty of Test

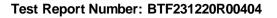
Item	Measurement Uncertainty
Conducted Emission (150 kHz-30 MHz)	±2.64dB
Occupied Bandwidth	±69kHz
Transmitter Power, Conducted	±0.87dB
Power Spectral Density	±0.69dB
Conducted Spurious Emissions	±0.95dB
Radiated Spurious Emissions (above 1GHz)	1-6GHz: ±3.94dB 6-18GHz: ±4.16dB
Radiated Spurious Emissions (30M - 1GHz)	±4.12dB

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.3 Summary of Test Result

Item	Standard	Requirement	Result
Antenna requirement	47 CFR Part 15E	Part 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15E	47 CFR Part 15.207(a)	Pass
Maximum conducted output power	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Power spectral density	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Emission bandwidth and occupied bandwidth	47 CFR Part 15E	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. 47 CFR Part 15.407(e)	Pass
Channel Availability Check Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(ii)	Pass
U-NII Detection Bandwidth	47 CFR Part 15E	47 CFR Part 15.407(h)(2)	Pass
Statistical Performance Check	47 CFR Part 15E	KDB 935210 D02, Clause 5.1 Table 2	Pass
Channel Move Time, Channel Closing Transmission Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iii)	Pass
Non-Occupancy Period Test	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iv)	Pass
DFS Detection Thresholds	47 CFR Part 15E	KDB 905462 D02, Clause 5.2 Table 3	Pass
Band edge emissions (Radiated)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass

Undesirable emission limits (below 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(9)	Pass
Undesirable emission limits (above 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass

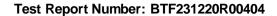

Test Configuration

Test Equipment List

Conducted Emission at AC power line							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	00953	2023-11-16	2024-11-15		
Coaxial Switcher	SCHWARZBECK	CX210	CX210	2023-11-16	2024-11-15		
V-LISN	SCHWARZBECK	NSLK 8127	01073	2023-11-16	2024-11-15		
LISN	AFJ	LS16/110VAC	16010020076	2023-02-23	2024-02-22		
EMI Receiver	ROHDE&SCHWA RZ	ESCI3	101422	2023-11-16	2024-11-15		

Duty Cycle					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	1	V1.00	1	1	/
RF Control Unit	Techy	TR1029-1	1	2023-11-16	2024-11-15
RF Sensor Unit	Techy	TR1029-2	1	2023-11-16	2024-11-15
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15

Maximum conducted output power							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	1	/	1		
RF Control Unit	Techy	TR1029-1	1	2023-11-16	2024-11-15		
RF Sensor Unit	Techy	TR1029-2	1	2023-11-16	2024-11-15		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15		
WIDEBAND RADIO COMMNUNICATION	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15		



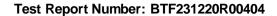
TESTER					
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15

Power spectral density								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	1	/	/			
RF Control Unit	Techy	TR1029-1	1	2023-11-16	2024-11-15			
RF Sensor Unit	Techy	TR1029-2	1	2023-11-16	2024-11-15			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15			

Emission bandwidth and occupied bandwidth							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	1	V1.00	1	1	/		
RF Control Unit	Techy	TR1029-1	1	2023-11-16	2024-11-15		
RF Sensor Unit	Techy	TR1029-2	1	2023-11-16	2024-11-15		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15		

Channel Availability Check Time								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	1	/	1			
RF Control Unit	Techy	TR1029-1	1	2023-11-16	2024-11-15			
RF Sensor Unit	Techy	TR1029-2	1	2023-11-16	2024-11-15			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15			
Adjustable Direct	Dongguan	etm-6050c	20211026123	2023-11-16	2024-11-15			

Current Regulated Power Supply	Tongmen Electronic Technology Co., LTD				
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15

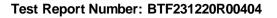

U-NII Detection Bandwidth							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	1	1	/		
RF Control Unit	Techy	TR1029-1	1	2023-11-16	2024-11-15		
RF Sensor Unit	Techy	TR1029-2	1	2023-11-16	2024-11-15		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15		

Statistical Performance Check							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	1	V1.00	1	/	/		
RF Control Unit	Techy	TR1029-1	1	2023-11-16	2024-11-15		
RF Sensor Unit	Techy	TR1029-2	1	2023-11-16	2024-11-15		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15		

Channel Move Time, Channel Closing Transmission Time								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	1	V1.00	1	1	/			
RF Control Unit	Techy	TR1029-1	1	2023-11-16	2024-11-15			
RF Sensor Unit	Techy	TR1029-2	1	2023-11-16	2024-11-15			
Programmable constant temperature	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15			

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 10 of 12 BTF Testing Lab (Shenzhen) Co., Ltd.
F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 10 of 128



and humidity box					
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15

Non-Occupancy Perio	od Test				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	1
RF Control Unit	Techy	TR1029-1	/	2023-11-16	2024-11-15
RF Sensor Unit	Techy	TR1029-2	/	2023-11-16	2024-11-15
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15

DFS Detection Thresholds						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
RFTest software	1	V1.00	1	/	/	
RF Control Unit	Techy	TR1029-1	1	2023-11-16	2024-11-15	
RF Sensor Unit	Techy	TR1029-2	1	2023-11-16	2024-11-15	
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15	
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15	
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15	
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15	

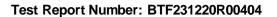
Band edge emissions (Radiated)							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23		
Preamplifier	SCHWARZBECK	BBV9744	00246	2023-11-16	2023-11-23		

RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2023-11-16	2024-11-15
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2023-11-16	2024-11-15
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2023-11-16	2024-11-15
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2023-11-16	2024-11-15
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2023-11-16	2024-11-15
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	2024-11-15
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2023-11-16	2024-11-15
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2023-11-16	2024-11-15
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2023-11-16	2024-11-15
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	80000	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	1	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2023-11-16	2024-11-15

Undesirable emission limits (below 1GHz)							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23		
Preamplifier	SCHWARZBECK	BBV9744	00246	2023-11-16	2024-11-15		
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2023-11-16	2024-11-15		
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2023-11-16	2024-11-15		
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2023-11-16	2024-11-15		
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2023-11-16	2024-11-15		
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2023-11-16	2024-11-15		
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1		
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2023-11-16	2024-11-15		
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2023-11-16	2024-11-15		
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2023-11-16	2024-11-15		
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1		
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	80000	2023-03-24	2024-03-23		
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21		
EZ_EMC	Frad	FA-03A2 RE+	1	/	/		
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1		

Log periodic antenna SCHWARZBECK	VULB 9168	01328	2021-11-28	2024-11-15
----------------------------------	-----------	-------	------------	------------

Undesirable emission limits (above 1GHz)						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23	
Preamplifier	SCHWARZBECK	BBV9744	00246	2023-11-16	2024-11-15	
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2023-11-16	2024-11-15	
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2023-11-16	2024-11-15	
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2023-11-16	2024-11-15	
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2023-11-16	2024-11-15	
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2023-11-16	2024-11-15	
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1	
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2023-11-16	2024-11-15	
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2023-11-16	2024-11-15	
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2023-11-16	2024-11-15	
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1	
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	80000	2023-03-24	2024-03-23	
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21	
EZ_EMC	Frad	FA-03A2 RE+	1	1	1	
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1	
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2023-11-16	2024-11-15	



4.2 Test Auxiliary Equipment

The EUT was tested as an independent device.

4.3 Test Modes

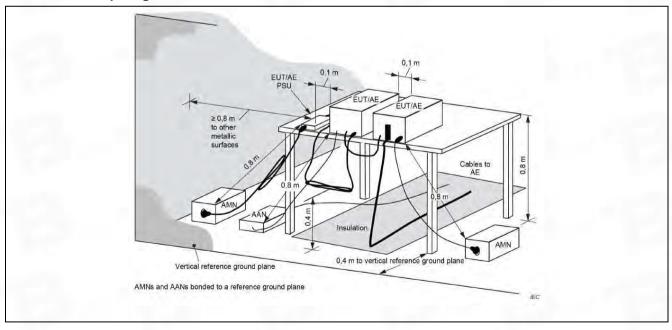
No.	Test Modes	Description
TM1	802.11a mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
TM2	802.11n mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
ТМЗ	802.11ac mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. Only the data of worst case is recorded in the report.
TM4	Normal Operating	Keep the EUT works in normal operating mode and connect to companion device

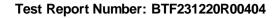
Evaluation Results (Evaluation)

Antenna requirement 5.1

Test Requirement:

Radio Spectrum Matter Test Results (RF) 6

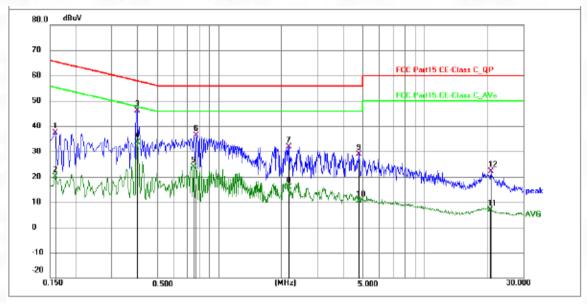

Conducted Emission at AC power line 6.1


Test Requirement:	47 CFR Part 15.207(a)				
Test Method:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices				
Test Limit:	Frequency of emission (MHz) 0.15-0.5 0.5-5 5-30 *Decreases with the logarithm of the second content of the	Conducted limit (dBµV) Quasi-peak 66 to 56* 56 60 he frequency.	Average 56 to 46* 46 50		

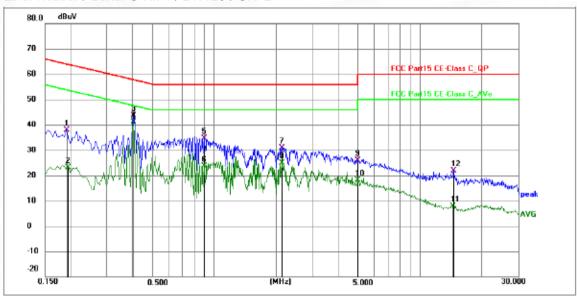
6.1.1 E.U.T. Operation:

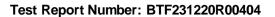
Operating Environment:			
Temperature:	25.5 °C		
Humidity:	50.6 %		
Atmospheric Pressure:	1010 mbar		

6.1.2 Test Setup Diagram:



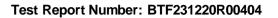
6.1.3 Test Data:


TM1 / Line: Line / Band: U-NII 1 / BW: 20 / CH: L


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBu√)	Margin (dB)	Detector	P/F	Remark
1	0.1590	26.84	10.47	37.31	65.52	-28.21	QP	Р	
2	0.1590	9.64	10.47	20.11	55.52	-35.41	AVG	Р	
3 *	0.3975	35.45	10.57	46.02	57.91	-11.89	QP	Р	
4	0.3975	23.15	10.57	33.72	47.91	-14.19	AVG	Р	
5	0.7485	13.28	10.69	23.97	46.00	-22.03	AVG	Р	
6	0.7710	25.69	10.69	36.38	56.00	-19.62	QP	Р	
7	2.1840	21.25	10.68	31.93	56.00	-24.07	QP	Р	
8	2.1840	5.26	10.68	15.94	46.00	-30.06	AVG	Р	
9	4.7490	18.19	10.71	28.90	56.00	-27.10	QP	Р	
10	4.7490	-0.38	10.71	10.33	46.00	-35.67	AVG	Р	
11	20.7645	-4.09	11.08	6.99	50.00	-43.01	AVG	Р	
12	20.9085	11.06	11.08	22.14	60.00	-37.86	QP	Р	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBu∀)	Margin (dB)	Detector	P/F	Remark
1	0.1905	27.45	10.54	37.99	64.01	-26.02	QP	Р	
2	0.1949	12.50	10.55	23.05	53.83	-30.78	AVG	Р	
3	0.4020	33.03	10.57	43.60	57.81	-14.21	QP	Р	
4 *	0.4020	30.66	10.57	41.23	47.81	-6.58	AVG	Р	
5	0.8925	23.90	10.68	34.58	56.00	-21.42	QP	Р	
6	0.8925	12.88	10.68	23.56	46.00	-22.44	AVG	Р	
7	2.1435	20.30	10.68	30.98	56.00	-25.02	QP	Р	
8	2.1435	14.10	10.68	24.78	46.00	-21.22	AVG	Р	
9	4.9650	15.17	10.73	25.90	56.00	-30.10	QP	Р	
10	4.9650	7.44	10.73	18.17	46.00	-27.83	AVG	Р	
11	14.5095	-2.81	10.79	7.98	50.00	-42.02	AVG	Р	
12	14.5455	11.09	10.79	21.88	60.00	-38.12	QP	Р	

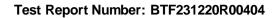
6.2 Duty Cycle


Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Method:	ANSI C63.10-2013 section 12.2 (b)
Test Limit:	No limits, only for report use.
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

6.2.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.2.2 Test Data:


Please Refer to Appendix for Details.

6.3 Maximum conducted output power

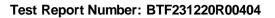
	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii)
	47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iii)
Test Requirement:	47 CFR Part 15.407(a)(1)(iv)
	47 CFR Part 15.407(a)(2)
	47 CFR Part 15.407(a)(3)(i)
Test Method:	ANSI C63.10-2013, section 12.3
	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power.
Test Limit:	For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems,
	omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems
	employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

	For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ
	transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	Method SA-1 a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal. b) Set RBW = 1 MHz. c) Set VBW >= 3 MHz.
	d) Number of points in sweep >= [2 × span / RBW]. (This gives bin-to-bin spacing <= RBW / 2, so
	that narrowband signals are not lost between frequency bins.) e) Sweep time = auto. f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample
	detector mode. g) If transmit duty cycle < 98%, use a video trigger with the trigger level set to enable triggering
	only on full power pulses. The transmitter shall operate at maximum power control level for the
Procedure:	entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF intervals) or
	at duty cycle >= 98%, and if each transmission is entirely at the maximum power control level,
	then the trigger shall be set to "free run."
	h) Trace average at least 100 traces in power averaging (rms) mode. i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW of the signal
	using the instrument's band power measurement function, with band limits set equal to the
	EBW or OBW band edges. If the instrument does not have a band power function, then sum the
	spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB EBW or 99%
631 FILT Operation:	OBW of the spectrum.

6.3.1 E.U.T. Operation:

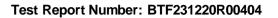
Operating Engineering	
Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.3.2 Test Data:


Please Refer to Appendix for Details.

6.4 Power spectral density

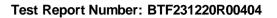
	4 TOWEI Specifal	
		47 CFR Part 15.407(a)(1)(i)
		47 CFR Part 15.407(a)(1)(ii)
_		47 CFR Part 15.407(a)(1)(iii)
les	st Requirement:	47 CFR Part 15.407(a)(1)(iv)
		47 CFR Part 15.407(a)(2)
		47 CFR Part 15.407(a)(3)(i)
_	1 N4 (I)	(/ (/ (/
les	st Method:	ANSI C63.10-2013, section 12.5
		For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
		For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
		For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.
Tes	st Limit:	Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed,
		point-to-point operations.
		For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
		For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
		For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter


	conducted power.
	Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	a) Create an average power spectrum for the EUT operating mode being tested by
	following the
	instructions in 12.3.2 for measuring maximum conducted output power using a spectrum
	analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their
	respective alternatives) and apply it up to, but not including, the step labeled, "Compute
	power" (This procedure is required even if the maximum conducted output power
	measurement was performed using the power meter method PM.)
	b) Use the peak search function on the instrument to find the peak of the spectrum.
	c) Make the following adjustments to the peak value of the spectrum, if applicable:
	1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty
	cycle, to the peak of the spectrum.
	2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7, add
Procedure:	1 dB to the final result to compensate for the difference between linear averaging and
	power averaging.
	d) The result is the PPSD.
	e) The procedure in item a) through item c) requires the use of 1 MHz resolution bandwidth to
	satisfy the 1 MHz measurement bandwidth specified by some regulatory authorities. This
	requirement also permits use of resolution bandwidths less than 1 MHz "provided that the
	measured power is integrated to show the total power over the measurement bandwidth" (i.e.,
	1 MHz). If measurements are performed using a reduced resolution bandwidth and integrated
	over 1 MHz bandwidth, the following adjustments to the procedures apply: 1) Set RBW >= 1 / T, where T is defined in 12.2 a).
	2) Set VBW >= [3 × RBW].
	3) Care shall be taken such that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

6.4.1 E.U.T. Operation:

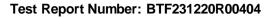
Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.4.2 Test Data:


Please Refer to Appendix for Details.

6.5 Emission bandwidth and occupied bandwidth

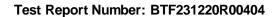
Toot Doguiroment	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Requirement:	U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
Test Method:	ANSI C63.10-2013, section 6.9.3 & 12.4
	KDB 789033 D02, Clause C.2 U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Limit:	U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
	Emission bandwidth:
	a) Set RBW = approximately 1% of the emission bandwidth.
	b) Set the VBW > RBW.
	c) Detector = peak. d) Trace mode = max hold.
	e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission.
	Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement
	as needed until the RBW/EBW ratio is approximately 1%.
	Occupied bandwidth:
	a) The instrument center frequency is set to the nominal EUT channel center
	frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times
	the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of
	the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the
	applicable requirement.
	c) Set the reference level of the instrument as required, keeping the signal from exceeding the
Procedure:	maximum input mixer level for linear operation. In general, the peak of the spectral envelope
	shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
	d) Step a) through step c) might require iteration to adjust within the specified range.
	e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode
	shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be
	used.
	f) Use the 99% power bandwidth function of the instrument (if available) and report the measured
	bandwidth. g) If the instrument does not have a 99% power bandwidth function, then the trace data points are
	recovered and directly summed in linear power terms. The recovered amplitude data points,
	beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached;
	that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the
	total is reached; that frequency is recorded as the upper frequency. The 99%


power bandwidth is the difference between these two frequencies. h) The occupied bandwidth shall be reported by providing plot(s) of the measuring display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s). 6 dB emission bandwidth: a) Set RBW = 100 kHz. b) Set the video bandwidth (VBW)≥3>= RBW. c) Detector = Peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.5.1 E.U.T. Operation:

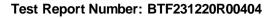
Operating Environment:		
Temperature:	25.5 °C	
Humidity:	50.6 %	
Atmospheric Pressure:	1010 mbar	

6.5.2 Test Data:


Please Refer to Appendix for Details.

6.6 Band edge emissions (Radiated)

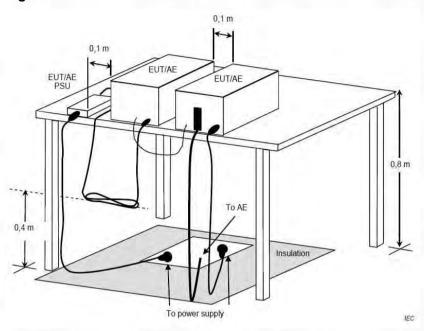
## AT CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(14) 47 CFR Part 15.407(b)(10) 47 CFR Part 15.407(b)(10) 47 CFR Part 15.407(b)(10) 48 CFR Part 15.407(b)(10) 47 CFR Part 15.4	0.0 Dand edge enn	47 CFR Part 15.407(b)	(1)							
## AT CFR Part 15.407(b)(10) Test Method: ## AT CFR Part 15.407(b)(10) ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6 For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz at 50 MHz or ore above or below the band shall not exceed an e.i.r.p. of -27 dBm/MHz at 75 MHz or more above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 15 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 15 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 15 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 15 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 15 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 15 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 15 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 15 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 15 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 15 MHz above or below the band edge increasing linearly to 16 dBm/MHz at 25 MHz above or below the band edge increasing linearly to 16 dBm/MHz at 25 MHz above or below the band edge increasing linearly to 16 dBm/MHz at 25 MHz above or below the band edge increasing linearly to 16 dBm/MHz at 25 MHz above or below the band self at 16 MHz above or below the band edge increasing linearly to 16 MHz above or belo										
Ar CFR Part 15.407(b)/(10)	Test Requirement:									
ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6		· ,	· /							
For transmitters operating in the 5.15-5.25 GHz band; All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of ~27 dBm/MHz. For transmitters operating in the 5.25-5.35 GHz band; All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of ~27 dBm/MHz. For transmitters operating solely in the 5.725-5.850 GHz band; All emissions shall be limited to a level of ~27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. MHz MHz MHz WHz WHz WHz WHz WHz WHz WHz WHz WHz W	Toot Mothod:			7.6						
5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge. MHz 0.090-0.110 16.42-16.423 399-9-410 4.55-15 0.495-0.505 16.80425-16.80475 960-1240 7.25-7.75 4.125-4.128 2.55-25.67 130-1427 8.025-8.5 4.17725-4.17775 37.5-38.25 1435-1626.5 9.0-9.2 4.20725-4.20775 73-74.6 1645-5.1646 9.3-9.5 6.215-6.218 74.8-75.2 1660-1710 10.6-12.7 6.26775-6.26825 108-121.94 1718.8-1722. 13.25-13.4 20 6.31175-6.31225 123-138 200-2900 14.47-14.5 8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.362-8.366 156.52475-156.525 2483.5-2500 17.7-21.4 25 8.37625-8.38675 156.7-156.9 2690-2900 20.11-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 312-31.8 12.51975-12.57025 322-335.4 3600-4400 (c) MHz. 2Above 38.6 The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz. compliance with the limits in § 15.209-shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz. compliance with the limits in § 15.209-shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.	lest ivietnod:				esions outside of the					
5.15-5.35 GHz band shall not exceed an e.i.r.p. of ~27 dBm/MHz. For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of ~27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz at bove or below the band edge, and from 5 MHz at the band edge. MHz		5.15-5.35 GHz band sh	nall not exceed an e.i.r.	p. of −27 dBm/M	lHz.					
All emissions shall be limited to a level of ~27 dBm/MHz at 75 MHz or more above or below the band edge, and from 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge. MHz MHz MHz MHz MHz 0.090-0.110 16.42-16.423 399.9-4.10 4.5-5.15 10.090-0.505 16.69475-16.69525 608-614 5.35-5.46 2.1735-2.1905 16.80425-16.80475 960-1240 7.25-7.75 4.125-4.128 25.5-26.607 1300-1427 8.025-8.5 4.17725-4.17775 37.5-38.25 1435-1626.5 9.0-9.2 4.20725-4.20775 73-74.6 1645.5-1646. 9.3-9.5 6.215-6.218 74.8-75.2 1660-1710 10.6-12.7 6.26775-6.26825 108-121.94 1718.8-1722 13.25-13.4 2 6.31175-6.31225 123-138 2200-2300 14.47-14.5 8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.362-8.366 156.52475-156.525 2483.5-2500 17.7-21.4 2 6.31175-6.31225 123-138 2200-2300 15.35-16.2 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-33267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.50205 240-285 3345.8-3358 36.43-36.5 12.51975-12.50205 240-285 3345.8-3358 36.43-36.5 12.51975-12.50205 240-285 3345.8-3358 36.43-36.5 13.6-13.41 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6 The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.										
below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. MHz MHz MHz GHz 0.090-0.110 16.42-16.423 399.9-410 4.5-5.15 10.495-0.505 16.69475-16.69525 608-614 5.35-5.46 2.1735-2.1905 16.80425-16.80475 960-1240 7.25-7.75 4.125-4.128 25.5-25.67 1300-1427 8.025-8.5 4.17725-4.17775 37.5-38.25 1435-1626.5 9.0-9.2 4.20725-4.20775 73-74.6 1645.5-1646 9.3-9.5 6.215-6.218 74.8-75.2 1660-1710 10.6-12.7 6.26775-6.26825 108-121.94 1718.8-1722. 13.25-13.4 2 6.31175-6.31225 123-138 2200-2300 15.35-16.2 8.291-8.294 14.9-9.150.05 2310-2390 15.35-16.2 8.362-8.366 156.52475-156.525 2483.5-2500 17.7-21.4 25 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51755-12.57725 322-335.4 3600-4400 (²) 1		All emissions shall be li	All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above							
### Composition of the image of		below the band edge, a linearly to a level of 15.	and from 25 MHz above 6 dBm/MHz at 5 MHz a	e or below the ba above or below t	and edge increasing the band edge, and					
MHz 0.090-0.110 16.42-16.423 399.9-410 4.5-5.15 10.995-0.505 16.69475-16.69525 608-614 5.35-5.46 2.1735-2.1905 16.80425-16.80475 960-1240 7.25-7.75 4.125-4.128 25.5-25.67 1300-1427 8.025-8.5 4.17725-4.17775 37.5-38.25 1435-1626.5 9.0-9.2 4.20725-4.20775 73-74.6 1645.5-1646. 9.3-9.5 5 6.215-6.218 74.8-75.2 1660-1710 10.6-12.7 6.26775-6.26825 108-121.94 1718.8-1722. 13.25-13.4 6.26775-6.26825 108-121.94 1718.8-1722. 13.25-13.4 6.31175-6.31225 123-138 2200-2300 14.47-14.5 8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.362-8.366 156.52475-156.525 2483.5-2500 17.7-21.4 25 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (²) 13.36-13.41 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6 1 The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.				creasing linearly	to a level of 27					
Test Limit 0.090-0.110			·	MHz	CH ₇					
Test Limit Test L			···· —							
Test Limit: 1. 2.1735-2.1905										
### Limit* ### Li										
### Test Limit: A.17725-4.17775 37.5-38.25 1435-1626.5 9.0-9.2										
### Test Limit: 4.20725-4.20775										
Test Limit: Test Limit: 5										
Test Limit: 6.215-6.218		4.20725-4.20775	73-74.6	1645.5-1646.	9.3-9.5					
Test Limit: 1718.8-1722. 13.25-13.4 2 2 2 2 2 2 2 2 2				-						
6.31175-6.31225 123-138 2200-2300 14.47-14.5 8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.362-8.366 156.52475-156.525 2483.5-2500 17.7-21.4 25 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (²) 13.36-13.41 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6 The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.				1718.8-1722.						
8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.362-8.366 156.52475-156.525 2483.5-2500 17.7-21.4 25 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (²) 13.36-13.41 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6 The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.	Test Limit:	6 31175 6 31225	123_138	_	1/1 //7_1/1 5					
8.362-8.366										
8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (²) 13.36-13.41 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6 The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.			156.52475-156.525							
12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (²) 13.36-13.41 ¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ² Above 38.6 The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.			156.7-156.9							
12.57675-12.57725 322-335.4 3600-4400 (²) 13.36-13.41 ¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ² Above 38.6 The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.		12.29-12.293	167.72-173.2	3332-3339	31.2-31.8					
² Above 38.6 The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.		12.57675-12.57725								
The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.		¹ Until February 1, 1999	, this restricted band s	hall be 0.490-0.5	510 MHz.					
exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.		² Above 38.6								
		exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in §								
Except as provided elsewhere in this subpart, the emissions from an intentional		Except as provided else	ewhere in this subpart,	the emissions fi	rom an intentional					



	radiator shall not exceed the	e field strength levels specifie	ed in the following table:
	Frequency (MHz)	Field strength	Measurement
	, , , ,	(microvolts/meter)	distance
		,	(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	Above 1GHz:	300	0
Procedure:	above the ground at a 3 me degrees to determine the pob. The EUT was set 3 meter was mounted on the top of a c. The antenna height is var determine the maximum valipolarizations of the antenna d. For each suspected emisthe antenna was tuned to he of below 30MHz, the antenna was turned from 0 degrees e. The test-receiver system Bandwidth with Maximum Hf. If the emission level of the specified, then testing could reported. Otherwise the emire-tested one by one using pin a data sheet. g. Test the EUT in the lowes h. The radiation measureme Transmitting mode, and four i. Repeat above procedures Remark: 1. Level= Read Level+ Cabl 2. Scan from 18GHz to 40G points marked on above plotesting, so only above points emissions from the radiator need not be reported. 3. As shown in this section, are based on average limits not exceed the maximum ped B under any condition of mithan the average limit, only 4. The disturbance above 18	I was placed on the top of a ter fully-anechoic chamber. It is still to sition of the highest radiation is away from the interference a variable-height antenna toward ied from one meter to four mue of the field strength. Both are set to make the measuresion, the EUT was arranged eights from 1 meter to 4 meters a was tuned to heights 1 meters as to Peak Detect Fund lold Mode. EUT in peak mode was 100 be stopped and the peak vasions that did not have 100 be actions that did not have 100 be actions are performed in X, Y, Z, and the X axis positioning which until all frequencies measures are the highest emissions is had been displayed. The a which are attenuated more to for frequencies above 1 GHz, However, the peak field street indulation. For the emissions the peak measurement is shad been testing, so only the all when testing, so only the all the street in the stree	The table was rotated 360 m. e-receiving antenna, which wer. heters above the ground to horizontal and vertical ement. to its worst case and then ers (for the test frequency ter) and the rotatable table aximum reading. It is a specified the specified the specified and then reported the specified and then report than 20 the field strength limits the field strength limits the specified above by more than 20 the specified above by more than 20 the specified above the specified at the specified above the specified abov

