

RF Test Report

For

Applicant Name:	Xwireless LLC	
Address:	11565 Old Georgetown Road, Rockville, MD, USA	
EUT Name:	Mobile Phone	
Brand Name:	Vortex	
Model Number:	HD62	
	Issued By	
Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.	
	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Pa	
Address:	Tantou Community, Songgang Street, Bao'an District, Shen	

Report Number:

Test Standards:

FCC ID: Test Conclusion: Test Date: Date of Issue: FCC CFR Title 47 Part 2 FCC CFR Title 47 Part22 FCC CFR Title 47 Part24 FCC CFR Title 47 Part27 FCC CFR Title 47 Part90 2ADLJ-HD62 Pass 2023-07-26 to 2023-08-07 2023-08-08

BTF230725R01104

Prepared By:

Elma. Kong

Spin. C.

Ryan.CJ / EMC Manager

2023-08-08

2023-08-08

China

Date:

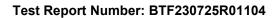
Approved By:

Date:

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.

51

Elma.Yang / Project Engineetab (Shenzhe,


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 1 of 74

^vark, nzhen,

Revision History		
Version	Issue Date	Revisions Content
R_V0	2023-08-08	Original
Note:	Once the revision has	been made, then previous versions reports are invalid.

Table of Contents

1.	Introd	uction	
	1.1	Identification of Testing Laboratory	
	1.2	Identification of the Responsible Testing Location	4
	1.3	Laboratory Condition	4
	1.4	Announcement	4
2.	Produ	ct Information	5
	2.1	Application Information	5
	2.2	Manufacturer Information	
	2.3	Factory Information	5
	2.4	General Description of Equipment under Test (EUT)	5
	2.5	Technical Information	6
3.	Summ	nary of Test Results	9
	3.1	Test Standards	9
	3.2	Summary of Test Result	. 10
	3.3	Uncertainty of Test	11
4.	Test C	Configuration	12
	4.1	Environment Condition	12
	4.2	Test Equipment List	12
	4.3	Test Auxiliary Equipment	.13
	4.4	Test Configurations	. 14
	4.5	Test Setup	24
5.	Test It	tems	26
	5.1	Transmitter Radiated Power (EIRP/ERP)	. 26
	5.2	Peak to Average Ratio	
	5.3	Occupied Bandwidth	. 31
	5.4	Frequency Stability	. 33
	5.5	Spurious Emission at Antenna Terminals	.35
	5.6	Band Edge Emission	. 39
	5.7	Field Strength of Spurious Radiation	
AN	NEX A	Test Results	.47
	A.1 Tr	ansmitter Radiated Power (ERP/EIRP)	. 47
	A.2	Peak to Average Ratio	47
	A.3	Occupied Bandwidth	. 47
	A.4	Frequency Stability	
	A.5	Spurious Emission at Antenna Terminals	
	A.6	Band Edge Emission	
	A.7	Field Strength of Spurious Radiation	
AN	NEX B	TEST SETUP PHOTOS	72
AN	NEX C	EUT PHOTOS	73

1. Introduction

1.1 Identification of Testing Laboratory

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.	
Address:F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Ta Community, Songgang Street, Bao'an District, Shenzhen, China		
Phone Number:	+86-0755-23146130	
Fax Number: +86-0755-23146130		

1.2 Identification of the Responsible Testing Location

Test Location:	BTF Testing Lab (Shenzhen) Co., Ltd.	
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China	
Description:	All measurement facilities used to collect the measurement data are located at F101,201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China	
FCC Registration Number:	518915	
Designation Number:	CN1330	

1.3 Laboratory Condition

Ambient Temperature:	20°C to 35°C
Ambient Relative Humidity:	45% to 55%
Ambient Pressure:	100 kPa to 102 kPa

1.4 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2. Product Information

2.1 Application Information

Company Name:	Xwireless LLC
Address:	11565 Old Georgetown Road, Rockville, MD, USA

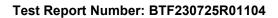
2.2 Manufacturer Information

Company Name:	Xwireless LLC
Address:	11565 Old Georgetown Road, Rockville, MD, USA

2.3 Factory Information

Company Name:	ZTECH COMMNICATION(SZ) CO LTD
Address:	FL 7 BLOCK D BAO'AN ZHIGU INNOVATION PARK YIN'TIAN ROAD NO. 4 XI'XIANG STR' BAO'AN DISTRICT SZ CHINA

2.4 General Description of Equipment under Test (EUT)


EUT Name	Mobile Phone
Under Test Model Name	HD62

Page 6 of 74

2.5 Technical Information

Network and Wireless connectivity	2G Network GSM/GPRS/EDGE 850/1900 3G Network WCDMA/HSDPA/HSUPA Band 2/4/5 4G Network FDD LTE Band 2/4/5/12/13/25/26/41/66/71		
The requirement for the followi			
The requirement for the following technical information of the EUT was tested in this report: GSM/GPRS/EGPRS 850/1900 MHz			
Operating Bands		WCDMA/HSDPA/HSUPA Band 2/4/5 FDD LTE Band 2/4/5/12/13/25/26/66/71	
	TDD LTE Band 2/		
	GPRS	GMSK	
	EGPRS	8PSK	
	WCDMA	QPSK	
Modulation Type	HSDPA/HSUPA	QPSK	
		16QAM	
	LTE	QPSK	
		16QAM	
		RS 850: 824.2 MHz ~ 848.8 MHz	
	GSM/GPRS/EGP	GSM/GPRS/EGPRS 1900: 1850.2 MHz ~ 1909.8 MHz	
	WCDMA/HSDPA	WCDMA/HSDPA/HSUPA Band 2: 1852.4 MHz ~ 1907.6 MHz	
	WCDMA/HSDPA	WCDMA/HSDPA/HSUPA Band 4: 1712.4 MHz ~ 1752.6 MHz	
	WCDMA/HSDPA	WCDMA/HSDPA/HSUPA Band 5: 826.4 MHz ~ 846.6 MHz	
	FDD LTE Band 2	FDD LTE Band 2: 1850.7 MHz ~ 1909.3 MHz	
	FDD LTE Band 4:	FDD LTE Band 4: 1710.7 MHz ~ 1754.3 MHz	
	FDD LTE Band 5	FDD LTE Band 5: 824.7 MHz ~ 848.3 MHz	
TX Frequency Range	FDD LTE Band 12	FDD LTE Band 12: 699.7 MHz ~ 715.3 MHz	
	FDD LTE Band 1	FDD LTE Band 13: 779.5 MHz ~ 784.5 MHz	
	FDD LTE Band 2	FDD LTE Band 25: 1850.7 MHz ~ 1914.3 MHz	
	FDD LTE Band 26	FDD LTE Band 26: 814.7 MHz ~ 823.3 MHz	
	FDD LTE Band 26	FDD LTE Band 26: 824.7 MHz ~ 848.3 MHz	
	TDD LTE Band 4	TDD LTE Band 41: 2498.5 MHz ~ 2687.5 MHz	
	FDD LTE Band 6	6: 1710.7 MHz ~ 1779.3 MHz	
	FDD LTE Band 7	1::619.5 MHz ~ 649.5 MHz	

	GSM/GPRS/EGPRS 850: 869.2 MHz ~ 893.8 MHz
	GSM/GPRS/EGPRS 1900: 1930.2 MHz ~ 1989.8 MHz
	WCDMA/HSDPA/HSUPA Band 2: 1932.4 MHz ~ 1987.6 MHz
	WCDMA/HSDPA/HSUPA Band 4: 2112.4 MHz ~ 2152.6 MHz
	WCDMA/HSDPA/HSUPA Band 5: 871.4 MHz ~ 891.6 MHz
	FDD LTE Band 2: 1930.7 MHz ~ 1989.3 MHz
	FDD LTE Band 4: 2110.7 MHz ~ 2154.3 MHz
	FDD LTE Band 5: 869.7 MHz ~ 893.3 MHz
Rx Frequency Range	FDD LTE Band 12: 729.7 MHz ~ 745.3 MHz
	FDD LTE Band 13: 748.5 MHz ~ 753.5 MHz
	FDD LTE Band 25: 1930.7 MHz ~ 1994.3 MHz
	FDD LTE Band 26: 869.7 MHz ~ 893.3 MHz
	FDD LTE Band 26: 859.7 MHz ~ 868.3 MHz
	TDD LTE Band 41: 2498.5 MHz ~ 2687.5 MHz
	FDD LTE Band 66: 2110.7 MHz ~ 2179.3 MHz
	FDD LTE Band 71:665.5 MHz ~ 695.5 MHz
	GPRS 850: 4
	GPRS 1900: 1
	EGPRS 850/1900: E2
	WCDMA/HSDPA/HSUPA Band 2: 3 WCDMA/HSDPA/HSUPA Band 4: 3
	WCDMA/HSDPA/HSUPA Band 4. 3 WCDMA/HSDPA/HSUPA Band 5: 3
	FDD LTE Band 2: 3
	FDD LTE Band 2: 3
Power Class	FDD LTE Band 4: 3
	FDD LTE Band 12: 3
	FDD LTE Band 12: 3
	FDD LTE Band 13: 3
	FDD LTE Band 26: 3
	TDD LTE Band 41: 3
	FDD LTE Band 41:3
	FDD LTE Band 00. 3
Multislot Class	GPRS/EGPRS: 12
Antenna Type	PIFA Antenna

