

RF Test Report

For

Applicant Name:Xwireless LLCAddress:11565 Old Georgetown Road, Rockville, MD, USAEUT Name:Mobile PhoneBrand Name:N/AModel Number:HD65Series Model Number:Refer to Section 2

Issued By

Company Name: Address:	BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
Report Number:	BTF230413R01504
Test Standards:	47 CFR Part 15E
Test Conclusion:	Pass
FCC ID:	2ADLJ-HD65
Test Date:	2023-04-13 to 2023-04-24
Date of Issue:	2023-04-25
Prepared By:	Elma Kong

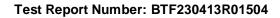
Date:

Approved By:

Date:

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. Page 1 of 119


F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Revision History					
Version	Issue Date	Revisions Content			
R_V0 2023-04-25		Original			

Note: Once the revision has been made, then previous versions reports are invalid.

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 2 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Table of Contents

1	INTR	ODUCTION	. 5
	1.1	Identification of Testing Laboratory	. 5
	1.2	Identification of the Responsible Testing Location	. 5
	1.3	Announcement	. 5
2	PRO	DUCT INFORMATION	. 6
	2.1	Application Information	. 6
	2.2	Manufacturer Information	
	2.3	Factory Information	
	2.4	General Description of Equipment under Test (EUT)	
	2.5	Technical Information	. 6
3	SUMI	MARY OF TEST RESULTS	.7
	3.1	Test Standards	.7
	3.2	Uncertainty of Test	
	3.3	Summary of Test Result	.7
4	TEST	CONFIGURATION	. 8
	4.1	Test Equipment List	
	4.2	Test Auxiliary Equipment	
	4.3	Test Modes	
5	EVAL	UATION RESULTS (EVALUATION)	15
	5.1	Antenna requirement	15
		5.1.1 Conclusion:	15
6	RADI	O SPECTRUM MATTER TEST RESULTS (RF)	16
	6.1	Conducted Emission at AC power line	16
		6.1.1 E.U.T. Operation:	16
		6.1.2 Test Setup Diagram:	
		6.1.3 Test Data:	
	6.2	Duty Cycle	
		6.2.1 E.U.T. Operation:	
		6.2.2 Test Data:	
	6.3	Maximum conducted output power	
		6.3.1 E.U.T. Operation:	
	~ .	6.3.2 Test Data:	
	6.4	Power spectral density	
		6.4.1 E.U.T. Operation:	
	C E	6.4.2 Test Data:	
	6.5	Emission bandwidth and occupied bandwidth	
		6.5.1 E.U.T. Operation:	
	6.6	Band edge emissions (Radiated)	
	0.0	6.6.1 E.U.T. Operation:	
		6.6.2 Test Setup Diagram:	
		6.6.3 Test Data:	
	6.7	Undesirable emission limits (below 1GHz)	31
		6.7.1 E.U.T. Operation:	33
		6.7.2 Test Setup Diagram:	
		6.7.3 Test Data:	
	6.8	Undesirable emission limits (above 1GHz)	37

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 3 of 11 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 3 of 119

	6.8.1	E.U.T. Operation:	38
		Test Data:	
7		P PHOTOS	
8	EUT CONST	RUCTIONAL DETAILS (EUT PHOTOS)	46
		· · · · · · · · · · · · · · · · · · ·	

1 Introduction

1.1 Identification of Testing Laboratory

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.	
Address: F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China		
Phone Number:	+86-0755-23146130	
Fax Number:	+86-0755-23146130	

1.2 Identification of the Responsible Testing Location

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.			
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou			
Address.	Community, Songgang Street, Bao'an District, Shenzhen, China			
Phone Number:	+86-0755-23146130			
Fax Number:	+86-0755-23146130			
FCC Registration Number:	518915			
Designation Number:	CN1330			

1.3 Announcement

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2 **Product Information**

Application Information 2.1

Company Name: Xwireless LLC				
Address:	11565 Old Georgetown Road, Rockville, MD, USA			
2.2 Manufacturer Information				
Company Name:	Xwireless LLC			
Address:	11565 Old Georgetown Road, Rockville, MD, USA			
2.3 Factory Infor	mation			
Company Name:	ZTECH COMMNICATION(SZ) CO LTD			
Address: FL 7 BLOCK D BAO'AN ZHIGU INNOVATION PARK YIN'TIAN ROAD NO.4 XI'XIANG STR' BAO'AN DISTRICT SZ CHINA				
2.4. Concret Description of Equipment under Test (FUT)				

General Description of Equipment under Test (EUT) 2.4

EUT Name:	Mobile Phone		
Test Model Number:	HD65		
Series Model Number:	N/A		

Technical Information 2.5

Power Supply:	DC 3.85V from Battery		
Operation Frequency	802.11a/n(HT20) : U-NII Band 1: 5180MHz to 5240MHz; U-NII Band 2A: 5260MHz to 5320MHz; U-NII Band 3: 5745MHz to 5825MHz;		
Operation Frequency:	802.11n(HT40) : U-NII Band 1: 5190MHz to 5230MHz; U-NII Band 2A: 5270MHz to 5310MHz; U-NII Band 3: 5755MHz to 5795MHz;		
Number of Channels:	802.11a/n(HT20): U-NII Band 1: 4; U-NII Band 2A: 4; U-NII Band 3: 5;		
Number of Channels.	802.11n(HT40): U-NII Band 1: 2; U-NII Band 2A: 2; U-NII Band 3: 2;		
Modulation Type:	802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM); 802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM);		
Antenna Type:	PIFA Antenna		
Antenna Gain:	1.11 dBi		

Summary of Test Results 3

Test Standards 3.1

The tests were performed according to following standards: 47 CFR Part 15E: Unlicensed National Information Infrastructure Devices

the 95% confidence level using a coverage factor of k=2.

3.2 Uncertainty of Test

Item	Measurement Uncertainty			
Conducted Emission (150 kHz-30 MHz)	±2.64dB			
The following measurement uncertainty levels have been estimated for tests performed on the EUT as				
specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately				
the 95% confidence level using a coverage factor of $k=2$				

Item	Standard	Requirement	Result
Antenna requirement	47 CFR Part 15E	Part 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15E	47 CFR Part 15.207(a)	Pass
Maximum conducted output power	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Power spectral density	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Emission bandwidth and occupied bandwidth	47 CFR Part 15E	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. 47 CFR Part 15.407(e)	Pass
Channel Availability Check Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(ii)	Pass
U-NII Detection Bandwidth	47 CFR Part 15E	47 CFR Part 15.407(h)(2)	Pass
Statistical Performance Check	47 CFR Part 15E	KDB 935210 D02, Clause 5.1 Table 2	Pass
Channel Move Time, Channel Closing Transmission Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iii)	Pass
Non-Occupancy Period Test	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iv)	Pass
DFS Detection Thresholds	47 CFR Part 15E	KDB 905462 D02, Clause 5.2 Table 3	Pass
Band edge emissions (Radiated)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass
Undesirable emission limits (below 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(9)	Pass
Undesirable emission limits (above 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass

3.3 Summary of Test Result

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Test Configuration 4

Test Equipment List 4.1

Conducted Emission at AC power line						
Equipment	Cal Date	Cal Due Date				
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	00953	2022-11-24	2023-11-23	
Coaxial Switcher	SCHWARZBECK	CX210	CX210	2022-11-24	2023-11-23	
V-LISN	SCHWARZBECK	NSLK 8127	01073	2022-11-24	2023-11-23	
LISN	AFJ	LS16/110VAC	16010020076	2023-02-23	2024-02-22	
EMI Receiver	ROHDE&SCHWA RZ	ESCI3	101422	2022-11-24	2023-11-23	

Duty Cycle					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Maximum conducted output power								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23			

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 8 of 11 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Power spectral density							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

Emission bandwidth and occupied bandwidth								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23			

Channel Availability Check Time								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 9 of 11 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23					
U-NII Detection Bandwidth										
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date					
RFTest software	/	V1.00	/	/	/					
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23					
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23					
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23					
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23					
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23					
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23					

Statistical Performance Check								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23			

Channel Move Time, Channel Closing Transmission Time								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 10 of 11 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Non-Occupancy Period Test								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23			

DFS Detection Thresholds								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23			

Band edge emissions (Radiated)									
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date				
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23				
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23				
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23				
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23				
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23				

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 11 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

Undesirable emission limits (below 1GHz)							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Coaxial cable Multiflex 141	Schwarzbeck		517386	2023-03-24	2024-03-23		
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23		
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/		
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27		
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23		
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23		
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/		
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23		
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21		
EZ_EMC	Frad	FA-03A2 RE+	/	/	/		
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/		
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27		

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 12 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

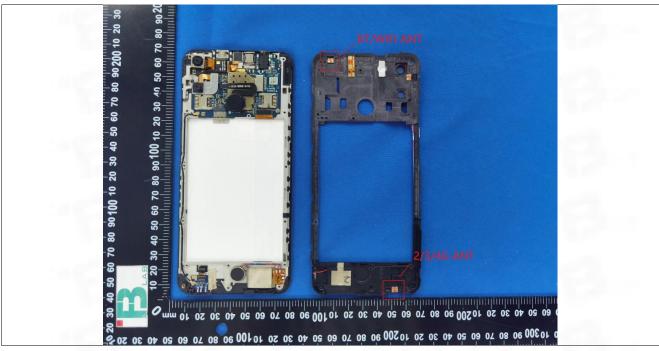
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Coaxial cable Multiflex			•		
141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

4.2 Test Auxiliary Equipment

The EUT was tested as an independent device.

4.3 Test Modes

No.	Test Modes	Description
TM1	802.11a mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
TM2	802.11n mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
TM5	Normal Operating	Keep the EUT works in normal operating mode and connect to companion device


5 Evaluation Results (Evaluation)

5.1 Antenna requirement

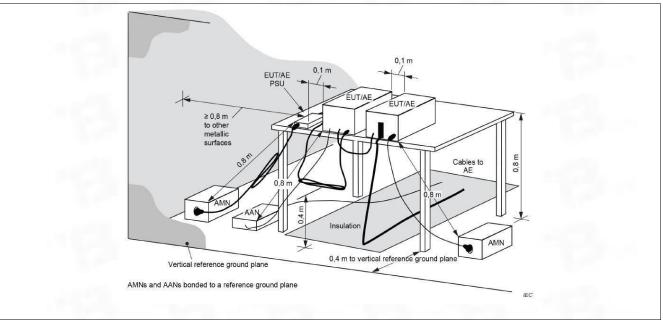
Test Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

5.1.1 Conclusion:

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 15 of 119 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6 Radio Spectrum Matter Test Results (RF)

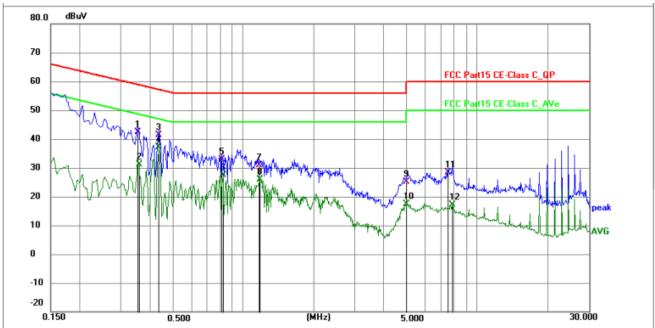

6.1 Conducted Emission at AC power line

Test Requirement:	47 CFR Part 15.207(a)	47 CFR Part 15.207(a)				
Test Method:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices					
	Frequency of emission (MHz)	Conducted limit (dBµV)				
		Quasi-peak	Average			
Toot Limite	0.15-0.5	66 to 56*	56 to 46*			
Test Limit:	0.5-5	56	46			
	5-30	60	50			
	*Decreases with the logarithm of t	he frequency.				

6.1.1 E.U.T. Operation:

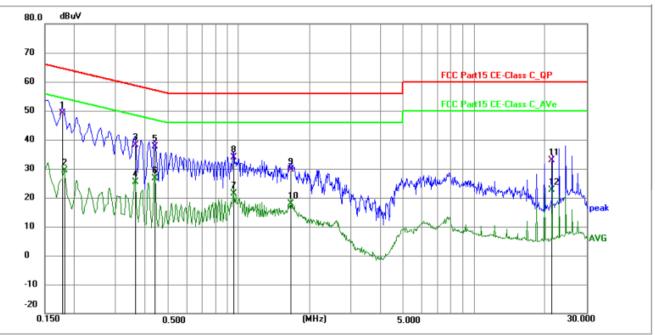
Operating Environment:			
Temperature:	25.5 °C		
Humidity:	50.6 %		
Atmospheric Pressure:	1010 mbar		

6.1.2 Test Setup Diagram:



Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 16 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.1.3 Test Data:


TM1 / Line: Line / Band: U-NII 1 / BW: 20 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.3524	31.66	10.62	42.28	58.91	-16.63	QP	Ρ	
2	0.3570	20.41	10.62	31.03	48.80	-17.77	AVG	Р	
3	0.4334	30.65	10.61	41.26	57.19	-15.93	QP	Ρ	
4 *	0.4334	26.40	10.61	37.01	47.19	-10.18	AVG	Ρ	
5	0.8114	22.18	10.75	32.93	56.00	-23.07	QP	Ρ	
6	0.8205	16.56	10.75	27.31	46.00	-18.69	AVG	Ρ	
7	1.1670	20.23	10.76	30.99	56.00	-25.01	QP	Ρ	
8	1.1760	15.06	10.76	25.82	46.00	-20.18	AVG	Ρ	
9	4.9874	14.58	10.56	25.14	56.00	-30.86	QP	Ρ	
10	4.9874	6.94	10.56	17.50	46.00	-28.50	AVG	Ρ	
11	7.5210	17.49	10.78	28.27	60.00	-31.73	QP	Ρ	
12	7.8135	6.34	10.80	17.14	50.00	-32.86	AVG	Ρ	

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

TM1 / Line: Neutral / Band: U-NII 1 / BW: 20 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1 *	0.1770	38.48	10.57	49.05	64.63	-15.58	QP	Р	
2	0.1814	18.82	10.58	29.40	54.42	-25.02	AVG	Р	
3	0.3614	27.46	10.62	38.08	58.70	-20.62	QP	Р	
4	0.3614	14.69	10.62	25.31	48.70	-23.39	AVG	Р	
5	0.4380	27.06	10.61	37.67	57.10	-19.43	QP	Р	
6	0.4380	16.02	10.61	26.63	47.10	-20.47	AVG	Р	
7	0.9510	10.62	10.77	21.39	46.00	-24.61	AVG	Р	
8	0.9555	23.06	10.77	33.83	56.00	-22.17	QP	Р	
9	1.6665	19.03	10.72	29.75	56.00	-26.25	QP	Р	
10	1.6665	7.25	10.72	17.97	46.00	-28.03	AVG	Р	
11	21.4169	21.86	11.02	32.88	60.00	-27.12	QP	Р	
12	21.4169	11.55	11.02	22.57	50.00	-27.43	AVG	Р	

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 18 of 11 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.2 Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Method:	ANSI C63.10-2013 section 12.2 (b)
Test Limit:	No limits, only for report use.
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

6.2.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.2.2 Test Data:

Please Refer to Appendix for Details.