6.6.1 E.U.T. Operation:

Operating Environment:					
Temperature:	25.5 °C				
Humidity:	50.6 %				



Atmospheric Pressure:

1010 mbar

6.6.2 Test Setup Diagram:

6.6.3 Test Data:

Note: All the mode have been tested, and only the worst mode 802.11a are in the report UNII-1 20M 5180MHz Horizontal

	_							
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F
1	5096.675	41.48	5.28	46.76	74.00	-27.24	peak	Р
2	5150.000	40.74	5.33	46.07	74.00	-27.93	peak	Р

UNII-1 20M 5180MHz Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5085.155	40.95	5.28	46.23	74.00	-27.77	peak	Р
2	5150.000	39.63	5.33	44.96	74.00	-29.04	peak	Р

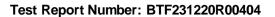
UNII-1 20M_5320MHz_Horizontal

No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
140.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	'''
1	5350.000	38.33	5.45	43.78	74.00	-30.22	peak	Р
2	5460.000	39.99	5.52	45.51	74.00	-28.49	peak	Р

UNII-1 20M 5320MHz Vertical

No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F
1	5350.000	38.68	5.45	44.13	74.00	-29.87	peak	Р
2	5460.000	39.95	5.52	45.47	74.00	-28.53	peak	Р

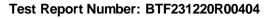
UNII-3 20M_5745MHz_Horizontal


No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F
1	5350.000	37.77	5.45	43.22	74.00	-30.78	peak	Р
2	5460.000	39.43	5.52	44.95	74.00	-29.05	peak	Р

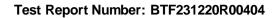
UNII-1 20M_5745MHz Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5350.000	37.65	5.45	43.10	74.00	-30.90	peak	Р
2	5460.000	39.31	5.52	44.83	74.00	-29.17	peak	Р

UNII-3 20M_5825MHz_Horizontal

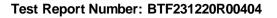

No.	Frequency	Reading	Factor	Level	Limit	Margin (dB)	Detector	P/F	
INO.	(MHz)	Hz) (dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)		Detector	P/F	
1	5350.000	37.35	5.45	42.80	74.00	-31.20	peak	Р	
2	5460.000	39.01	5.52	44.53	74.00	-29.47	peak	Р	

UNII-3 20M_5825MHz_Vertical

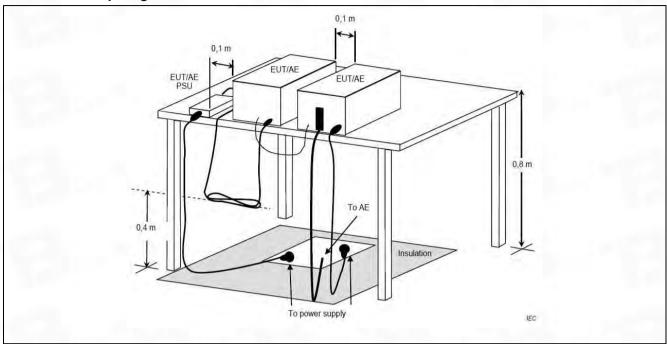

No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	
1	5725.000	39.21	5.45	44.66	74.00	-29.34	peak	Р
2	5357.205	40.87	5.52	46.39	74.00	-27.61	peak	Р

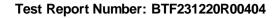
6.7 Undesirable emission limits (below 1GHz)

Test Requirement:	47 CFR Part 15.407(b)	(9)	
Test Method:	ANSI C63.10-2013, se	ction 12.7.4, 12.7.5, 12.7.6	
Test Limit:	limits set forth in § 15.2 Except as provided else	issions from an intentional sified in the following table: Measurement distance (meters) 300 30 30	
	30-88 88-216 216-960 Above 960	100 ** 150 ** 200 ** 500	3 3 3 3
Procedure:	Below 1GHz: a. For below 1GHz, the above the ground at a degrees to determine the theorem in the maximum in the theorem in the maximum polarizations of the anticut of the antenna was tuned of below 30MHz, the arrow in the theorem	e EUT was placed on the top of 3 meter semi-anechoic chamber he position of the highest radial or 10 meters away from the interest the top of a variable-height and a varied from one meter to four nature of the field strength. Because emission, the EUT was arrang to heights from 1 meter to 4 meters to 360 degrees to find the stem was set to Peak Detect Formal was set to Peak Detect Formal meters are set to Peak Detect	f a rotating table 0.8 meters er. The table was rotated 360 atton. erference-receiving antenna, atenna tower. It meters above the ground to oth horizontal and vertical surement. It meters (for the test frequency meter) and the rotatable table maximum reading. In the Highest channel. It values of the EUT would be odb margin would be excified and then reported in a mel, the Highest channel. It is the worst case.

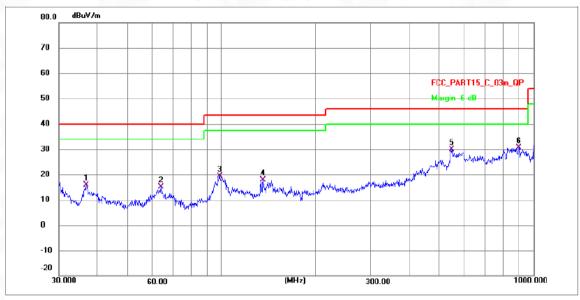


- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.


6.7.1 E.U.T. Operation:


Operating Environment:			
Temperature:	25.5 °C		
Humidity:	50.6 %		
Atmospheric Pressure:	1010 mbar		

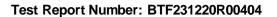
6.7.2 Test Setup Diagram:



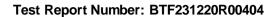
6.7.3 Test Data:

Note: All the mode have been tested, and only the worst mode are in the report


TM1 / Polarization: Horizontal / Band: U-NII 1 / BW: 20 / CH: L

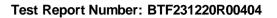

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	36.8305	34.27	-18.44	15.83	40.00	-24.17	QP	Р
2	63.7588	33.35	-18.16	15.19	40.00	-24.81	QP	Р
3	98.4865	47.94	-28.48	19.46	43.50	-24.04	QP	Р
4	135.7440	45.76	-27.91	17.85	43.50	-25.65	QP	Р
5	549.0193	51.55	-21.65	29.90	46.00	-16.10	QP	Р
6 *	898.5705	52.86	-22.11	30.75	46.00	-15.25	QP	Р

TM1 / Polarization: Vertical / Band: U-NII 1 / BW: 20 / CH: L


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	36.4450	37.00	-20.60	16.40	40.00	-23.60	QP	Р
2	66.1500	39.95	-20.05	19.90	40.00	-20.10	QP	Р
3	140.5883	48.25	-27.87	20.38	43.50	-23.12	QP	Р
4	495.9343	49.83	-21.24	28.59	46.00	-17.41	QP	Р
5	626.1750	50.96	-22.52	28.44	46.00	-17.56	QP	Р
6 *	952.0937	51.78	-21.77	30.01	46.00	-15.99	QP	Р

6.8 Undesirable emission limits (above 1GHz)

	47 CEP Part 15 407/h							
	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2)							
Test Requirement: 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4)								
	\							
Test Method:		47 CFR Part 15.407(b)(10) ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6						
For transmitters operating in the 5.15-5.25 GHz band: All emissions outs								
		hall not exceed an e.i.r.						
		ting in the 5.25-5.35 G						
		5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.						
	For transmitters opera	ting solely in the 5.725-	5.850 GHz band	l:				
	All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above							
		e increasing linearly to						
		and from 25 MHz above						
		6.6 dBm/MHz at 5 MHz						
		from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.						
	MHz	MHz	MHz	GHz				
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15				
	¹ 0.495-0.505	16.69475-16.69525		5.35-5.46				
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75				
	4.125-4.128	25.5-25.67	1300-1427					
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2				
	4.20725-4.20775	73-74.6	1645.5-1646.	9.3-9.5				
			5					
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7				
	6.26775-6.26825	108-121.94	1718.8-1722.	13.25-13.4				
			2					
Test Limit:	6.31175-6.31225	123-138	2200-2300	14.47-14.5				
iest Limit.	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2				
	8.362-8.366	156.52475-156.525	2483.5-2500	17.7-21.4				
		25						
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12				
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0				
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8				
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5				
	12.57675-12.57725	322-335.4	3600-4400	(²)				
	13.36-13.41							
	11. (1.5.)							
	¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.							
	² Above 38.6							
	The field strength of emissions appearing within these frequency hands shall not							
	The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000							
		MHz, compliance with the limits in § 15.209shall be demonstrated using						
		measurement instrumentation employing a CISPR quasi-peak detector. Above						
	1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated							
	based on the average value of the measured emissions. The provisions in 15.35apply to these measurements.							
	10.00appiy to theastrements.							
	Except as provided elsewhere in this subpart, the emissions from an intentional							
		ied in the following table:						
	Frequency (MHz)	Field strength		Measurement				
		o.a oa ongan		Jaca. Jilloin				



		(microvolts/meter)	distance	
		(microvoits/meter)		
	0.000.0.400	0.400/5/1.11.)	(meters)	
	0.009-0.490	2400/F(kHz)	300	
	0.490-1.705	24000/F(kHz)	30	
	1.705-30.0	30	30	
	30-88	100 **	3	
	88-216	150 **	3	
		200 **	3	
	216-960			
	Above 960	500	3	
	Above 1GHz:			
	a. For above 1GHz, the EU	T was placed on the top of a r	otating table 1.5 meters	
	above the ground at a 3 me	eter fully-anechoic chamber. Th	ne table was rotated 360	
	_	osition of the highest radiation		
		rs away from the interference-		
		•		
		a variable-height antenna tow		
		ried from one meter to four me		
		lue of the field strength. Both I		
		are set to make the measure		
	d. For each suspected emis	ssion, the EUT was arranged to	o its worst case and then	
	the antenna was tuned to h	eights from 1 meter to 4 meter	rs (for the test frequency	
		na was tuned to heights 1 mete		
	was turned from 0 degrees to 360 degrees to find the maximum reading.			
	e. The test-receiver system was set to Peak Detect Function and Specified			
	Bandwidth with Maximum Hold Mode.			
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit			
		d be stopped and the peak valu		
	reported. Otherwise the em	issions that did not have 10dE	B margin would be	
	re-tested one by one using	peak or average method as sp	pecified and then reported	
Procedure:	in a data sheet.			
		st channel, the middle channel	the Highest channel	
		ents are performed in X, Y, Z a		
		and the X axis positioning whic		
		s until all frequencies measure	d was complete.	
	Remark:			
		lle Loss+ Antenna Factor- Pre		
	2. Scan from 18GHz to 400	SHz, the disturbance above 18	GHz was very low. The	
	points marked on above plo	ots are the highest emissions of	could be found when	
		s had been displayed. The am		
		which are attenuated more th		
	need not be reported.	Willott are alternation Thore th	ar zoab below the infin	
		for fraguencies above 1047	the field strength limits	
		for frequencies above 1GHz,		
		s. However, the peak field strer		
		ermitted average limits specific		
	dB under any condition of r	nodulation. For the emissions	whose peak level is lower	
	than the average limit, only	the peak measurement is sho	wn in the report.	
		8GHz were very low and the h		
		d when testing, so only the abo		
		a mion county, so only the ab	ovo namonios nad boen	
	displayed.			

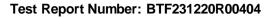
6.8.1 E.U.T. Operation:

Operating Environment:		
Temperature:	25.5 °C	
Humidity:	50.6 %	
Atmospheric Pressure:	1010 mbar	

6.8.2 Test Data:

No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F
1	10360.000	80.68	-24.45	56.23	74.00	-17.77	peak	Р
2	15540.000	81.89	-21.50	60.39	74.00	-13.61	peak	Р

UNII-1 20M 5180MHz Vertical


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10360.000	80.03	-24.45	55.58	74.00	-18.42	peak	Р
2	15540.000	81.24	-21.50	59.74	74.00	-14.26	peak	Р

UNII-1 20M 5200MHz Horizontal

1								
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	17/1
1	10400.000	81.54	-24.47	57.07	74.00	-16.93	peak	Р
2	15600.000	82.75	-21.51	61.24	74.00	-12.76	peak	Р

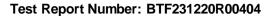
UNII-1_20M_5200MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10400.000	81.54	-24.47	57.07	74.00	-16.93	peak	Р
2	15600.000	82.75	-21.51	61.24	74.00	-12.76	peak	Р

UNII-1_20M_5240MHz_Horizontal

No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F
1	10480.000	81.68	-24.51	57.17	74.00	-16.83	peak	Р
2	15720.000	82.89	-21.53	61.36	74.00	-12.64	peak	Р

UNII-1 20M 5240MHz Vertical


- 1				_	_				
	No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
	INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F
	1	10480.000	79.57	-24.51	55.06	74.00	-18.94	peak	Р
	2	15720.000	80.78	-21.53	59.25	74.00	-14.75	peak	Р

UNII-3_20M_5745MHz_Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11490.000	82.03	-23.07	58.96	74.00	-15.04	peak	Р
2	17235.000	83.24	-17.36	65.88	74.00	-8.12	peak	Р

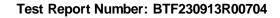
UNII-3 20M 5745MHz Vertical

				. 0 0_	₋ _000		ou.		
	No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	D/E
		(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	P/F
	1	11490.000	79.47	-23.07	56.40	74.00	-17.60	peak	Р
	2	17235.000	80.68	-17.36	63.32	74.00	-10.68	peak	Р

UNII-3_20M_5785MHz_Horizontal

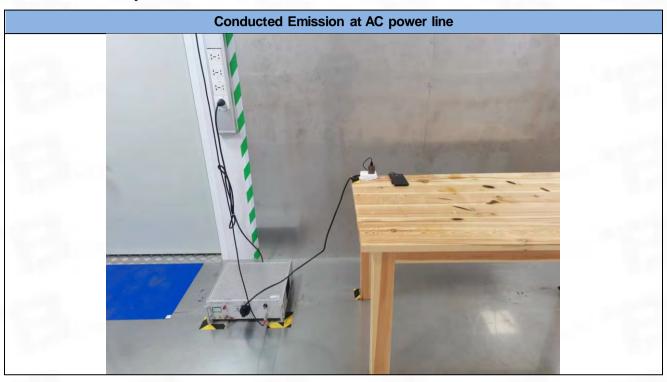
					. –			
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F
1	11570.000	80.05	-22.95	57.10	74.00	-16.90	peak	Р
2	17355.000	81.26	-16.89	64.37	74.00	-9.63	peak	Р

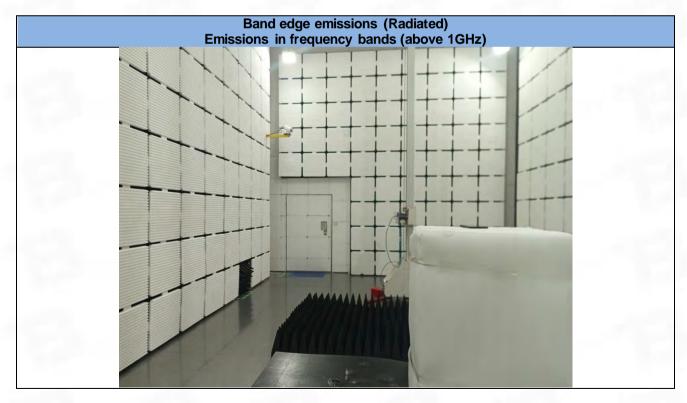
UNII-3 20M 5785MHz Vertical

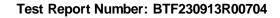

			_	_				
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F
1	11570.000	79.83	-22.95	56.88	74.00	-17.12	peak	Р
2	17355.000	81.04	-16.89	64.15	74.00	-9.85	peak	Р

UNII-3_20M_5825MHz_Horizontal

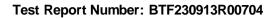
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11650.000	80.56	-22.80	57.76	74.00	-16.24	peak	Р
2	17475.000	81.77	-16.41	65.36	74.00	-8.64	peak	Р


UNII-3_20M_5825MHz_Vertical

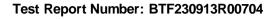

No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
NO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	17/1
1	11650.000	79.97	-22.80	57.17	74.00	-16.83	peak	Р
2	17475.000	81.18	-16.41	64.77	74.00	-9.23	peak	Р



Test Setup Photos 7

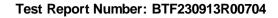


Test Report Number: BTF230913R00704


8 EUT Constructional Details (EUT Photos)

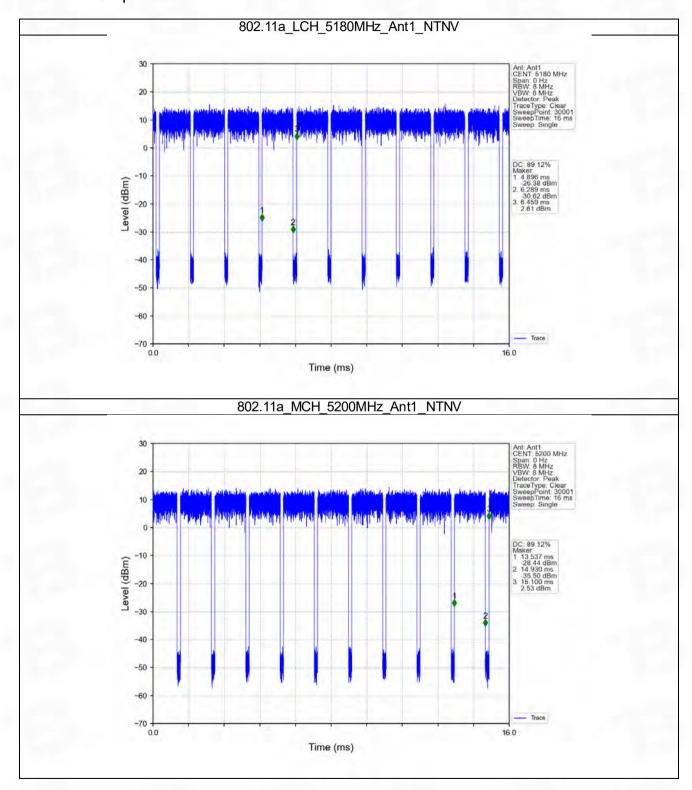
Please refer to the test report No. BTF231220R00401