	GSM850	GSM1900	WCDMA B2	WCDMA B4			
	0.53dBi	0.42dBi	0.42dBi	0.44dBi			
	WCDMA B5	LTE B2	LTE B4	LTE B5			
Antenna Gain	0.53dBi	0.42dBi	0.44dBi	0.53dBi			
	LTE B12	LTE B13	LTE B25	LTE B26			
	0.46dBi	0.46dBi	0.42dBi	0.53dBi			
	LTE B41	LTE B66	LTE B71				
	0.48dBi	0.42dBi	0.44dBi				
	GSM850: 30.67dBr	n					
	GSM1900: 30.58dE	3m					
		GPRS850: 30.59dBm					
	GPRS1900: 30.600						
	EGPRS850: 32.670						
	EGPRS1900: 29.08	-					
		WCDMA Band V: 23.01dBm					
	WCDMA Band IV: 2						
	WCDMA Band II: 2						
	FDD LTE Band 2: 2	23.10dBm					
The Max RF Output	FDD LTE Band 4: 2	23.66dBm					
Power (EIRP/ERP)	FDD LTE Band 5: 2	23.46dBm					
``````````````````````````````````````	FDD LTE Band 12:	21.57dBm					
	FDD LTE Band 13:	21.51dBm					
	FDD LTE Band 25:	23.07dBm					
	FDD LTE Band 26:	21.75dBm					
	FDD LTE Band 26:	21.71dBm					
	FDD LTE Band 26	: 21.42dBm					
	TDD LTE Band 41:	25.92dBm					
	FDD LTE Band 66:	23.62dBm					

Note: The EUT information are declared by manufacturer. For more detailed features description, please refer to the manufacturer's specifications or user's manual.



# 3. Summary of Test Results

# 3.1 Test Standards

No.	Identity	Document Title
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
2	47 CFR Part 22 Subpart H	Cellular Radiotelephone Service
3	47 CFR Part 24 Subpart E	Broadband PCS
4	47 CFR Part 27	Miscellaneous Wireless Communications Services
5	ANSI/TIA-603-E-2016	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards
6	KDB 971168 D01 v03r01	Measurement Guidance for Certification of Licensed Digital Transmitters
7	ANSI C63.26:2015	IEEE/ANSI Standard for Compliance Testing of Transmitters Used in Licensed Radio Services
8	47 CFR Part 90	PRIVATE LAND MOBILE RADIO SERVICES.



# 3.2 Summary of Test Result

No.	Description	FCC Part No.	Test Verdict	Remark
1	Conducted RF Output Power	2.1046	Pass	
		2.1046		
		22.913(a)		
2	Effective (Isotropic) Radiated	24.232(c)	Pass	
2	Power	27.50	rass	
		90.635(b)		
		90.542(a)		
		2.1046		
3	Deals to Average Dadia	22.913(d)	Dees	
3	Peak to Average Radio	24.232(d)	Pass	
		27.50(d)		
		2.1049		
		22.917(b)		
4	Occupied Bandwidth	24.238(b)	Pass	
		27.53		
		90.209	1.00	
		2.1055		
		22.355	1	
5	Frequency Stability	24.235	Pass	
		27.54		
		90.213		
		2.1051		
		22.917	and the second se	1.1
6	Spurious Emission at Antenna	24.238	Pass	
0	Terminals	27.53	Pass	
		90.691		
		90.543		
		2.1051		
		22.917		
7	Band Edge	24.238	Pass	
	Band Edge	27.53	1 833	
		90.691		1.01
		90.543		
		2.1053		
		22.917		
0	Field Strength of Spurious	24.238		
8	Radiation	27.53	Pass	
		90.691		
		90.543		
		90.040		1



# 3.3 Uncertainty of Test

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2 and TR100 028-1/-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Value
RF output power, conducted	0.63 dB
Conducted spurious emissions	0.94 dB
Radiated emissions (<1 GHz)	4.12 dB
Radiated emissions (>1 GHz)	4.16 dB
Occupied Channel Bandwidth	69 KHz
Frequency Stability	0.4 KHz
Temperature	0.82 °C
Humidity	4.1 %

Page 12 of 74

# 4. Test Configuration

## 4.1 Environment Condition

During the measurement, the environmental conditions were within the listed ranges:

	NV (Normal Voltage)	3.85 V
Test Voltage of the EUT	LV (Low Voltage)	3.42 V
, , , , , , , , , , , , , , , , , , ,	HV (High Voltage)	4.18 V
	NT (Normal Temperature)	+25 °C
Test Temperature of the EUT	LT (Low Temperature)	-30 °C
	HT (High Temperature)	+50 °C

# 4.2 Test Equipment List

	Cond	ucted Method	Test			
Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due	Use
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022.11.24	2023.11.23	$\boxtimes$
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022.11.24	2023.11.23	$\boxtimes$
ESG VECTOR SIGNAL GENERATOR	Agilent	E4438C	MY45094854	2022.11.24	2023.11.23	$\boxtimes$
MXG Vector Signal Generator	Agilent	N5182A	MY46240163	2022.11.24	2023.11.23	$\boxtimes$
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022.11.25	2023.11.24	$\boxtimes$
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022.11.24	2023.11.23	$\boxtimes$
RF Control Unit	TST	TST-Full	S01	1	/	$\boxtimes$
RF Test software	TST	V2.0		/	/	$\square$

		<b>Radiated Method</b>	Test	_		
Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due	Use
SIGNAL ANALYZER	ROHDE&SCHWARZ	FSQ40	100010	2022.11.24	2023.11.23	$\boxtimes$
EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI7	101032	2022.11.24	2023.11.23	$\boxtimes$
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021.11.28	2023.11.27	$\boxtimes$
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021.11.28	2023.11.27	$\boxtimes$

Total or partial reproduction of this document without permission of the Laboratory is not allowed.

BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	1	/	$\boxtimes$
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022.11.24	2023.11.23	$\boxtimes$
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022.11.24	2023.11.23	$\boxtimes$
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022.11.24	2023.11.23	$\boxtimes$
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023.3.24	2024.3.23	X
RE Cable	Talent Microwave	A40-2.92M2.92 M-14M	22080539	2022.11.24	2023.11.23	$\boxtimes$
RE Cable	Talent Microwave	A81-SMAMNM- 14M	22080538	2022.11.24	2023.11.23	$\boxtimes$
Preamplifier	SCHWARZBECK	BBV9744	00246	2022.11.24	2023.11.23	$\boxtimes$
Horn Antenna	Schwarzbeck	BBHA9120D	2597	2022.5.22	2024.5.21	$\boxtimes$
Broadband Preamplilifier	Schwarzbeck	BBV9718D	00008	2023.3.24	2024.3.23	$\boxtimes$

# 4.3 Test Auxiliary Equipment

Description	Manufacturer	Model	Serial No.	Length	Description	Use
/	/	/	/	/	/	$\boxtimes$



# 4.4 Test Configurations

Test Items	Test Mode		Test Channel	
i cor nemo		LCH	MCH	HCF
	GSM 850	v	V	V
	GSM 1900	v	V	v
	GPRS 850	v	V	v
	GPRS 1900	V	v	V
Effective (Isotropic) Radiated Power	EGPRS 850	v	v	v
	EGPRS 1900	v	v	v
	WCDMA Band 2	V	v	v
	WCDMA Band 4	v	v	v
	WCDMA Band 5	v	v	v
	HSDPA Band 2	v	v	v
	HSDPA Band 4	v	v	v
	HSDPA Band 5	v	v	v
	HSUPA Band 2	V	v	v
	HSUPA Band 4	v	v	v
	HSUPA Band 5	V	v	v
	GSM 850	v	v	v
	GSM 1900	V	v	v
	GPRS 850	V	v	v
	GPRS 1900	V	v	v
	EGPRS 850	v	v	v
	EGPRS 1900	v	v	v
	WCDMA Band 2	V	v	v
Peak to Average Ratio	WCDMA Band 4	v	v	v
	WCDMA Band 5	v	v	v
	HSDPA Band 2	v	v	v
	HSDPA Band 4	v	v	v
	HSDPA Band 5	v	v	v
	HSUPA Band 2	v	v	v
	HSUPA Band 4	v	v	v
	HSUPA Band 5	v	v	v



	GSM 850	v	v	v
	GSM 1900	v	v	v
	GPRS 850	v	v	v
	GPRS 1900	v	v	v
	EGPRS 850	v	v	v
	EGPRS 1900	v	v	v
	WCDMA Band 2	v	v	v
Occupied Bandwidth	WCDMA Band 4	v	v	v
	WCDMA Band 5	v	v	v
	HSDPA Band 2	v	v	v
	HSDPA Band 4	V	v	v
	HSDPA Band 5	v	v	v
	HSUPA Band 2	v	v	v
	HSUPA Band 4	v	v	v
The second se	HSUPA Band 5	v	v	v
	GSM 850	V	v	v
	GSM 1900	v	v	v
	GPRS 850	v	v	v
	GPRS 1900	v	v	v
	EGPRS 850	v	v	v
	EGPRS 1900	v	v	v
	WCDMA Band 2	V	v	v
Frequency Stability	WCDMA Band 4	v	v	v
	WCDMA Band 5	v	v	v
	HSDPA Band 2	v	v	v
	HSDPA Band 4	v	V	v
	HSDPA Band 5	V	V	v
	HSUPA Band 2	v	V	v
	HSUPA Band 4	V	V	v
	HSUPA Band 5	v	v	v

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



	GSM 850	v	v	v
	GSM 1900	v	v	v
	GPRS 850	V	v	v
	GPRS 1900	v	v	v
	EGPRS 850	V	v	v
	EGPRS 1900	v	v	v
	WCDMA Band 2	v	v	v
Spurious Emission at Antenna Terminals	WCDMA Band 4	v	v	v
	WCDMA Band 5	v	v	v
	HSDPA Band 2	V	v	v
	HSDPA Band 4	v	v	v
	HSDPA Band 5	v	v	v
	HSUPA Band 2	v	v	v
	HSUPA Band 4	v	v	v
The second se	HSUPA Band 5	v	v	v
	GSM 850	v		v
	GSM 1900	v		v
	GPRS 850	v		v
	GPRS 1900	v		v
	EGPRS 850	v		v
	EGPRS 1900	V		v
	WCDMA Band 2	V		v
Band Edge	WCDMA Band 4	v		v
	WCDMA Band 5	v		v
	HSDPA Band 2	V		v
	HSDPA Band 4	v		v
	HSDPA Band 5	V		v
	HSUPA Band 2	v		v
	HSUPA Band 4	v		v
	HSUPA Band 5	v		v



	GSM 850	v	v	v
	GSM 1900	v	v	v
	GPRS 850	V	V	v