6.3 Maximum conducted output power

	47 CFR Part 15.407(a)(1)(i)
	47 CFR Part 15.407(a)(1)(ii)
Test Requirement:	47 CFR Part 15.407(a)(1)(iii)
rest Requirement.	47 CFR Part 15.407(a)(1)(iv)
	47 CFR Part 15.407(a)(2)
	47 CFR Part 15.407(a)(3)(i)
Test Method:	ANSI C63.10-2013, section 12.3
	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm). For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Test Limit:	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is
	professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output
	power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

	Factly have a 5 705 5 050 Olds the maximum and lated autout source the
	For the band 5.725-5.850 GHz, the maximum conducted output power over the
	frequency band of operation shall not exceed 1 W.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi.
	However, fixed point-to-point U-NII devices operating in this band may employ
	transmitting antennas with directional gain greater than 6 dBi without any
	corresponding reduction in transmitter conducted power. Fixed, point-to-point
	operations exclude the use of point-to-multipoint systems, omnidirectional
	applications, and multiple collocated transmitters transmitting the same
	information. The operator of the U-NII device, or if the equipment is professionally
	installed, the installer, is responsible for ensuring that systems employing high gain
	directional antennas are used exclusively for fixed, point-to-point operations.
	Method SA-1
	a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.
	b) Set RBW = 1 MHz.
	c) Set VBW >= 3 MHz.
	d) Number of points in sweep >= [2 × span / RBW]. (This gives bin-to-bin spacing
	<= RBW / 2, so
	that narrowband signals are not lost between frequency bins.)
	e) Sweep time = auto.
	f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample
	detector mode.
	g) If transmit duty cycle < 98%, use a video trigger with the trigger level set to
	enable triggering
	only on full power pulses. The transmitter shall operate at maximum power control
	level for the
Procedure:	entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF
	intervals) or
	at duty cycle >= 98%, and if each transmission is entirely at the maximum power
	control level,
	then the trigger shall be set to "free run."
	h) Trace average at least 100 traces in power averaging (rms) mode.
	i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW
	of the signal
	using the instrument's band power measurement function, with band limits set
	equal to the
	EBW or OBW band edges. If the instrument does not have a band power function,
	then sum the
	spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB
	EBW or 99%
	OBW of the spectrum.
631 FUT Operation	

6.3.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.3.2 Test Data:

Please Refer to Appendix for Details.

6.4 Power spectral density

	47 CFR Part 15.407(a)(1)(i)
	47 CFR Part 15.407(a)(1)(ii)
Test Requirement:	47 CFR Part 15.407(a)(1)(iii)
1000 noqui onnoniti	47 CFR Part 15.407(a)(1)(iv)
	47 CFR Part 15.407(a)(2)
	47 CFR Part 15.407(a)(3)(i)
Test Method:	ANSI C63.10-2013, section 12.5
Test Limit:	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.
	Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 22 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

	conducted power.
	Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
Procedure:	 a) Create an average power spectrum for the EUT operating mode being tested by following the instructions in 12.3.2 for measuring maximum conducted output power using a spectrum analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their respective alternatives) and apply it up to, but not including, the step labeled, "Compute power" (This procedure is required even if the maximum conducted output power measurement was performed using the power meter method PM.) b) Use the peak search function on the instrument to find the peak of the spectrum. c) Make the following adjustments to the peak value of the spectrum, if applicable: 1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty cycle, to the peak of the spectrum. 2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7, add 1 dB to the final result to compensate for the difference between linear averaging and power averaging. d) The result is the PPSD. e) The procedure in item a) through item c) requires the use of 1 MHz resolution bandwidth to satisfy the 1 MHz measurement bandwidth specified by some regulatory authorities. This requirement also permits use of resolution bandwidths less than 1 MHz "provided that the measured power is integrated to show the total power over the measurement bandwidth "(i.e., 1 MHz). If measurements are performed using a reduced resolution bandwidth and integrated over 1 MHz bandwidth, the following adjustments to the procedures apply: 1) Set RBW >= 1 / T, where T is defined in 12.2 a). 2) Set VBW >= [3 x RBW]. 3) Care shall be taken such that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

6.4.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.4.2 Test Data:

Please Refer to Appendix for Details.

6.5 Emission bandwidth and occupied bandwidth

	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Requirement:	
•	U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
Test Mathed:	ANSI C63.10-2013, section 6.9.3 & 12.4
Test Method:	KDB 789033 D02, Clause C.2
	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Limit:	
	U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the
	minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
	Emission bandwidth:
	a) Set RBW = approximately 1% of the emission bandwidth.
	b) Set the VBW > RBW.
	c) Detector = peak.
	d) Trace mode = max hold.
	e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission.
	Compare this with the RBW setting of the instrument. Readjust RBW and repeat
	measurement
	as needed until the RBW/EBW ratio is approximately 1%.
	Occupied bandwidth:
	a) The instrument center frequency is set to the nominal EUT channel center
	frequency. The
	frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times
	the OBW.
	b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of
	the OBW,
	and VBW shall be approximately three times the RBW, unless otherwise specified by the
	applicable requirement.
	c) Set the reference level of the instrument as required, keeping the signal from
Procedure:	exceeding the
	maximum input mixer level for linear operation. In general, the peak of the spectral
	envelope
	shall be more than [10 log (OBW/RBW)] below the reference level. Specific
	guidance is given
	in 4.1.5.2.
	d) Step a) through step c) might require iteration to adjust within the specified
	range. e) Video averaging is not permitted. Where practical, a sample detection and single
	sweep mode
	shall be used. Otherwise, peak detection and max hold mode (until the trace
	stabilizes) shall be
	used.
	f) Use the 99% power bandwidth function of the instrument (if available) and report
	the measured
	bandwidth.
	g) If the instrument does not have a 99% power bandwidth function, then the trace
	data points are
	recovered and directly summed in linear power terms. The recovered amplitude
	data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the
	total is reached;
	that frequency is recorded as the lower frequency. The process is repeated until
Total as postial second deather for	
Total or partial reproduction of th BTF Testing Lab (Shenzhen) Co	is document without permission of the Laboratory is not allowed. Page 24 of 119
	Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

99.5% of the
total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is
the difference between these two frequencies.
h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument
display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may
be reported in addition to the plot(s).
6 dB emission bandwidth:
a) Set RBW = 100 kHz.
b) Set the video bandwidth (VBW) ≥ 3 >= RBW.
c) Detector = Peak.
d) Trace mode = max hold.
e) Sweep = auto couple.
f) Allow the trace to stabilize.
g) Measure the maximum width of the emission that is constrained by the
frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.5.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.5.2 Test Data:

Please Refer to Appendix for Details.

6.6 Band edge emissions (Radiated)

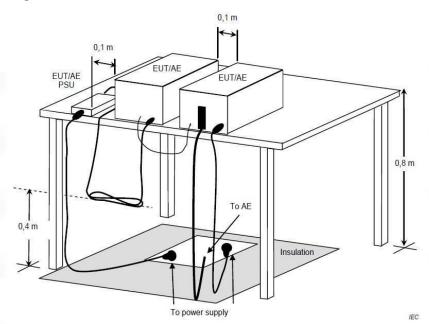
	47 CFR Part 15.407(b)							
Test Requirement:	47 CFR Part 15.407(b)							
·	47 CFR Part 15.407(b)							
	47 CFR Part 15.407(b)							
Test Method:	ANSI C63.10-2013, se			Constant of the second				
	For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the							
	5.15-5.35 GHz band sh	nall not exceed an e.i.r.	p. of −27 dBm/N	1Hz.				
	For transmitters operat							
	5.15-5.35 GHz band sh	nall not exceed an e.i.r.	p. of −27 dBm/N	1Hz.				
	For transmitters operat							
	All emissions shall be l							
	or below the band edge							
	below the band edge, a							
	linearly to a level of 15.							
	from 5 MHz above or b		creasing linearly	to a level of 27				
	dBm/MHz at the band e	•	10 C					
	MHz	MHz	MHz	GHz				
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15				
	¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46				
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75				
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5				
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2				
	4.20725-4.20775	73-74.6	1645.5-1646.	9.3-9.5				
			5					
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7				
	6.26775-6.26825	108-121.94	1718.8-1722.	13.25-13.4				
Test Limit:			2					
	6.31175-6.31225	123-138	2200-2300	14.47-14.5				
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2				
	8.362-8.366	156.52475-156.525	2483.5-2500	17.7-21.4				
	0.07005.0.00075	25		00.04.00.40				
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12				
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0				
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8				
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5				
	12.57675-12.57725	322-335.4	3600-4400	(²)				
	13.36-13.41							
	¹ Until February 1, 1999) this restricted band s	hall ha 0 490-0 F	510 MHz				
			nali be 0.490-0.	510 WII 12.				
	² Above 38.6			and the second sec				
	The field strength of en							
	exceed the limits show							
	MHz, compliance with							
	measurement instrume							
	1000 MHz, compliance							
	based on the average		emissions. The j	provisions in §				
	15.35apply to these measurements.							
	Except as provided elsewhere in this subpart, the emissions from an intentional							

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 26 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China Page 26 of 119

	radiator shall not exceed th	ne field strength levels specified	in the following table:			
	Frequency (MHz)	Field strength	Measurement			
	r requercy (wriz)	(microvolts/meter)	distance			
		(merovolis/meter)				
	0.000.0.400	$2400/\Gamma(kH_{-})$	(meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
	Above 1GHz:		1.1			
	a. For above 1GHz, the EL	JT was placed on the top of a rot	tating table 1.5 meters			
		eter fully-anechoic chamber. The				
		position of the highest radiation.	and the second se			
		ers away from the interference-re	eceiving antenna which			
		a variable-height antenna towe				
		aried from one meter to four met				
		alue of the field strength. Both he				
		a are set to make the measurem				
		ssion, the EUT was arranged to				
		neights from 1 meter to 4 meters				
		na was tuned to heights 1 meter				
		to 360 degrees to find the maxi				
		was set to Peak Detect Function	on and Specified			
	Bandwidth with Maximum					
		e EUT in peak mode was 10dB				
	specified, then testing could be stopped and the peak values of the EUT would be					
	-	nissions that did not have 10dB	•			
	re-tested one by one using	peak or average method as spe	ecified and then reported			
Procedure:	in a data sheet.					
	g. Test the EUT in the lowe	est channel, the middle channel,	the Highest channel.			
	h. The radiation measurem	ents are performed in X, Y, Z ax	is positioning for			
	Transmitting mode, and for	und the X axis positioning which	it is the worst case.			
		s until all frequencies measured				
	Remark:					
	1. Level= Read Level+ Cal	ole Loss+ Antenna Factor- Prea	mp Factor			
		GHz, the disturbance above 180				
	points marked on above pl	ots are the highest emissions co	ould be found when			
		ts had been displayed. The amp				
		r which are attenuated more tha				
	need not be reported.					
		, for frequencies above 1GHz, th	ne field strength limits			
		s. However, the peak field streng				
		permitted average limits specified				
		modulation. For the emissions w				
		the peak measurement is show				
		18GHz were very low and the ha				
		id when testing, so only the abo				
	displayed.	a when testing, so only the abo	ve namonios nau been			
661 EUT Operation:						

6.6.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %


Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 27 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 27 of 119

Atmospheric Pressure: 1010 mbar

6.6.2 Test Setup Diagram:

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 28 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.6.3 Test Data:

UNII-1 & 2A_20M_5180MHz_Horizontal

No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	20100101	• / •
1	5136.422	85.97	-32.27	53.70	68.20	-14.50	peak	Р
2	5150.000	86.57	-32.23	54.34	68.20	-13.86	peak	Р

UNII-1 & 2A_20M_5180MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5135.746	86.09	-32.16	53.93	68.20	-14.27	peak	Р
2	5150.000	86.69	-32.12	54.57	68.20	-13.63	peak	Р

UNII-1 & 2A_20M_5320MHz_Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5350.000	88.56	-32.05	56.51	68.20	-11.69	peak	Р
2	5460.000	85.93	-32.01	53.92	68.20	-14.28	peak	Р

UNII-1 & 2A_20M_5320MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5350.000	88.90	-31.87	57.03	68.20	-11.17	peak	Р
2	5460.000	86.27	-31.83	54.44	68.20	-13.76	peak	Р

UNII-3_20M_5745MHz_Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5650.000	88.90	-31.87	57.03	68.20	-11.17	peak	Р
2	5700.000	95.84	-31.98	63.86	105.60	-41.74	peak	Р
3	5720.000	96.74	-32.04	64.7	110.8	-46.1	peak	Р

UNII-3_20M_5745MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5650.000	88.83	-31.58	57.25	68.20	-10.95	peak	Р
2	5700.000	95.77	-31.69	64.08	105.60	-41.52	peak	Р
3	5720.000	96.67	-31.75	64.92	110.8	-45.88	peak	Р

UNII-3_20M_5825MHz_Horizontal

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5850.000	88.93	-31.84	57.09	122.20	-65.11	peak	Р
2	5875.000	95.87	-31.95	63.92	110.80	-46.88	peak	Р
3	5925.000	96.77	-32.01	64.76	68.20	-3.44	peak	Р

UNII-3_20M_5825MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5850.000	89.25	-31.78	57.47	122.20	-64.73	peak	Р
2	5875.000	96.19	-31.89	64.30	110.80	-46.50	peak	Р
3	5925.000	97.09	-31.95	65.14	68.20	-3.06	peak	Р

UNII-1 & 2A_40M_5190MHz_Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5134.322	84.02	-31.73	52.29	68.20	-15.91	peak	Р
2	5150.000	84.62	-31.69	52.93	68.20	-15.27	peak	Р

UNII-1 & 2A_40M_5190MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5135.422	86.17	-31.84	54.33	68.20	-13.87	peak	Р
2	5150.000	86.77	-31.80	54.97	68.20	-13.23	peak	Р

UNII-1 & 2A 40M 5310MHz Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5350.000	88.19	-31.74	56.45	68.20	-11.75	peak	Р
2	5460.000	85.56	-31.70	53.86	68.20	-14.34	peak	Р

UNII-1 & 2A_40M_5310MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5350.000	87.19	-31.84	55.35	68.20	-12.85	peak	Р
2	5460.000	84.56	-31.80	52.76	68.20	-15.44	peak	Р

UNII-3_40M_5755MHz_Horizontal

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5650.000	87.84	-31.45	56.39	68.20	-11.81	peak	Р
2	5700.000	94.78	-31.56	63.22	105.60	-42.38	peak	Р
3	5720.000	95.68	-31.62	64.06	110.8	-46.74	peak	Р

UNII-3_40M_5755MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5650.000	88.93	-31.44	57.49	68.20	-10.71	peak	Р
2	5700.000	95.87	-31.55	64.32	105.60	-41.28	peak	Р
3	5720.000	96.77	-31.61	65.16	110.8	-45.64	peak	Р

UNII-3_40M_5795MHz_Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5850.000	88.20	-31.55	56.65	122.20	-65.55	peak	Р
2	5875.000	95.14	-31.66	63.48	110.80	-47.32	peak	Р
3	5925.000	96.04	-31.72	64.32	68.20	-3.88	peak	Р