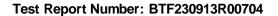
Appendix

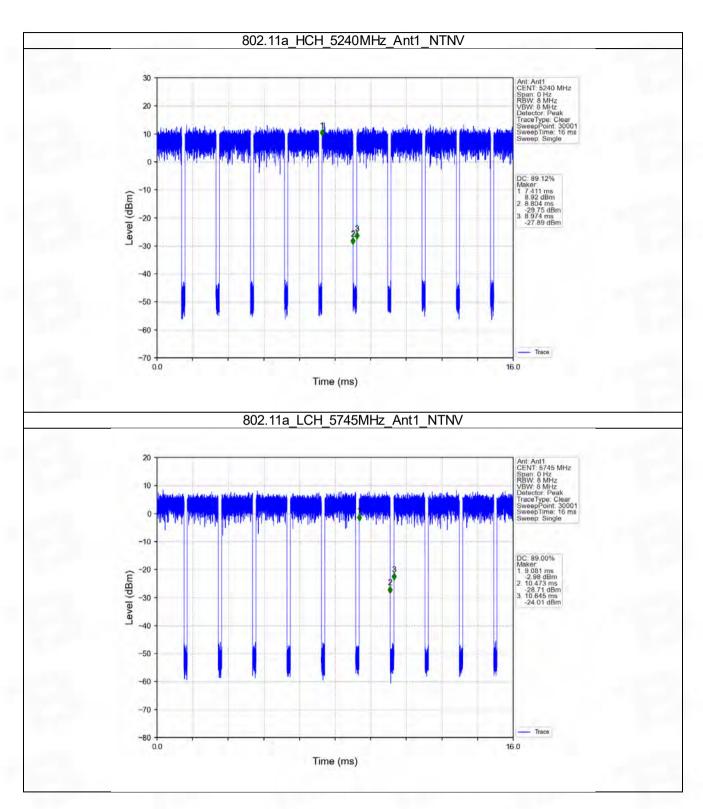


1. Duty Cycle

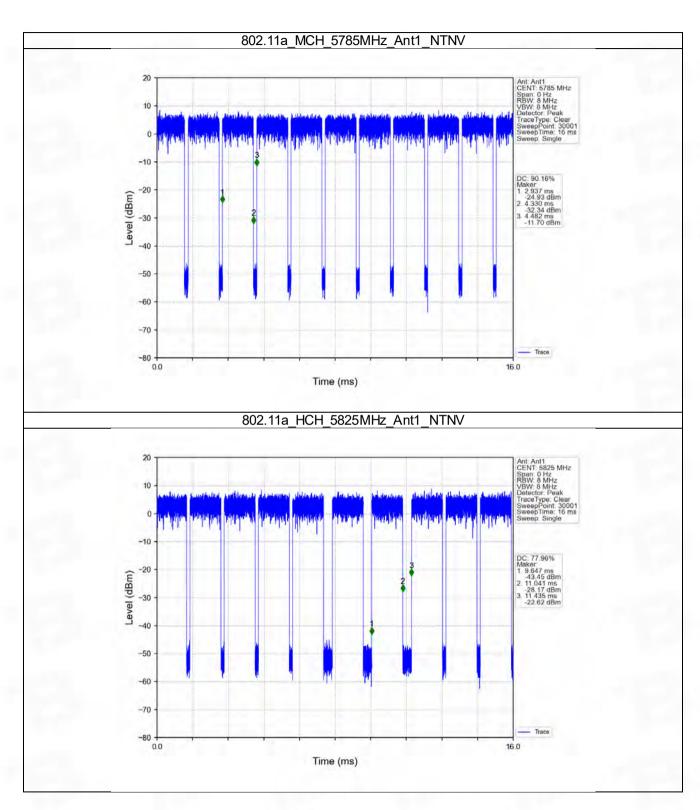
1.1 Ant1

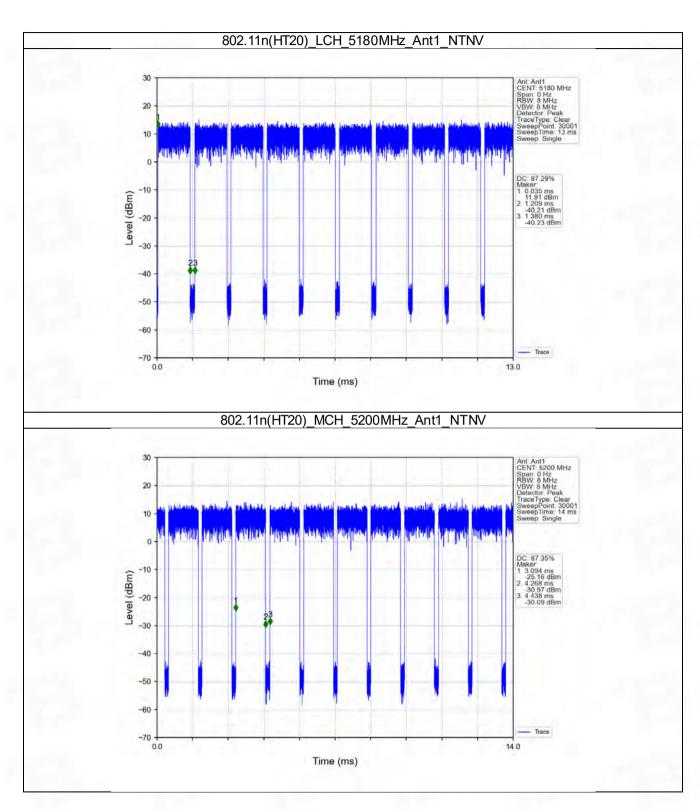

1.1.1 Test Result

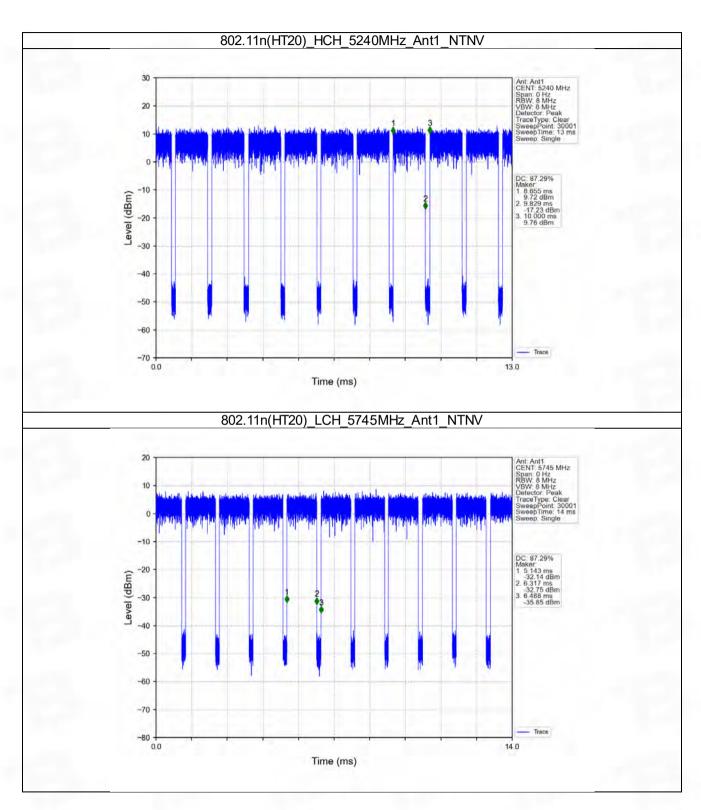

				,	Ant1		
Mode	TX	Frequency	T_on	Period	Duty Cycle	Duty Cycle	Max. DC
	Туре	(MHz)	(ms)	(ms)	(%)	Correction Factor (dB)	Variation (%)
802.11a	SISO	5180	1.393	1.563	89.12	0.50	1.58
		5200	1.393	1.563	89.12	0.50	1.58
		5240	1.393	1.563	89.12	0.50	1.58
		5745	1.392	1.564	89.00	0.51	1.67
		5785	1.393	1.545	90.16	0.45	0.53
		5825	1.394	1.788	77.96	1.08	12.75
802.11n (HT20)	SISO	5180	1.174	1.345	87.29	0.59	1.78
		5200	1.174	1.344	87.35	0.59	1.79
		5240	1.174	1.345	87.29	0.59	1.81
		5745	1.174	1.345	87.29	0.59	1.76
		5785	1.174	1.345	87.29	0.59	1.82
		5825	1.174	1.345	87.29	0.59	1.81
802.11n (HT40)	SISO	5190	0.587	0.739	79.43	1.00	1.02
		5230	0.587	0.739	79.43	1.00	0.99
		5755	0.587	0.739	79.43	1.00	1.00
		5795	0.588	0.739	79.57	0.99	0.99
802.11ac (VHT20)	SISO	5180	1.186	1.356	87.46	0.58	1.78
		5200	1.186	1.356	87.46	0.58	1.82
		5240	1.186	1.356	87.46	0.58	1.82
		5745	1.186	1.356	87.46	0.58	1.75
		5785	1.186	1.356	87.46	0.58	1.78
		5825	1.185	1.356	87.39	0.59	1.82
802.11ac (VHT40)	SISO	5190	0.591	0.761	77.66	1.10	2.90
		5230	0.592	0.761	77.79	1.09	2.86
		5755	0.592	0.743	79.68	0.99	0.99
		5795	0.591	0.761	77.66	1.10	2.86
802.11ac	SISO	5210	0.296	0.466	63.52	1.97	3.92
(VHT80)		5775	0.302	0.466	64.81	1.88	4.04