	GPRS 1900	V	v	V
	EGPRS 850	V	v	V
	EGPRS 1900	v	v	v
	WCDMA Band 2	V	V	V
Field Strength of Spurious Radiation	WCDMA Band 4	V	v	V
	WCDMA Band 5	v	v	v
	HSDPA Band 2	V	V	v
	HSDPA Band 4	V	v	V
	HSDPA Band 5	V	v	v
	HSUPA Band 2	V	v	v
	HSUPA Band 4	V	V	v
	HSUPA Band 5	v	v	v

Note 1: The mark "v" means that this configuration is chosen for testing.

Test Mode	UL Channel	UL Channel No.	UL Frequency (MHz)	
	Low Channel	128	824.2	
GSM/GPRS/EGPRS 850	Middle Channel	190	836.6	
	High Channel	251	848.8	
	Low Channel	512	1850.2	
GSM/GPRS/EGPRS 1900	Middle Channel	661	1880.0	
	High Channel	810	1909.8	
	Low Channel	9262	1852.4	
WCDMA Band 2	Middle Channel	9400	1880.0	
and the second s	High Channel	9538	1907.6	
	Low Channel	1312	1712.4	
WCDMA Band 4	Middle Channel	1412	1732.6	
	High Channel	1513	1752.6	
	Low Channel	4132	826.4	
WCDMA Band 5	Middle Channel	4182	836.4	
and the second se	High Channel	4233	846.6	



LTE		Bai	ndwid	th (Mł	Hz)		Modula	ation Type		RB#		Τe	est Chan	nel
Band	1.4	3	5	10	15	20	QPSK	16-QAM	1	Half	Full	LCH	MCH	HCH
					Effe	ective	(Isotropic	) Radiated F	Power					
2	v	v	v	v	v	v	v	v	v	v	v	v	v	v
4	v	v	v	v	v	v	v	v	v	v	v	v	v	v
5	v	v	v	v	n	n	v	v	v	v	v	v	v	v
12	v	v	v	v	n	n	v	v	v	v	v	v	v	v
13	n	n	v	v	n	n	v	v	v	v	v	v	v	v
25	v	v	v	V	v	V	V	V	V	V	V	V	v	v
26(Part22)	v	v	v	v	v	n	v	v	v	v	v	V	v	v
26(Part90)	v	v	v	v	v	n	v	V	v	v	v	v	v	v
41	n	n	V	v	v	v	v	v	v	V	v	v	v	v
66	v	v	v	v	v	v	v	v	v	v	v	v	v	v
71	n	n	v	v	v	v	V	v	n	n	v	v	v	v
						Pe	ak to Ave	erage Ratio						
2	v	v	v	v	v	v	v	v	v	v	v	v	v	v
4	v	v	v	v	v	v	v	v	v	v	v	v	v	v
5	v	v	v	v	n	n	v	v	v	v	v	v	v	v
12	v	v	v	v	n	n	v	v	v	v	v	v	v	v
13	n	n	v	v	n	n	v	v	v	v	v	v	v	v
25	v	v	v	v	v	v	v	v	v	v	v	v	v	v
26(Part22)	v	v	v	v	v	n	v	v			v	v	v	v
26(Part90)	v	v	v	v	v	n	v	v			v	v	v	v
41	n	n	v	v	v	v	v	v	v	v	v	v	v	v
66	v	v	v	v	v	v	v	v	v	v	v	v	v	v
71	n	n	v	v	v	v	v	v			v	v	v	v
		1	1	1	1	0	ccupied E	Bandwidth	I	1		I	1	
2	v	v	v	v	v	v	v	v	v	v	v	v	v	v
4	v	v	v	v	v	v	v	v	v	v	v	v	v	v
5	v	v	v	v	n	n	v	v	v	v	v	v	v	v
12	v	v	v	v	n	n	v	v	v	v	v	v	v	v
13	n	n	v	v	n	n	v	v	v	v	v	v	v	v
25	v	v	v	v	v	v	v	v	v	v	v	v	v	v
26(Part22)	V	v	v	v	v	n	v	V			v	v	v	v
26(Part90)	v	v	v	v	v	n	v	v			v	v	v	v
41	n	n	v	v	v	v	v	v	v	v	v	v	v	v
66	v	v	v	v	v	v	v	v	v	v	v	v	v	v
71	n	n	v	v	v	v	v	v			v	v	v	v

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 18 of 74



						F	requency	/ Stability						
2	v	v	v	v	v	v	v	V			v	v	v	v
4	v	v	v	v	v	v	v	V			v	v	v	v
5	v	v	v	v	n	n	v	v			v	v	v	v
12	v	v	v	v	n	n	v	v			v	v	v	v
13	n	n	v	v	n	n	v	v			v	v	v	v
25	V	v	v	v	v	v	v	v			v	v	v	v
26(Part22)	V	v	v	v	v	n	v	v			v	v	v	v
26(Part90)	v	v	v	v	v	n	v	v			v	v	v	v
41	n	n	v	v	v	v	v	v			v	V	v	v
66	v	v	v	v	v	v	v	V			v	V	v	v
71	n	n	v	v	v	v	v	v			v	v	v	v
		1			Spuri	ous Er	nission at	Antenna T	ermina	als				
2	v	v	v	v	v	v	v	v	v	v	v	v	v	v
4	v	v	v	v	v	v	v	V	v	v	v	v	v	v
5	V	v	v	v	n	n	v	v	v	v	v	v	v	v
12	v	v	v	v	n	n	v	v	v	v	v	v	v	v
13	n	n	v	v	n	n	v	v	v	v	v	V	v	v
25	v	v	v	v	v	v	v	v	v	v	v	v	v	v
26(Part22)	V	v	v	v	v	n	v	v	v		v	v	v	v
26(Part90)	V	v	v	v	v	n	v	v	v		v	v	v	v
41	n	n	v	v	v	v	v	v	v	v	v	V	v	v
66	v	v	v	v	v	v	v	v	v	v	v	V	v	v
71	n	n	v	v	v	v	v	v	v		v	v	v	v
							Band I	Edge		1			•	
2	v	v	v	v	v	v	v	V	v	v	v	V	v	v
4	v	v	v	v	v	v	v	v	v	v	v	v	v	v
5	v	v	v	v	n	n	v	v	v	v	v	v	v	v
12	v	v	v	v	n	n	v	v	v	v	v	v	v	v
13	n	n	v	v	n	n	v	v	v	v	v	v	v	v
25	v	v	v	v	v	v	v	v	v	v	v	v	v	v
26(Part22)	v	v	v	v	v	n	v	v	v		v	v		v
26(Part90)	V	v	v	v	v	n	V	v	V		v	V		v
41	n	n	v	v	v	v	v	v	v	v	v	V	v	v
66	V	v	v	v	v	v	v	v	v	v	v	v	v	v
71	n	n	v	v	v	v	v	v	v		v	v		v

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



					Fie	ld Stre	ength of S	purious Rac	diation					
2	v	v	v	v	v	v	v	v	v	v	v	v	v	v
4	v	v	v	v	v	v	v	v	v	v	v	v	v	v
5	v	v	v	v	n	n	v	v	v	v	v	v	v	v
12	v	v	v	v	n	n	v	v	v	v	v	v	v	v
13	n	n	v	v	n	n	v	v	v	v	v	v	v	v
25	v	v	v	v	v	v	v	v	v	v	V	v	v	v
26(Part22)					v	n	v		v			v	v	v
26(Part90)					v	n	v		v			v	v	v
41	n	n	v	v	v	v	v	v	v	v	v	v	v	v
66	v	v	v	v	v	v	v	v	v	v	V	v	v	v
71	n	n	v	v	v	v	v		v			v	v	v
						•		chosen for te supported.	sting.					

# B AB

		Ban	d 2		
Test Frequency ID	Bandwidth [MHz]	NuL	Frequency of Uplink [MHz]	Ndl	Frequency of Downlink [MHz]
	1.4	18607	1850.7	607	1930.7
	3	18615	1851.5	615	1931.5
Law Darasa	5	18625	1852.5	625	1932.5
Low Range	10	18650	1855	650	1935
	15 ^[1]	18675	1857.5	675	1937.5
	20 11	18700	1860	700	1940
Mid Range	1.4/3/5/10 15 ^[1] /20 ^[1]	18900	1880	900	1960
	1.4	19193	1909.3	1193	1989.3
	3	19185	1908.5	1185	1988.5
and the second se	5	19175	1907.5	1175	1987.5
High Range	10	19150	1905	1150	1985
100 B	15 ¹⁷	19125	1902.5	1125	1982.5
	20 [1]	19125	1902.5	1125	1982.5
NOTE 4 D. L. 10					
	n for which a relaxation 27] Clause 7.3) is allo		cliled OE receiver s	sensitivity re	quirement (15
		Ban	d 4		
					-
Test Frequency ID	Bandwidth [MHz]	Nul	Frequency of Uplink [MHz]	NDL	Frequency of Downlink [MHz]
	1.4	19957	1710.7	1957	2110.7
	3	19965	1710.7	1965	2110.7
	5	19905	1712.5	1965	2111.5
Low Range	10	20000	1712.5	2000	2112.5
	15	20000	1717.5	2025	2117.5
	20	20020	1720	2020	2120
Mid Range	1.4/3/5/10/15/20	20175	1732.5	2175	2132.5
	1.4	20393	1754.3	2393	2154.3
	3	20385	1753.5	2385	2153.5
	5	20375	1752.5	2375	2152.5
High Range	10	20350	1750	2350	2150
	15	20325	1747.5	2325	2147.5
	20	20300	1745	2300	2145
		Ban	d 5		
Test Frequency ID	Bandwidth	NUL	Frequency of	N _{DL}	Frequency of
	[MHz]		Uplink [MHz]		Downlink [MHz]
	1.4	20407	824.7	2407	869.7
-	3	20415	825.5	2415	870.5
Low Range		20425	826.5	2425	871.5
Low Range	5		829	2450	874
Low Range	10 ^[1]	20450			881.5
Low Range Mid Range	10 ^[1] 1.4/3/5 10 ^[1]	20525	836.5	2525	2000 (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (199
	10 ^[1] 1.4/3/5 10 ^[1] 1.4	20525 20643	848.3	2643	893.3
Mid Range	10 ^[1] 1.4/3/5 10 ^[1] 1.4 3	20525 20643 20635	848.3 847.5	2643 2635	893.3 892.5
	10 ¹¹ 1.4/3/5 10 ^[1] 1.4 3 5	20525 20643 20635 20625	848.3 847.5 846.5	2643	893.3
Mid Range	10 ^[1] 1.4/3/5 10 ^[1] 1.4 3	20525 20643 20635	848.3 847.5	2643 2635	893.3 892.5

Test Frequency ID	Bandwidth	NUL	Frequency of	NDL	Frequency o
	[MHz]		Uplink [MHz]		Downlink [MH
	1.4	23017	699.7	5017	729.7
Low Range	3	23025	700.5	5025	730.5
Low Range	5 [1]	23035	701.5	5035	731.5
	10 [1]	23060	704	5060	734
Mid Range	1.4/3 5 ^[1] /10 ^[1]	23095	707.5	5095	737.5
	1.4	23173	715.3	5173	745.3
Link Denne	3	23165	714.5	5165	744.5
High Range	5 [1]	23155	713.5	5155	743.5
	10 [1]	23130	711	5130	741

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 21 of 74

### Test Report Number: BTF230725R01104



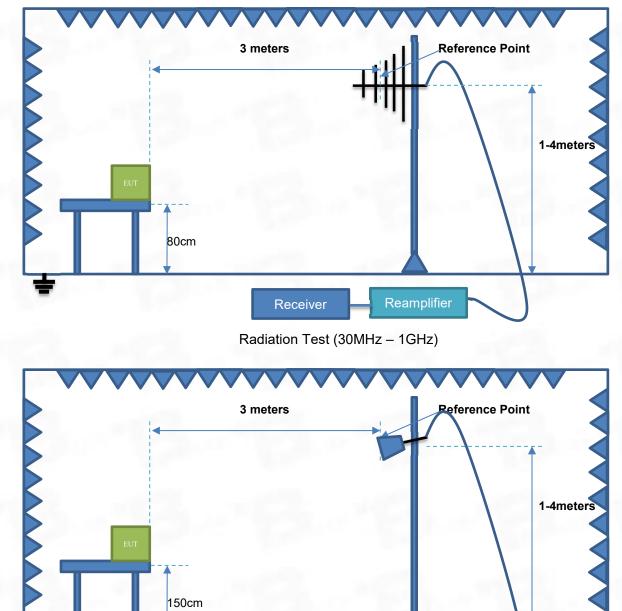
			Ban	d 13		
	Test Frequency ID	Bandwidth [MHz]	Nul	Frequency of Uplink [MHz]	Ndl	Frequency of Downlink [MHz]
	Low Range	5 [1]	23205	779.5	5205	748.5
	Low Range	10 [1]	23230	782	5230	751
	Mid Range	5 [1]/10 [1]	23230	782	5230	751
		5 [1]	23255	784.5	5255	753.5
	High Range	10 [1]	23230	782	5230	751
	NOTE 1: Bandwidth					
	(TS 36.101	[27] Clause 7.3) is	allowed.			
			Ban	d 25		
	Test Frequency ID	Bandwidth [MHz]	NUL	Frequency of Uplink [MHz]	NDL	Frequency of Downlink [MHz]
		1.4	26047	1850.7	8047	1930.7
	- F	3	26055	1851.5	8055	1931.5
	Low Range	10	26065 26090	1852.5 1855	8065 8090	1932.5 1935
	- F	15 [1]	26115	1857.5	8115	1937.5
		20 [1]	26140	1860	8140	1940
	Mid Range	1.4/3/5/10 15 ^[1] /20 ^[1]	26365	1882,5	8365	1962.5
		1.4	26683	1914.3	8683	1994.3
		3	26675	1913.5	8675	1993.5
	High Range	5	26665	1912.5	8665	1992.5
		10 15 ^[1]	26640 26615	1910 1907.5	8640 8615	1990 1987.5
		20 [1]		1905	8590	1985
		for which a relaxa 1 [27] Clause 7.3) i	s allowed.	pecified UE receive		
	(TS 36.10	for which a relaxa 1 [27] Clause 7.3) i Ba	tion of the s s allowed. and 26(	pecified UE receive (Part 22) Frequency of	r sensitivity	requirement Frequency of