UNII-3_40M_5795MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5850.000	87.50	-31.64	55.86	122.20	-66.34	peak	Р
2	5875.000	94.44	-31.75	62.69	110.80	-48.11	peak	Р
3	5925.000	95.34	-31.81	63.53	68.20	-4.67	peak	Р

6.7 Undesirable emission limits (below 1GHz)

Test Requirement: 47 CFR Part 15.407(b)(9)

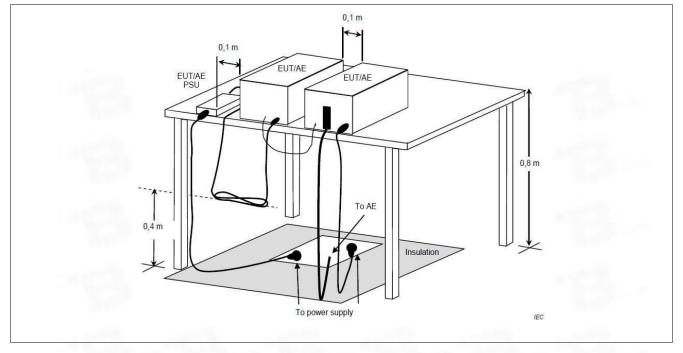
Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Page 31 of 119

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Test Method:	ANSI C63.10-2013, sectior	1274 1275 1276					
	Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209.						
Test Limit:		ere in this subpart, the emis ne field strength levels specif Field strength (microvolts/meter) 2400/F(kHz) 24000/F(kHz) 30 100 ** 150 ** 200 **					
Procedure:	Below 1GHz: a. For below 1GHz, the EU above the ground at a 3 m degrees to determine the p b. The EUT was set 3 or 10 which was mounted on the c. The antenna height is va determine the maximum va polarizations of the antenn d. For each suspected emi the antenna was tuned to h of below 30MHz, the anten was turned from 0 degrees e. The test-receiver system Bandwidth with Maximum I f. If the emission level of th specified, then testing coul reported. Otherwise the em re-tested one by one using data sheet. g. Test the EUT in the lowe h. The radiation measurem Transmitting mode, and fou i. Repeat above procedure Remark: 1. Level= Read Level+ Cat 2. Scan from 9kHz to 30MH points marked on above plutesting, so only above poin emissions from the radiato need not be reported. 3. The disturbance below 1 point could be found when displayed. Above 1GHz: a. For above 1GHz, the EU above the ground at a 3 m	IT was placed on the top of a eter semi-anechoic chamber position of the highest radiation of the highest radiation of a variable-height anter aried from one meter to four the alue of the field strength. Bot a are set to make the measu ssion, the EUT was arranged heights from 1 meter to 4 me na was tuned to heights 1 m to 360 degrees to find the n m was set to Peak Detect Fur	 The table was rotated 360 on. ference-receiving antenna, enna tower. meters above the ground to the horizontal and vertical urement. d to its worst case and then eters (for the test frequency eter) and the rotatable table naximum reading. nction and Specified DdB lower than the limit values of the EUT would be dB margin would be stified and then reported in a nel, the Highest channel. Z axis positioning for nich it is the worst case. ured was complete. reamp Factor DMHz was very low. The s could be found when amplitude of spurious than 20dB below the limit armonics were the highest armonics had been 				

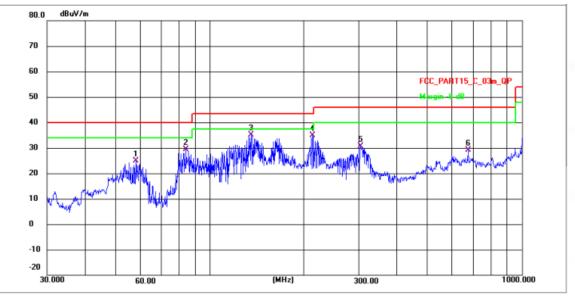
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 32 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China


 b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified
Bandwidth with Maximum Hold Mode.
f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
g. Test the EUT in the lowest channel, the middle channel, the Highest channel. h. The radiation measurements are performed in X, Y, Z axis positioning for
Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete. Remark:
1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report. 4. The disturbance above 18GHz were very low and the harmonics were the
highest point could be found when testing, so only the above harmonics had been displayed.

6.7.1 E.U.T. Operation:

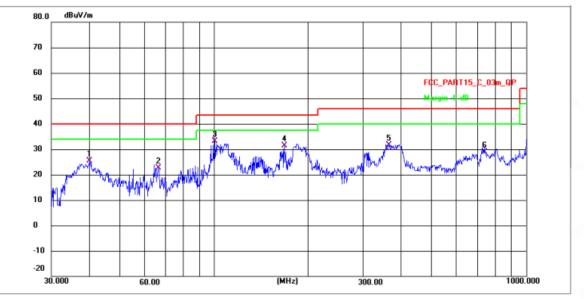
Operating Environment:						
Temperature:	25.5 °C					
Humidity:	50.6 %					
Atmospheric Pressure:	1010 mbar					

6.7.2 Test Setup Diagram:



Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 34 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.7.3 Test Data:


Note: All the mode have been tested, and only the worst case mode are in the report TM1 / Polarization: Horizontal / Band: U-NII 1 / BW: 20 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	57.9993	42.99	-18.20	24.79	40.00	-15.21	QP	Р
2	83.9627	60.29	-30.87	29.42	40.00	-10.58	QP	Р
3 *	135.7440	63.04	-27.91	35.13	43.50	-8.37	QP	Р
4	213.7634	61.57	-26.73	34.84	43.50	-8.66	QP	Р
5	304.0764	55.99	-25.40	30.59	46.00	-15.41	QP	Р
6	674.0252	52.38	-23.13	29.25	46.00	-16.75	QP	Р

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 35 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

TM1 / Polarization: Vertical / Band: U-NII 1 / BW: 20 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	39.8542	45.80	-20.53	25.27	40.00	-14.73	QP	Р
2	66.3825	42.68	-20.05	22.63	40.00	-17.37	QP	Р
3 *	100.7571	61.45	-28.22	33.23	43.50	-10.27	QP	Р
4	168.1188	58.98	-27.61	31.37	43.50	-12.13	QP	Р
5	364.2595	56.47	-24.92	31.55	46.00	-14.45	QP	Р
6	738.3648	52.62	-23.85	28.77	46.00	-17.23	QP	Р

6.8 Undesirable emission limits (above 1GHz)

		•						
	47 CFR Part 15.407(b)							
Toot Doquiromont:	47 CFR Part 15.407(b))(2)						
Test Requirement:	47 CFR Part 15.407(b)	(4)						
	47 CFR Part 15.407(b)							
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6							
	For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the							
		hall not exceed an e.i.r.						
	For transmitters operat							
		hall not exceed an e.i.r.						
	For transmitters operat	ting solely in the 5 725-	5 850 GHz band	4.				
	All emissions shall be l							
		e increasing linearly to						
		and from 25 MHz above						
		.6 dBm/MHz at 5 MHz						
	from 5 MHz above or b							
	dBm/MHz at the band							
	MHz	MHz	MHz	GHz				
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15				
	¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46				
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75				
	4.125-4.128	25.5-25.67	1300-1427					
	4.125-4.120	37.5-38.25	1435-1626.5	9.0-9.2				
	4.17725-4.17775	73-74.6	1645.5-1646.	9.3-9.5				
	4.20723-4.20775	75-74.0	1045.5-1040. 5	9.3-9.5				
	6.215-6.218	74.8-75.2	5 1660-1710	10.6-12.7				
	6.26775-6.26825	108-121.94	1718.8-1722.	13.25-13.4				
	0.20775-0.20825	108-121.94	2	13.20-13.4				
	6.31175-6.31225	123-138	2200-2300	14.47-14.5				
Test Limit:	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2				
	8.362-8.366	156.52475-156.525	2483.5-2500	17.7-21.4				
	0.302-0.300	25	2463.5-2500	17.7-21.4				
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12				
	8.41425-8.41475	162.0125-167.17 167.72-173.2	3260-3267	23.6-24.0				
	12.29-12.293 12.51975-12.52025		3332-3339	31.2-31.8 36.43-36.5				
			3345.8-3358					
	12.57675-12.57725	322-335.4	3600-4400	(²)				
	13.36-13.41							
	¹ Uptil February 1, 1000	this restricted hand a						
	¹ Until February 1, 1999 ² Above 38.6	a, this restricted band si	nali be 0.490-0.3					
	Above 36.6							
	The field strength of en	missions appoaring with	in these frequer	ov bande shall not				
	exceed the limits show							
		the limits in § 15.209sh						
		entation employing a CI						
		e with the emission limit						
		value of the measured	cillissions. Ine	01011210121118				
	15.35apply to these me	easurements.						
	Except as provided als	ewhere in this subpart,	the emissions fr	rom an intentional				
		ed the field strength lev						
			•	-				
	Frequency (MHz)	Field strength		Measurement				

Test Report Number: BTF230413R01504

		(microvolts/meter)	distance
			(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	
		150 **	3
	88-216		3
	216-960	200 **	3
	Above 960	500	3
Procedure:	above the ground at a 3 me degrees to determine the p b. The EUT was set 3 meter was mounted on the top of c. The antenna height is var determine the maximum var polarizations of the antenna d. For each suspected emist the antenna was tuned to h of below 30MHz, the antenna was turned from 0 degrees e. The test-receiver system Bandwidth with Maximum H f. If the emission level of the specified, then testing could reported. Otherwise the emistion level of the specified, then testing could reported. Otherwise the emistion a data sheet. g. Test the EUT in the lower h. The radiation measurem Transmitting mode, and fou i. Repeat above procedures Remark: 1. Level= Read Level+ Cab 2. Scan from 18GHz to 400 points marked on above plot testing, so only above point emissions from the radiator need not be reported. 3. As shown in this section, are based on average limits not exceed the maximum p dB under any condition of m than the average limit, only 4. The disturbance above 1	T was placed on the top of a rotate atter fully-anechoic chamber. The osition of the highest radiation. Its away from the interference-re- a variable-height antenna tower. ried from one meter to four mete- lue of the field strength. Both ho a are set to make the measurem assion, the EUT was arranged to in- eights from 1 meter to 4 meters ha was tuned to heights 1 meter) to 360 degrees to find the maxin was set to Peak Detect Function hold Mode. the EUT in peak mode was 10dB in d be stopped and the peak value issions that did not have 10dB in peak or average method as spec- st channel, the middle channel, the ents are performed in X, Y, Z axi- and the X axis positioning which is a until all frequencies measured be stopped. The ampli- out and been displayed. The ampli- which are attenuated more than for frequencies above 1GHz, the s. However, the peak field streng- ermitted average limits specified nodulation. For the emissions where the peak measurement is shown 8GHz were very low and the hand d when testing, so only the above	table was rotated 360 eceiving antenna, which ers above the ground to rizontal and vertical ent. its worst case and then (for the test frequency and the rotatable table num reading. n and Specified ower than the limit es of the EUT would be cified and then reported the Highest channel. s positioning for it is the worst case. was complete. hp Factor Hz was very low. The uld be found when litude of spurious n 20dB below the limit e field strength limits th of any emission shall above by more than 20 nose peak level is lower n in the report. rmonics were the

6.8.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 38 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Test Report Number: BTF230413R01504

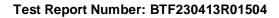
6.8.2 Test Data:

			UNII-1 & 2A	_20M_5180N	/Hz_Horizont	al		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4476.551	78.20	-28.81	49.39	68.20	-18.81	peak	Р
2	6453.851	79.94	-29.32	50.62	68.20	-17.58	peak	Р
3	9068.931	81.60	-29.54	52.06	68.20	-16.14	peak	Р
4	10049.201	82.90	-30.32	52.58	68.20	-15.62	peak	Р
5	12351.092	83.61	-30.81	52.80	68.20	-15.40	peak	Р
6	16009.703	84.46	-33.20	51.26	68.20	-16.94	peak	Р

UNII-1 & 2A_20M_5180MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4474.445	78.31	-28.70	49.61	68.20	-18.59	peak	Р
2	6451.745	80.05	-29.21	50.84	68.20	-17.36	peak	Р
3	9066.825	81.71	-29.43	52.28	68.20	-15.92	peak	Р
4	10047.095	83.01	-30.21	52.80	68.20	-15.40	peak	Р
5	12348.986	83.72	-30.70	53.02	68.20	-15.18	peak	Р
6	16007.597	84.57	-33.09	51.48	68.20	-16.72	peak	Р

UNII-1 & 2A_20M_5240MHz_Horizontal


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3464.545	79.06	-28.53	50.53	68.20	-17.67	peak	Р
2	5441.845	80.80	-29.04	51.76	68.20	-16.44	peak	Р
3	8056.925	82.46	-29.26	53.20	68.20	-15.00	peak	Р
4	9037.195	83.76	-30.04	53.72	68.20	-14.48	peak	Р
5	11339.086	84.47	-30.53	53.94	68.20	-14.26	peak	Р
6	14997.697	85.32	-32.92	52.40	68.20	-15.80	peak	Р

UNII-1 & 2A_20M_5240MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3576.665	78.36	-27.63	50.73	68.20	-17.47	peak	Р
2	5553.965	80.10	-28.14	51.96	68.20	-16.24	peak	Р
3	8169.045	81.76	-28.36	53.40	68.20	-14.80	peak	Р
4	9149.315	83.06	-29.14	53.92	68.20	-14.28	peak	Р
5	11451.206	83.77	-29.63	54.14	68.20	-14.06	peak	Р
6	15109.817	84.62	-32.02	52.60	68.20	-15.60	peak	Р

Total or partial reproduction of this document without permission of the Laboratory is not allowed.

BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3467.544	79.08	-28.01	51.07	68.20	-17.13	peak	Р
2	5444.844	80.82	-28.52	52.30	68.20	-15.90	peak	Р
3	8059.924	82.48	-28.74	53.74	68.20	-14.46	peak	Р
4	9040.194	83.78	-29.52	54.26	68.20	-13.94	peak	Р
5	11342.085	84.49	-30.01	54.48	68.20	-13.72	peak	Р
6	15000.696	85.34	-32.40	52.94	68.20	-15.26	peak	Р

UNII-1 & 2A 20M 5320MHz Horizontal

UNII-1 & 2A_20M_5320MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3414.550	79.17	-28.93	50.24	68.20	-17.96	peak	Р
2	5391.850	80.91	-29.44	51.47	68.20	-16.73	peak	Р
3	8006.930	82.57	-29.66	52.91	68.20	-15.29	peak	Р
4	8987.200	83.87	-30.44	53.43	68.20	-14.77	peak	Р
5	11289.091	84.58	-30.93	53.65	68.20	-14.55	peak	Р
6	14947.702	85.43	-33.32	52.11	68.20	-16.09	peak	Р

UNII-3_20M_5745MHz_Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3510.445	78.06	-28.16	49.90	68.20	-18.30	peak	Р
2	5487.745	79.80	-28.67	51.13	68.20	-17.07	peak	Р
3	8102.825	81.46	-28.89	52.57	68.20	-15.63	peak	Р
4	9083.095	82.76	-29.67	53.09	68.20	-15.11	peak	Р
5	11384.986	83.47	-30.16	53.31	68.20	-14.89	peak	Р

UNII-3_20M_5745MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3513.541	78.60	-28.03	50.57	68.20	-17.63	peak	Р
2	5490.841	80.34	-28.54	51.80	68.20	-16.40	peak	Р
3	8105.921	82.00	-28.76	53.24	68.20	-14.96	peak	Р
4	9086.191	83.30	-29.54	53.76	68.20	-14.44	peak	Р
5	11388.082	84.01	-30.03	53.98	68.20	-14.22	peak	Р
6	15046.693	84.86	-32.42	52.44	68.20	-15.76	peak	Р

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

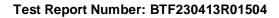
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4001.514	77.95	-28.00	49.95	68.20	-18.25	peak	Р
2	5978.814	79.69	-28.51	51.18	68.20	-17.02	peak	Р
3	8593.894	81.35	-28.73	52.62	68.20	-15.58	peak	Р
4	9574.164	82.65	-29.51	53.14	68.20	-15.06	peak	Р
5	11876.055	83.36	-30.00	53.36	68.20	-14.84	peak	Р
6	15534.666	84.21	-32.39	51.82	68.20	-16.38	peak	Р

LINII-3 20M 5785MHz Horizontal

UNII-3_20M_5785MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4005.547	78.63	-27.49	51.14	68.20	-17.06	peak	Р
2	5982.847	80.37	-28.00	52.37	68.20	-15.83	peak	Р
3	8597.927	82.03	-28.22	53.81	68.20	-14.39	peak	Р
4	9578.197	83.33	-29.00	54.33	68.20	-13.87	peak	Р
5	11880.088	84.04	-29.49	54.55	68.20	-13.65	peak	Р
6	15538.699	84.89	-31.88	53.01	68.20	-15.19	peak	Р

UNII-3_20M_5825MHz_Horizontal


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4011.514	78.62	-27.59	51.03	68.20	-17.17	peak	Р
2	5988.814	80.36	-28.10	52.26	68.20	-15.94	peak	Р
3	8603.894	82.02	-28.32	53.70	68.20	-14.50	peak	Р
4	9584.164	83.32	-29.10	54.22	68.20	-13.98	peak	Р
5	11886.055	84.03	-29.59	54.44	68.20	-13.76	peak	Р
6	15544.666	84.88	-31.98	52.90	68.20	-15.30	peak	Р

UNII-3_20M_5825MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4152.541	79.13	-27.19	51.94	68.20	-16.26	peak	Р
2	6129.841	80.87	-27.70	53.17	68.20	-15.03	peak	Р
3	8744.921	82.53	-27.92	54.61	68.20	-13.59	peak	Р
4	9725.191	83.83	-28.70	55.13	68.20	-13.07	peak	Р
5	12027.082	84.54	-29.19	55.35	68.20	-12.85	peak	Р
6	15685.693	85.39	-31.58	53.81	68.20	-14.39	peak	Р

Total or partial reproduction of this document without permission of the Laboratory is not allowed.

BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4667.548	79.64	-28.02	51.62	68.20	-16.58	peak	Р
2	6644.848	81.38	-28.53	52.85	68.20	-15.35	peak	Р
3	9259.928	83.04	-28.75	54.29	68.20	-13.91	peak	Р
4	10240.198	84.34	-29.53	54.81	68.20	-13.39	peak	Р
5	12542.089	85.05	-30.02	55.03	68.20	-13.17	peak	Р
6	16200.700	85.90	-32.41	53.49	68.20	-14.71	peak	Р

UNII-1 & 2A 40M 5190MHz Horizontal

UNII-1 & 2A_40M_5190MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4303.454	78.95	-28.92	50.03	68.20	-18.17	peak	Р
2	6280.754	80.69	-29.43	51.26	68.20	-16.94	peak	Р
3	8895.834	82.35	-29.65	52.70	68.20	-15.50	peak	Р
4	9876.104	83.65	-30.43	53.22	68.20	-14.98	peak	Р
5	12177.995	84.36	-30.92	53.44	68.20	-14.76	peak	Р
6	15836.606	85.21	-33.31	51.90	68.20	-16.30	peak	Р

UNII-1 & 2A 40M 5310MHz Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4667.514	78.39	-28.06	50.33	68.20	-17.87	peak	Р
2	6644.814	80.13	-28.57	51.56	68.20	-16.64	peak	Р
3	9259.894	81.79	-28.79	53.00	68.20	-15.20	peak	Р
4	10240.164	83.09	-29.57	53.52	68.20	-14.68	peak	Р
5	12542.055	83.80	-30.06	53.74	68.20	-14.46	peak	Р
6	16200.666	84.65	-32.45	52.20	68.20	-16.00	peak	Р

UNII-1 & 2A_40M_5310MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3354.545	78.52	-28.12	50.40	68.20	-17.80	peak	Р
2	5331.845	80.26	-28.63	51.63	68.20	-16.57	peak	Р
3	7946.925	81.92	-28.85	53.07	68.20	-15.13	peak	Р
4	8927.195	83.22	-29.63	53.59	68.20	-14.61	peak	Р
5	11229.086	83.93	-30.12	53.81	68.20	-14.39	peak	Р
6	14887.697	84.78	-32.51	52.27	68.20	-15.93	peak	Р

Total or partial reproduction of this document without permission of the Laboratory is not allowed.

BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Test Report Number: BTF230413R01504

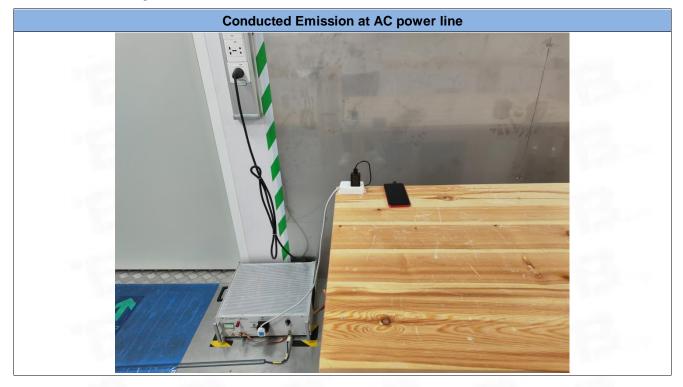
No.	Frequency (MHz)			Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	
1	2909.532	74.17	-30.99	43.18	68.20	-25.02	peak	Р	
2	4010.130	74.65	-31.60	43.05	68.20	-25.15	peak	Р	
3	6285.695	77.87	-31.81	46.06	68.20	-22.14	peak	Р	
4	9585.684	82.75	-33.09	49.66	68.20	-18.54	peak	Р	
5	11467.005	83.52	-34.66	48.86	68.20	-19.34	peak	Р	
6 *	17013.540	81.16	-31.29	49.87	68.20	-18.33	peak	Р	

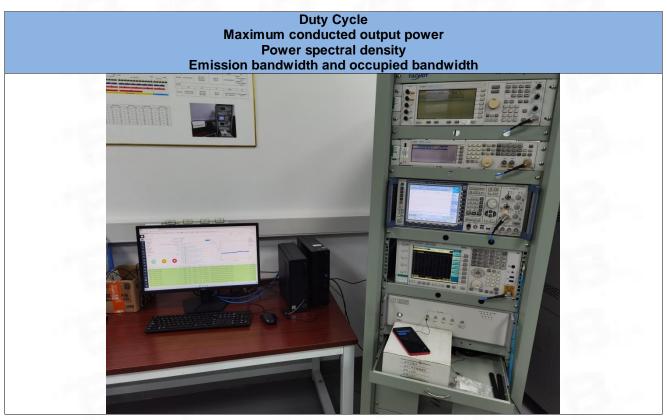
40M 5755MHz Horizontal LINIL 2

	1.00	100 million	UNII-3_4	0M_5755MH	z_Vertical			
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3663.544	78.83	-27.31	51.52	68.20	-16.68	peak	Р
2	5640.844	80.57	-27.82	52.75	68.20	-15.45	peak	Р
3	8255.924	82.23	-28.04	54.19	68.20	-14.01	peak	Р
4	9236.194	83.53	-28.82	54.71	68.20	-13.49	peak	Р
5	11538.085	84.24	-29.31	54.93	68.20	-13.27	peak	Р
6	15196.696	85.09	-31.70	53.39	68.20	-14.81	peak	Р

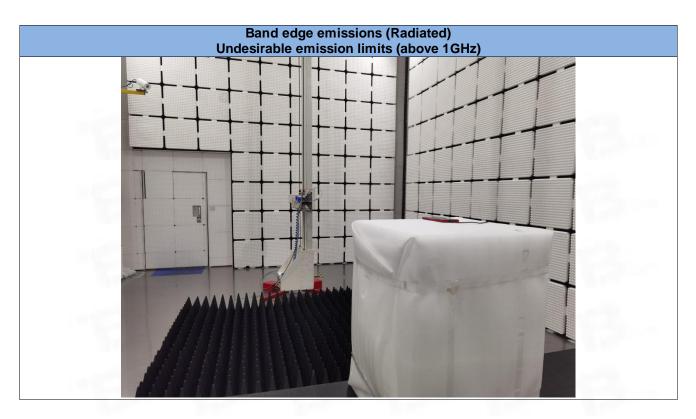
UNII-3_40M_5795MHz_Horizontal

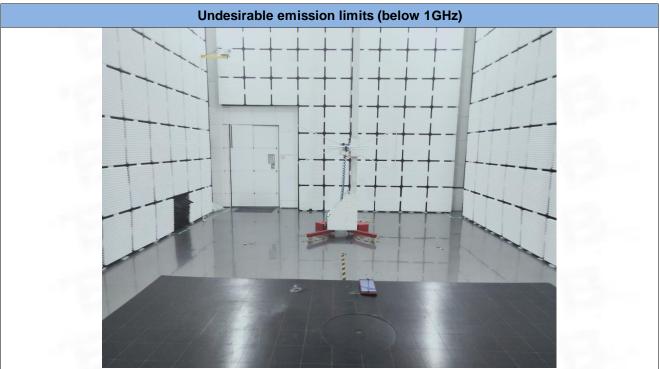
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3613.554	78.52	-28.16	50.36	68.20	-17.84	peak	Р
2	5590.854	80.26	-28.67	51.59	68.20	-16.61	peak	Р
3	8205.934	81.92	-28.89	53.03	68.20	-15.17	peak	Р
4	9186.204	83.22	-29.67	53.55	68.20	-14.65	peak	Р
5	11488.095	83.93	-30.16	53.77	68.20	-14.43	peak	Р
6	15146.706	84.78	-32.55	52.23	68.20	-15.97	peak	Р


UNII-3_40M_5795MHz_Vertical


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3414.551	78.04	-28.13	49.91	68.20	-18.29	peak	Р
2	5391.851	79.78	-28.64	51.14	68.20	-17.06	peak	Р
3	8006.931	81.44	-28.86	52.58	68.20	-15.62	peak	Р
4	8987.201	82.74	-29.64	53.10	68.20	-15.10	peak	Р
5	11289.092	83.45	-30.13	53.32	68.20	-14.88	peak	Р
6	14947.703	84.30	-32.52	51.78	68.20	-16.42	peak	Р

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 43 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China


7 Test Setup Photos



Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 44 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 45 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Test Report Number: BTF230413R01504

8 EUT Constructional Details (EUT Photos)

Please refer to the report No.BTF230413R01501

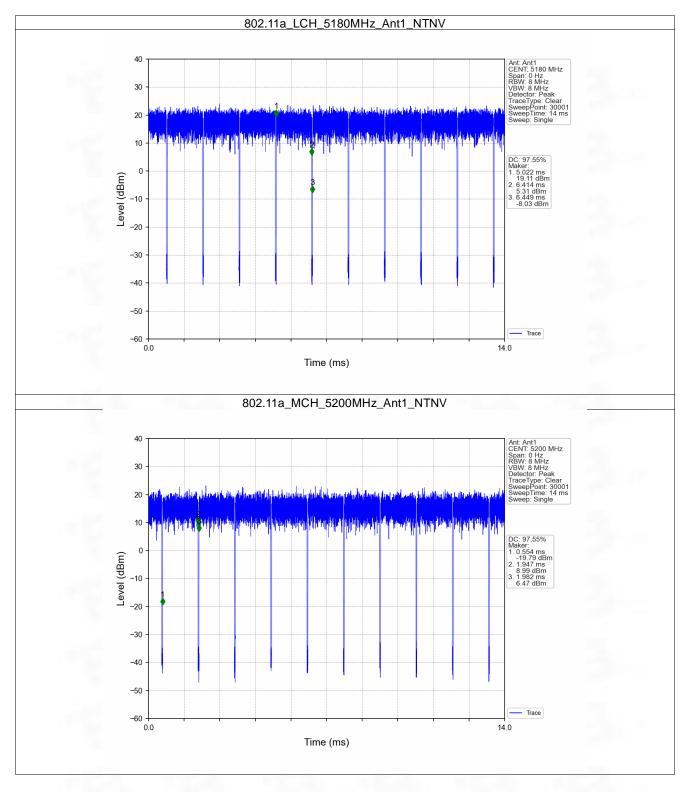
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 46 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Test Report Number: BTF230413R01504

Appendix

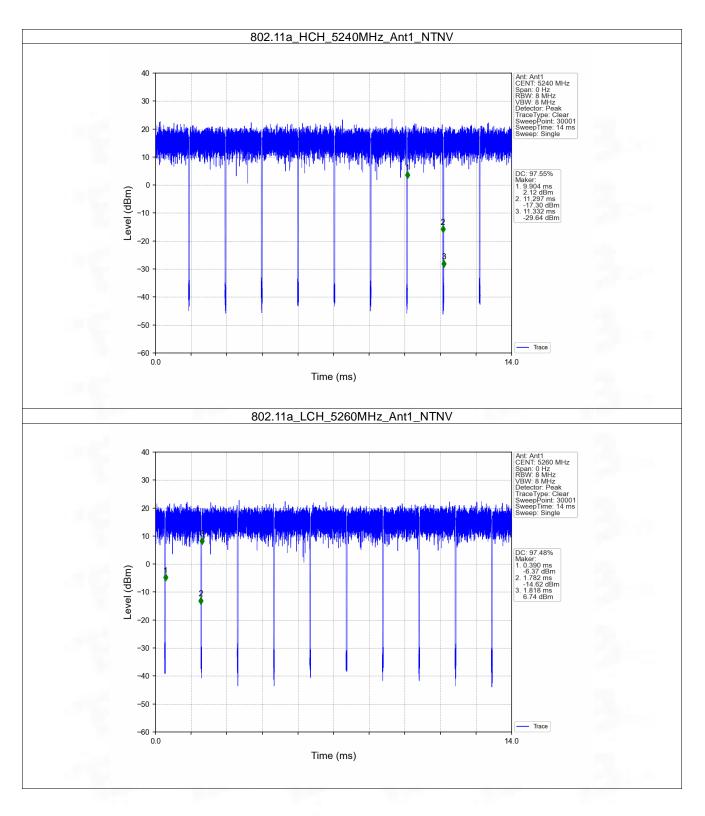
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 47 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