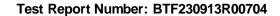


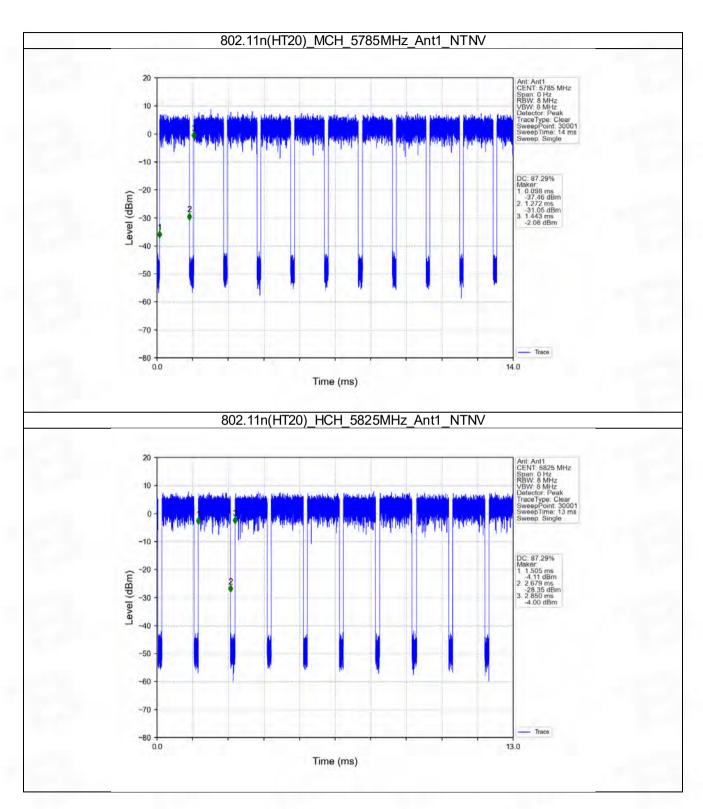
1.1.2 Test Graph

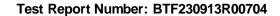


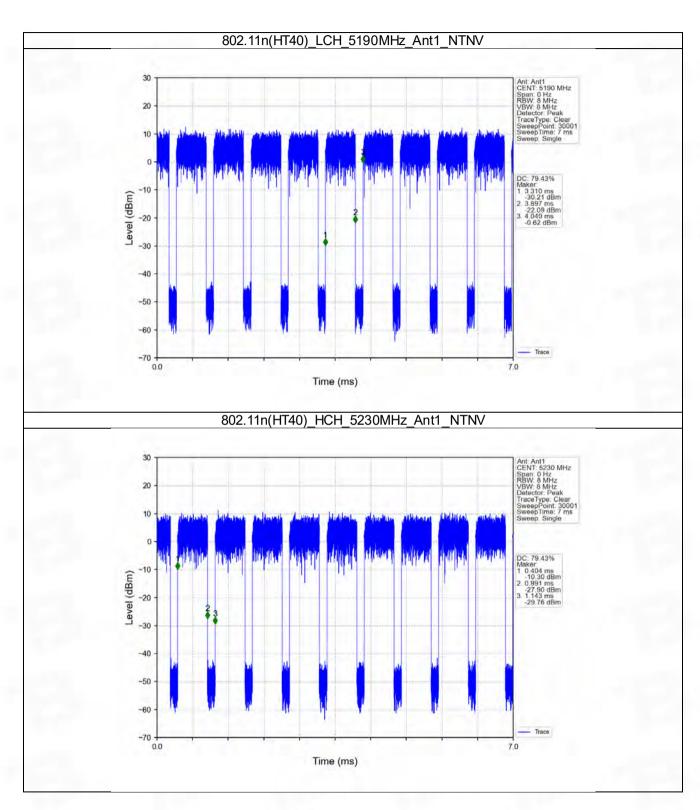


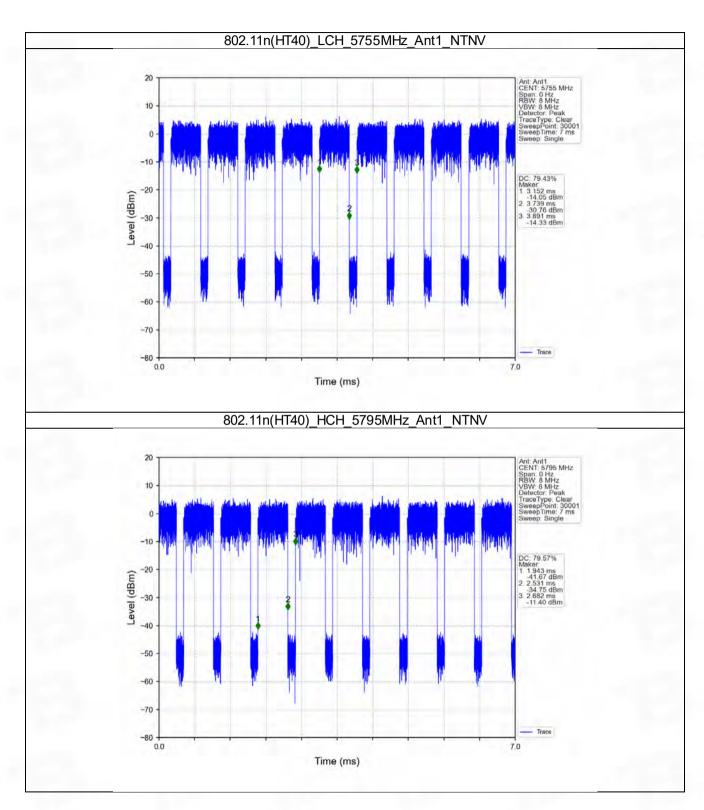


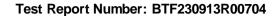


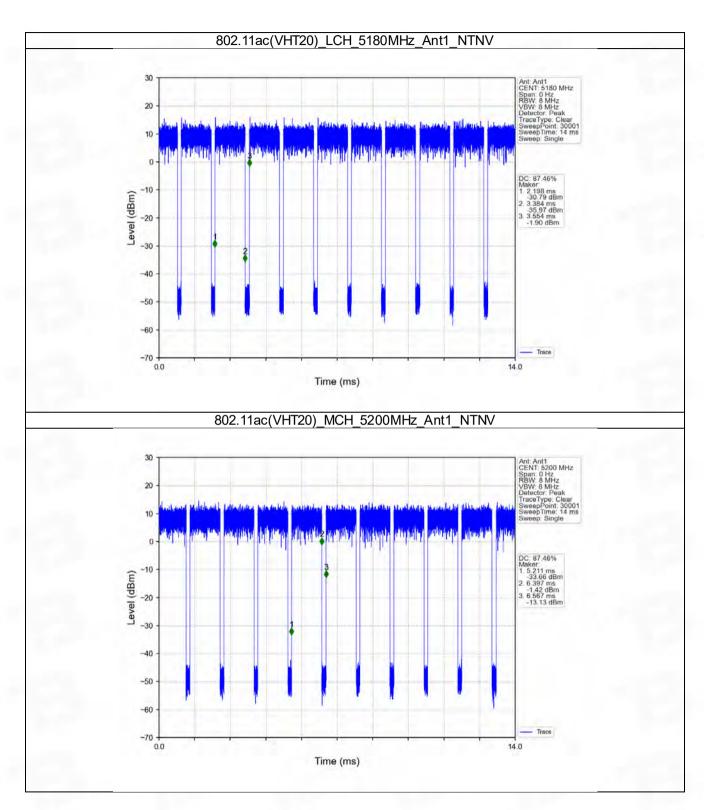


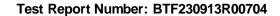


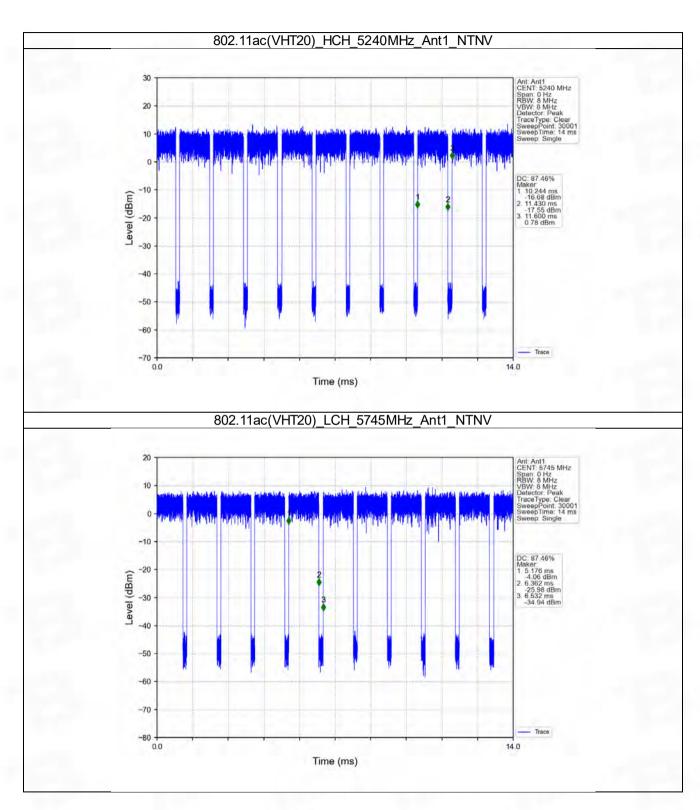


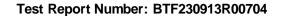


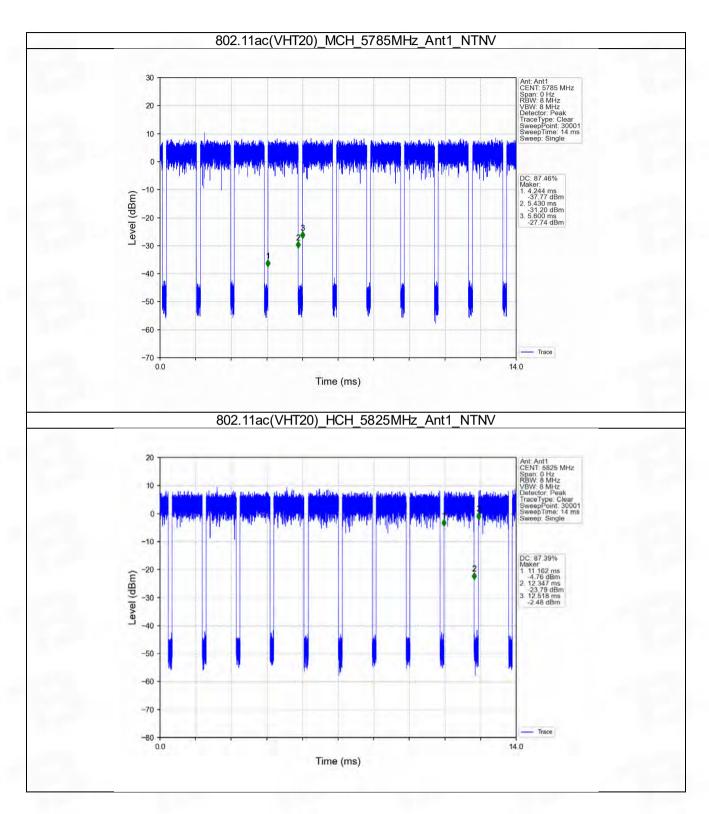


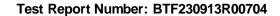


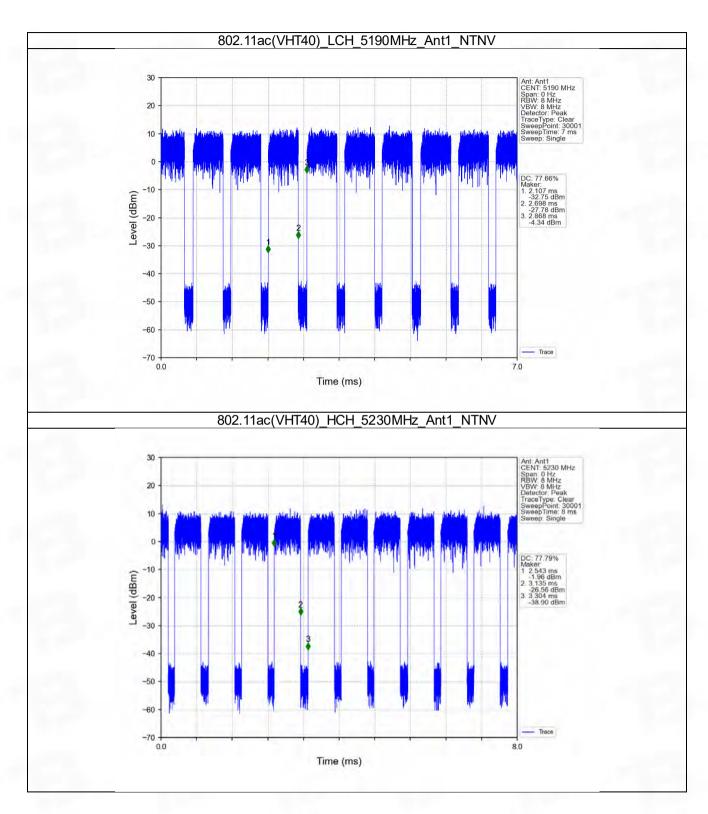


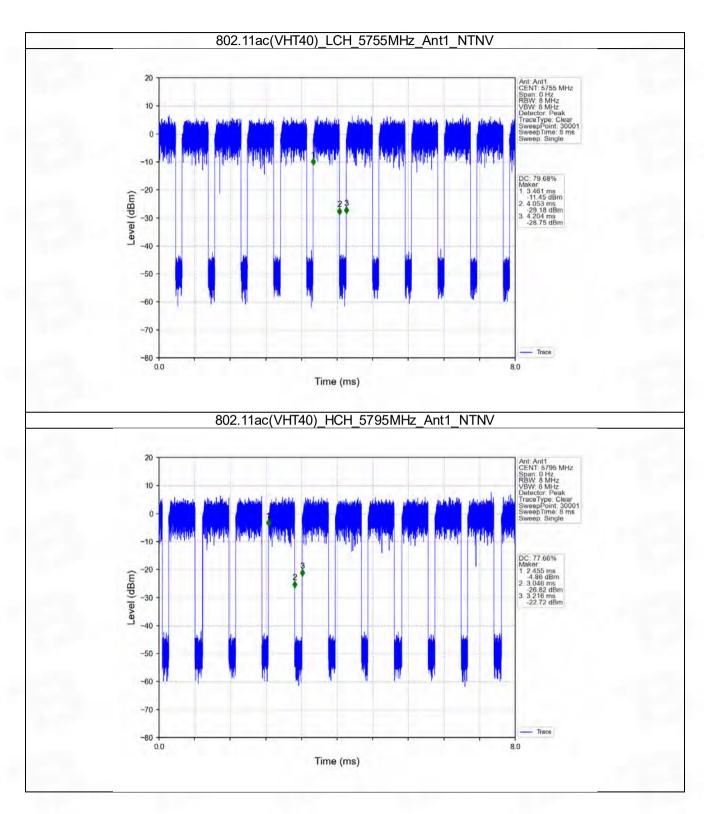


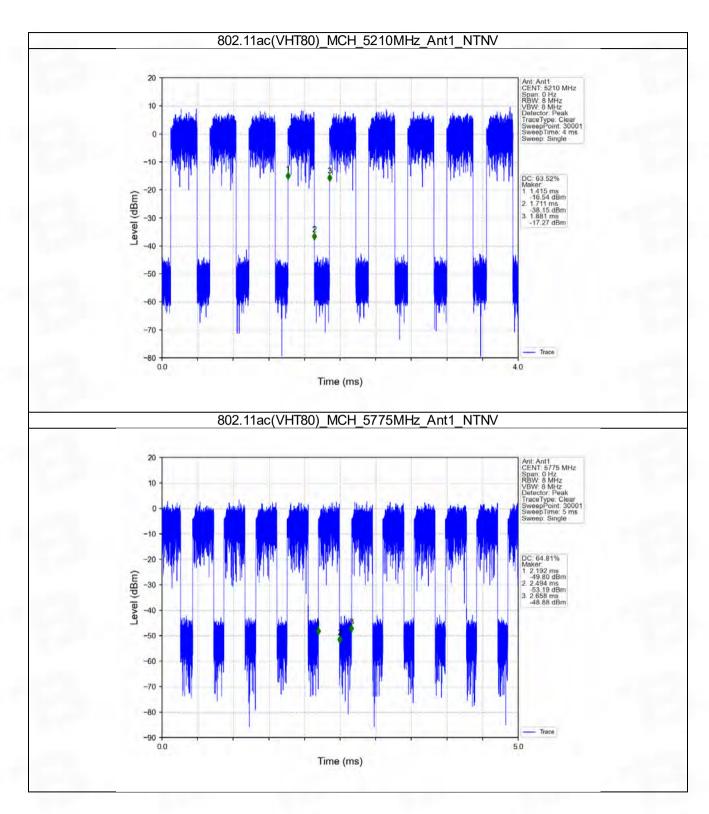


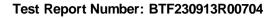






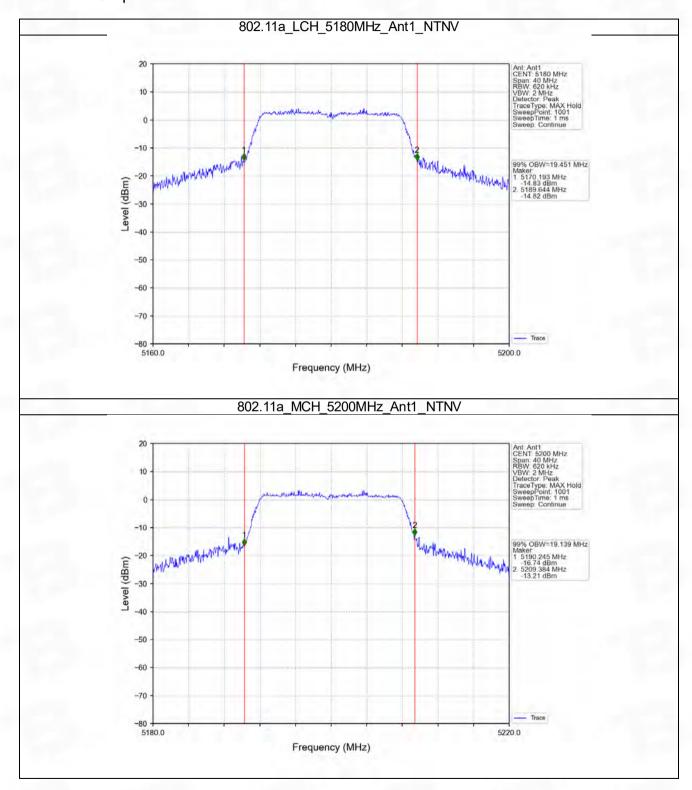


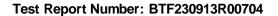


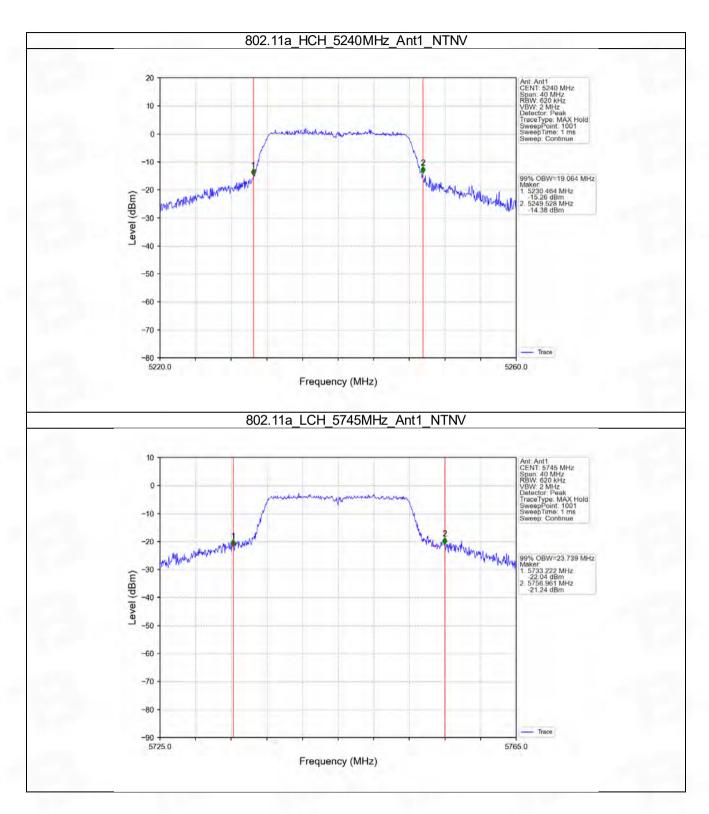


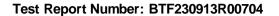
2. Bandwidth

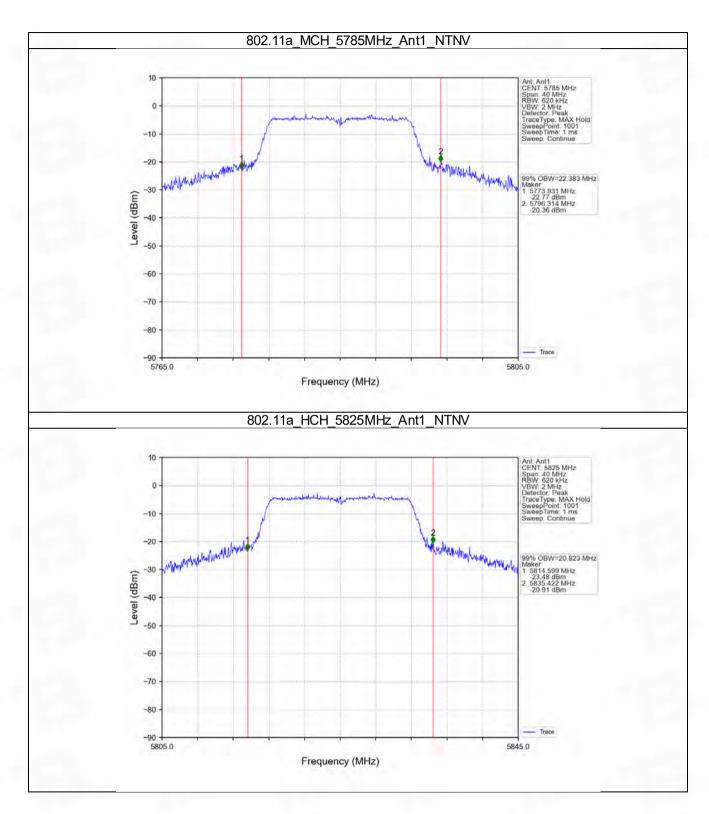
2.1 OBW

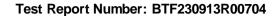

2.1.1 Test Result

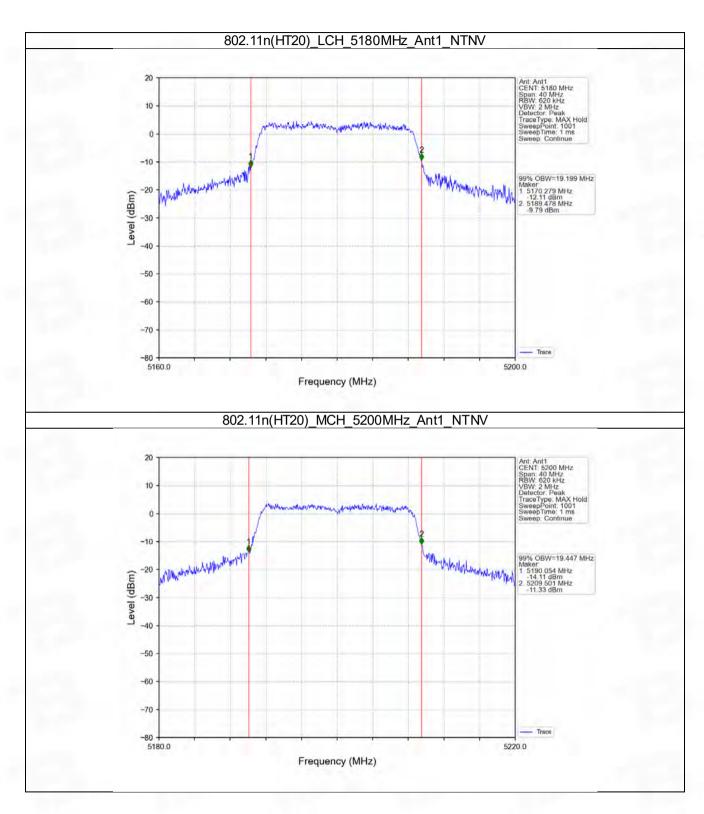

Mode	TX	Frequency (MHz)	ANT	99% Occupied B	\/amalia4	
	Туре			Result	Limit	Verdict
	SISO	5180	1	19.451	1	Pass
		5200	1	19.139	1	Pass
000 110		5240	1	19.064	1	Pass
802.11a		5745	1	23.739	1	Pass
		5785	1	22.383	1	Pass
		5825	1	20.823	1	Pass
802.11n	SISO	5180	1	19.199	1	Pass
		5200	1	19.447	1	Pass
		5240	1	19.365	1	Pass
(HT20)		5745	1	23.367	1	Pass
		5785	1	22.107	1	Pass
		5825	1	21.213	1	Pass
	SISO	5190	1	37.414	1	Pass
802.11n		5230	1	37.595	1	Pass
(HT40)		5755	1	42.830	1	Pass
		5795	1	40.127	1	Pass
	SISO	5180	1	19.079	1	Pass
		5200	1	18.916	1	Pass
802.11ac		5240	1	18.892	1	Pass
(VHT20)		5745	1	22.978	1	Pass
,		5785	1	22.321	1	Pass
		5825	1	21.064	1	Pass
	SISO	5190	1	38.229	1	Pass
802.11ac (VHT40)		5230	1	38.490	1	Pass
		5755	1	41.977	1	Pass
		5795	1	42.396	1	Pass
802.11ac (VHT80)	SISO	5210	1	77.707	1	Pass
		5775	1	80.451	1	Pass