		for which a relaxa I [27] Clause 7.3) i Banwidth[MHz]	tion of the s s allowed. and 26(	pecified UE receive (Part 22) Frequency of Uplink [MHz]	r sensitivity	requirement Frequency of Downlink [MHz]
-	(TS 36.10	for which a relaxa I [27] Clause 7.3) i Banwidth[MHz] 1.4	tion of the s s allowed. and 26( NuL 26797	Pecified UE receive (Part 22) Frequency of Uplink [MHz] 824.7	NDL 8797	Frequency of Downlink [MH2] 869.7
	(TS 36.10 Test Frequency ID	for which a relaxa I [27] Clause 7.3) i Banwidth[MHz] 1.4 3	nd 26( NuL 26797 26805	Pecified UE receive (Part 22) Frequency of Upimk [MHz] 824.7 825.5	NDL 8797 8805	Frequency of Downlink [MHz] 869.7 870.5
	(TS 36.10	for which a relaxa I [27] Clause 7.3) i Banwidth[MHz] 1.4 3 5	tion of the s s allowed. and 26( N _{UL} 26797 26805 26815	Pecified UE receive (Part 22) Frequency of Uplmk [MHz] 824.7 825.5 826.5	NDL 8797 8805 8815	Frequency of Downlink [MH2] 869.7 870.5 871.5
	(TS 36.10 Test Frequency ID	for which a relaxa I [27] Clause 7.3) i Banwidth[MHz] 1.4 3 5 10	tion of the s s allowed. and 26( NuL 26797 26805 26815 26840	Pecified UE receive (Part 22) Frequency of Uplink [MHz] 824.7 825.5 826.5 826.5 829	NDL 8797 8805 8815 8840	Frequency of Downlink [MHz] 869.7 870.5 871.5 874
	(TS 36.10 Test Frequency ID Low Range	for which a relaxa I [27] Clause 7.3) i Banwidth[MHz] 1.4 3 5 10 15	tion of the s s allowed. NuL 26797 26805 26815 26840 26865	Pecified UE receive (Part 22) Frequency of Uplink [MHz] 824.7 825.5 826.5 829 831.5	NoL 8797 8805 8815 8840 8865	Frequency of Downlink [MHz] 869.7 870.5 871.5 874 876.5
	(TS 36.10 Test Frequency ID	for which a relaxa I [27] Clause 7.3) i Banwidth[MHz] 1.4 3 5 10 15 1.4/3/5/10/15	tion of the s s allowed. and 26( NuL 26797 26805 26815 26840 26865 26915	(Part 22) Frequency of Uplink [MHz] 824.7 825.5 826.5 829 831.5 836.5	N _{DL} 8797 8805 8815 8840 8865 8915	Frequency of Downlink [MHz] 869.7 870.5 871.5 874 876.5 881.5
	(TS 36.10 Test Frequency ID Low Range	for which a relaxa I [27] Clause 7.3) i Banwidth[MHz] 1.4 3 5 10 15 1.4/3/5/10/15 1.4	tion of the s s allowed. and 26( NuL 26797 26805 26815 26840 26865 26915 27033	(Part 22) Frequency of Uplink [MHz] 824.7 825.5 826.5 829 831.5 836.5 848.3	N _{DL} 8797 8805 8815 8840 8865 8915 9033	Frequency of Downlink [MH2] 869.7 870.5 871.5 874 876.5 874 876.5 881.5 893.3
	(TS 36.10 Test Frequency ID Low Range Mid Range	for which a relaxa I [27] Clause 7.3) i Banwidth[MHz] 1.4 3 5 10 15 1.4/3/5/10/15 1.4 3	tion of the s s allowed. And 26( NuL 26797 26805 26815 26840 26865 26915 27033 27025	(Part 22) Frequency of Uplink [MHz] 824.7 825.5 826.5 829 831.5 836.5 836.5 848.3 847.5	N _{DL} 8797 8805 8815 8840 8865 8915 9033 9025	Frequency of Downlink [MH2] 869.7 870.5 871.5 871.4 876.5 881.5 881.5 893.3 892.5
	(TS 36.10 Test Frequency ID Low Range	for which a relaxa I [27] Clause 7.3) i Banwidth[MHz] 1.4 3 5 10 15 1.4/3/5/10/15 1.4	tion of the s s allowed. and 26( NuL 26797 26805 26815 26840 26865 26915 27033	(Part 22) Frequency of Uplink [MHz] 824.7 825.5 826.5 829 831.5 836.5 848.3	N _{DL} 8797 8805 8815 8840 8865 8915 9033	Frequency of Downlink [MH2] 869.7 870.5 871.5 874 876.5 874 876.5 881.5 893.3
	(TS 36.10 Test Frequency ID Low Range Mid Range	for which a relaxa I [27] Clause 7.3) i Banwidth[MHz] 1.4 3 5 10 15 1.4/3/5/10/15 1.4 3 5	tion of the s s allowed. And 26( NuL 26797 26805 26815 26840 26865 26915 27033 27025 27015	(Part 22) Frequency of Uplink [MHz] 824.7 825.5 826.5 829 831.5 836.5 848.3 847.5 846.5	N _{DL} 8797 8805 8815 8840 8865 8915 9033 9025 9015	requirement Frequency of Downlink [MH2] 869.7 870.5 871.5 874 876.5 881.5 893.3 892.5 891.5
	(TS 36.10 Test Frequency ID Low Range Mid Range	for which a relaxa I [27] Clause 7.3) i Banwidth[MHz] 1.4 3 5 10 15 1.4/3/5/10/15 1.4 3 5 10 15 1.4 3 5 10 15	tion of the s s allowed. and 26( Nut. 26797 26805 26815 26840 26865 26915 27033 27025 27015 26990 26965	Pecified UE receive (Part 22) Frequency of Upink [MHz] 824.7 825.5 826.5 829 831.5 836.5 836.5 848.3 847.5 846.5 844	NoL 8797 8805 8815 8840 8865 8915 9033 9025 9015 8990	Frequency of Downlink [MHz] 869.7 870.5 871.5 874 876.5 881.5 883.3 892.5 893.3 892.5 891.5 889
	(TS 36.10 Test Frequency ID Low Range Mid Range	for which a relaxa I [27] Clause 7.3) i Banwidth[MHz] 1.4 3 5 10 15 1.4/3/5/10/15 1.4 3 5 10 15 1.4 3 5 10 15	tion of the s s allowed. and 26( Nut. 26797 26805 26815 26840 26865 26915 27033 27025 27015 26990 26965	(Part 22) Frequency of Uplink [MHz] 824.7 825.5 826.5 829 831.5 836.5 848.3 847.5 846.5 844.3 847.5 846.5 844	NoL 8797 8805 8815 8840 8865 8915 9033 9025 9015 8990	Frequency of Downlink [MHz] 869.7 870.5 871.5 874 876.5 881.5 883.3 892.5 893.3 892.5 891.5 889
	(TS 36.10 Test Frequency ID Low Range Mid Range High Range	for which a relaxa I [27] Clause 7.3) i Banwidth[MHz] 1.4 3 5 10 15 1.4/3/5/10/15 1.4 3 5 10 15 1.4 3 5 10 15 1.4 3 5 10 15 1.4 3 5 10 15 1.4 3 10 15	tion of the s s allowed. and 26( 26797 26805 26815 26840 26865 26915 27033 27025 27015 26990 26995 and26(	Pecified UE receive (Part 22) Frequency of Upink [MHz] 824.7 825.5 826.5 829 831.5 836.5 848.3 847.5 846.5 844 841.5 Part 90) Frequency of	N _{DL} 8797 8805 8815 8840 8865 8915 9033 9025 9015 8990 8990 8995	requirement Frequency of Downlink [MHz] 869.7 870.5 871.5 874 876.5 881.5 893.3 892.5 891.5 889 889 886.5 Frequency of
	(TS 36.10 Test Frequency ID Low Range Mid Range High Range	for which a relaxa [27] Clause 7.3) if Banwidth[MHz] 1.4 3 5 1.4/3/5/10/15 1.4/3/5/10/15 1.4/3 5 10 15 Banwidth[MHz] Banwidth[MHz]	tion of the s s allowed. And 26( 26797 26805 26815 26840 26865 26915 27033 27015 27015 26990 26965 and26( NuiL	Pecified UE receive (Part 22) Frequency of Upink [MHz] 824.7 825.5 826.5 829 831.5 836.5 848.3 847.5 846.5 844 841.5 Part 90) Frequency of Upink [MHz]	Not.         8797           8805         8815           8840         8865           8915         9033           9015         9015           9025         9015           8990         8965           NDL         NDL	requirement Frequency of Downlink [MHz] 869.7 870.5 871.5 874 876.5 881.5 893.3 893.3 892.5 891.5 889 889 886.5 Frequency of Downlink [MHz]
	(TS 36.10 Test Frequency ID Low Range Mid Range High Range	for which a relaxa [27] Clause 7.3) i Banwidth[MHz] 1.4 3 5 1.4/3/5/10/15 1.4/3/5/10/15 1.4/3 5 10 15 Banwidth[MHz] 1.4 1.4	tion of the s s allowed. And 26( 26797 26805 26815 26840 26865 26915 27033 27015 27015 27015 26990 26965 and26( NuiL 26997	Pecified UE receive (Part 22) Frequency of Upink [MHz] 824.7 825.5 826.5 829 831.5 836.5 848.3 847.5 846.5 844 841.5 (Part 90) Frequency of Upink [MHz] 814.7	Not.         8797           8805         8815           8840         8865           8915         9033           9025         9015           8990         8995           NpL         8990           8965         8965	requirement Frequency of Downlink [MHz] 869.7 870.5 871.5 874 876.5 881.5 893.3 892.5 891.5 889 889 886.5 Frequency of Downlink [MHz] 859.7
	(TS 36.10 Test Frequency ID Low Range Mid Range High Range Test Frequency ID	for which a relaxa [27] Clause 7.3) i Banwidth[MHz] 1.4 3 5 1.4/3/5/10/15 1.4/3/5/10/15 1.4 3 5 10 15 Banwidth[MHz] 1.4 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 15 10 15 14 3 15 10 15 14 3 15 10 15 14 3 10 15 15 14 3 15 10 15 15 10 15 14 3 15 10 15 15 14 3 15 15 16 15 16 15 16 15 16 15 16 15 16 15 15 16 15 16 15 16 15 16 15 16 16 15 16 15 16 16 15 16 15 16 15 16 15 16 16 16 15 16 16 16 16 15 16 16 16 16 15 16 16 16 15 16 16 16 16 16 16 16 16 15 16 16 16 16 16 16 16 16 16 16	tion of the s s allowed. And 26( 26797 26805 26815 26840 26865 26915 27015 27015 26990 26965 and26( NuiL 26997 26705	Pecified UE receive (Part 22) Frequency of Upink [MHz] 824.7 825.5 826.5 829 831.5 836.5 848.3 847.5 846.5 844 841.5 (Part 90) Frequency of Upink [MHz] 814.7 815.5	Not.         8797           8805         8815           8840         8865           8915         9033           9025         9015           8990         8995           NpL         8697           8705         8705	requirement Frequency of Downlink [MHz] 869.7 870.5 871.5 874 876.5 881.5 893.3 892.5 891.5 889 886.5 Frequency of Downlink [MHz] 859.7 860.5