1. Duty Cycle

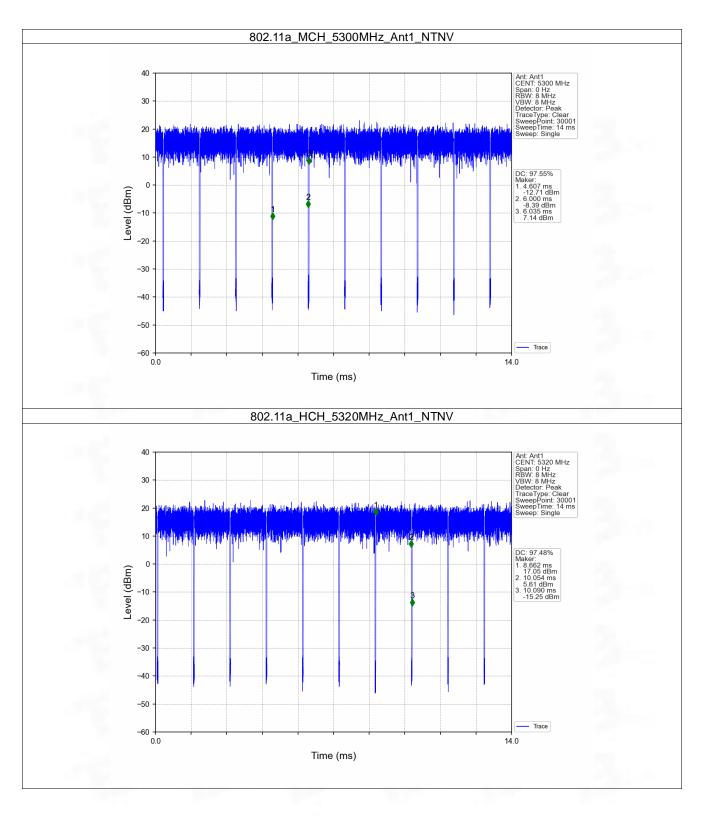

1.1 Ant1

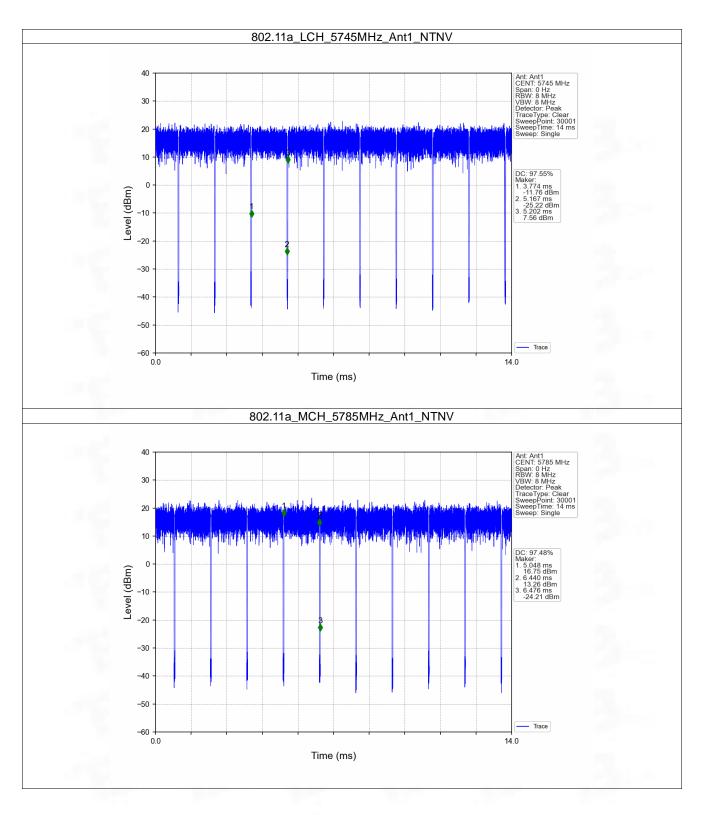
1.1.1 Test Result

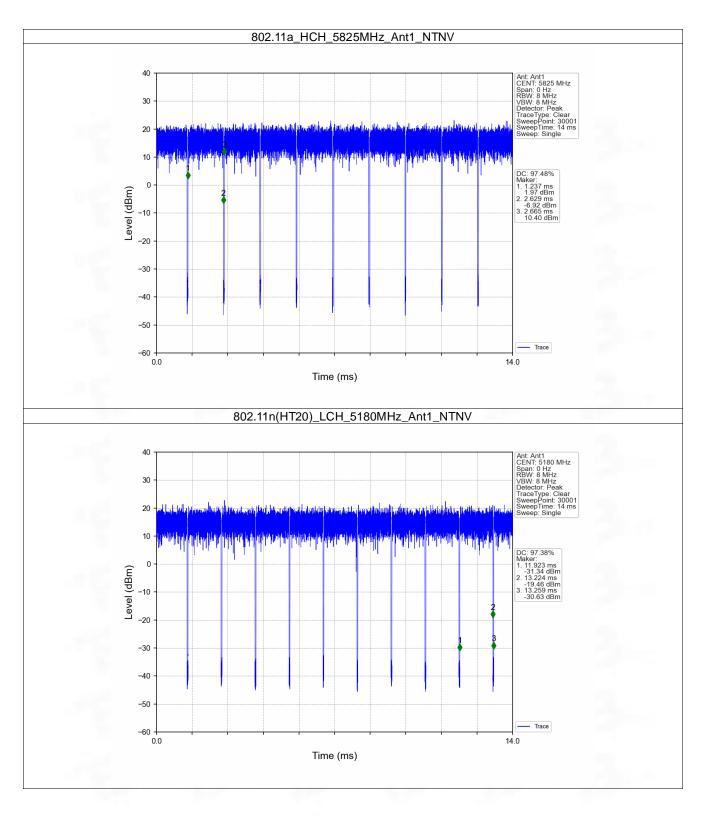
					Ant1		
Mode	ТХ Туре	Frequency (MHz)	T_on (ms)	Period (ms)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	Max. DC Variation (%)
		5180	1.392	1.427	97.55	0.11	0.03
		5200	1.393	1.428	97.55	0.11	0.03
		5240	1.393	1.428	97.55	0.11	0.03
		5260	1.392	1.428	97.48	0.11	0.03
802.11a	SISO	5300	1.393	1.428	97.55	0.11	h Factor (dB) Variation (%) 0.11 0.03 0.11 0.03 0.11 0.03 0.11 0.03 0.11 0.03 0.11 0.03 0.11 0.03 0.11 0.03 0.11 0.03 0.11 0.03 0.11 0.03 0.11 0.03 0.11 0.03 0.11 0.03 0.12 0.07 0.12 0.00 0.12 0.03 0.12 0.03 0.12 0.03 0.12 0.03 0.12 0.03 0.12 0.03 0.12 0.03 0.12 0.03 0.12 0.03 0.12 0.03 0.12 0.03 0.23 0.03 0.23 0.03
		5320	1.392	1.428	97.48	0.11	0.07
		5745	1.393	1.428	97.55	0.11	0.03
		5785	1.392	1.428	97.48	0.11	0.03
		5825	1.392	1.428	97.48	0.11	0.03
		5180	1.301	1.336	97.38	0.12	0.07
		5200	1.301	1.336	97.38	0.12	0.00
		5240	1.301	1.336	97.38	0.12	0.10
802.11n		5260	1.300	1.335	97.38	0.12	0.03
(HT20)	SISO	5300	1.301	1.337	97.31	0.12	0.07
(1120)	1.00	5320	1.300	1.335	97.38	0.12	0.03
		5745	1.300	1.335	97.38	0.12	0.07
		5785	1.300	1.335	97.38	0.12	0.03
		5825	1.300	1.335	97.38	0.12	0.03
	1.00	5190	0.649	0.683	95.02	0.22	0.07
		5230	0.648	0.683	94.88	0.23	0.03
802.11n	SISO	5270	0.648	0.683	94.88	0.23	0.00
(HT40)	3130	5310	0.648	0.683	94.88	0.23	0.03
		5755	0.648	0.683	94.88	0.23	0.03
		5795	0.649	0.683	95.02	0.22	0.00

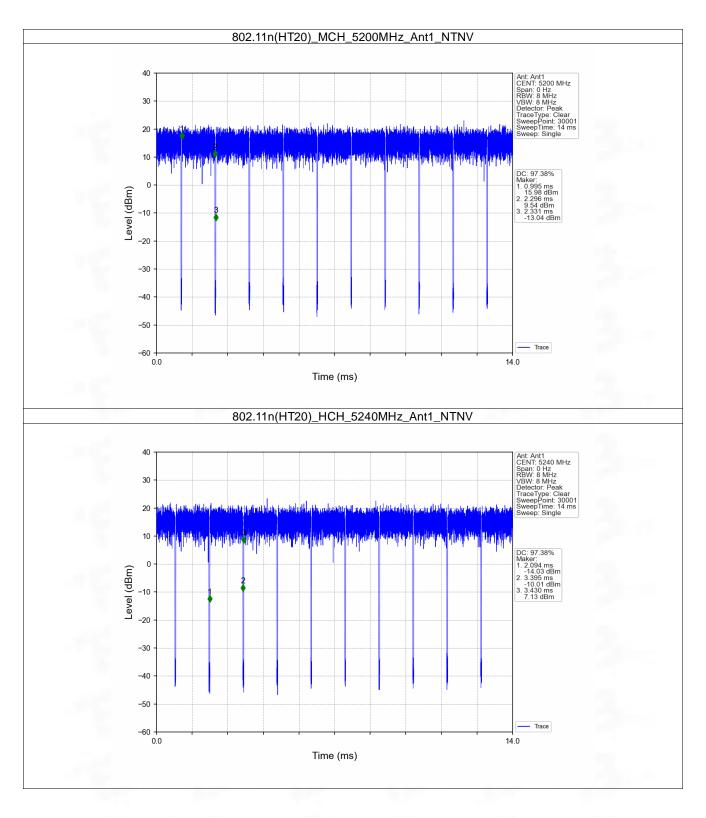


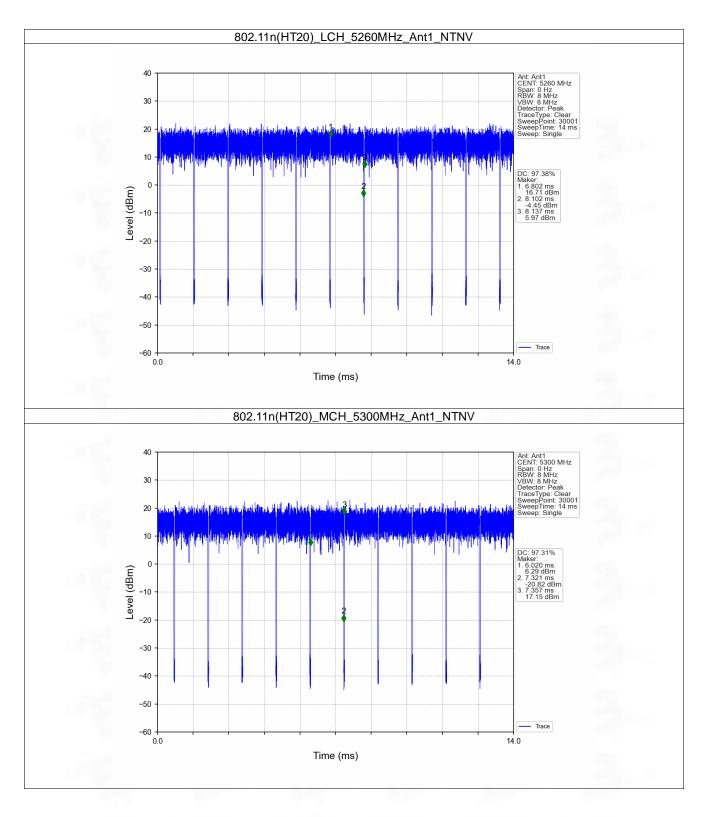
1.1.2 Test Graph

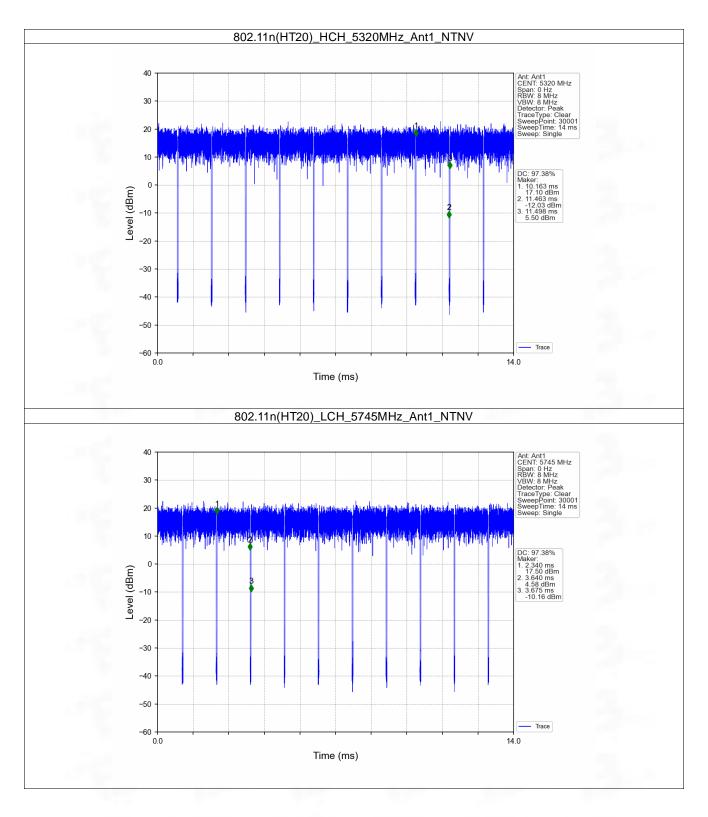

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 49 of 119 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

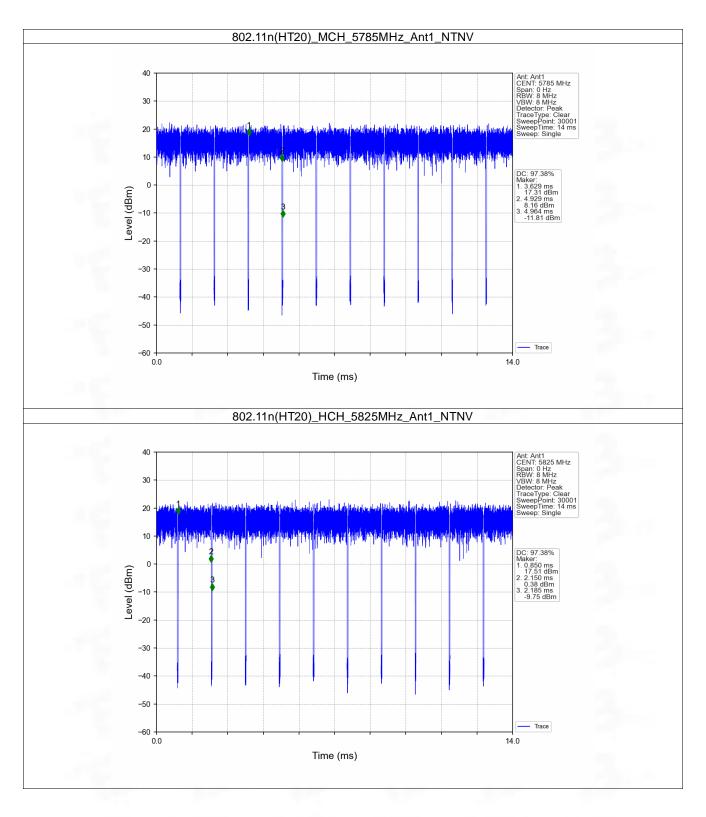

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 50 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