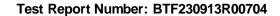


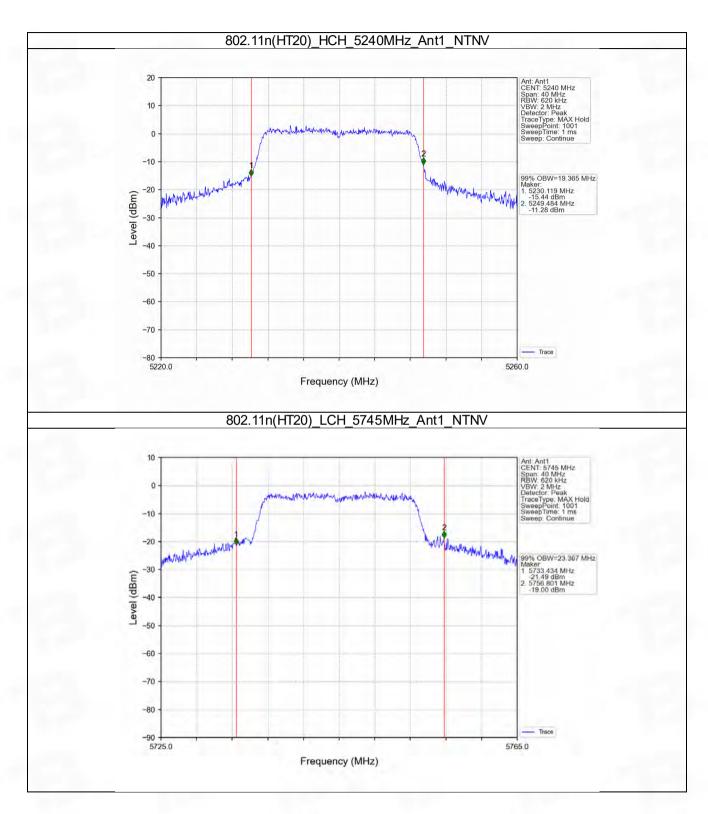

2.1.2 Test Graph

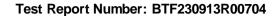


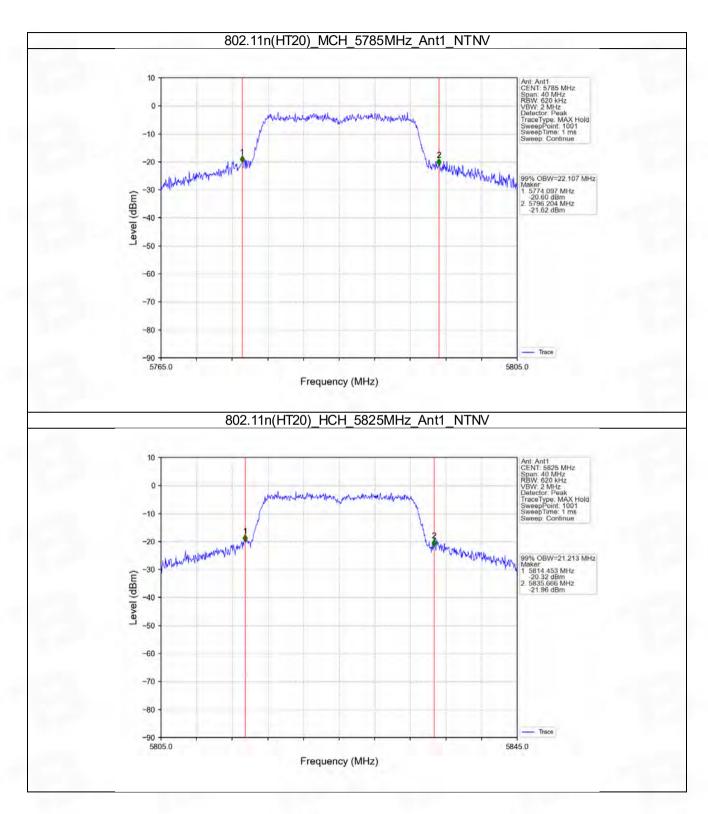


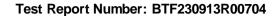


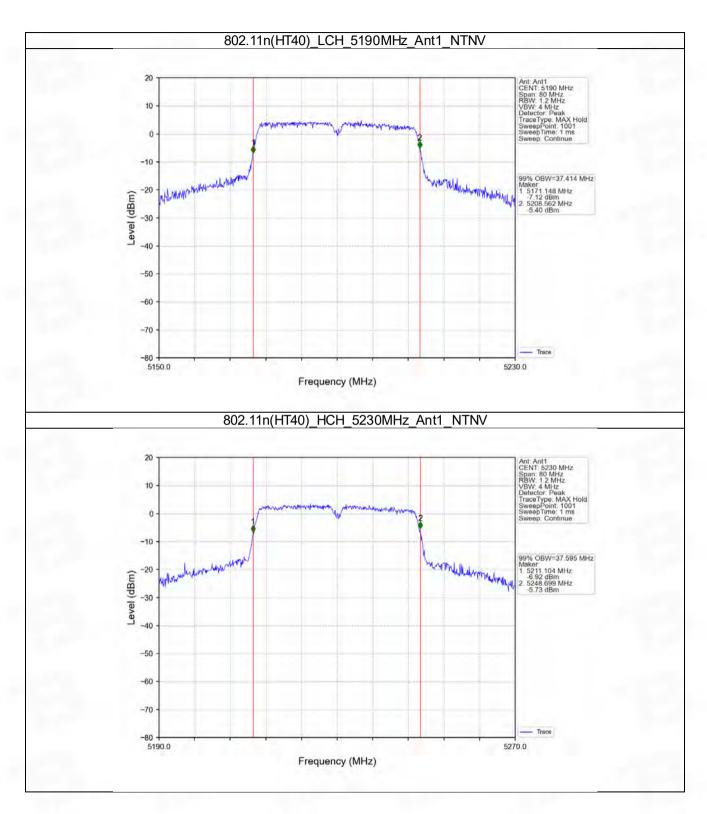


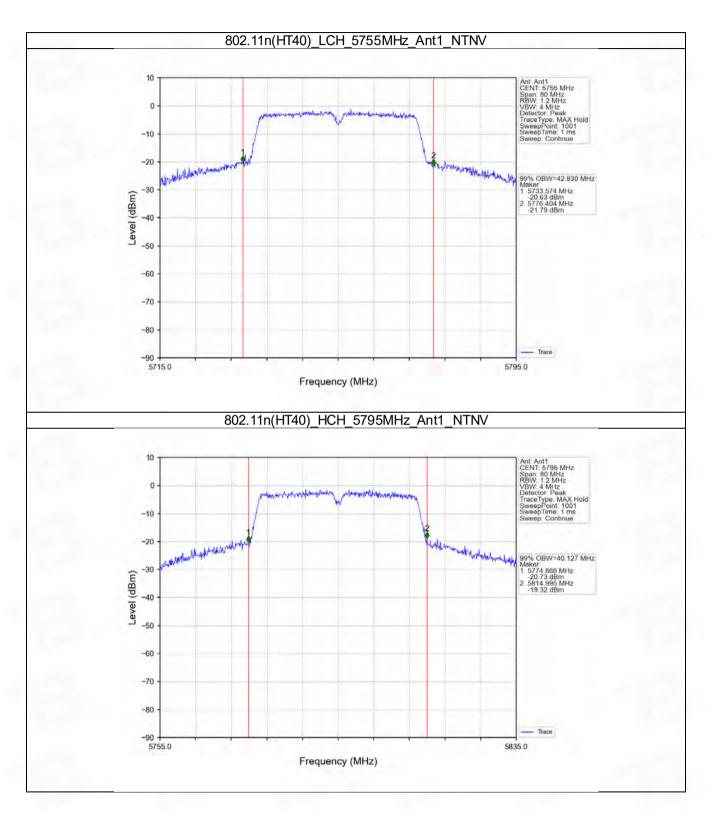


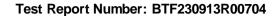


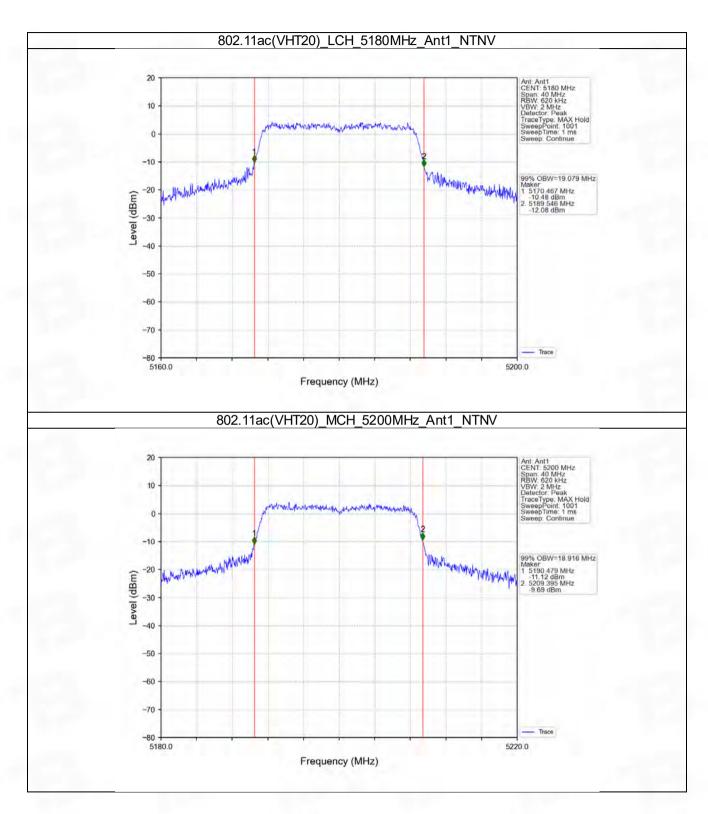


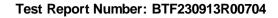


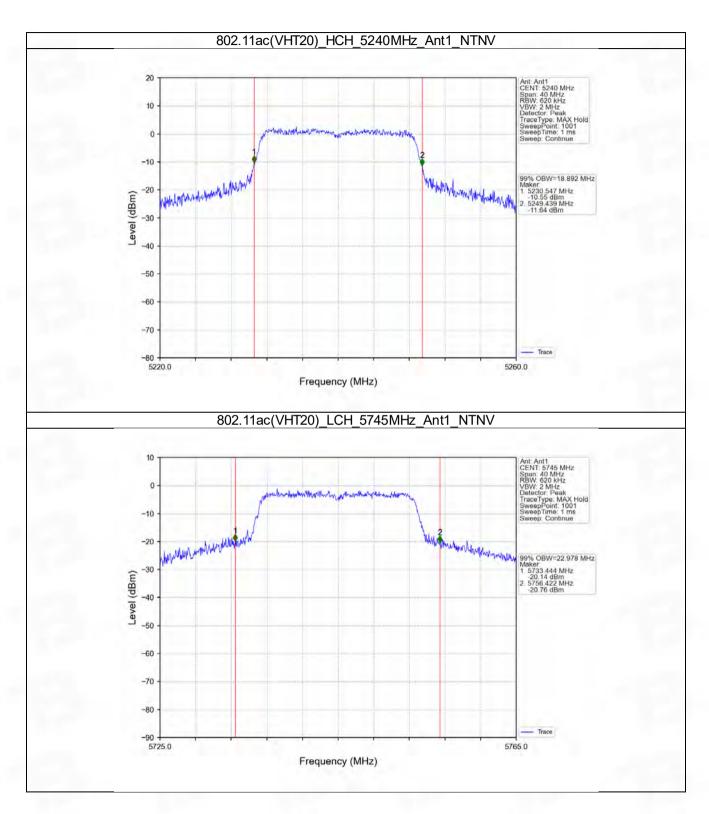


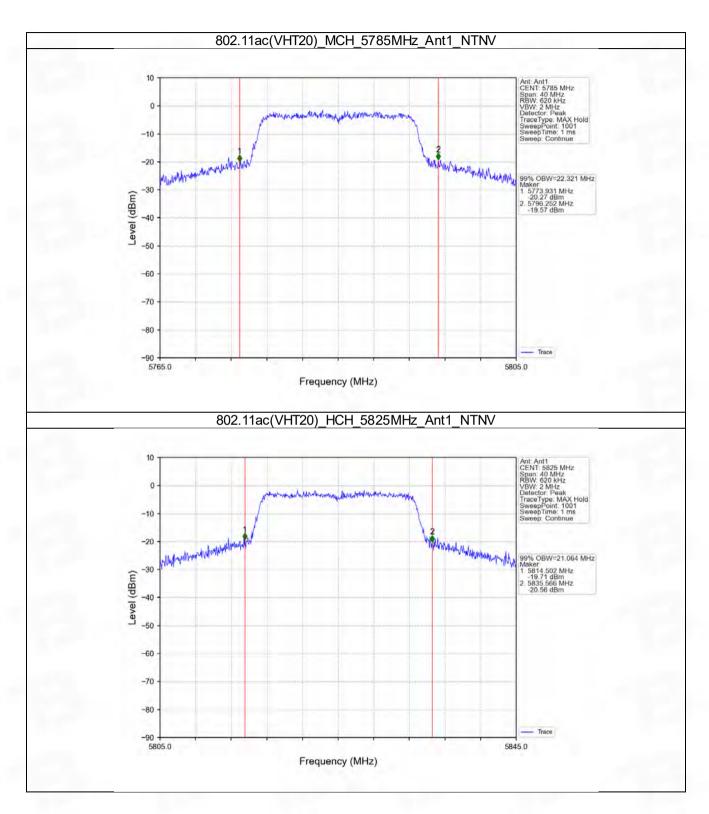


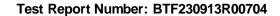


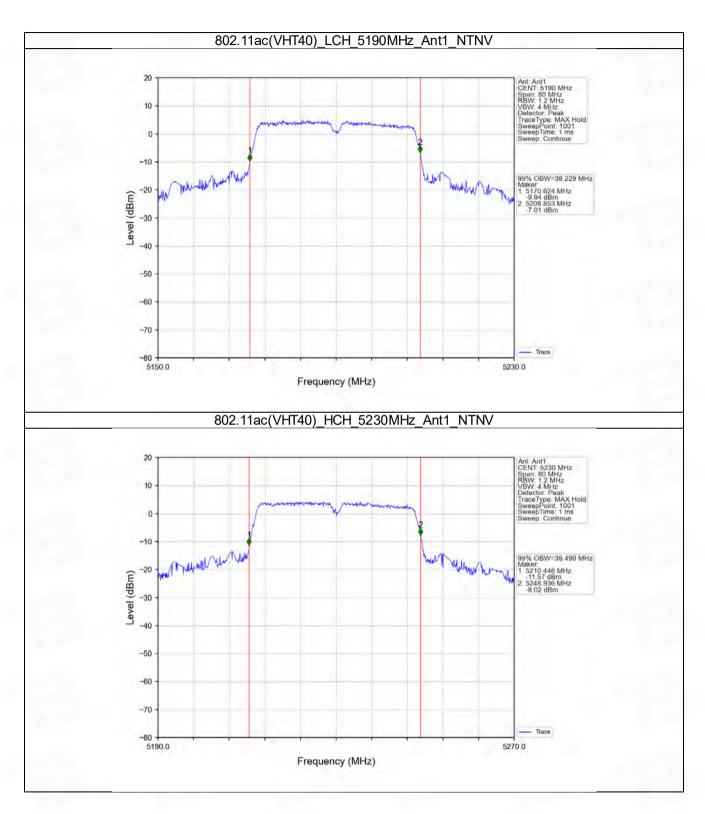


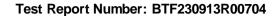


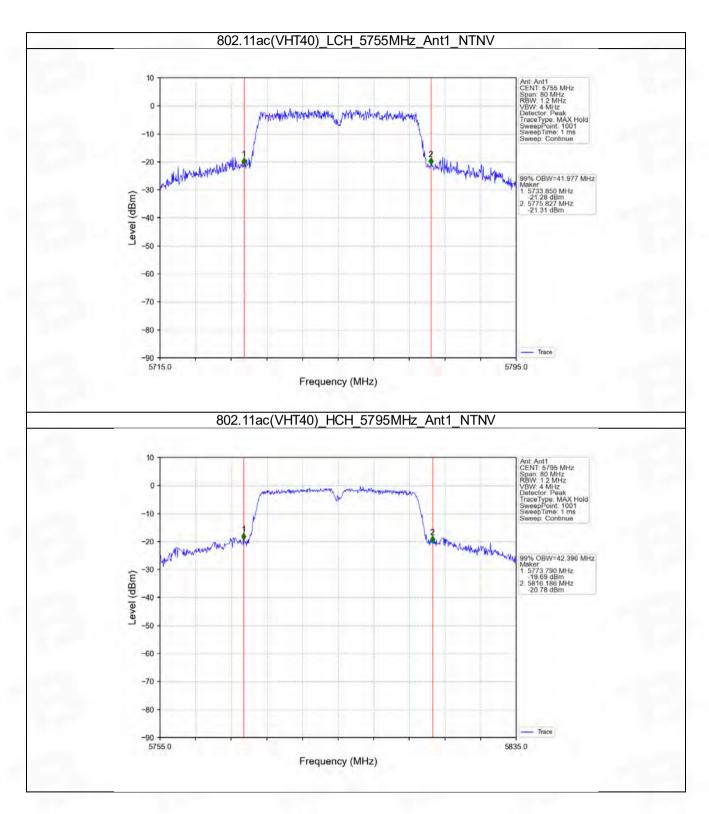


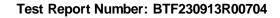


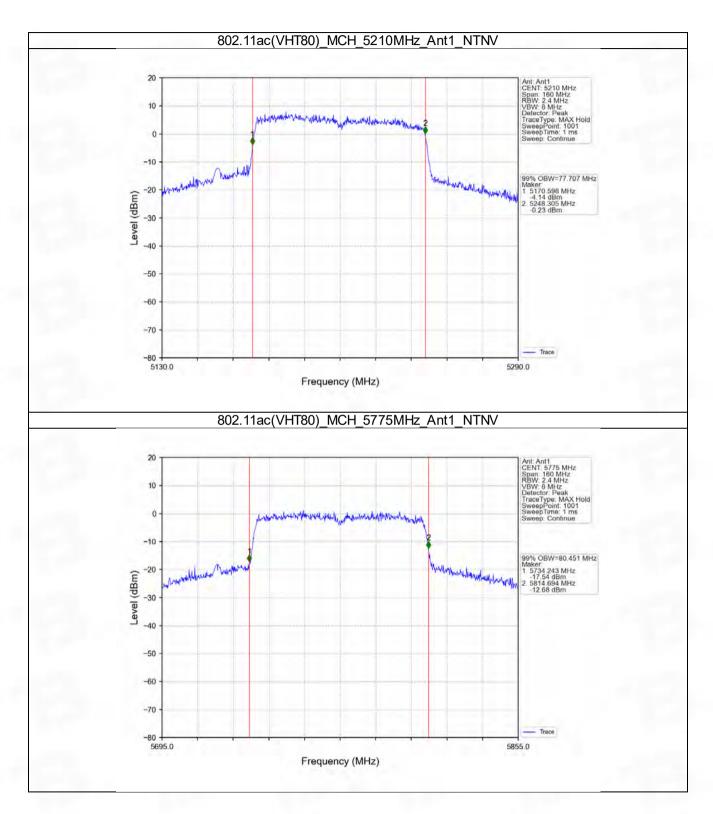


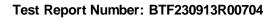


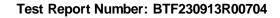




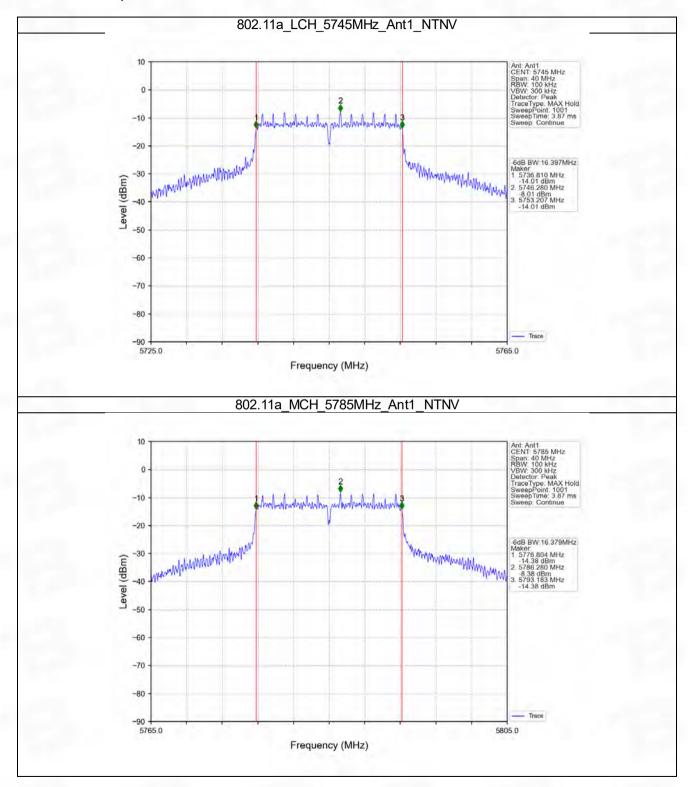


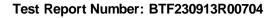


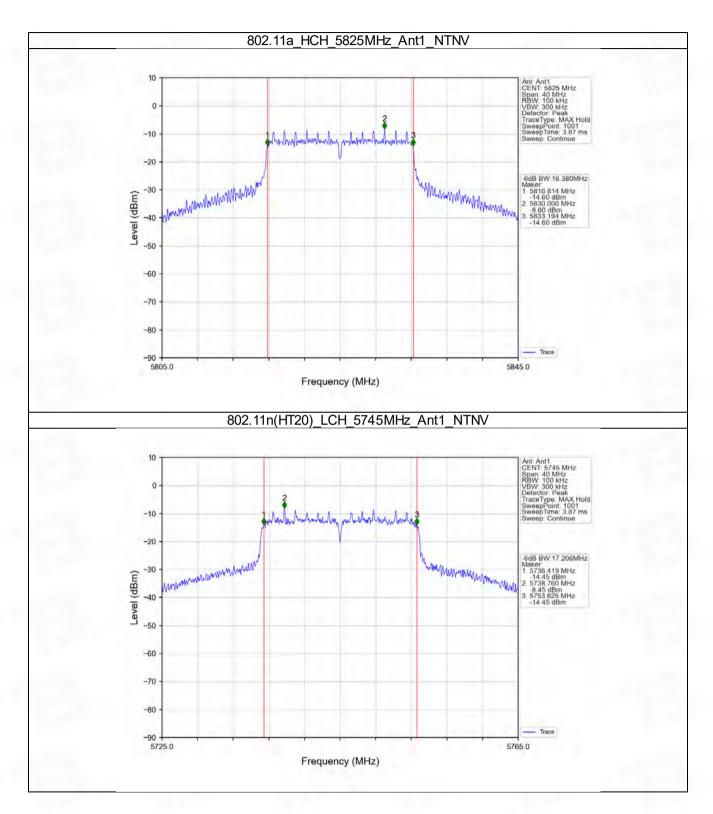


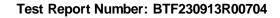


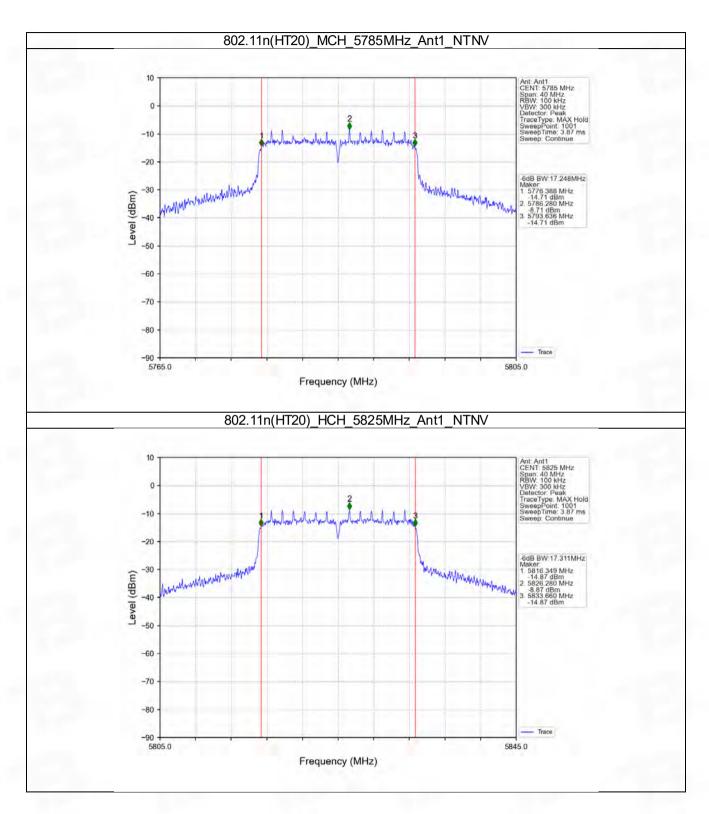
2.2 6dB BW

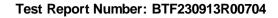

2.2.1 Test Result

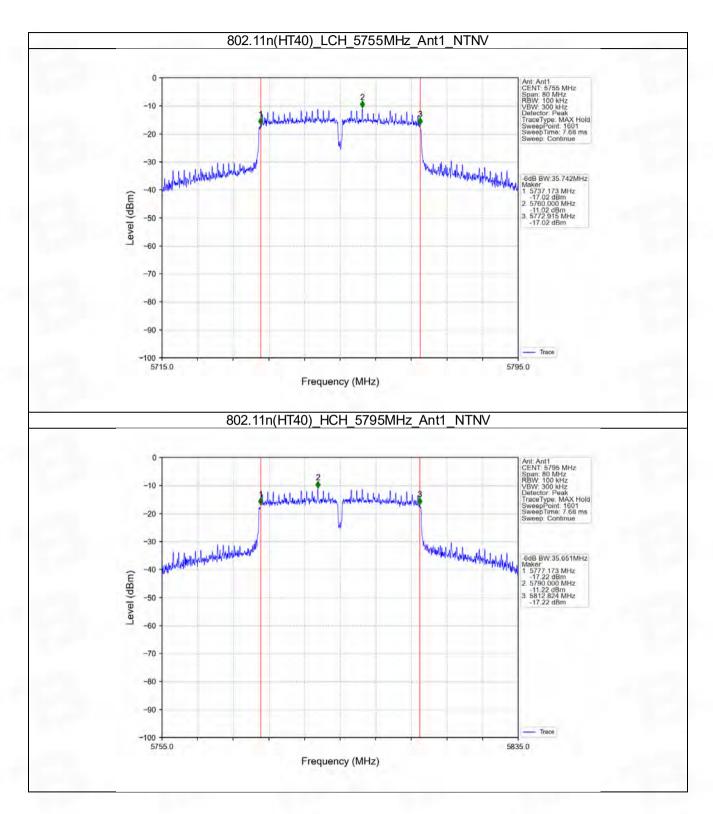

Mode	TX Type	Frequency (MHz)	ANT	6dB Bandwidth (MHz)		Vardiat
				Result	Limit	Verdict
802.11a	SISO	5745	1	16.397	>=0.5	Pass
		5785	1	16.379	>=0.5	Pass
		5825	1	16.380	>=0.5	Pass
802.11n (HT20)	SISO	5745	1	17.206	>=0.5	Pass
		5785	1	17.248	>=0.5	Pass
		5825	1	17.311	>=0.5	Pass
802.11n (HT40)	SISO	5755	1	35.742	>=0.5	Pass
		5795	1	35.651	>=0.5	Pass
802.11ac (VHT20)	SISO	5745	1	17.235	>=0.5	Pass
		5785	1	17.248	>=0.5	Pass
		5825	1	17.255	>=0.5	Pass
802.11ac (VHT40)	SISO	5755	1	35.654	>=0.5	Pass
		5795	1	35.550	>=0.5	Pass
802.11ac (VHT80)	SISO	5775	1	75.555	>=0.5	Pass

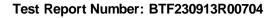


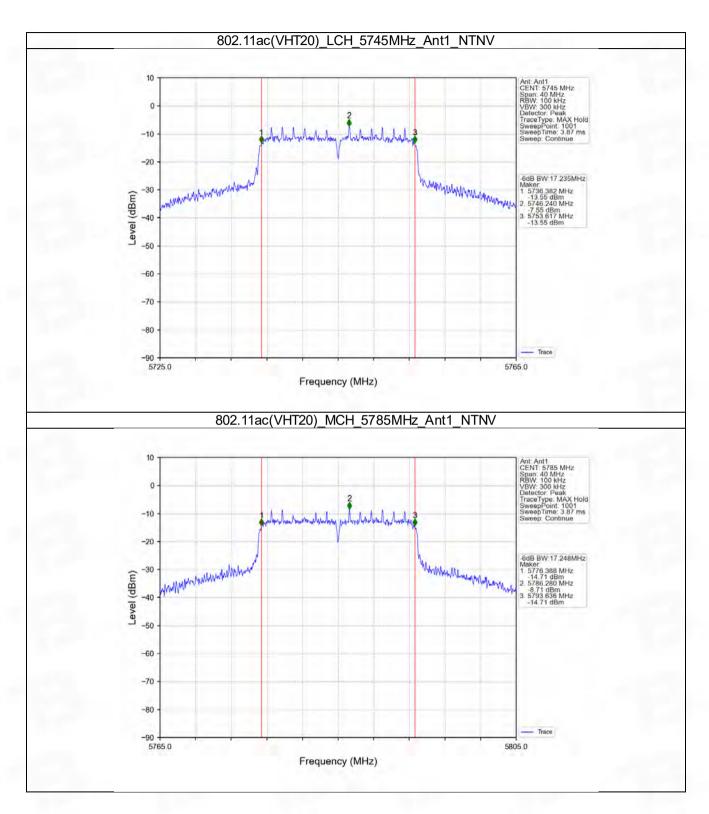

2.2.2 Test Graph

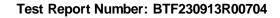


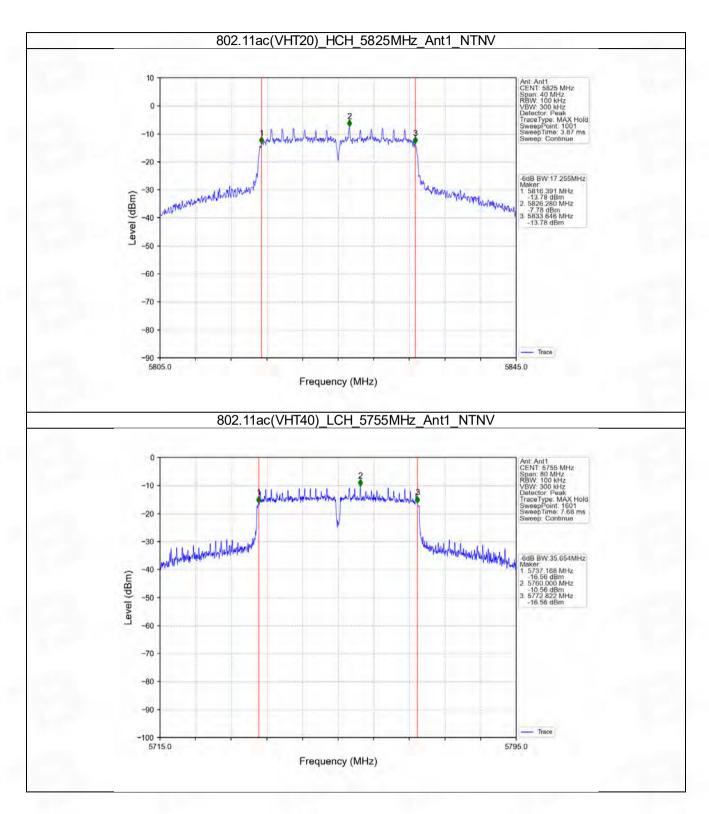


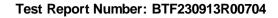


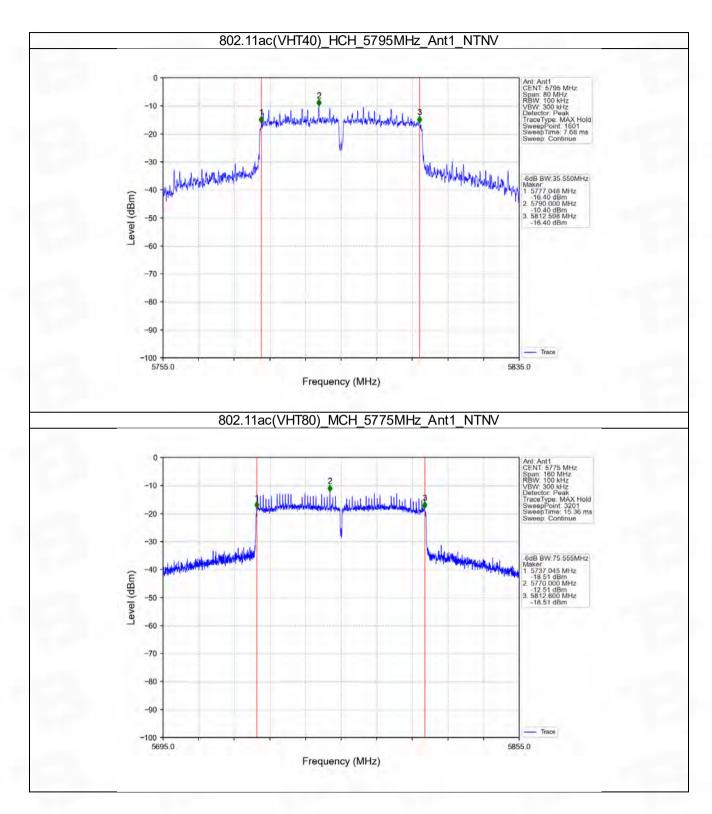


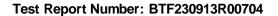




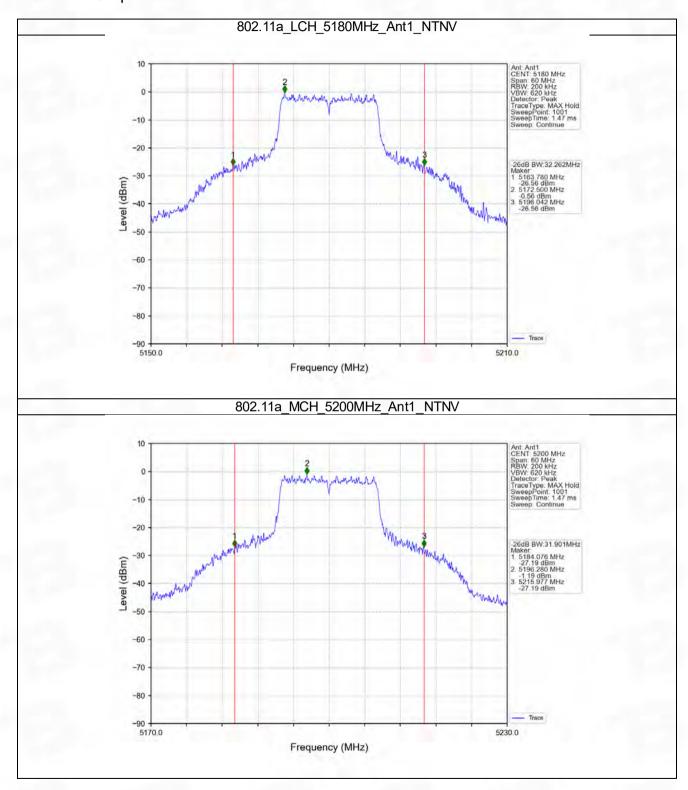




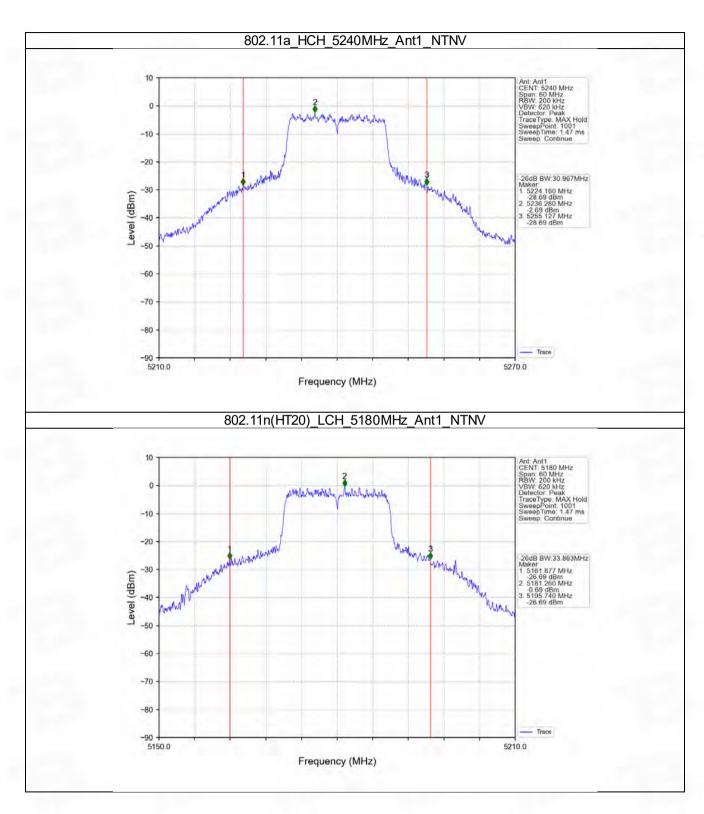


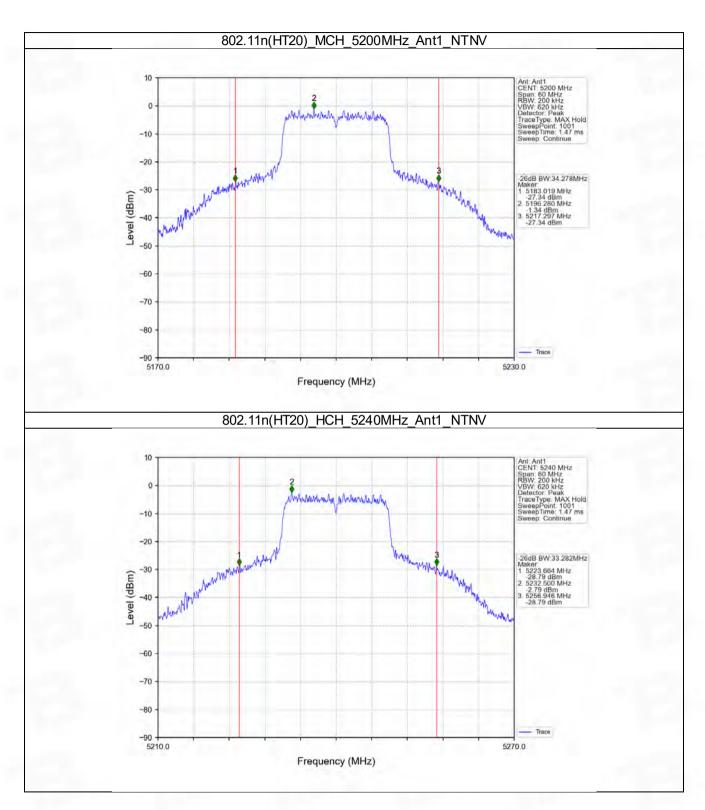


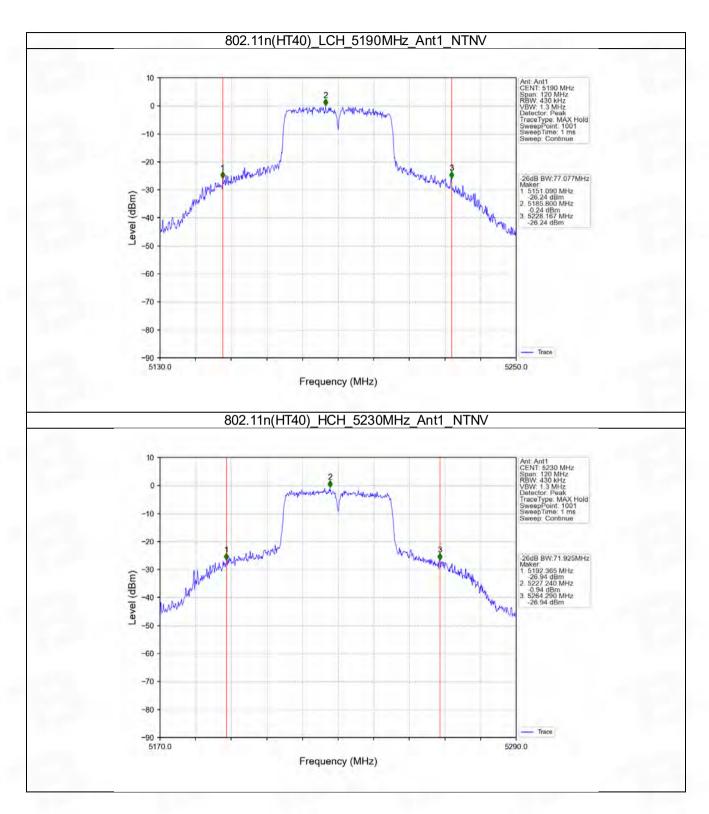
2.3 26dB BW

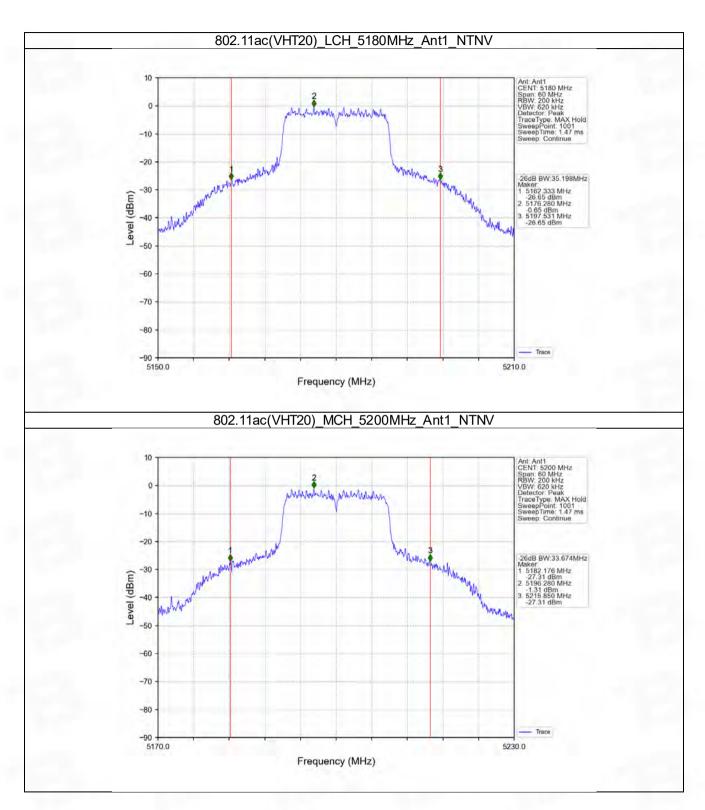

2.3.1 Test Result

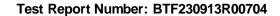
Mode	TX Type	Frequency (MHz)	ANT	26dB Bandwidth (MHz)		Vardiet
				Result	Limit	Verdict
802.11a	SISO	5180	1	32.262	1	Pass
		5200	1	31.901	1	Pass
		5240	1	30.967	1	Pass
802.11n (HT20)	SISO	5180	1	33.863	1	Pass
		5200	1	34.278	1	Pass
		5240	1	33.282	1	Pass
802.11n (HT40)	SISO	5190	1	77.077	1	Pass
		5230	1	71.925	1	Pass
802.11ac (VHT20)	SISO	5180	1	35.198	1	Pass
		5200	1	33.674	1	Pass
		5240	1	32.738	1	Pass
802.11ac (VHT40)	SISO	5190	1	76.999	1	Pass
		5230	1	77.609	1	Pass
802.11ac (VHT80)	SISO	5210	1	139.744	1	Pass