	(TS 36.10 Test Frequency ID Low Range Mid Range High Range Test Frequency ID	for which a relaxa [27] Clause 7.3) i Banwidth[MHz] 1.4 3 5 1.4/3/5/10/15 1.4/3/5/10/15 1.4/3/5/10/15 1.4 3 5 10 15 Banwidth[MHz] 1.4 3 5 10 15 15 10 15 15 10 15 14 3 5 10 15 15 15 10 15 15 10 15 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 15 10 15 15 15 10 15 15 15 10 15 15 15 15 15 15 15 15 15 15	tion of the s s allowed. and 26( Nut. 26797 26805 26815 26840 26855 26915 27035 27035 27015 26990 26995 and26( Nut. 26997 26705 26715	Pecified UE receive (Part 22) Frequency of Upink [MHz] 824.7 825.5 826.5 829 831.5 846.5 844.3 847.5 846.5 844.3 847.5 846.5 844 841.5 Part 90) Frequency of Upink [MHz] 814.7 815.5 816.5	Not.           8797           8805           8815           8840           8865           9033           9033           9015           8990           8995           NpL           8697           8705           8715	requirement Frequency of Downlink [MHz] 869.7 870.5 871.5 874 876.5 881.5 893.3 892.5 891.5 889 886.5 Frequency of Downlink [MHz] 859.7 860.5 861.5
	(TS 36.10 Test Frequency ID Low Range Mid Range High Range Test Frequency ID Low Range	for which a relaxa [27] Clause 7.3) i Banwidth[MHz] 1.4 3 5 10 15 1.4/3/5/10/15 1.4/3/5/10/15 1.4 3 5 10 15 Banwidth[MHz] 1.4 3 5 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 15 15 15 15 15 15 15 15	tion of the s s allowed. and 26( Nut. 26797 26805 26815 26840 26840 26855 26915 27033 27015 26990 26955 and26( Nut. 26997 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 26705 27705 27705 27705 27705 27705 27705 277	Pecified UE receive (Part 22) Frequency of Upimk [MHz] 824.7 825.5 826.5 829 831.5 836.5 848.3 847.5 846.5 844 841.5 (Part 90) Frequency of Upimk [MHz] 814.7 815.5 816.5 -	Not.           8797           8805           8815           8840           8865           9033           9033           9015           8990           8995           NpL           8697           8705           8715	requirement Frequency of Downlink [MHz] 869.7 870.5 871.5 874 876.5 881.5 893.3 892.5 891.5 889 886.5 Frequency of Downlink [MHz] 859.7 860.5 861.5
	(TS 36.10 Test Frequency ID Low Range Mid Range High Range Test Frequency ID	for which a relaxa [27] Clause 7.3) i Banwidth[MHz] 1.4 3 5 10 15 1.4/3/5/10/15 1.4/3/5/10/15 1.4 3 5 10 15 Banwidth[MHz] 1.4 3 5 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 10 15 10 15 10 15 10 15 10 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 15 15 15 15 15 15 15 15 15	tion of the s s allowed. and 26( Nut. 26797 26805 26815 26840 26855 26915 27033 27025 27015 26990 26965 and26( Nut. 26997 26705 26705 26715 - 26755 26740	Pecified UE receive (Part 22) Frequency of Upink [MHz] 824.7 825.5 826.5 829 831.5 836.5 848.3 847.5 846.5 844.5 844.5 844.5 (Part 90) Frequency of Upink [MHz] 814.7 815.5 816.5 - 821.5 819	Not.         8797           8805         8815           8840         8865           8915         9033           9025         9015           9015         8990           8965         8           NpL         8697           8705         8715           -         -           8740         8740	requirement Frequency of Downlink [MHz] 869.7 870.5 871.5 874 876.5 881.5 893.3 892.5 891.5 889 886.5 Frequency of Downlink [MHz] 859.7 860.5 861.5 864
	(TS 36.10 Test Frequency ID Low Range Mid Range High Range Test Frequency ID Low Range Mid Range	for which a relaxa [27] Clause 7.3) i Banwidth[MHz] 1.4 3 5 1.4/3/5/10/15 1.4/3/5/10/15 1.4 3 5 10 15 Banwidth[MHz] 1.4 3 5 10 15 Banwidth[MHz] 1.4 3 5 10 15 Banwidth[MHz] 1.4 3 5 10 15 Banwidth[MHz] 1.4 3 5 10 15 Banwidth[MHz] 1.4 3 5 10 15 Banwidth[MHz] 1.4 3 5 10 15 Banwidth[MHz] 1.4 3 5 10 15 Banwidth[MHz] 1.4 3 5 10 15 Banwidth[MHz] 1.4 3 5 10 15 Banwidth[MHz] 1.4 3 5 10 15 Banwidth[MHz] 1.4 3 5 10 15 Banwidth[MHz] 1.4 1.4 15 Banwidth[MHz] 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	tion of the s s allowed. and 26( Nut. 26797 26805 26815 26815 26840 26855 26915 27033 27025 27033 27025 27033 27025 27039 26990 26955 and26( Nut. 26990 26955 26715 26705 26715 26705 26715 26765 26740 26783	Pecified UE receive (Part 22) Frequency of Uplmk [MHz] 824.7 825.5 826.5 829 831.5 836.5 848.3 847.5 846.5 844 841.5 (Part 90) Frequency of Uplmk [MHz] 814.7 815.5 816.5 - 821.5 819 823.3	Nol. 8797 8805 8815 8840 8865 8915 9033 9025 8903 9015 8990 8965 8990 8965 8990 8965 8990 8965 8990 8965 8990 8965 8970 8705 8715 - - 8740 8783	requirement Frequency of Downlink [MHz] 869.7 870.5 871.5 874 876.5 881.5 893.3 892.5 891.5 889 886.5 Frequency of Downlink [MHz] 859.7 860.5 861.5 864 868.3
	(TS 36.10 Test Frequency ID Low Range Mid Range High Range Test Frequency ID Low Range	for which a relaxa [27] Clause 7.3) i Banwidth[MHz] 1.4 3 5 10 15 1.4/3/5/10/15 1.4/3/5/10/15 1.4 3 5 10 15 Banwidth[MHz] 1.4 3 5 10 15 1.4 3 5 10 15 1.4 3 5 10 15 1.4 3 5 10 15 1.4 3 5 10 15 1.4 3 5 10 15 1.4 3 5 10 15 1.4 3 5 10 15 1.4 3 5 10 15 1.4 3 5 10 15 1.4 3 5 10 15 1.4 3 5 10 15 1.4 3 5 10 15 1.4 3 5 10 15 1.4 3 5 10 15 1.4 3 5 10 15 1.4 3 5 10 15 1.4 3 5 10 15 1.4 3 5 10 15 15 10 15 1.4 3 5 10 15 15 15 10 15 15 1.4 3 5 10 15 1.4 3 5 10 15 1.4 3 5 10 15 1.4 3 5 10 15 1.4 3 5 10 15 1.4 3 5 10 15 1.4 3 5 10 15 1.4 3 5 10 15 1.4 3 5 10 15 1.4 3 5 10 15 1.4 3 5 10 15 1.4 3 5 10 15 1.4 3 5 10 15 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 10 1.4 3 5 1.4 3 5 1.4 3 5 10 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 5 1.4 3 1.4 3 1.4 3 1.4 1.4 3 1.4 1.4 3 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	tion of the s s allowed. and 26( Nut. 26797 26805 26815 26815 26815 26815 26815 26915 27033 27025 27033 27025 27033 27025 27033 27025 27033 27025 26990 26990 26955 and 26( Nut. 26990 26955 26755 26715 26755 26740 26753 26775	Pecified UE receive (Part 22) Frequency of Upimk [MHz] 824.7 825.5 826.5 829 831.5 836.5 848.3 847.5 846.5 844.5 844.5 844.5 <b>Part 90)</b> Frequency of Upimk [MHz] 814.7 815.5 816.5 - 821.5 819 823.3 822.5	Not.           8797           8805           8815           8840           8865           8915           9033           9025           9015           8990           8965           8015           8970           8965           8015           8015           9015           8990           8965           8015           9015           8097           8705           8715           -           8740           8783           8775	requirement Frequency of Downlink [MHz] 869.7 870.5 871.5 874 876.5 881.5 893.3 892.5 891.5 889 886.5 Frequency of Downlink [MHz] 859.7 860.5 861.5 864 868.3 867.5
	(TS 36.10 Test Frequency ID Low Range Mid Range High Range Test Frequency ID Low Range Mid Range	for which a relaxa [27] Clause 7.3) i Banwidth[MHz] 1.4 3 5 10 15 1.4/3/5/10/15 1.4/3/5/10/15 1.4 3 5 10 15 Banwidth[MHz] 1.4 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 14 3 5 10 15 15 16 15 16 15 16 15 16 15 16 15 10 15 16 15 10 15 16 15 10 15 15 16 15 10 15 15 16 16 15 16 15 16 15 16 16 15 10 15 16 15 16 15 16 15 10 15 16 16 15 10 15 16 16 16 16 15 16 16 16 15 16 16 16 16 16 16 16 16 15 16 16 16 16 16 16 16 16 16 16	tion of the s s allowed. and 26( Nut. 26797 26805 26815 26815 26840 26855 26915 27033 27025 27033 27025 27033 27025 27039 26990 26955 and26( Nut. 26990 26955 26715 26705 26715 26705 26715 26765 26740 26783	Pecified UE receive (Part 22) Frequency of Uplmk [MHz] 824.7 825.5 826.5 829 831.5 836.5 848.3 847.5 846.5 844 841.5 (Part 90) Frequency of Uplmk [MHz] 814.7 815.5 816.5 - 821.5 819 823.3	Nol. 8797 8805 8815 8840 8865 8915 9033 9025 8903 9015 8990 8965 8990 8965 8990 8965 8990 8965 8990 8965 8990 8965 8970 8705 8715 - - 8740 8783	requirement Frequency of Downlink [MHz] 869.7 870.5 871.5 874 876.5 881.5 893.3 892.5 891.5 889 886.5 Frequency of Downlink [MHz] 859.7 860.5 861.5 864 868.3