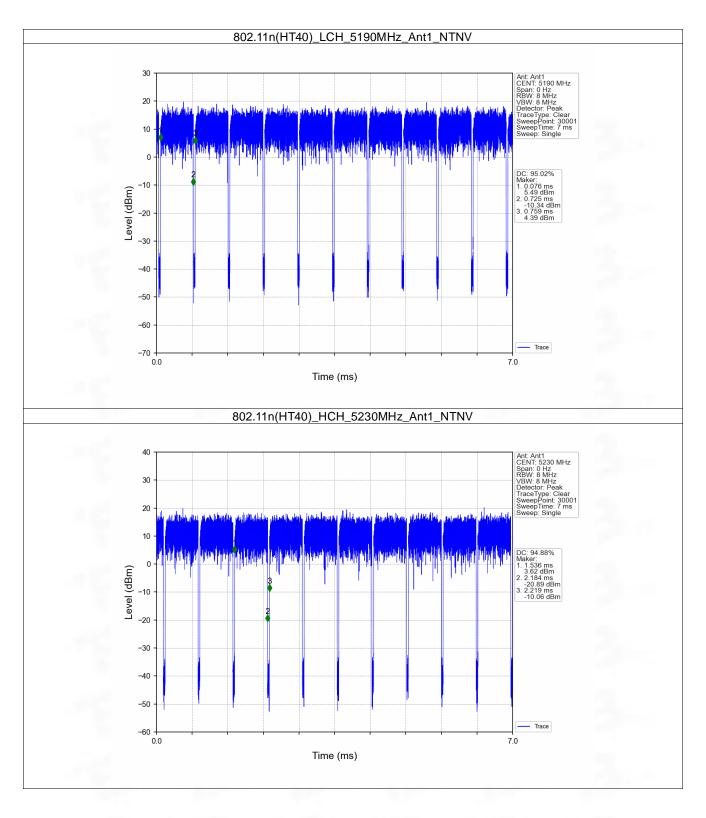

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 51 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

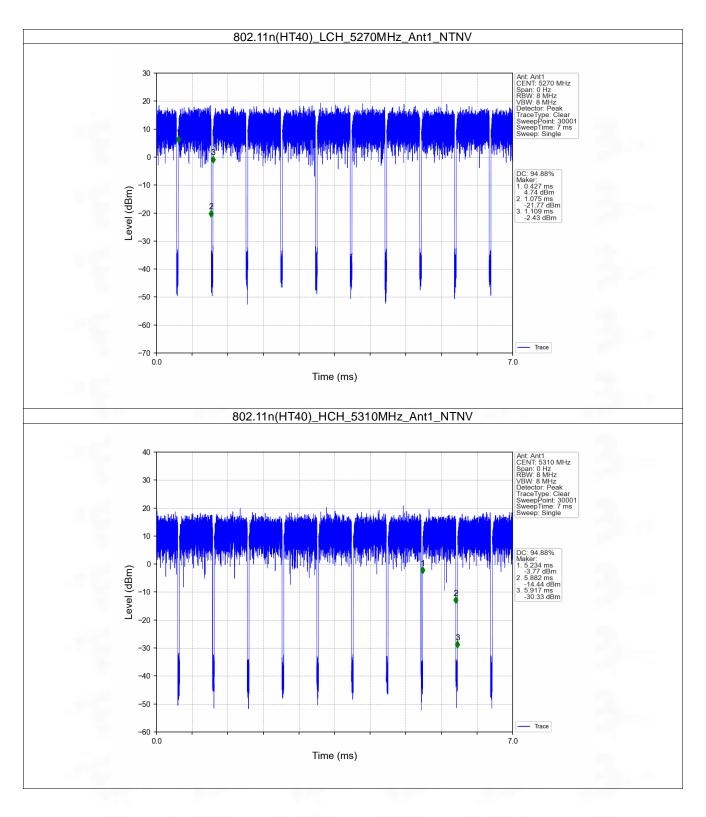

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 52 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

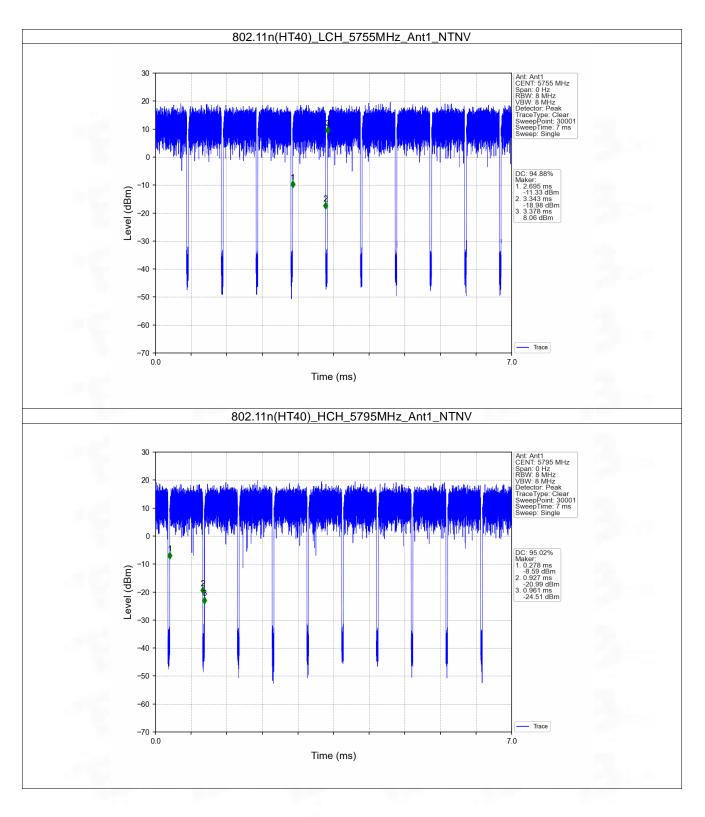

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 53 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China


Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 54 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China


Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 55 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China


Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 56 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

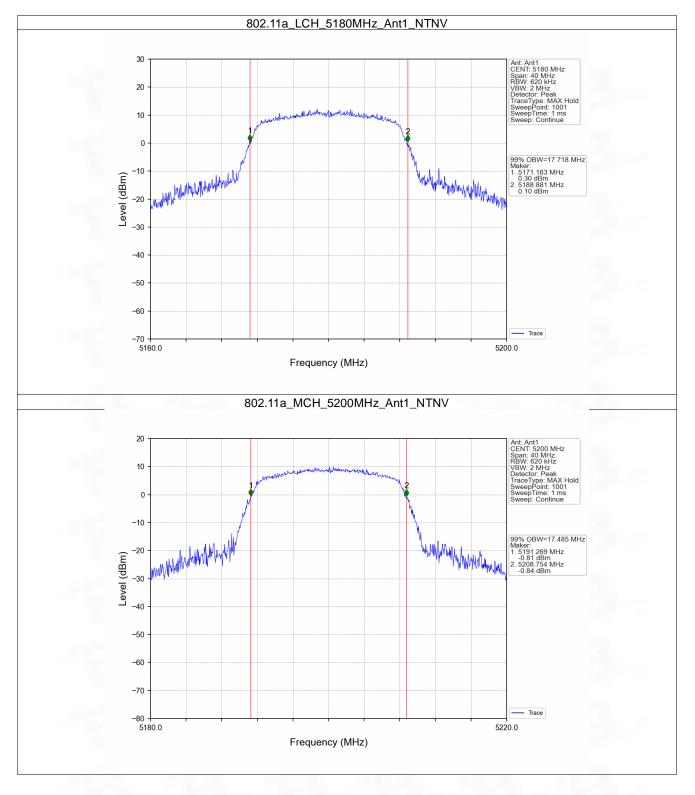

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 57 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China


Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 58 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 59 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

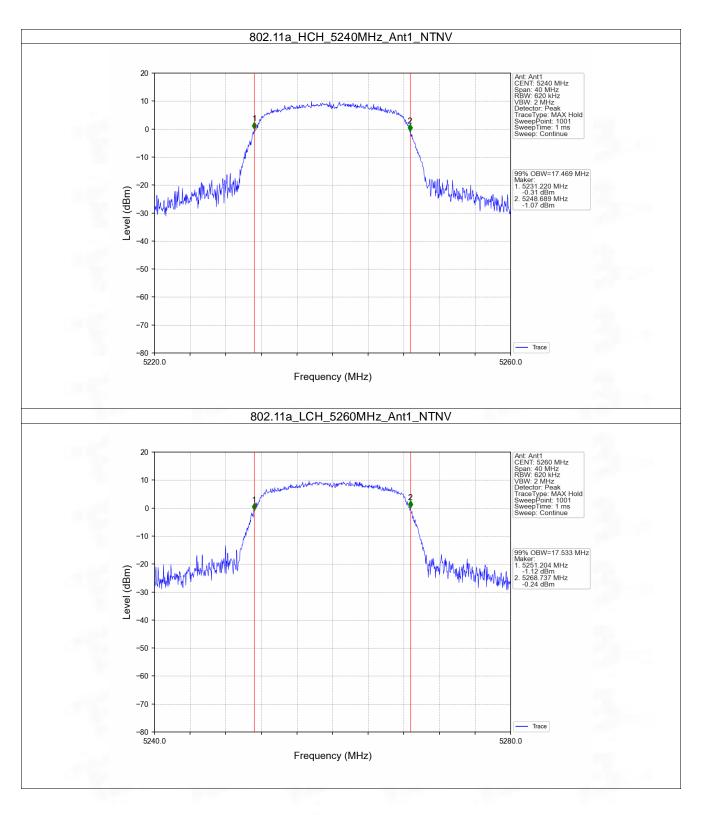
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 60 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

2. Bandwidth

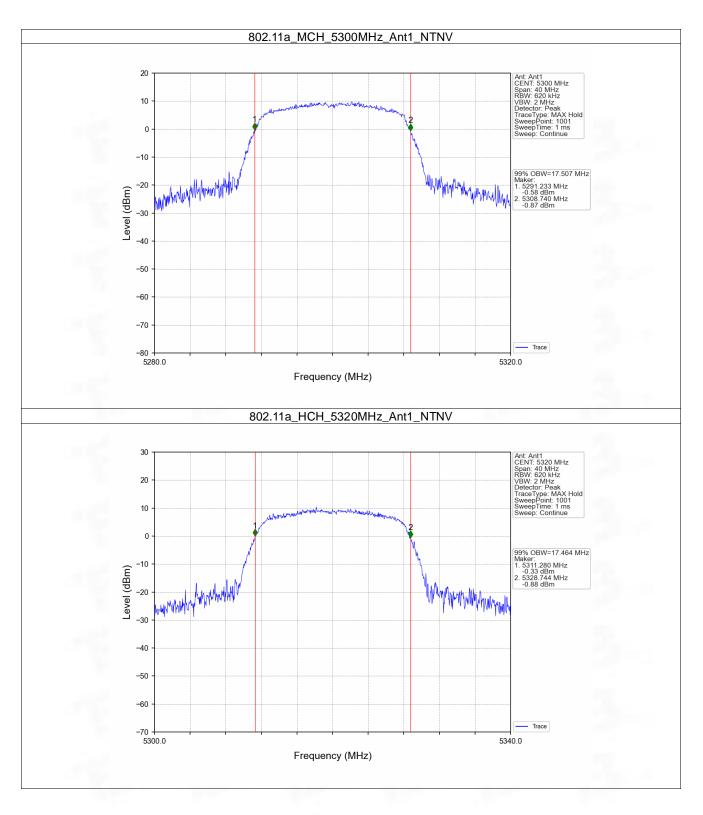

2.1 OBW

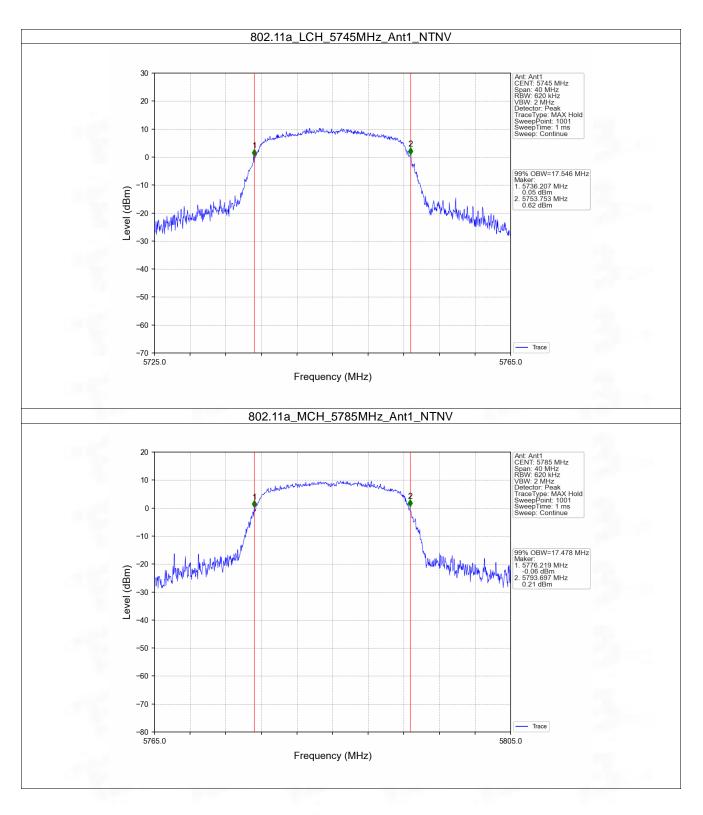
2.1.1 Test Result

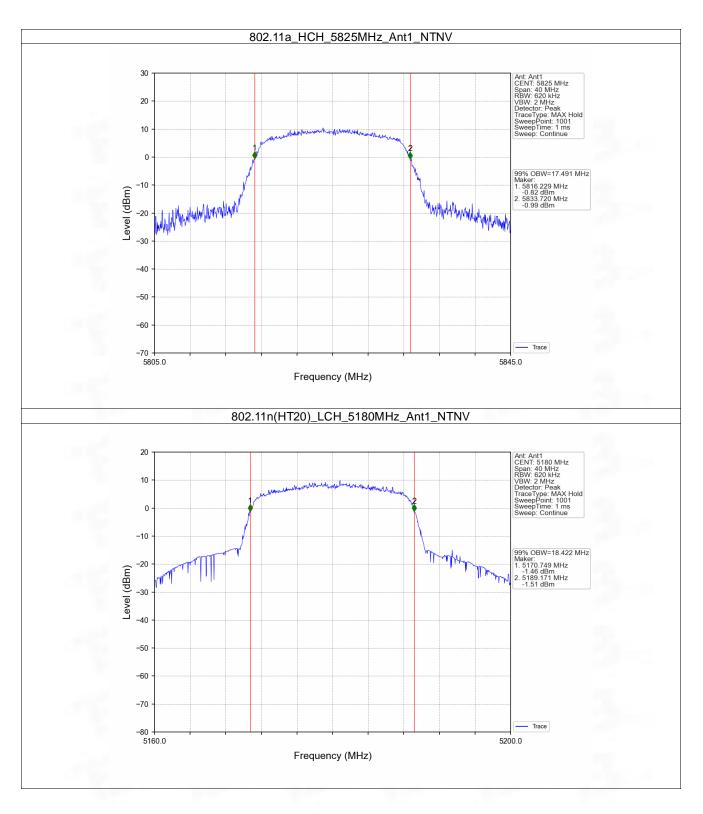
Mode	TX	Frequency (MHz)	ANT	99% Occupied Bandwidth (MHz)	Verdict
	Туре			Result	
802.11a	SISO	5180	1	17.718	Pass
		5200	1	17.485	Pass
		5240	1	17.469	Pass
		5260	1	17.533	Pass
		5300	1	17.507	Pass
		5320	1	17.464	Pass
		5745	1	17.546	Pass
		5785	1	17.478	Pass
		5825	1	17.491	Pass
000.44	SISO	5180	1	18.422	Pass
		5200	1	18.491	Pass
		5240	1	18.499	Pass
		5260	1	18.515	Pass
802.11n		5300	1	18.480	Pass
(HT20)		5320	1	18.430	Pass
		5745	1	18.505	Pass
		5785	1	18.551	Pass
		5825	1	18.577	Pass
802.11n (HT40)	SISO	5190	1	36.818	Pass
		5230	1	36.826	Pass
		5270	1	37.046	Pass
		5310	1	36.860	Pass
		5755	1	37.057	Pass
		5795	1	37.189	Pass