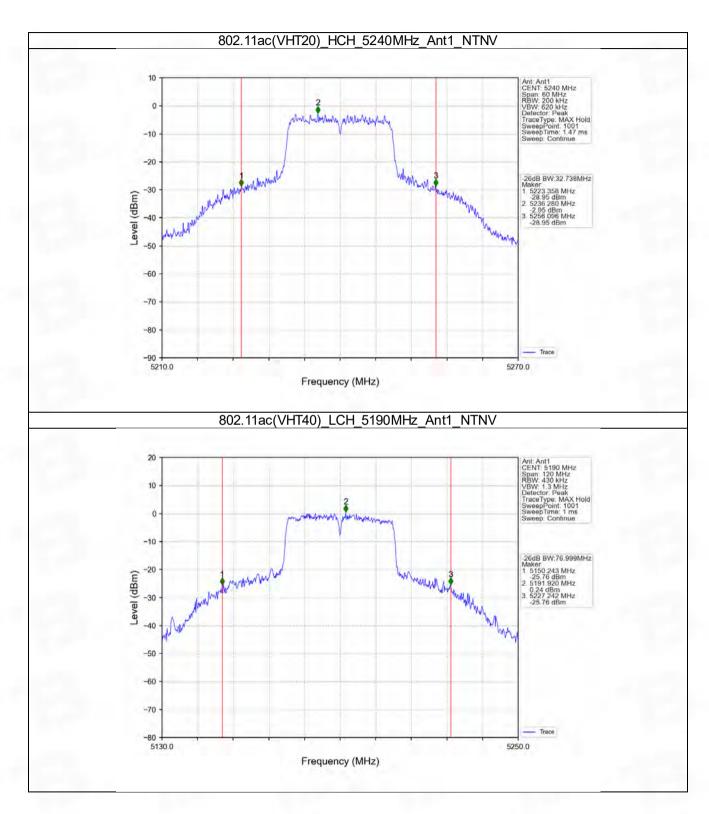


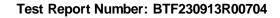

2.3.2 Test Graph

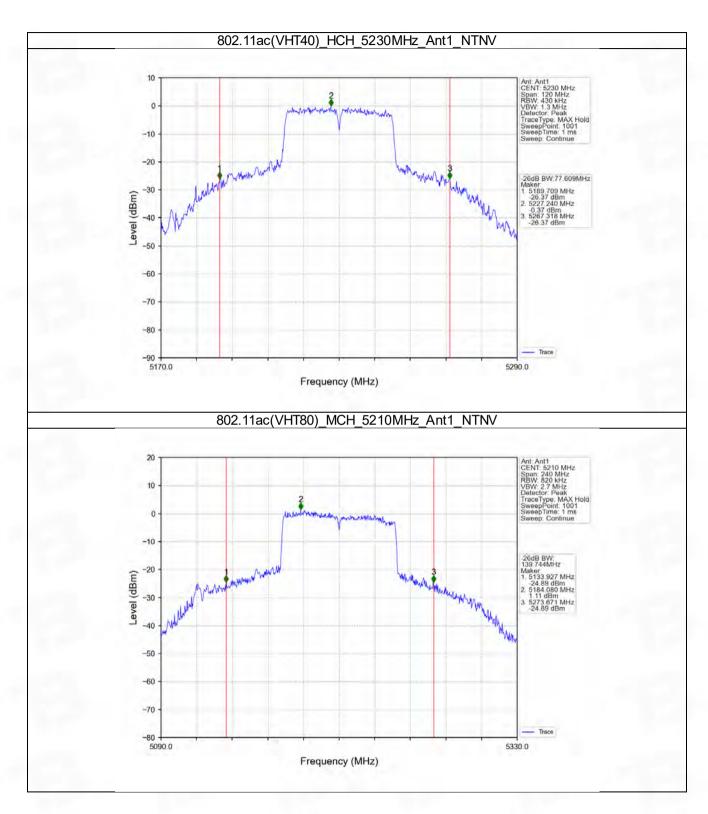


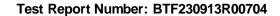






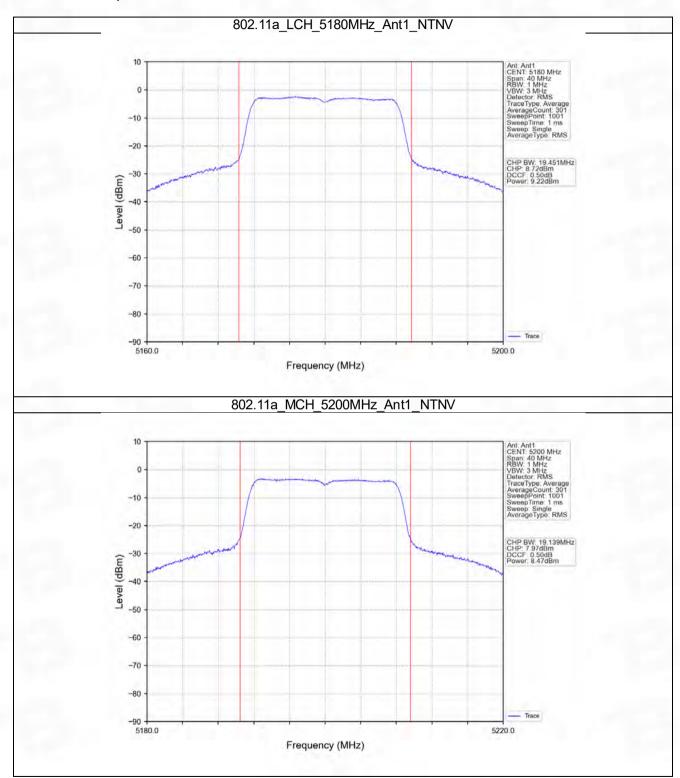


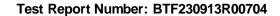


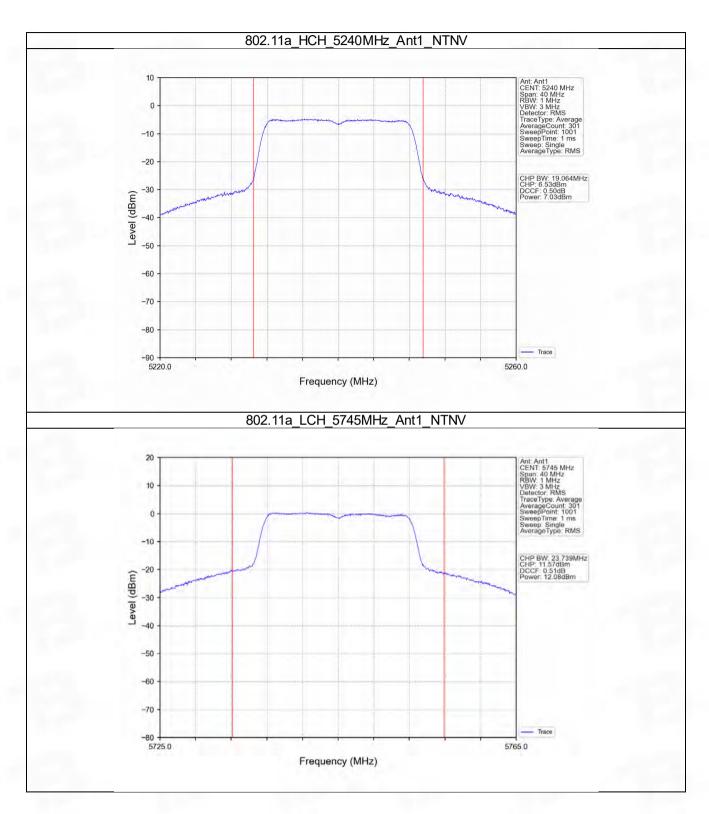


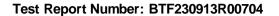
3. Maximum Conducted Output Power

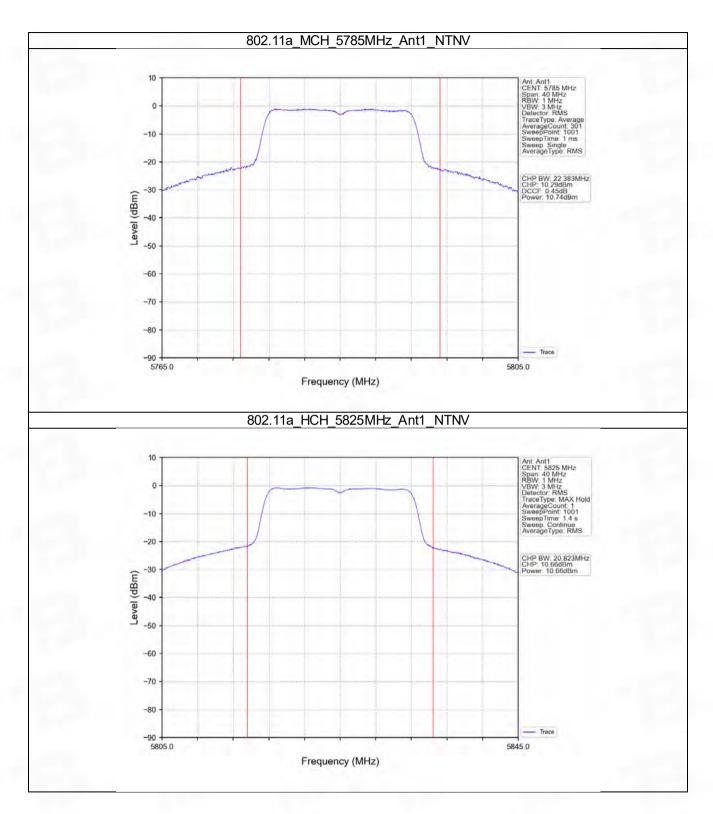
3.1 Power

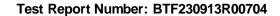

3.1.1 Test Result

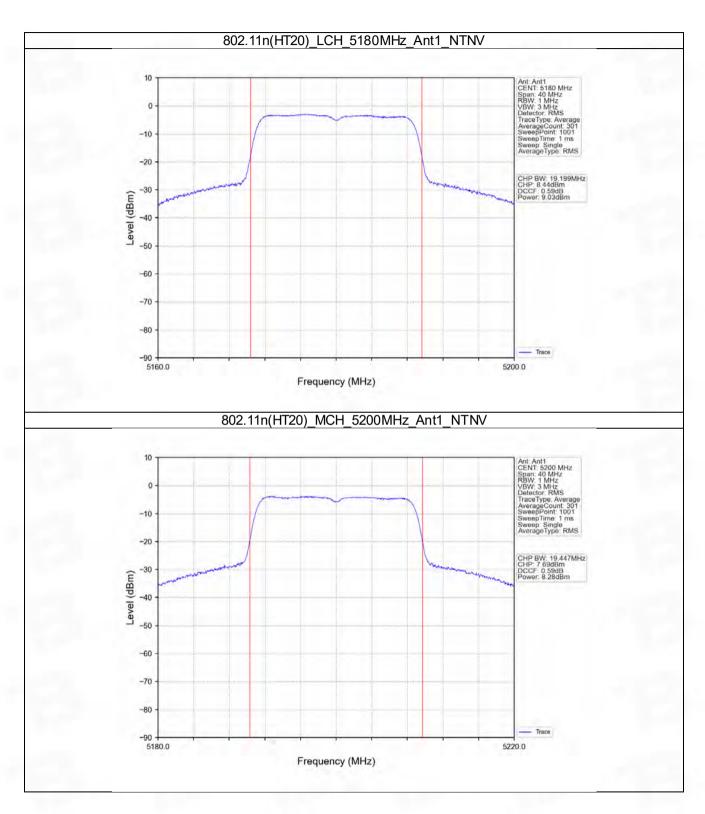

Mode	TX	Frequency	Maximum Average Condu	num Average Conducted Output Power (dBm)		
	Type	(MHz)	ANT1	Limit	Verdict	
802.11a	SISO	5180	9.22	<=23.98	Pass	
		5200	8.47	<=23.98	Pass	
		5240	7.03	<=23.98	Pass	
		5745	12.08	<=30	Pass	
		5785	10.74	<=30	Pass	
		5825	10.66	<=30	Pass	
802.11n	0100	5180	9.03	<=23.98	Pass	
		5200	8.28	<=23.98	Pass	
		5240	6.92	<=23.98	Pass	
(HT20)	SISO	5745	11.75	<=30	Pass	
		5785	10.94	<=30	Pass	
		5825	10.19	<=30	Pass	
	SISO	5190	9.20	<=23.98	Pass	
802.11n (HT40)		5230	7.83	<=23.98	Pass	
		5755	12.12	<=30	Pass	
		5795	11.11	<=30	Pass	
	SISO	5180	8.98	<=23.98	Pass	
		5200	8.30	<=23.98	Pass	
802.11ac		5240	6.74	<=23.98	Pass	
(VHT20)		5745	12.23	<=30	Pass	
,		5785	10.84	<=30	Pass	
		5825	9.96	<=30	Pass	
	SISO	5190	9.46	<=23.98	Pass	
802.11ac (VHT40)		5230	9.09	<=23.98	Pass	
		5755	12.16	<=30	Pass	
		5795	11.49	<=30	Pass	
802.11ac	SISO	5210	9.97	<=23.98	Pass	
(VHT80)		5775	11.88	<=30	Pass	
lote1: Antenn	a Gain: Ant1	: 1.05dBi:	•			