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

### Test Report Number: BTF230725R01104



Band 41									
Test Frequency ID	Bandwidth [MHz]	EARFCN	Frequency (UL and DL [MHz]						
Low Range	5	39675	2498.5						
	10	39700	2501						
	15	39725	2503.5						
	20	39750	2506						
Mid Range	5/10/15/20	40620	2593						
High Range	5	41565	2687.5						
	10	41540	2685						
	15	41515	2682.5						
	20	41490	2680						


			Band	~~		
	Table 4.3.1.1.66-1:	Test frequencies	for E-UTR	A channel bandy	width for o	perating band 66
	Test Frequency ID	Bandwidth [MHz]	NUL	Frequency of Uplink [MHz]	NDL	Frequency of Downlink [MHz]
		1.4	131979	1710.7	66443	2110.7
		3	131987	1711.5	66451	2111.5
	2	5	131997	1712.5	66461	2112.5
	Low Range	10	132022	1715	66486	2115
		15	132047	1717.5	66511	2117.5
		20	132072	1720	66536	2120
	Mid Range Tx1	1.4/3/5/10/15/20	132322	1745	66786	2145
	Mid Range	1.4/3/5/10/15/20	132422	1755	66886	2155
		1.4	132665	1779.3	67129	2179.3
		3	132657	1778.5	67121	2178.5
	Paired High	5	132647	1777.5	67111	2177.5
	Range ²	10	132622	1775	67086	2175
		15	132597	1772.5	67061	2172.5
		20	132572	1770	67036	2170
		1.4	NA	NA	67329	2199.3
		3	NA	NA	67321	2198.5
		5	NA	NA	67311	2197.5
	High Range ³	10	NA	NA	67286	2195
		15	NA	NA	67261	2192.5
		20	NA	NA	67236	2190
- ۱	Fest Frequency ID	Bandwidth [MHz]	Band [°] _{Nu⊾}	71 Frequency of Uplink [MHz]	NDL	Frequency of Downlink [MHz
_		[MHZ] 5	133147	665.5	68611	619.5
	2	10	133147	668	68636	622
	Low Range		133172		68661	624.5
	-	15		670.5		
-		20	133222	673	68686	627
	Mid Range	5/10/15	133297	680.5	68761	634.5
		20	133322	683	68786	637
		5	133447	695.5	68911	649.5
	High Range	10	133422	693	68886	647
	- ign range	15	133397	690.5	68861	644.5
		20	133372	688	68836	642

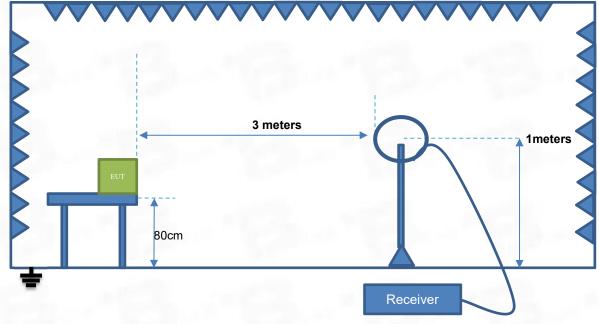


Test Report Number: BTF230725R01104

# 4.5 Test Setup

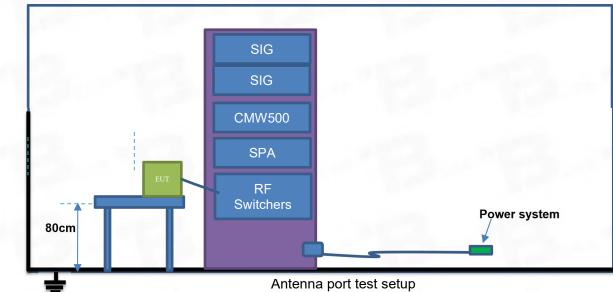
Test Setup 1




Receiver

Radiation Test (Above 1GHz)

Reamplifier




### **Test Setup 2**



Radiation Test (9k - 30MHz)

### **Test Setup 3**



Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



# 5. Test Items

## 5.1 Transmitter Radiated Power (EIRP/ERP)

### 5.1.1 Limit

FCC § 2.1046 & 22.913(a) & 24.232(c) & 27.50(a) & 27.50(b) & 27.50(c) & 27.50(d) & 27.50(h) & 90.635(b) & 90.542(a); RSS-103 4.6; RSS-132 5.4, RSS-133 6.4, RSS-139 6.5, RSS199 4.4

According to FCC section 22.913(a) (5), the Effective Radiated Power (ERP) of mobile transmitters and auxiliary test transmitters must not exceed 7 watts.

According to FCC section 24.232(c), mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

According to FCC section 27.50(a) (3), for mobile and portable stations transmitting in the 2305-2315MHz band or the 2350-2360MHz band, the average EIRP must not exceed 50 milliwatts within any 1 megahertz of authorized bandwidth, except that for mobile and portable stations compliant with 3GPP LTE standards.

FCC section 27.50(b) (10), portable stations (hand-held devices) transmitting in the 746-757MHz, 776-788MHz, and 805-806MHz bands are limited to 3 watts ERP.

FCC section 27.50(c) (10), portable stations (hand-held devices) in the 600MHz uplink band and the 698-746MHz band, and fixed and mobile stations in the 600MHz uplink band are limited to 3 watts ERP.

FCC section 27.50(d) (4), fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watt EIRP. Fixed stations operating in the 1710-1755 MHz band are limited to a maximum antenna height of 10 meters above ground. Mobile and portable stations operating in these bands must employ a means for limiting power to the minimum necessary for successful communications.

(7) Fixed, mobile, and portable (hand-held) stations operating in the 2000-2020 MHz band are limited to 2 watts EIRP.

And FCC section 27.50(h) (2), for mobile and other user stations, mobile stations are limited to 2.0 watts EIRP. All user stations are limited to 2.0 watts transmitter output power.

According to FCC section 90.635(b), the maximum output power of the transmitter for mobile stations is 100 watts (20dBW).

According to FCC section 90.542(a) (7), portable stations (hand-held devices) transmitting in the 758-768 MHz band and the 788-798 MHz band are limited to 3 watts ERP.

### 5.1.2 Test Setup

The section 4.4 test setup 4 description is used for conducted test, and the test setup description is used for radiated test. The photo of test setup please refer to ANNEX B.

### 5.1.3 Test Procedure

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 26 of 74 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



Page 27 of 74

#### **Description of the Conducted Output Power Measurement**

The EUT is coupled to the SS with attenuator through power splitter; the RF load attached to EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. A system simulator is used to establish communication with the EUT, and its parameters are set to force the EUT transmitting at maximum output power. The measured power in the radio frequency on the transmitter output terminals shall be reported.

The relevant equation for determining the conducted measured value is:

Conducted Output Power Value (dBm) = Measured Value (dBm) + Path Loss (dB)

where:

Conducted Output Power Value = final conducted measured value in the conducted power test, in dBm; Measured Value = measured conducted power received by spectrum analyzer or power meter, in dBm; Path Loss = signal attenuation in the connecting cable between the transmitter and spectrum analyzer or power meter, including external cable loss, in dB;

During the test, the data of Path Loss (dB) is added in the spectrum analyzer or power meter, so Measured Value (dBm) is the final values which contains the data of Path Loss (dB).

For example:

In the conducted output power test, when measured value for GSM850 is 24.7 dBm, and path loss is 8.5 dB, then final conducted output power value is:

Conducted Output Power Value (dBm) = 24.7 dBm + 8.5 dB = 33.2 dBm

#### **Description of the Transmitter Radiated Power Measurement**

In many cases, the RF output power limits for licensed digital transmission devices is specified in terms of effective radiated power (ERP) or equivalent isotropic radiated power (EIRP). Typically, ERP is specified when the operating frequency is less than or equal to 1 GHz and EIRP is specified when the operating frequency is greater than 1 GHz. Both are determined by adding the transmit antenna gain to the conducted RF output power with the primary difference between the two being that when determining the ERP, the transmit antenna gain is referenced to a dipole antenna (i.e., dBd) whereas when determining the EIRP, the transmit antenna gain is referenced to an isotropic antenna (dBi).

Final measurement calculation as below:

The relevant equation for determining the ERP or EIRP from the conducted RF output power measured using the guidance provided above is: ERP/EIRP = PMeas + GT - LC

where:

ERP/EIRP = effective or equivalent radiated power, respectively (expressed in the same units as PMeas, typically dBW or dBm);



PMeas = measured transmitter output power or PSD, in dBm or dBW; GT = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP); dBd (ERP)=dBi (EIRP) -2.15 dB