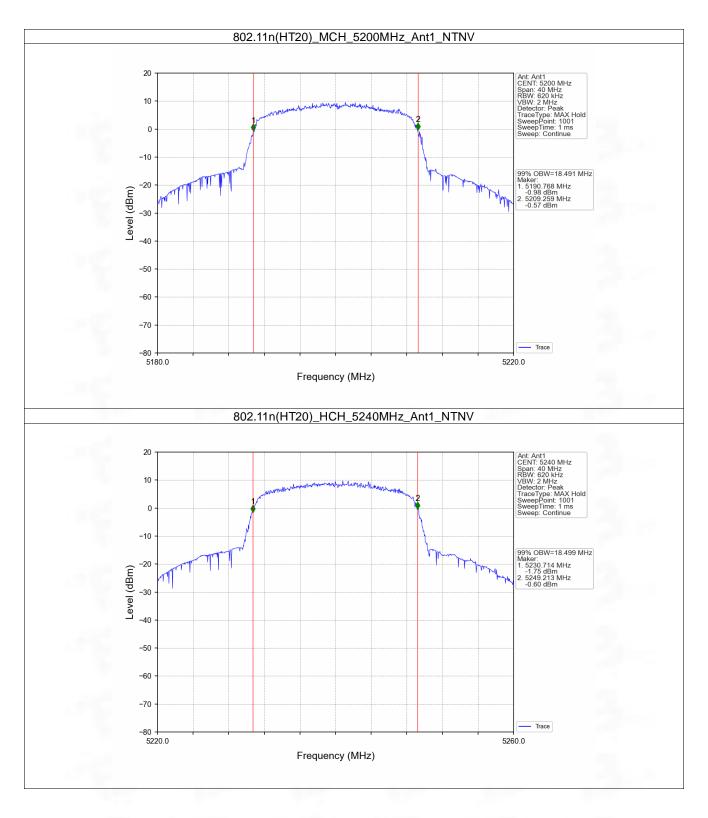


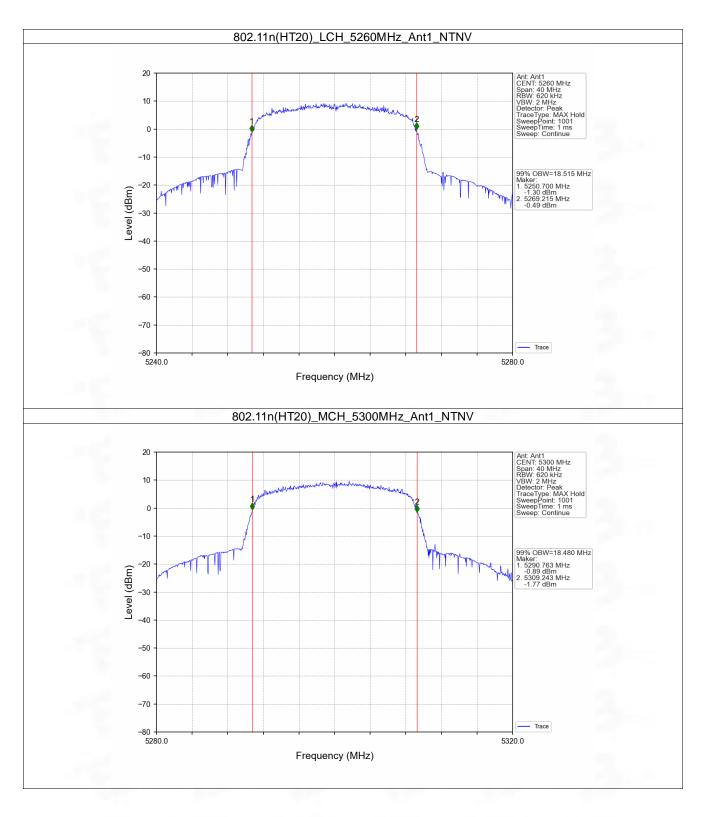
2.1.2 Test Graph

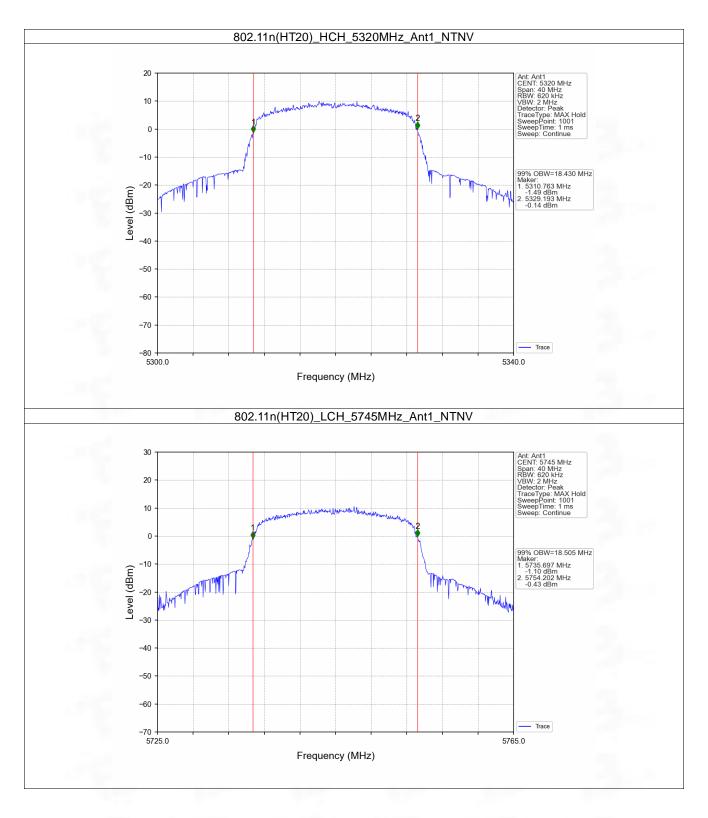

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 62 of 119 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

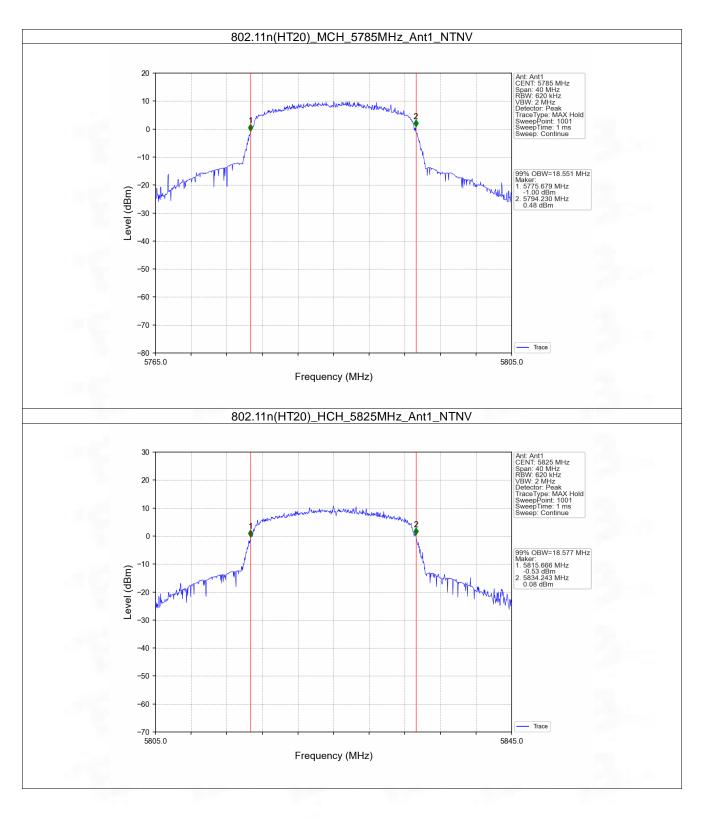

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 63 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

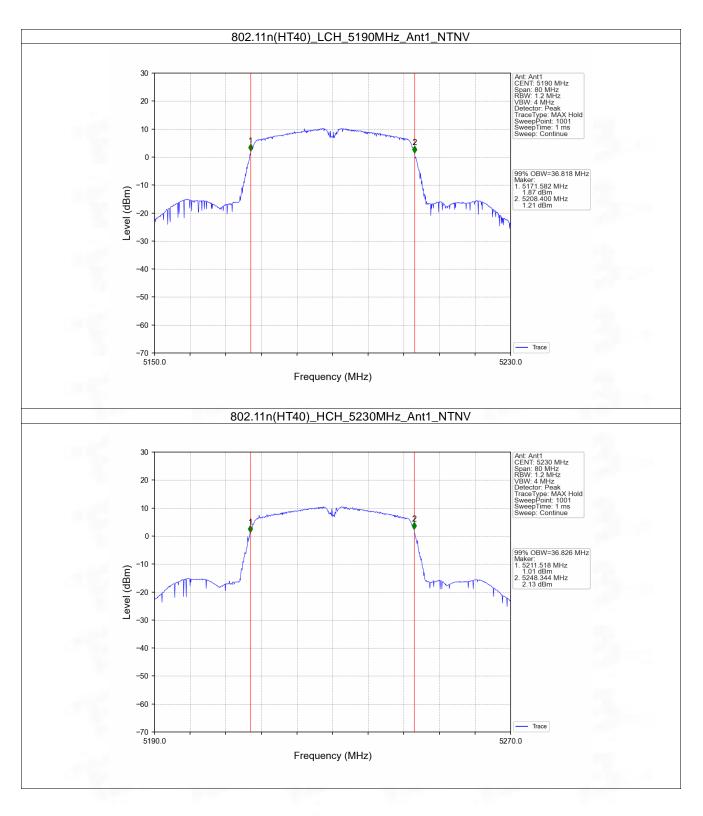

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 64 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

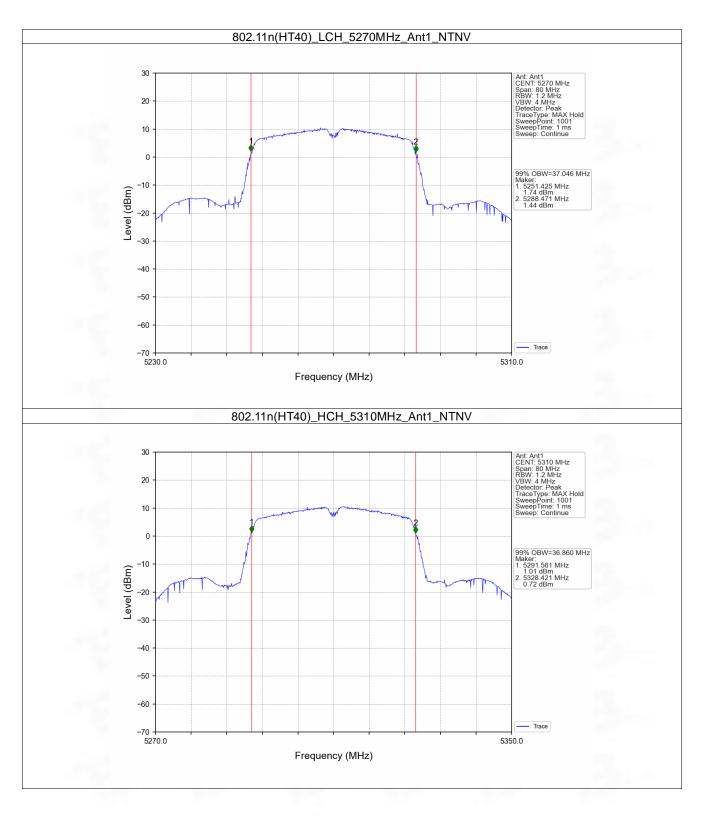

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 65 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

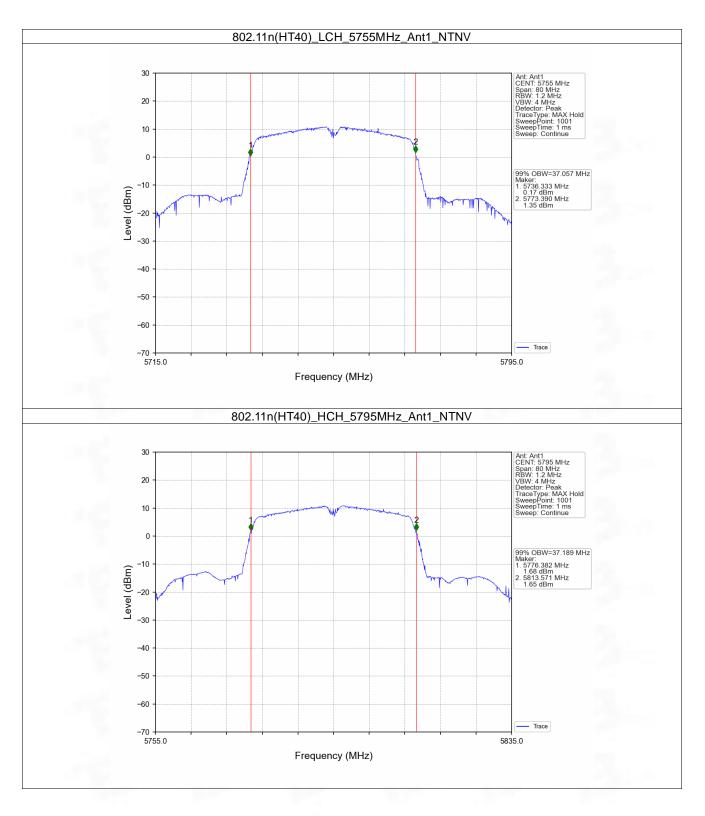

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 66 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China


Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 67 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China


Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 68 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China


Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 69 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

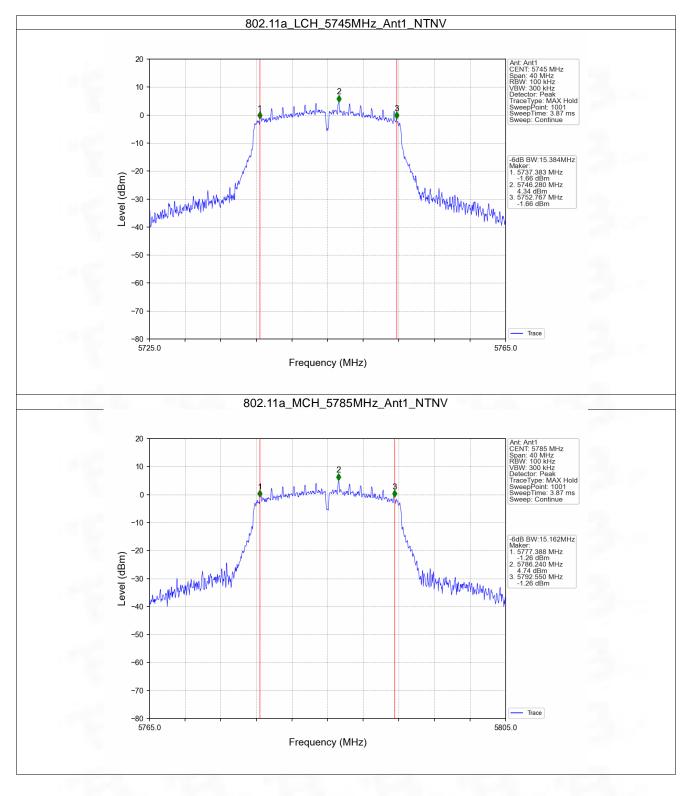

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 70 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China


Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 71 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 72 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

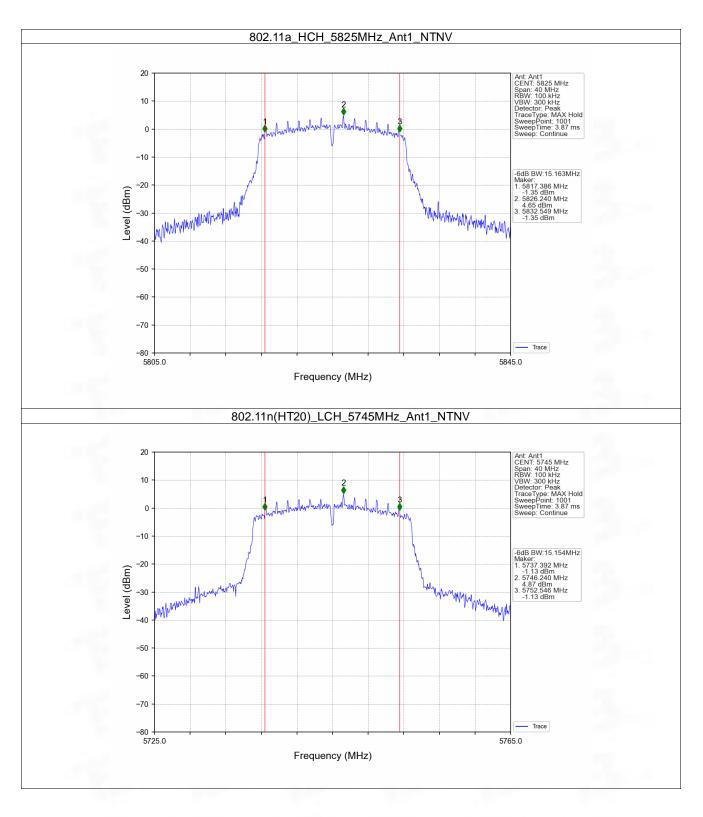
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 73 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

2.2 6dB BW

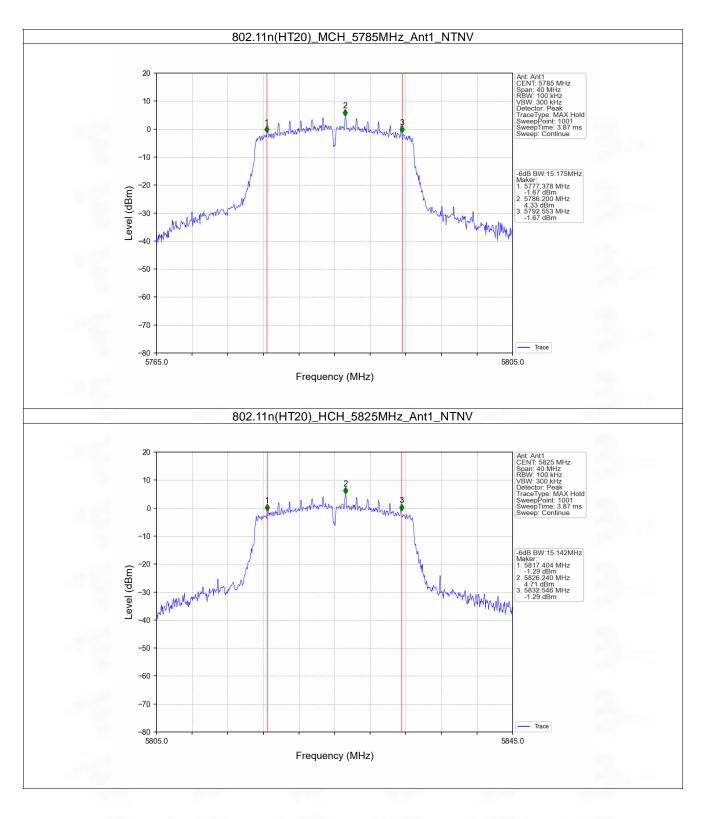

2.2.1 Test Result

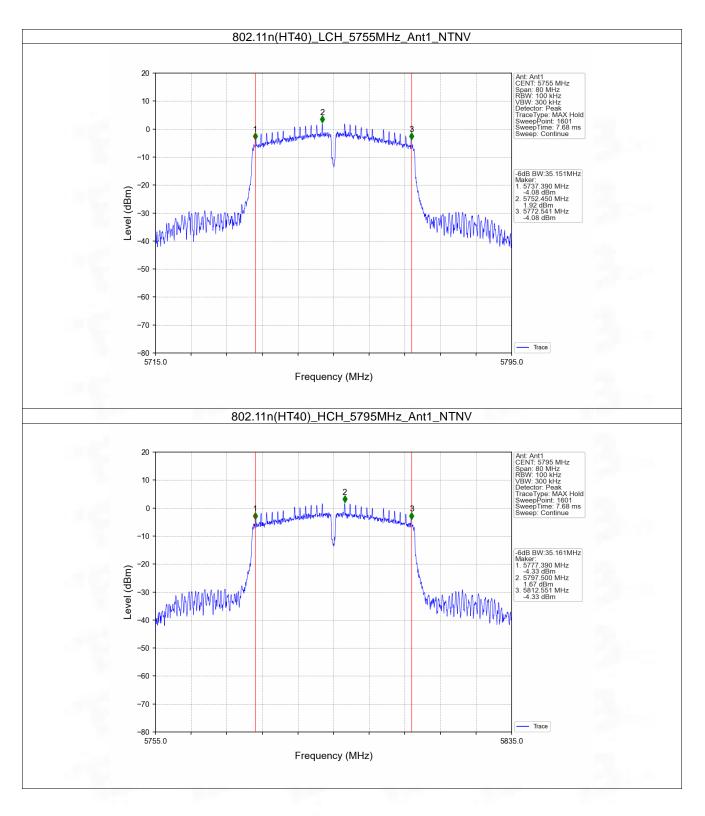
Mode	ТХ Туре	Frequency (MHz)	ANT	6dB Bandwidth (MHz)		Vendiet
				Result	Limit	Verdict
802.11a	SISO	5745	1	15.384	>=0.5	Pass
		5785	1	15.162	>=0.5	Pass
		5825	1	15.163	>=0.5	Pass
802.11n (HT20)	SISO	5745	1	15.154	>=0.5	Pass
		5785	1	15.175	>=0.5	Pass
		5825	1	15.142	>=0.5	Pass
802.11n (HT40)	SISO	5755	1	35.151	>=0.5	Pass
		5795	1	35.161	>=0.5	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 74 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



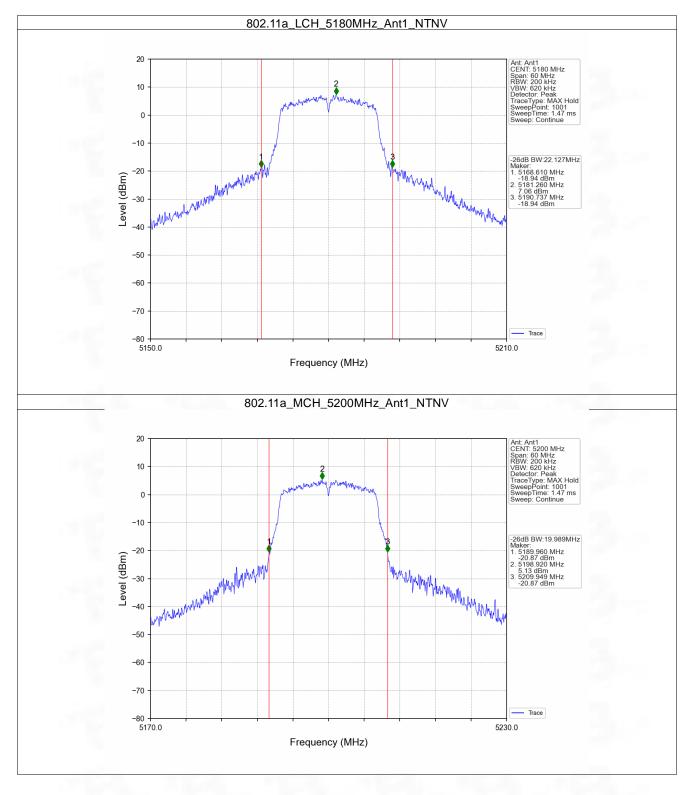
2.2.2 Test Graph


Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 75 of 119 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China


Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 76 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

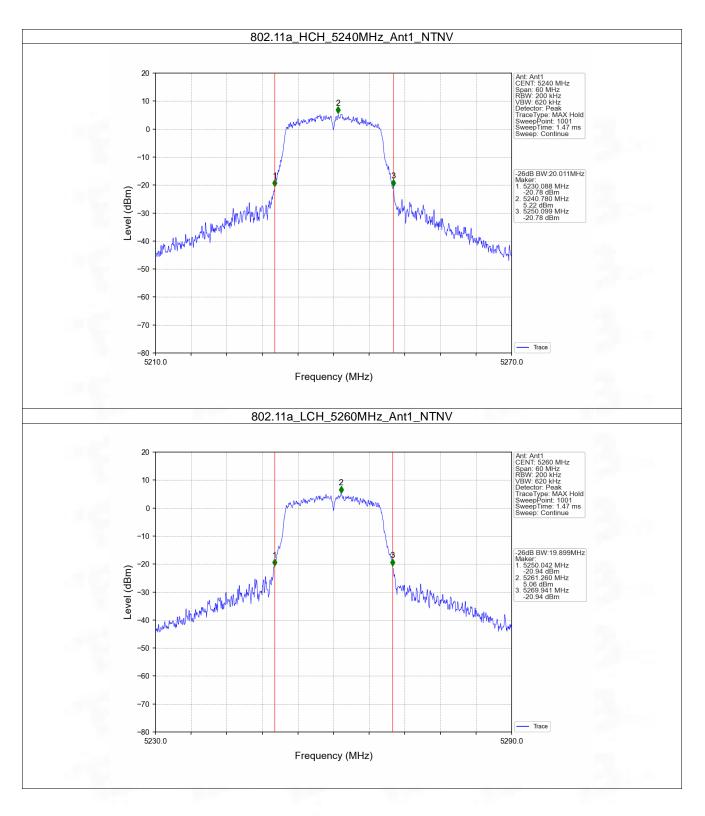
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 77 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 78 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

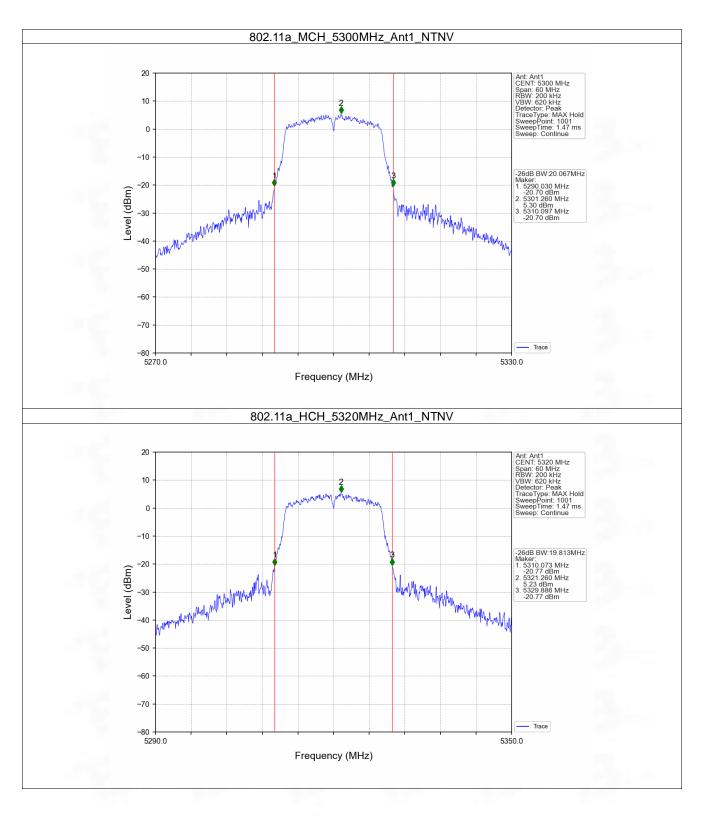

2.3 26dB BW

2.3.1 Test Result

Mode	ТХ Туре	Frequency (MHz)	ANT	26dB Bandwidth (MHz) Result	Verdict
000 44 -	SISO	5180	1	22.127	Pass
		5200	1	19.989	Pass
		5240	1	20.011	Pass
802.11a		5260	1	19.899	Pass
		5300	1	20.067	Pass
		5320	1	19.813	Pass
	SISO	5180	1	20.296	Pass
		5200	1	20.137	Pass
802.11n		5240	1	20.190	Pass
(HT20)		5260	1	20.223	Pass
		5300	1	20.295	Pass
		5320	1	20.225	Pass
	SISO	5190	1	41.053	Pass
802.11n (HT40)		5230	1	40.472	Pass
		5270	1	40.839	Pass
		5310	1	40.748	Pass



2.3.2 Test Graph


Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 80 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 81 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 82 of 119BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China