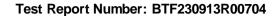


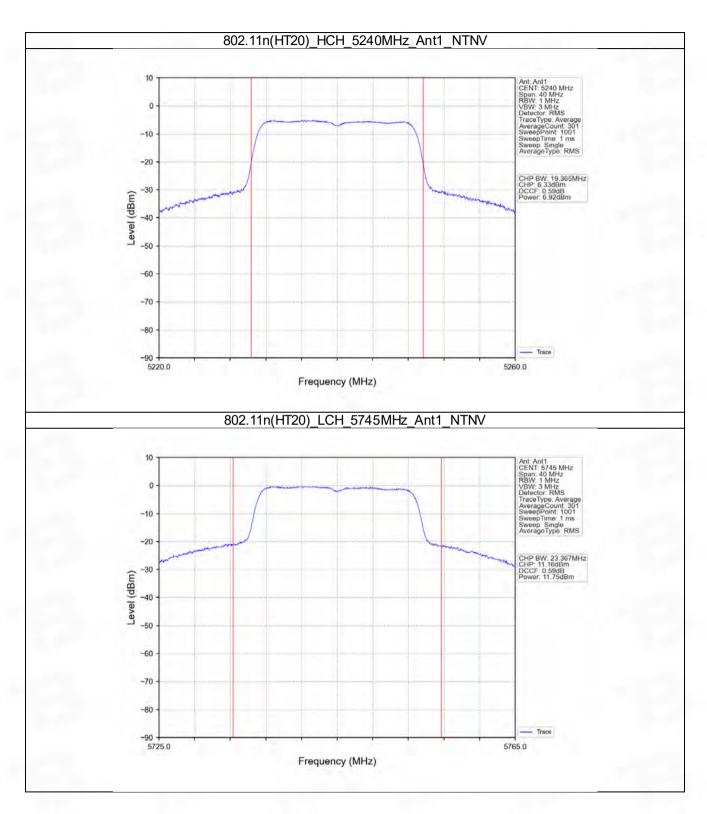

3.1.2 Test Graph

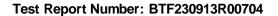


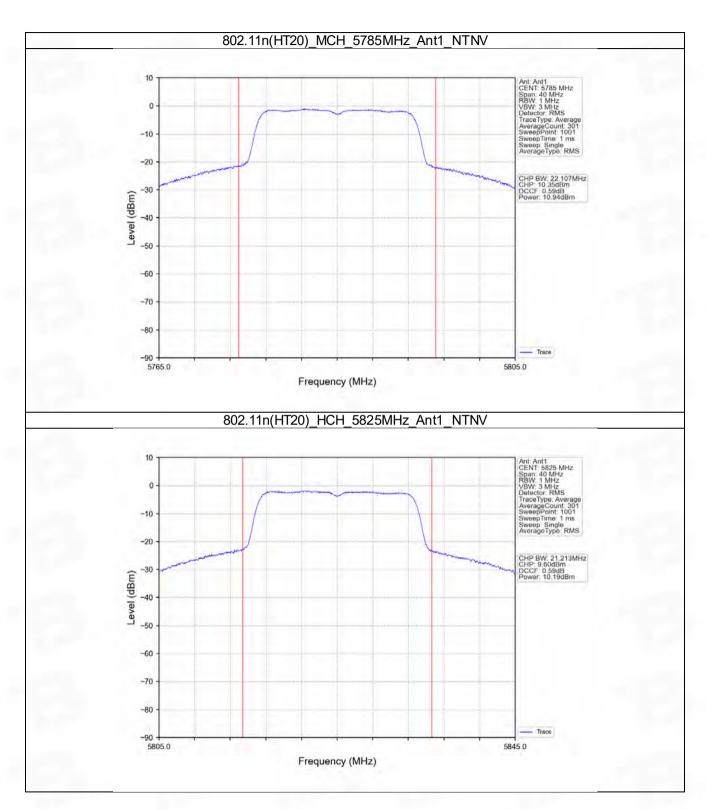


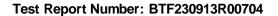


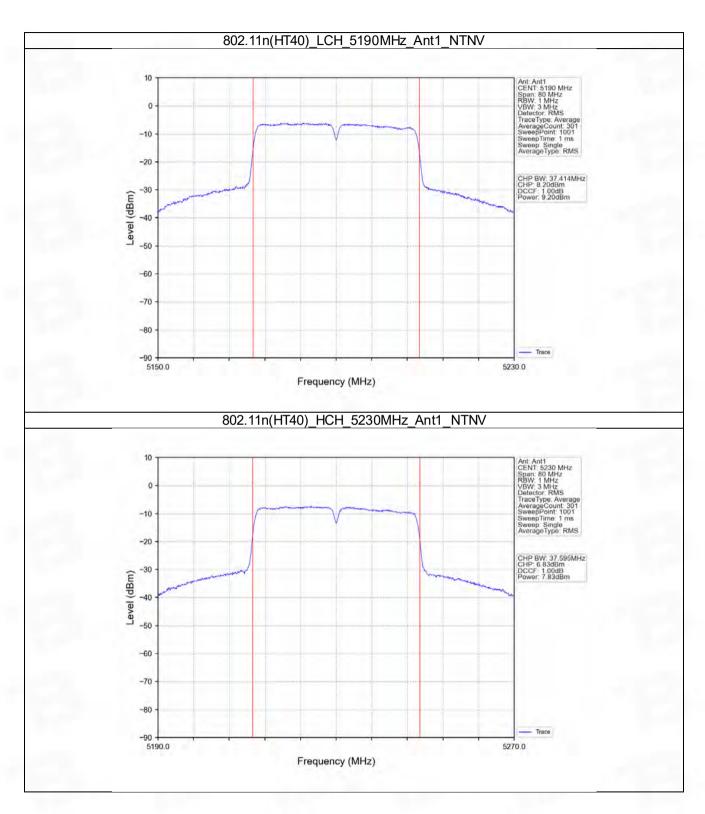


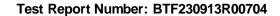


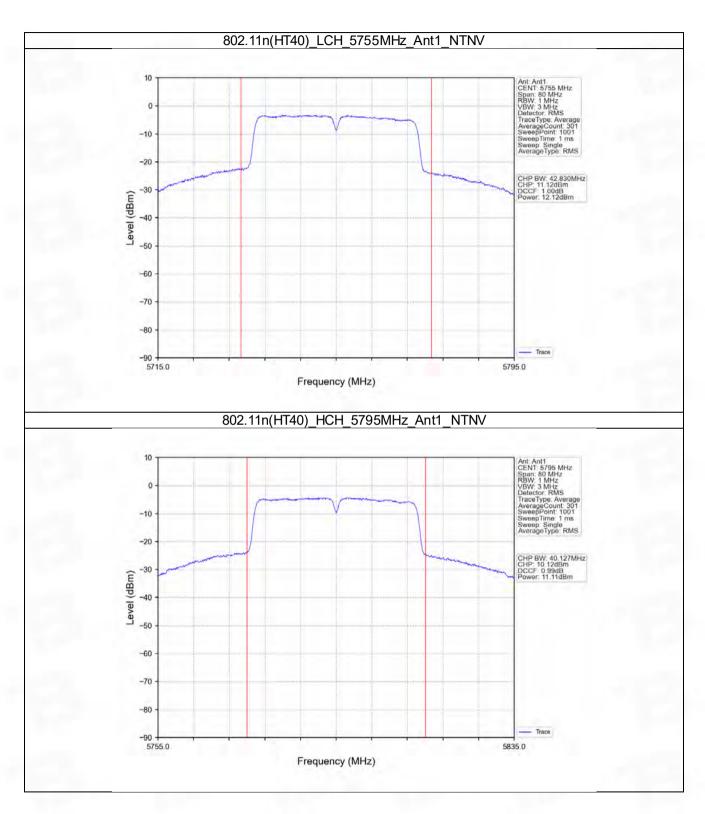


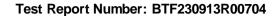


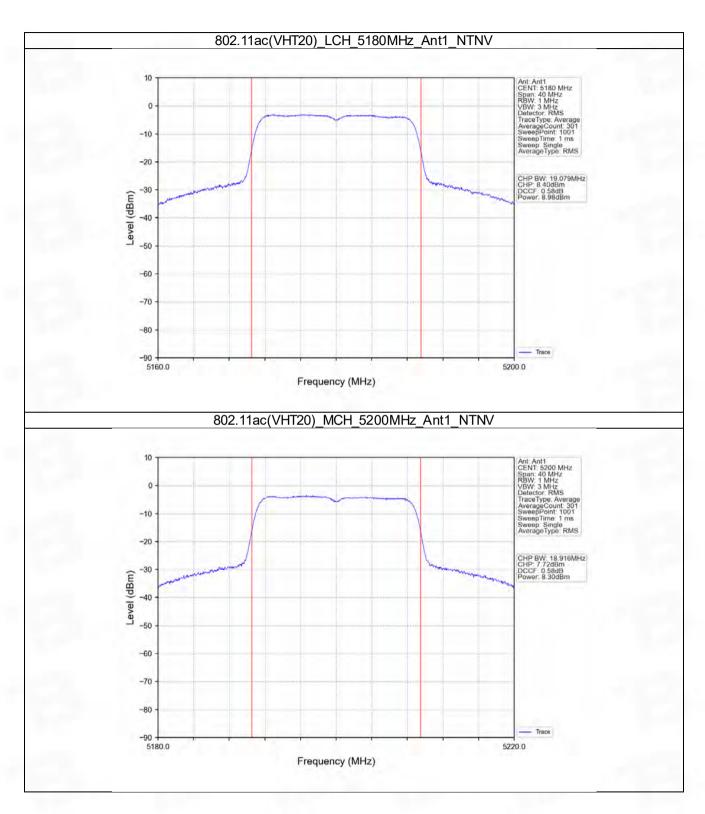


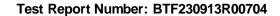


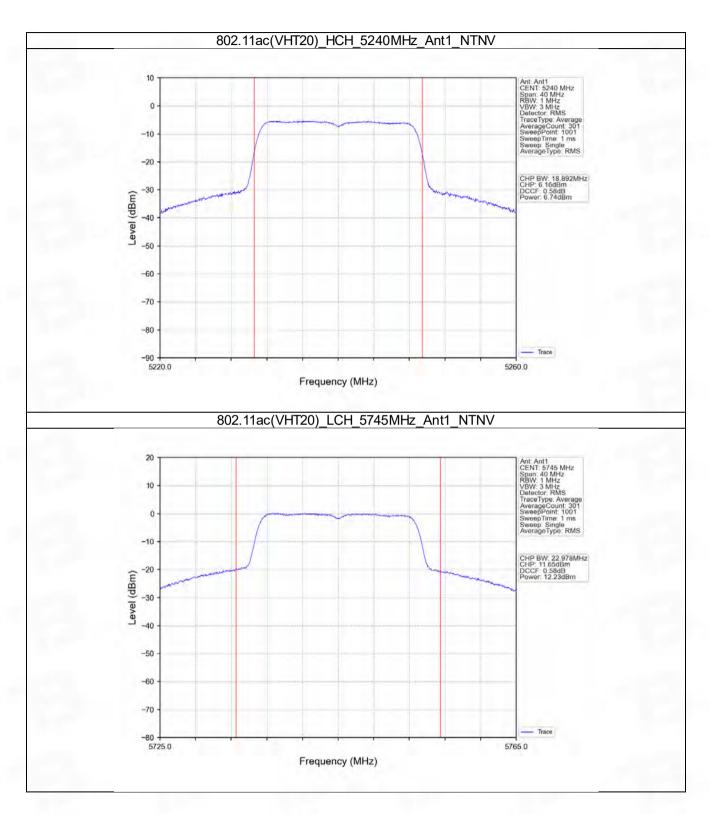


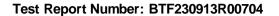


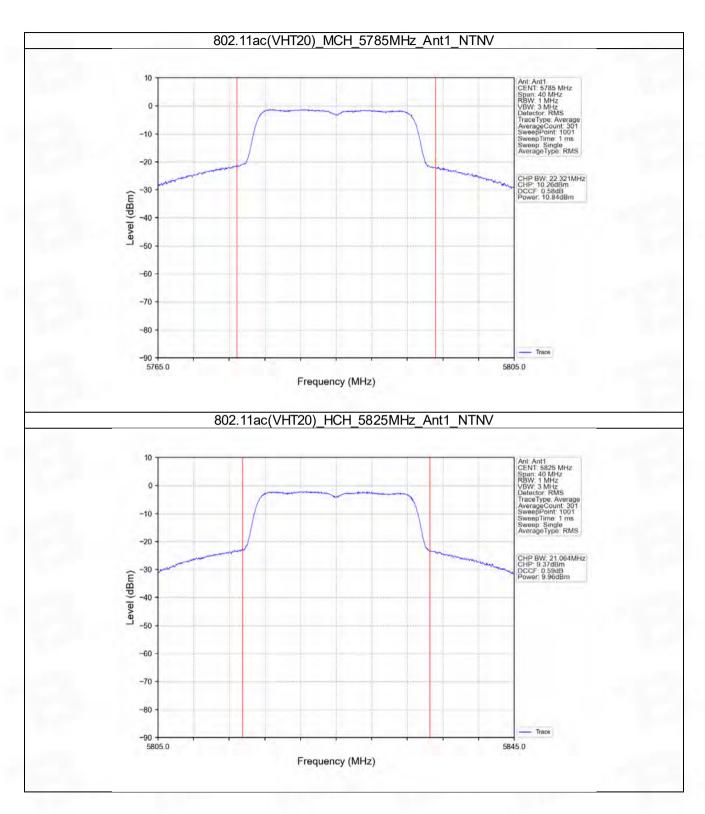


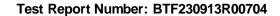


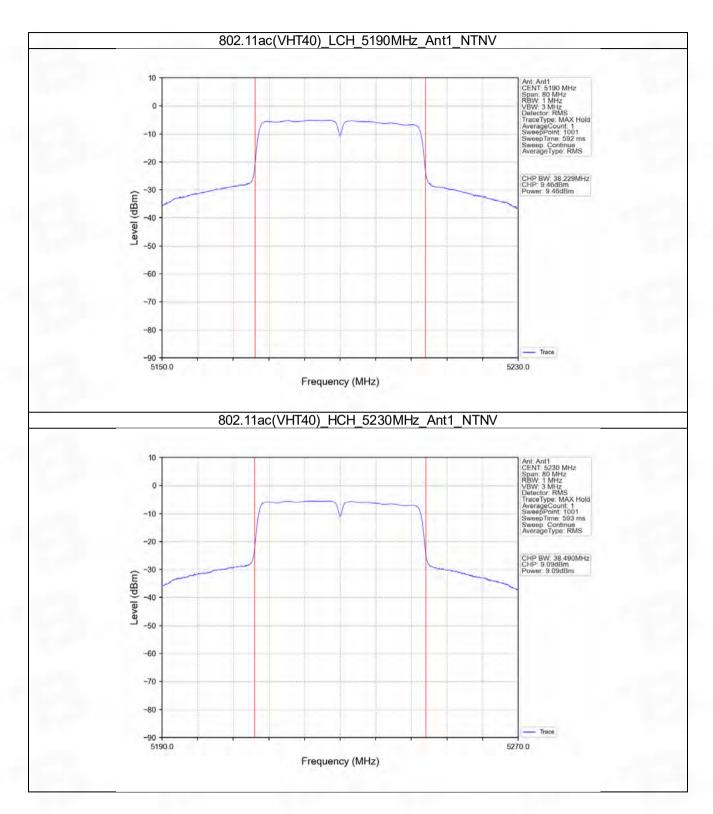


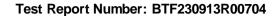


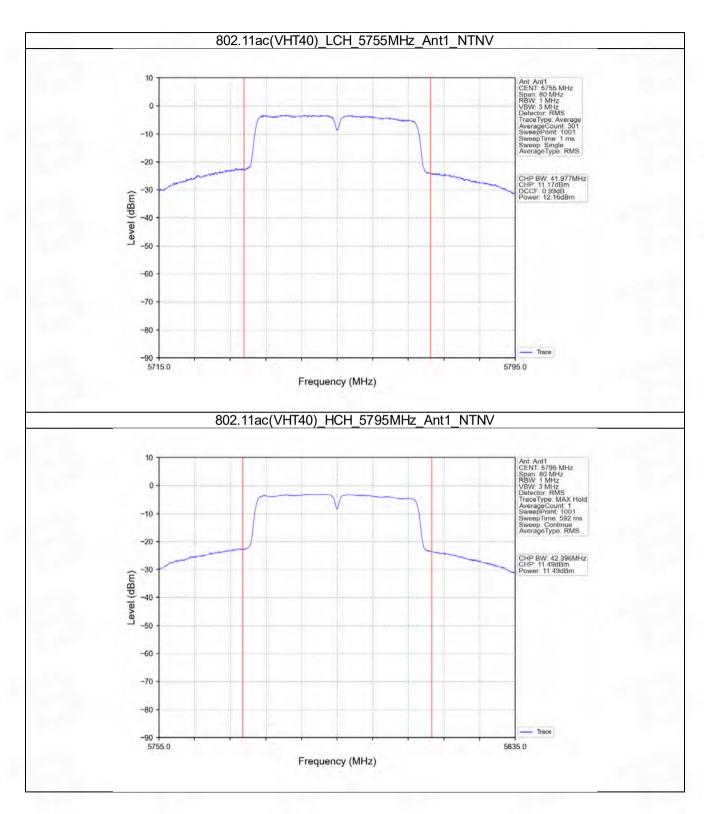


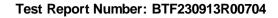


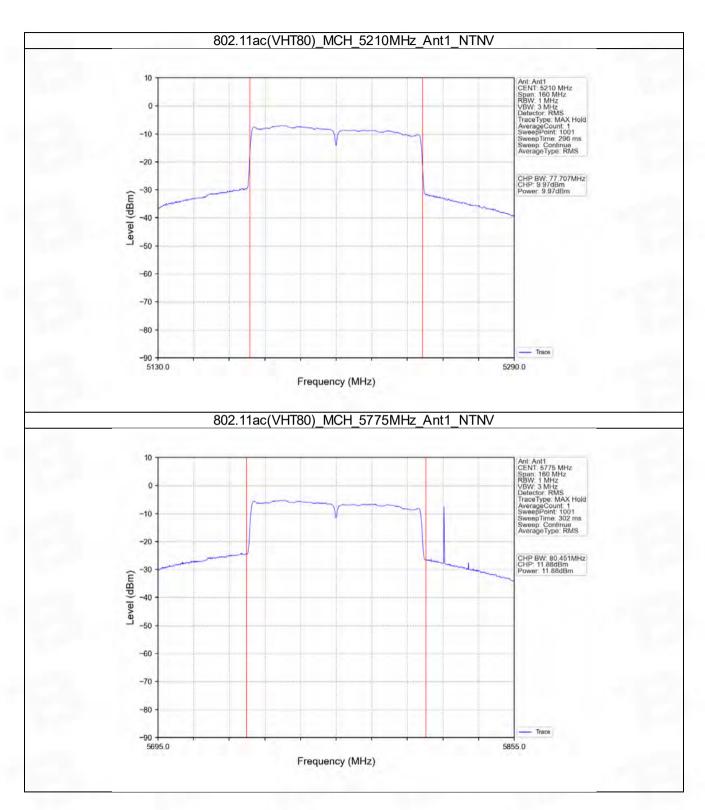


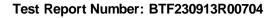






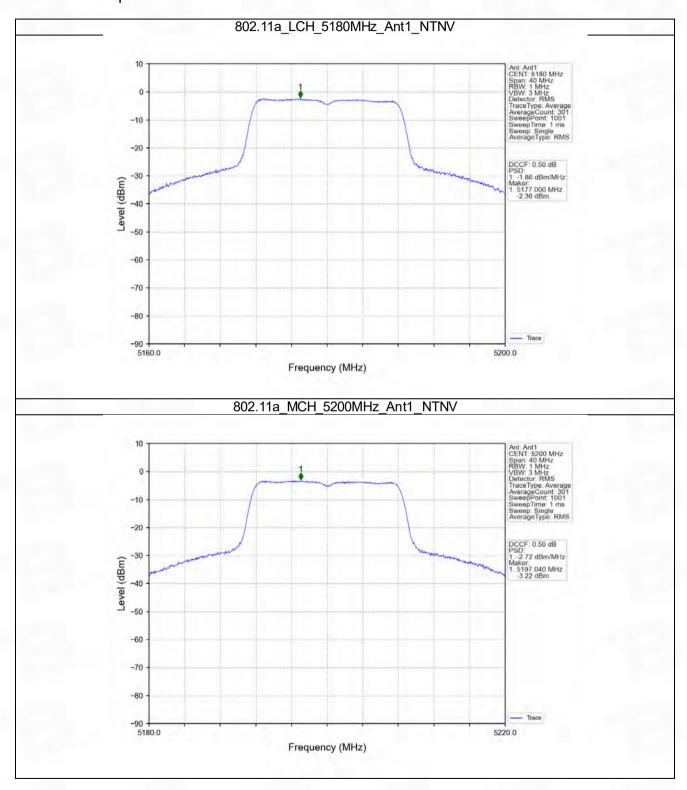


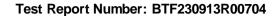


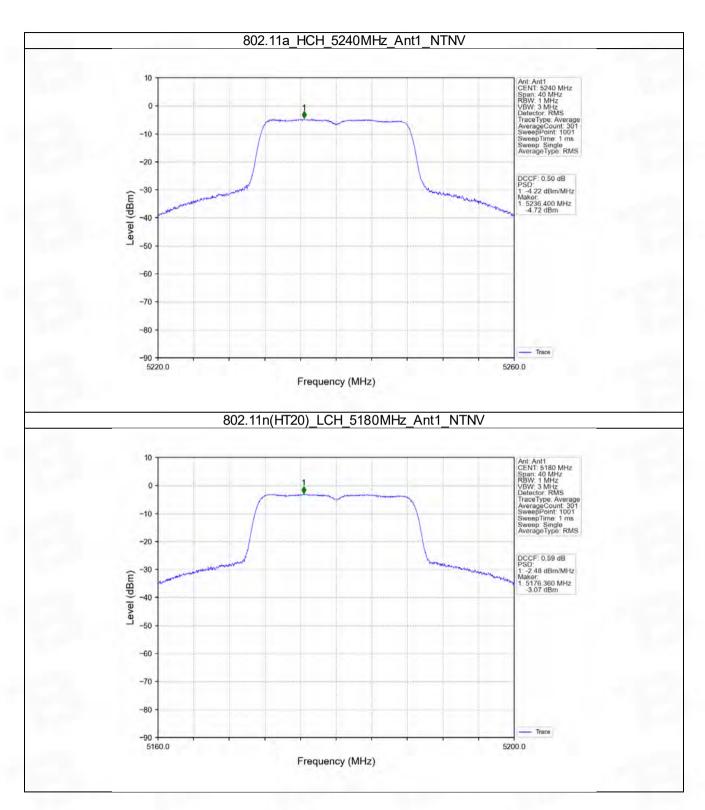


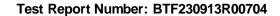
4. Maximum Power Spectral Density

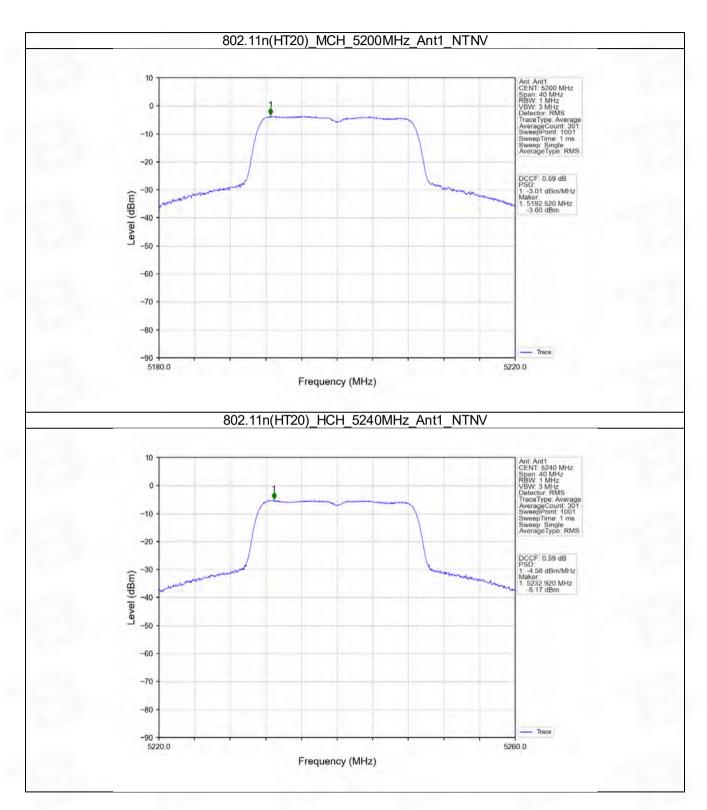
4.1 PSD

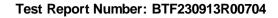

4.1.1 Test Result

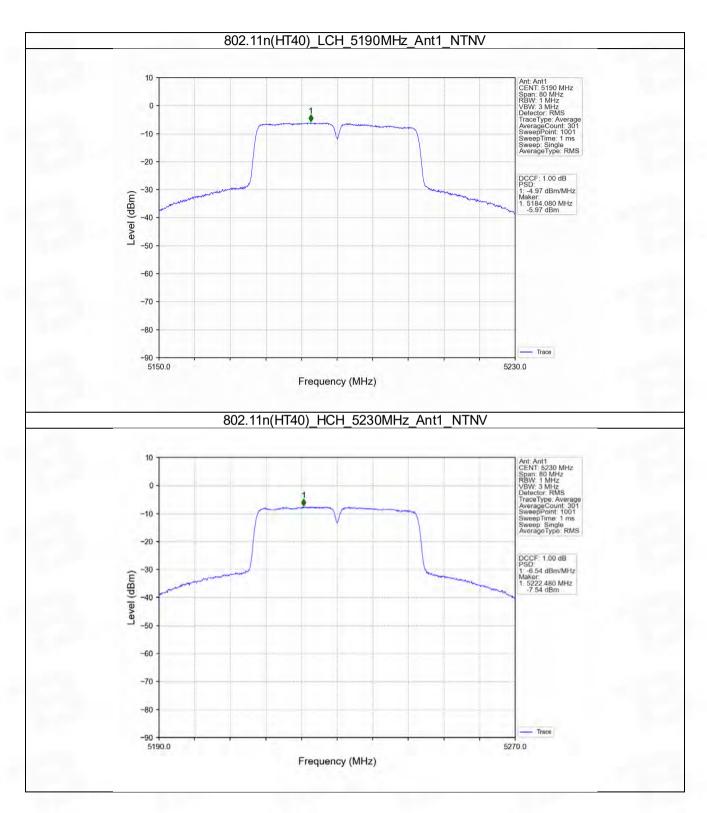

Mode	TX	Frequency	Maximum PS	Verdict	
	Type	(MHz)	ANT1	Limit	verdict
802.11a	SISO	5180	-1.86	<=11	Pass
		5200	-2.72	<=11	Pass
		5240	-4.22	<=11	Pass
802.11n	SISO	5180	-2.48	<=11	Pass
(HT20)		5200	-3.01	<=11	Pass
(11120)		5240	-4.58	<=11	Pass
802.11n	SISO	5190	-4.97	<=11	Pass
(HT40)		5230	-6.54	<=11	Pass
802.11ac	SISO	5180	-2.30	<=11	Pass
(VHT20)		5200	-3.16	<=11	Pass
(V11120)		5240	-4.69	<=11	Pass
802.11ac (VHT40)	SISO	5190	-5.11	<=11	Pass
		5230	-5.46	<=11	Pass
802.11ac (VHT80)	SISO	5210	-7.08	<=11	Pass
Note1: Antenna	Gain: Ant1: 1.05	dBi;			

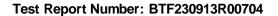


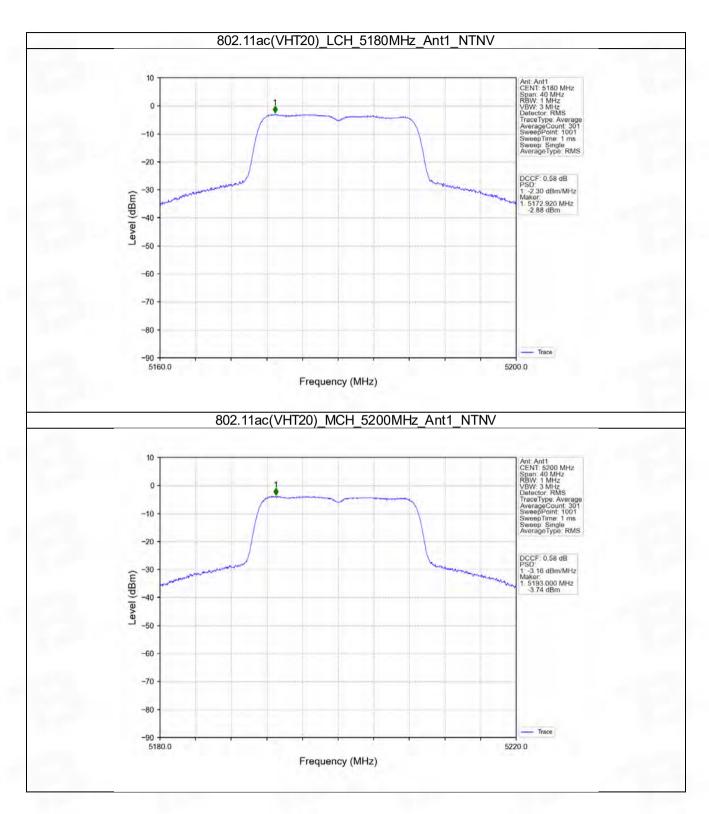

4.1.2 Test Graph

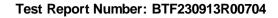


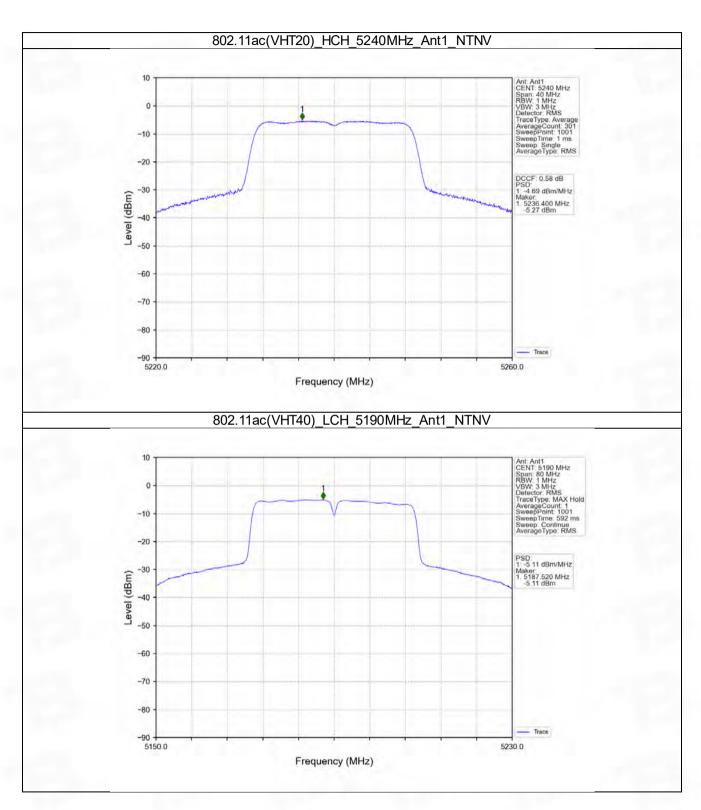


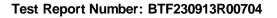


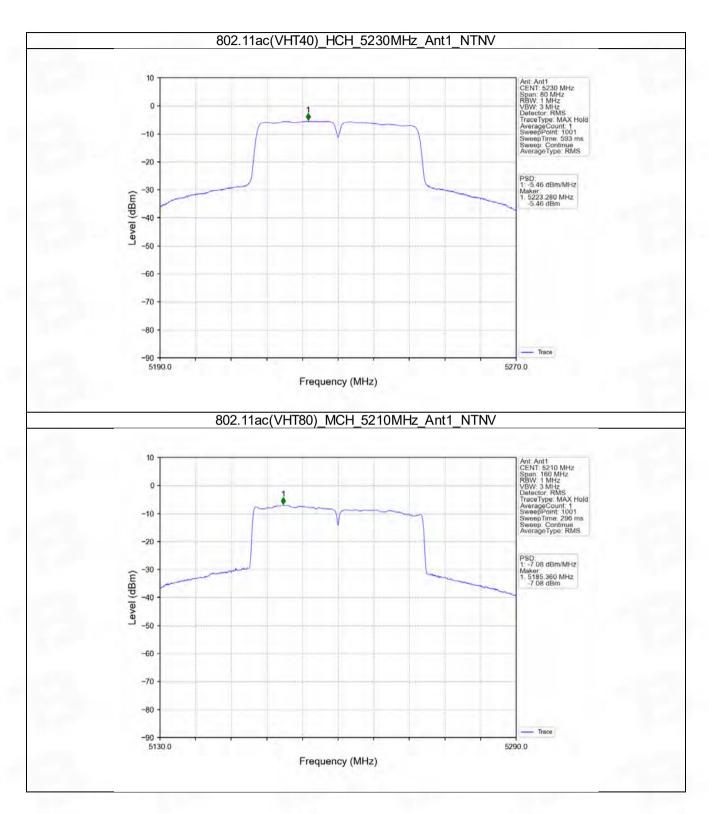


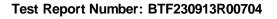


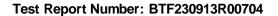




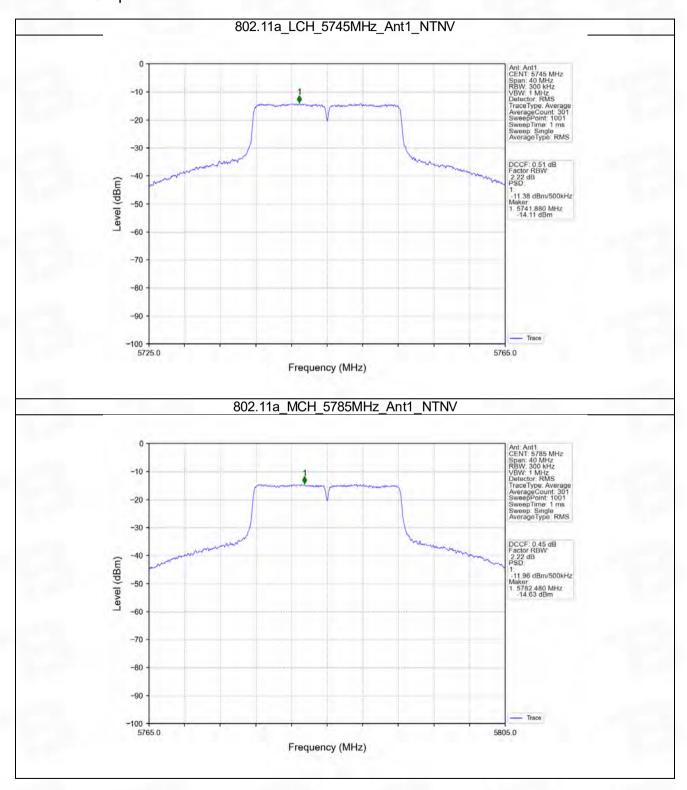


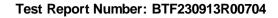


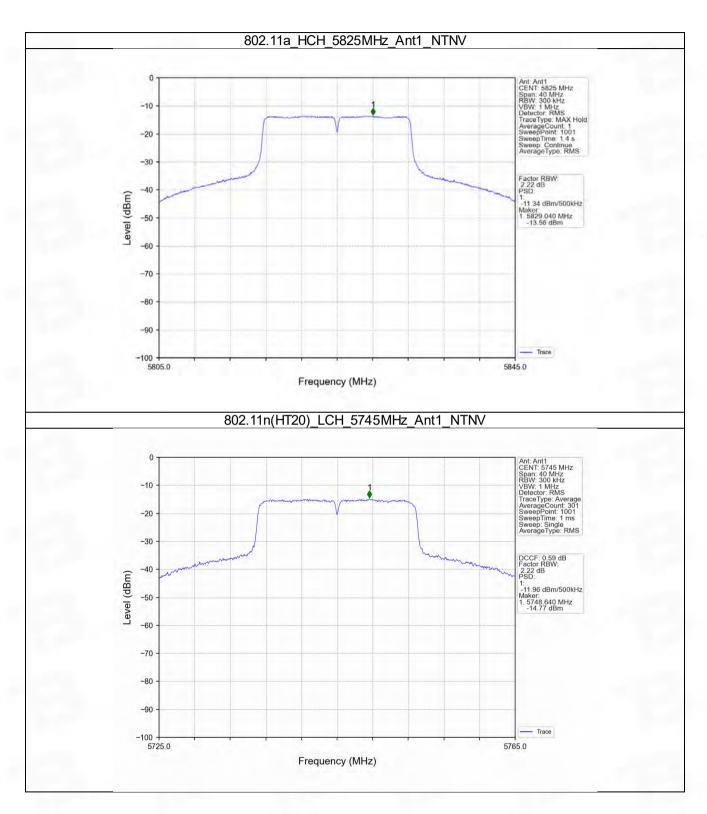


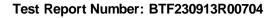


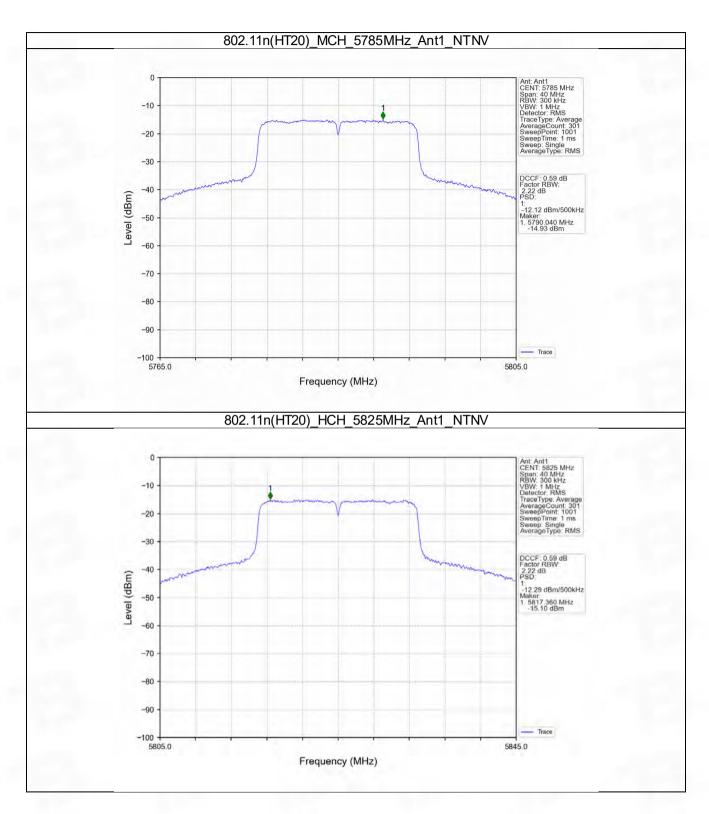
4.2 PSD-Band3

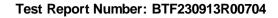

4.2.1 Test Result

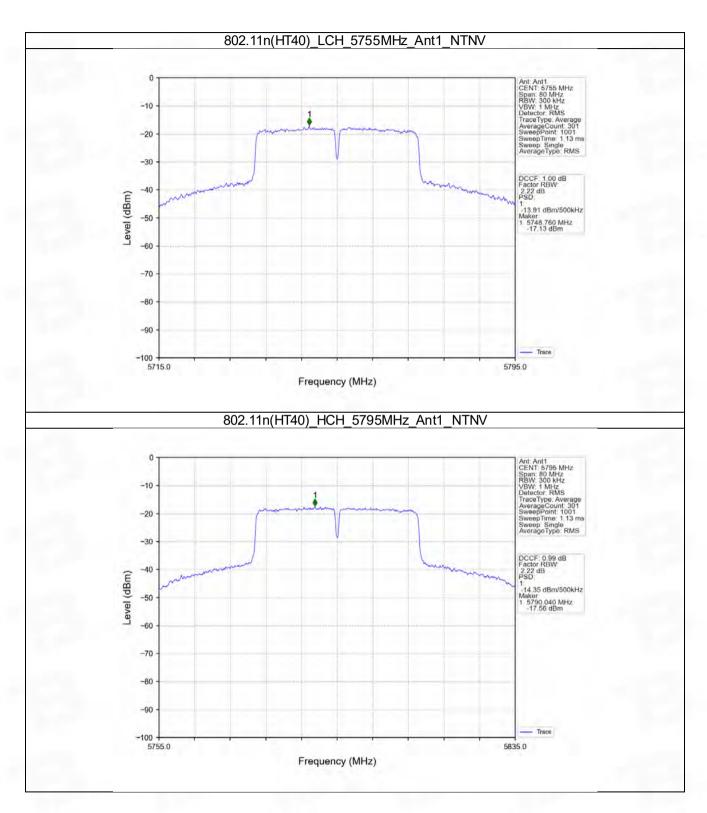

Mode	TX	Frequency	Maximum PSD	Maximum PSD (dBm/500kHz)		
Iviode Ty	Type	(MHz)	ANT1	Limit	Verdict	
		5745	-11.38	<=30	Pass	
802.11a	SISO	5785	-11.96	<=30	Pass	
		5825	-11.34	<=30	Pass	
902 11n		5745	-11.96	<=30	Pass	
802.11n (HT20)	SISO	5785	-12.12	<=30	Pass	
		5825	-12.29	<=30	Pass	
802.11n (HT40)	SISO	5755	-13.91	<=30	Pass	
	3130	5795	-14.35	<=30	Pass	
000 1100		5745	-11.00	<=30	Pass	
802.11ac (VHT20)	SISO	5785	-11.44	<=30	Pass	
(VIII20)		5825	-11.29	<=30	Pass	
802.11ac	SISO	5755	-13.41	<=30	Pass	
(VHT40)	3130	5795	-13.24	<=30	Pass	
802.11ac (VHT80)	SISO	5775	-16.19	<=30	Pass	
ote1: Anténna	Gain: Ant1: 1.0	5dBi;				