LC = signal attenuation in the connecting cable between the transmitter and antenna, in dB.

For devices utilizing multiple antennas, KDB 662911 provides guidance for determining the effective array transmit antenna gain term to be used in the above equation.

For example:

In the EIRP test, when PMeas value for GSM1900 is 30.2 dBm, LC is 0.6 dB, and GT is -3.4 dB, then final EIRP value is:

EIRP for GSM1900 = 30.2 dBm - 3.4 dBi - 0.6 dB = 26.2 dBm

The relevant equation for determining the ERP/EIRP from the radiated RF output power is:

ERP/EIRP (dBm) = SA Read Value (dBm) + Correction Factor (dB)

where:

ERP/EIRP = effective or equivalent radiated power, in dBm;

SA Read Value = measured transmitter power received by EMI receiver or spectrum analyzer, in dBm; Correction Factor = total correction factor including cable loss, in dB;

During the test, the data of Correction Factor (dB) is added in the EMI receiver or spectrum analyzer, so SA Read Value (dBm) is the final values which contains the data of Correction Factor (dB).

For example:

In the ERP test, when SA read value for GSM850 is 21dBm, and correction factor is 8dB, then final ERP value for GSM850 is:

ERP (dBm) = 21dBm + 8dB = 29dBm

5.1.4 Test Result

Please refer to ANNEX A.1



### 5.2 Peak to Average Ratio

### 5.2.1 Limit

FCC § 2.1046 & 24.232(d) & 27.50(d); RSS-130 4.6.1, RSS-133 6.4, RSS-139 6.5, RSS199 4.4

In addition, when the transmitter power is measured in terms of average value, the peak-to-average power ratio (PAPR) of the transmitter shall not exceed 13 dB for more than 0.1% of the time using a signal corresponding to the highest PAPR during periods of continuous transmission.

According to FCC section 24.232(d); RSS-133 6.4, power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with 24.232 (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of § 24.51. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

FCC section 24.232(e) ); RSS-133 6.4,, peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms equivalent voltage. The measurement results shall be properly adjusted for any instrument limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, etc., so as to obtain a true peak measurement for the emission in question over the full bandwidth of the channel.

According to FCC section 27.50(d) (5); RSS-139 6.5, in measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13dB.

According to RSS-19 4.4, In addition, the peak-to-average power ratio (PAPR) of the transmitter shall not exceed 13 dB for more than 0.1% of the time and shall use a signal corresponding to the highest PAPR during periods of continuous transmission.

#### 5.2.2 Test Setup

The section 4.5 test setup 5 description is used for conducted test, and the test setup description is used for radiated test. The photo of test setup please refer to ANNEX B.

#### 5.2.3 Test Procedure

Here the lowest, middle and highest channels are selected to perform testing to verify the peak-to-average ratio. According to KDB 971168 D01, there is CCDF procedure for PAPR:

- a) Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function;
- b) Set resolution/measurement bandwidth  $\geq$  signal's occupied bandwidth;
- c) Set the number of counts to a value that stabilizes the measured CCDF curve;
- d) Set the measurement interval as follows:

1) for continuous transmissions, set to 1 ms,



2) for burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.

e) Record the maximum PAPR level associated with a probability of 0.1%.

Alternate procedure for PAPR:

Use one of the procedures presented in 4.1 to measure the total peak power and record as PPk. Use one of the applicable procedures presented 4.2 to measure the total average power and record as PAvg. Both the peak and average power levels must be expressed in the same logarithmic units (e.g., dBm). Determine the PAPR from:

PAPR (dB) = PPk (dBm) - PAvg (dBm).

5.2.4 Test Result

Please refer to ANNEX A.2



## 5.3 Occupied Bandwidth

### 5.3.1 Limit

FCC § 2.1049, RSS-Gen 6.7

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission.

Many of the individual rule parts specify a relative OBW in lieu of the 99% OBW. In such cases, the OBW is defined as the width of the signal between two points, one below the carrier center frequency and on above the carrier center frequency, outside of which all emissions are attenuated by at least X dB below the transmitter power, where the value of X is typically specified as 26.

### 5.3.2 Test Setup

The section 4.5 test setup 5 description is used for conducted test, and the test setup description is used for radiated test. The photo of test setup please refer to ANNEX B.

### 5.3.3 Test Procedure

The following procedure shall be used for measuring power bandwidth.

- a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (i.e., two to five times the anticipated OBW).
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.
- c) Set the reference level of the instrument as required to keep the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope must be at least 10log (OBW / RBW) below the reference level.
- d) NOTE—Steps a) through c) may require iteration to adjust within the specified tolerances.
- e) For -26 dB OBW, the dynamic range of the spectrum analyzer at the selected RBW shall be at least 10dB below the target "-X dB down" requirement, e.g. -26 dB OBW, the spectrum analyzer noise floor at the selected RBW shall be 36dB below the reference value.
- f) Set the detection mode to peak, and the trace mode to max hold.
- g) For 99% OBW, use the 99 % power bandwidth function of the spectrum analyzer (if available) and report the measured bandwidth.

If the instrument does not have a 99 % power bandwidth function, the trace data points are to be recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99 % power bandwidth is the difference between these two frequencies.

h) For -26 dB OBW, determine the reference value: Set the EUT to transmit a modulated signal. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value).



Determine the "-X dB down amplitude" as equal to (reference value -X). Alternatively, this calculation can be performed by the analyzer by using the marker-delta function.

Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display such that each marker is at or slightly below "-X dB down amplitude" determined in step g). If a marker is below this "-X dB down amplitude" value it shall be placed as close as possible to this value. The OBW is the positive frequency difference between the two markers.

- i) The OBW shall be reported by providing plot(s) of the measuring instrument display. The frequency and amplitude axes and scale shall be clearly labeled. Tabular data may be reported in addition to the plot(s).
- j) Change variable modulations, coding, or channel bandwidth settings, then repeat above test procedures.

### 5.3.4 Test Result

Please refer to ANNEX A.3



# 5.4 Frequency Stability

5.4.1 Limit

FCC § 2.1055 & 22.355 & 24.235 & 27.54 & 90.213; RSS-130 4.5, RSS-132 5.3, RSS-133 6.3, RSS-139 6.4, RSS199 4.3

The frequency stability shall be measured with variation of ambient temperature as follows:

- (1) The temperature is varied from -30°C to +50°C.
- (2) Frequency measurements shall be made at the extremes of the specified temperature range and at intervals of not more than 10°C through the range.

The frequency stability shall be measured with variation of primary supply voltage as follows:

- (1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than carried battery equipment.