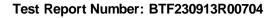


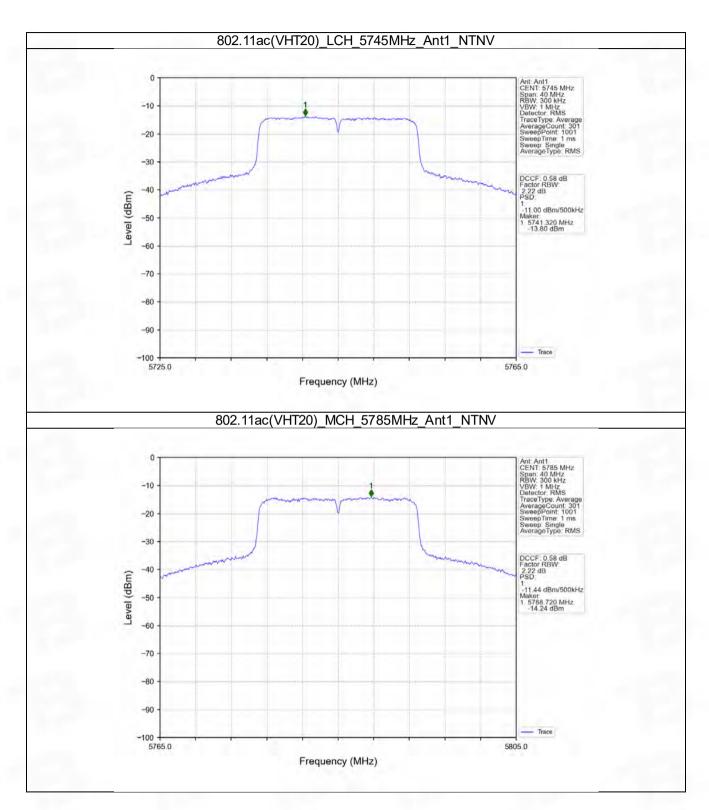

4.2.2 Test Graph

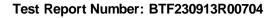


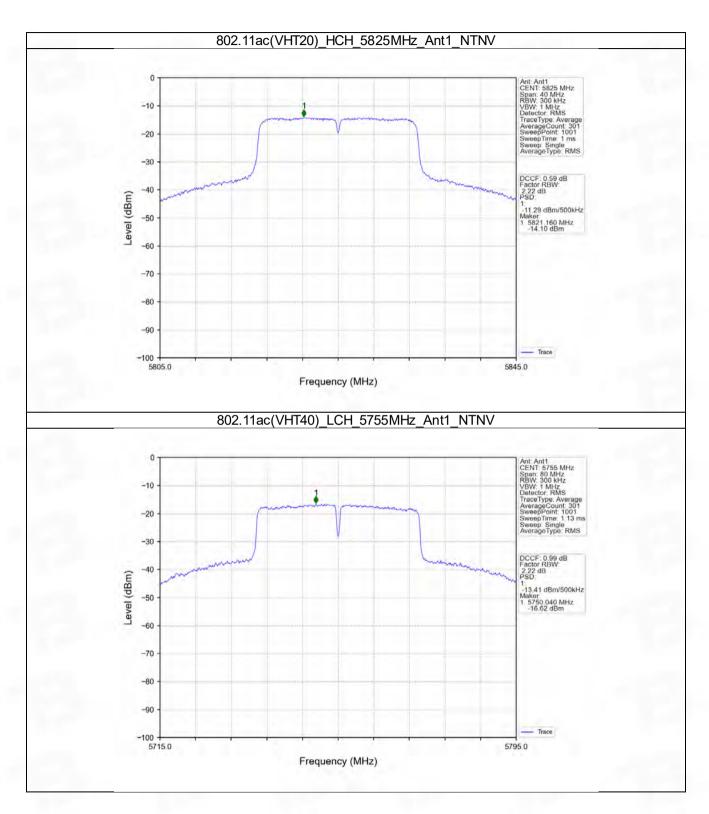


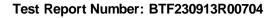


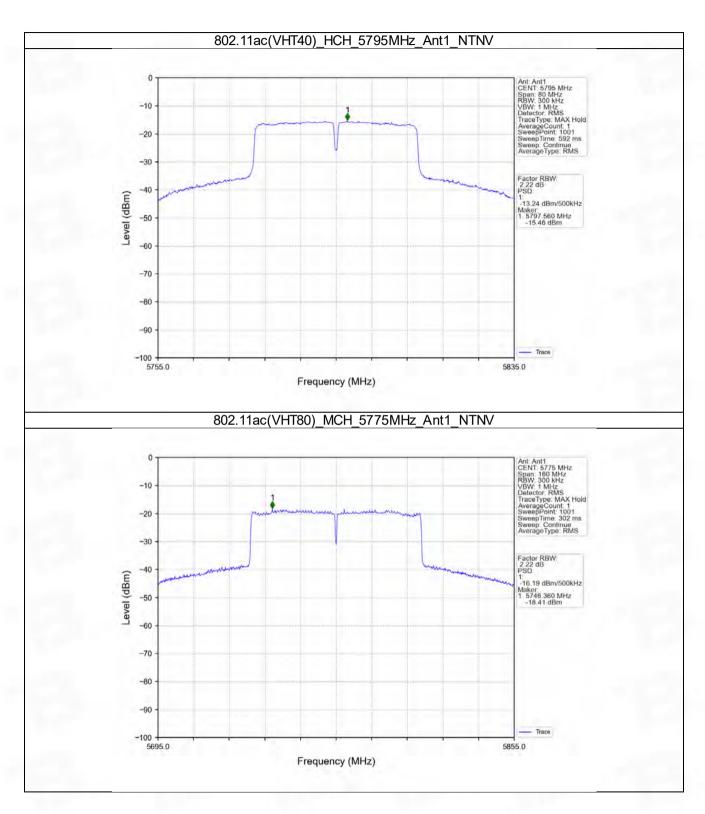


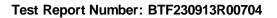




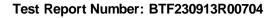








5. Frequency Stability

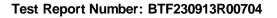

5.1 Ant1

5.1.1 Test Result

		-		Ant1	I	1	
Mode	TX Type	Frequency (MHz)	Temperature (°C)	Voltage (VAC)	Measured Frequency (MHz)	Limit (MHz)	Verdict
	7			102	5180.000	5150 to 5250	Pass
			20	120	5180.020	5150 to 5250	Pass
				138	5180.000	5150 to 5250	Pass
			-30	120	5180.020	5150 to 5250	Pass
			-20	120	5179.980	5150 to 5250	Pass
		5180	-10	120	5180.000	5150 to 5250	Pass
			0	120	5180.000	5150 to 5250	Pass
			10	120	5179.980	5150 to 5250	Pass
			30	120	5180.000	5150 to 5250	Pass
			40	120	5179.960	5150 to 5250	Pass
			50	120	5180.020	5150 to 5250	Pass
				102	5199.980	5150 to 5250	Pass
			20	120	5199.960	5150 to 5250	Pass
				138	5199.980	5150 to 5250	Pass
			-30	120	5200.000	5150 to 5250	Pass
			-20	120	5200.040	5150 to 5250	Pass
		5200 ISO	-10	120	5199.980	5150 to 5250	Pass
			0	120	5200.000	5150 to 5250	Pass
			10	120	5200.000	5150 to 5250	Pass
			30	120	5199.940	5150 to 5250	Pass
802.11a	SISO		40	120	5200.020	5150 to 5250	Pass
			50	120	5200.020	5150 to 5250	Pass
			20	102	5240.000	5150 to 5250	Pass
				120	5239.940	5150 to 5250	Pass
		5240		138	5240.020	5150 to 5250	Pass
			-30	120	5239.960	5150 to 5250	Pass
			-20	120	5240.020	5150 to 5250	Pass
			-10	120	5239.980	5150 to 5250	Pass
			0	120	5240.020	5150 to 5250	Pass
			10	120	5240.040	5150 to 5250	Pass
			30	120	5240.020	5150 to 5250	Pass
			40	120	5239.980	5150 to 5250	Pass
			50	120	5240.000	5150 to 5250	Pass
				102	5745.080	5725 to 5850	Pass
			20	120	5745.000	5725 to 5850	Pass
				138	5745.040	5725 to 5850	Pass
		5745	-30	120	5745.040	5725 to 5850	Pass
		5745	-20	120	5745.000	5725 to 5850	Pass
			-10	120	5745.000	5725 to 5850	Pass
			0	120	5744.980	5725 to 5850	Pass
			10	120	5745.020	5725 to 5850	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 121 of 12 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

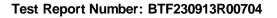
Page 121 of 128



			30	120	5745.000	5725 to 5850	Pass
			40	120	5745.040	5725 to 5850	Pass
			50	120	5744.960	5725 to 5850	Pass
			30	102	5784.980	5725 to 5850	Pass
			20	120	5784.960	5725 to 5850	Pass
			20	138	5785.000	5725 to 5850	Pass
		-	-30	120	5785.020	5725 to 5850	Pass
		-	-20	120	5784.960	5725 to 5850	Pass
		5785	-10	120	5785.020	5725 to 5850	Pass
		3703	0	120	5785.020	5725 to 5850	Pass
			10	120	5785.060	5725 to 5850	Pass
			30	120	5785.020	5725 to 5850	Pass
			40	120	5785.040	5725 to 5850	Pass
			50	120	5785.020	5725 to 5850	Pass
	-		30	102	5825.080	5725 to 5850	Pass
			20	120	5825.020	5725 to 5850	Pass
			20	138	5825.020	5725 to 5850	Pass
			-30	120	5825.040	5725 to 5850	Pass
			-20	120	5825.020	5725 to 5850	Pass
		5825	-10	120	5824.980	5725 to 5850	Pass
		3020	0	120	5825.020	5725 to 5850	Pass
			10	120	5825.000	5725 to 5850	Pass
			30	120	5824.920	5725 to 5850	Pass
			40	120	5825.020	5725 to 5850	Pass
			50	120	5825.020	5725 to 5850	Pass
				102	5179.960	5150 to 5250	Pass
			20	120	5180.000	5150 to 5250	Pass
		5180	20	138	5179.960	5150 to 5250	Pass
			-30	120	5179.960	5150 to 5250	Pass
			-20	120	5179.940	5150 to 5250	Pass
			-10	120	5179.980	5150 to 5250	Pass
		0100	0	120	5180.020	5150 to 5250	Pass
		100	10	120	5180.040	5150 to 5250	Pass
			30	120	5180.040	5150 to 5250	Pass
			40	120	5179.960	5150 to 5250	Pass
			50	120	5180.000	5150 to 5250	Pass
				102	5199.980	5150 to 5250	Pass
			20	120	5199.940	5150 to 5250	Pass
802.11n	0.00			138	5199.960	5150 to 5250	Pass
(HT20)	SISO		-30	120	5199.940	5150 to 5250	Pass
,			-20	120	5199.920	5150 to 5250	Pass
		5200	-10	120	5199.960	5150 to 5250	Pass
			0	120	5199.980	5150 to 5250	Pass
			10	120	5199.960	5150 to 5250	Pass
			30	120	5199.940	5150 to 5250	Pass
			40	120	5200.000	5150 to 5250	Pass
			50	120	5199.980	5150 to 5250	Pass
				102	5240.000	5150 to 5250	Pass
			20	120	5239.940	5150 to 5250	Pass
		5040		138	5239.980	5150 to 5250	Pass
		5240	-30	120	5239.940	5150 to 5250	Pass
			-20	120	5239.980	5150 to 5250	Pass
			-10	120	5240.020	5150 to 5250	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 122 of 12 BTF Testing Lab (Shenzhen) Co., Ltd.
F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

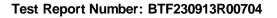
Page 122 of 128



			0	120	5240.020	5150 to 5250	Pass
			10	120	5239.920	5150 to 5250	Pass
			30	120	5240.000	5150 to 5250	Pass
			40	120	5239.980	5150 to 5250	Pass
			50	120	5239.980	5150 to 5250	Pass
			50	102	5744.940	5725 to 5850	Pass
			20	120	5744.960	5725 to 5850	Pass
			20	138			
			-30	120	5745.000	5725 to 5850	Pass
			-30	120	5745.020	5725 to 5850	Pass
		E74E		120	5745.020	5725 to 5850 5725 to 5850	Pass
		5745	-10 0	120	5745.020		Pass
			10		5744.960	5725 to 5850	Pass
				120	5745.020	5725 to 5850	Pass
			30	120	5745.000	5725 to 5850	Pass
			40	120	5745.000	5725 to 5850	Pass
			50	120	5745.020	5725 to 5850	Pass
			00	102	5784.980	5725 to 5850	Pass
			20	120	5785.000	5725 to 5850	Pass
				138	5785.040	5725 to 5850	Pass
			-30	120	5785.000	5725 to 5850	Pass
			-20	120	5785.020	5725 to 5850	Pass
		5785	-10	120	5785.040	5725 to 5850	Pass
			0	120	5785.000	5725 to 5850	Pass
			10	120	5785.000	5725 to 5850	Pass
			30	120	5785.020	5725 to 5850	Pass
			40	120	5785.020	5725 to 5850	Pass
			50	120	5785.000	5725 to 5850	Pass
				102	5825.000	5725 to 5850	Pass
			20	120	5825.020	5725 to 5850	Pass
				138	5824.980	5725 to 5850	Pass
			-30	120	5824.980	5725 to 5850	Pass
			-20	120	5825.000	5725 to 5850	Pass
		5825	-10	120	5825.020	5725 to 5850	Pass
			0	120	5824.980	5725 to 5850	Pass
			10	120	5824.980	5725 to 5850	Pass
			30	120	5825.040	5725 to 5850	Pass
			40	120	5825.020	5725 to 5850	Pass
			50	120	5824.920	5725 to 5850	Pass
				102	5190.000	5150 to 5250	Pass
			20	120	5190.000	5150 to 5250	Pass
				138	5190.040	5150 to 5250	Pass
			-30	120	5190.000	5150 to 5250	Pass
			-20	120	5189.960	5150 to 5250	Pass
		5190	-10	120	5190.000	5150 to 5250	Pass
802.11n			0	120	5189.960	5150 to 5250	Pass
(HT40)	SISO		10	120	5190.040	5150 to 5250	Pass
(111-40)			30	120	5189.960	5150 to 5250	Pass
			40	120	5190.000	5150 to 5250	Pass
			50	120	5190.000	5150 to 5250	Pass
				102	5229.960	5150 to 5250	Pass
		E220	20	120	5229.960	5150 to 5250	Pass
		5230		138	5230.000	5150 to 5250	Pass
			-30	120	5230.000	5150 to 5250	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 123 of 12 BTF Testing Lab (Shenzhen) Co., Ltd.
F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

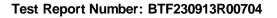
Page 123 of 128



			-20	120	5230.000	5150 to 5250	Pass
			-10	120	5230.000	5150 to 5250	Pass
			0	120	5230.000	5150 to 5250	Pass
			10	120	5230.000	5150 to 5250	Pass
			30	120	5230.000	5150 to 5250	Pass
			40	120	5229.960	5150 to 5250	Pass
			50	120	5229.960	5150 to 5250	Pass
	-		30	102	5755.040	5725 to 5850	Pass
			20	120	5755.000	5725 to 5850	Pass
			20	138	5755.040	5725 to 5850	Pass
			-30	120	5755.000	5725 to 5850	Pass
			-20	120	5754.960	5725 to 5850	Pass
		5755	-10	120	5755.040	5725 to 5850	Pass
		3733	0	120	5755.040	5725 to 5850	Pass
			10	120	5755.000	5725 to 5850	Pass
			30	120	5755.120	5725 to 5850	Pass
			40	120	5755.000	5725 to 5850	Pass
			50	120	5753.000	5725 to 5850	Pass
	-		30	102	5795.080	5725 to 5850	Pass
			20	120	5795.000	5725 to 5850	Pass
			20	138	5795.000	5725 to 5850	Pass
			-30	120	5795.040	5725 to 5850	Pass
			-20	120	5795.040	5725 to 5850	Pass
		5795	-10	120	5795.000	5725 to 5850	Pass
		3793	0	120	5795.000	5725 to 5850	Pass
			10	120	5794.960	5725 to 5850	Pass
			30	120	5794.960	5725 to 5850	Pass
			40	120	5795.000	5725 to 5850	Pass
			50	120	5795.000	5725 to 5850	Pass
			30	102	5180.040	5150 to 5250	Pass
			20	120	5180.020	5150 to 5250	Pass
			20	138	5179.980	5150 to 5250	Pass
			-30	120	5179.980	5150 to 5250	Pass
			-20	120	5180.020	5150 to 5250	Pass
		5180	-10	120	5179.940	5150 to 5250	Pass
		0.00	0	120	5179.980	5150 to 5250	Pass
			10	120	5180.000	5150 to 5250	Pass
			30	120	5180.000	5150 to 5250	Pass
			40	120	5179.960	5150 to 5250	Pass
			50	120	5179.960	5150 to 5250	Pass
802.11ac	0100			102	5200.000	5150 to 5250	Pass
(VHT20)	SISO		20	120	5199.980	5150 to 5250	Pass
,			_•	138	5199.940	5150 to 5250	Pass
			-30	120	5200.000	5150 to 5250	Pass
			-20	120	5200.020	5150 to 5250	Pass
		5200	-10	120	5199.960	5150 to 5250	Pass
			0	120	5199.940	5150 to 5250	Pass
			10	120	5200.000	5150 to 5250	Pass
			30	120	5199.980	5150 to 5250	Pass
		-	40	120	5200.020	5150 to 5250	Pass
			50	120	5199.980	5150 to 5250	Pass
		50.40		102	5239.980	5150 to 5250	Pass
		5240	20	120	5239.960	5150 to 5250	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 124 of 12 BTF Testing Lab (Shenzhen) Co., Ltd.
F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 124 of 128



			0	120	5240.000	5150 to 5250	Pass
			10	120	5240.000	5150 to 5250	Pass
			30	120	5239.980	5150 to 5250	Pass
			40	120	5239.980	5150 to 5250	Pass
			50	120	5240.000	5150 to 5250	Pass
				102	5745.000	5725 to 5850	Pass
			20	120	5745.020	5725 to 5850	Pass
				138	5745.000	5725 to 5850	Pass
			-30	120	5744.940	5725 to 5850	Pass
			-20	120	5745.020	5725 to 5850	Pass
		5745	-10	120	5744.980	5725 to 5850	Pass
			0	120	5744.980	5725 to 5850	Pass
			10	120	5744.960	5725 to 5850	Pass
			30	120	5745.020	5725 to 5850	Pass
			40	120	5744.940	5725 to 5850	Pass
			50	120	5745.000	5725 to 5850	Pass
				102	5785.020	5725 to 5850	Pass
			20	120	5785.000	5725 to 5850	Pass
				138	5784.980	5725 to 5850	Pass
			-30	120	5785.060	5725 to 5850	Pass
			-20	120	5784.940	5725 to 5850	Pass
		5785	-10	120	5784.980	5725 to 5850	Pass
			0	120	5785.000	5725 to 5850	Pass
			10	120	5784.940	5725 to 5850	Pass
			30	120	5785.000	5725 to 5850	Pass
			40	120	5785.020	5725 to 5850	Pass
			50	120	5784.960	5725 to 5850	Pass
			0.0	102	5824.960	5725 to 5850	Pass
			20	120	5825.000	5725 to 5850	Pass
				138	5825.020	5725 to 5850	Pass
			-30	120	5825.000	5725 to 5850	Pass
		5005	-20	120	5824.940	5725 to 5850	Pass
		5825	-10	120	5825.020	5725 to 5850	Pass
			0	120	5825.000	5725 to 5850	Pass
			10	120	5825.040	5725 to 5850	Pass
			30	120	5825.020	5725 to 5850	Pass
			40	120	5824.940	5725 to 5850	Pass
			50	120	5824.980	5725 to 5850	Pass
			20	102	5189.960	5150 to 5250	Pass
			20	120	5190.000	5150 to 5250	Pass
			20	138	5190.040 5189.960	5150 to 5250	Pass
			-30	120		5150 to 5250	Pass
		5100	-20 10	120	5190.000	5150 to 5250	Pass
802.11ac		5190	-10 0	120 120	5190.000 5190.000	5150 to 5250 5150 to 5250	Pass
802.11ac (VHT40)	SISO			1 120	5 190.000	0 100 10 0200	Pass
	SISO						
	SISO		10	120	5190.000	5150 to 5250	Pass
	SISO						

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 125 of 12 BTF Testing Lab (Shenzhen) Co., Ltd.
F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 125 of 128

	I			102	5220 000	5150 to 5250	Door
		5000	20	102 120	5230.000 5230.000	5150 to 5250	Pass
			20	138	5230.000	5150 to 5250 5150 to 5250	Pass
			20				Pass
			-30	120	5230.040	5150 to 5250	Pass
			-20	120	5229.960	5150 to 5250	Pass
		5230	-10	120	5230.000	5150 to 5250	Pass
			0	120	5230.040	5150 to 5250	Pass
			10	120	5230.040	5150 to 5250	Pass
			30	120	5230.000	5150 to 5250	Pass
			40	120	5230.000	5150 to 5250	Pass
			50	120	5229.960	5150 to 5250	Pass
				102	5755.000	5725 to 5850	Pass
			20	120	5755.040	5725 to 5850	Pass
				138	5755.080	5725 to 5850	Pass
			-30	120	5755.000	5725 to 5850	Pass
			-20	120	5755.000	5725 to 5850	Pass
		5755	-10	120	5755.000	5725 to 5850	Pass
			0	120	5755.040	5725 to 5850	Pass
			10	120	5754.960	5725 to 5850	Pass
			30	120	5754.960	5725 to 5850	Pass
			40	120	5755.080	5725 to 5850	Pass
			50	120	5755.080	5725 to 5850	Pass
				102	5795.040	5725 to 5850	Pass
			20	120	5795.080	5725 to 5850	Pass
				138	5795.040	5725 to 5850	Pass
			-30	120	5795.040	5725 to 5850	Pass
			-20	120	5795.040	5725 to 5850	Pass
		5795	-10	120	5795.000	5725 to 5850	Pass
			0	120	5795.000	5725 to 5850	Pass
			10	120	5795.000	5725 to 5850	Pass
			30	120	5795.040	5725 to 5850	Pass
			40	120	5795.040	5725 to 5850	Pass
			50	120	5795.040	5725 to 5850	Pass
				102	5210.000	5150 to 5250	Pass
			20	120	5209.925	5150 to 5250	Pass
				138	5209.850	5150 to 5250	Pass
			-30	120	5209.850	5150 to 5250	Pass
			-20	120	5209.925	5150 to 5250	Pass
		5210	-10	120	5210.000	5150 to 5250	Pass
			0	120	5209.925	5150 to 5250	Pass
			10	120	5210.000	5150 to 5250	Pass
			30	120	5210.000	5150 to 5250	Pass
802.11ac			40	120	5209.925	5150 to 5250	Pass
(VHT80)	SISO		50	120	5210.000	5150 to 5250	Pass
(11100)				102	5775.075	5725 to 5850	Pass
			20	120	5775.000	5725 to 5850	Pass
			_0	138	5775.000	5725 to 5850	Pass
			-30	120	5775.075	5725 to 5850	Pass
		5775	-20	120	5775.000	5725 to 5850	Pass
		3113	-20 -10	120	5775.075	5725 to 5850	
		-	0	120			Pass
					5775.075	5725 to 5850	Pass
			10	120	5775.075	5725 to 5850	Pass
			30	120	5775.000	5725 to 5850	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 126 of 12 BTF Testing Lab (Shenzhen) Co., Ltd.
F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 126 of 128

Test Report Number: BTF230913R00704

40	120	5775.000	5725 to 5850	Pass
50	120	5775.000	5725 to 5850	Pass

6. Form731

6.1 Form731

6.1.1 Test Result

Lower Freq (MHz)	High Freq (MHz)	MAX Power (W)	MAX Power (dBm)
5180	5240	0.0084	9.22
5745	5825	0.0167	12.23
5190	5230	0.0088	9.46
5755	5795	0.0164	12.16
5210	5210	0.0099	9.97

Test Report Number: BTF230913R00704

BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

www.btf-lab.com

-- END OF REPORT --