- (2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating and point which shall be specified by the manufacture.
- (3) The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided.

FCC § 22.355, RSS-132 5.3

Except as otherwise provided in this part, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table C-1 of this section.

		Mabile > 2 watto	Mobile ≤ 3 watts
Frequency range	Base, fixed (ppm)	Mobile > 3 watts	
(MHz)		(ppm)	(ppm)
25 to 50	20.0	20.0	50.0
50 to 450	5.0	5.0	50.0
450 to 512	2.5	5.0	5.0
821 to 896	1.5	2.5	2.5
928 to 929	5.0	n/a	n/a
929 to 960	1.5	n/a	n/a
2110 to 2220	10.0	n/a	n/a

Table C-1—Frequency Tolerance for Transmitters in the Public Mobile Services

FCC § 24.235, RSS-133 6.3

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

FCC § 27.54, RSS-139 6.4

The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.



#### FCC § 90.213, RSS199 4.3

The frequency stability shall not depart from the reference frequency in excess of ±2.5ppm for mobile stations.

#### 5.4.2 Test Setup

The section 4.5 test setup 6 description is used for conducted test, and the test setup description is used for radiated test. The photo of test setup please refer to ANNEX B.

### 5.4.3 Test Procedure

1. The EUT is placed in a temperature chamber.

2. The temperature is set to 25°C and allowed to stabilize. After sufficient soak time, the transmitting frequency error is measured.

3. The temperature is increased by not more than 10 degrees, allowed to stabilize and soak, and then repeat the frequency error measurement.

- 4. Repeat procedure 3 until +50°C and -30°C is reached.
- 5. Change supply voltage, and repeat measurement until extreme voltage is reached.

#### 5.4.4 Test Result

Please refer to ANNEX A.4



# 5.5 Spurious Emission at Antenna Terminals

#### 5.5.1 Limit

FCC § 2.1051 & 22.917(a) & 24.238(a) & 27.53(a) & 27.53(c) & 27.53(f) & 27.53(g) & 27.53(h) & 27.53(m) & 90.691 & 90.543; RSS-130 4.7, RSS-132 5.5, RSS-133 6.5, RSS-139 6.6, RSS199 4.5

In the 1 MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

FCC § 22.917(a) & 24.238(a), RSS-132 5.5, RSS-133 6.5

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10*log(P) dB. This is calculated to be -13 dBm.

FCC § 27.53(a) (4), RSS-139 6.6

For mobile and portable stations operating in the 2305-2315MHz and 2350-2360MHz bands:

- (1) By a factor of not less than: 43 + 10 log (P) dB on all frequencies between 2305 and 2320MHz and on all frequencies between 2345 and 2360MHz that are outside the licensed band(s) of operation, not less than 55 + 10 log (P) dB on all frequencies between 2320 and 2324MHz and on all frequencies between 2341 and 2345MHz, not less than 61 + 10 log (P) dB on all frequencies between 2324 and 2328MHz and on all frequencies between 2337 and 2341MHz, and not less than 67 + 10 log (P) dB on all frequencies between 2328 and 2337MHz.
- (2) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2300 and 2305MHz, 55 + 10 log (P) dB on all frequencies between 2296 and 2300MHz, 61 + 10 log (P) dB on all frequencies between 2292 and 2296MHz, 67 + 10 log (P) dB on all frequencies between 2288 and 2292MHz, and 70 + 10 log (P) dB below 2288MHz.
- (3) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2360 and 2365MHz, and not less than 70 + 10 log (P) dB above 2365MHz.

FCC § 27.53(c), RSS-139 6.6

- For operations in the 746–758 MHz band and the 776–788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:
- (1) On any frequency outside the 746–758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (2) On any frequency outside the 776–788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (3) On all frequencies between 763–775 MHz and 793–805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations;
- (4) On all frequencies between 763–775 MHz and 793–805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations;



- (5) Compliance with the provisions of paragraphs (c)(1) and (c)(2) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed;
- (6) Compliance with the provisions of paragraphs (c)(3) and (c)(4) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.

FCC § 27.53(f) , RSS-139 6.6

For operations in the 746–758 MHz, 775–788 MHz, and 805–806 MHz bands, emissions in the band 1559–1610 MHz shall be limited to - 70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

FCC § 27.53(g) , RSS-139 6.6

For operations in the 600MHz band and the 698-746MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43+10*log(P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

FCC § 27.53(h) (1), RSS-139 6.6

Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB.

FCC § 27.53(m) (4), RSS-139 6.6

For mobile digital stations (BRS and EBS stations), the attenuation factor shall be not less than:

• 40+10logP dB (-10 dBm, 100 nW) on all frequencies between the channel edge and 5 MHz from the channel edge.

- 43+10logP dB (-13 dBm, 50 nW) on all frequencies between 5 MHz and X MHz from the channel edge,
- 55+10logP dB (-25 dBm, 3 nW) on all frequencies more than X MHz from the channel edge, where X is the greater of 6 MHz or the actual emission bandwidth (26 dB).

In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or

EBS licensees.

#### FCC § 90.691

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



- (a) Out-of-band emission requirement shall apply only to the "outer" channels included in an EA license and to spectrum adjacent to interior channels used by incumbent licensees. The emission limits are as follows:
- (1) For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 Log10(f/6.1) decibels or 50 + 10 Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz.
- (2) For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 43 + 10Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.
- (b) When an emission outside of the authorized bandwidth causes harmful interference, the Commission may, at its discretion, require greater attenuation than specified in this section.

# FCC § 90.543

- (e) For operations in the 758–768 MHz and the 788–798 MHz bands, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:
- (1) On all frequencies between 769–775 MHz and 799–805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations.
- (2) On all frequencies between 769–775 MHz and 799–805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations.
- (3) On any frequency between 775–788 MHz, above 805 MHz, and below 758 MHz, by at least 43 + 10 log (P) dB.
- (4) Compliance with the provisions of paragraphs (e)(1) and (2) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.
- (f) For operations in the 758–775 MHz and 788–805 MHz bands, all emissions including harmonics in the band 1559–1610 MHz shall be limited to -70 dBW/ MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

# RSS199 4.5

- (a) for base station and fixed subscriber equipment, the power of any unwanted emissions measured as above shall be attenuated (in dB) below the transmitter power, P (dBW), by at least 43 + 10 log10 p.
- (b) for mobile subscriber equipment, the power of any unwanted emissions measured as above shall be attenuated (in dB) below the transmitter power, P (dBW), by at least:
  - (i) 40 + 10 log10 p from the channel edges to 5 MHz away
  - (ii) 43 + 10 log10 p between 5 MHz and X MHz from the channel edges, and
  - (iii) 55 + 10 log10 p at X MHz and beyond from the channel edges
- In addition, the attenuation shall not be less than 43 + 10 log10 p on all frequencies between 2490.5 MHz and 2496 MHz, and 55 + 10 log10 p at or below 2490.5 MHz.
- In (a) and (b), p is the transmitter power measured in watts and X is 6 MHz or the equipment occupied bandwidth, whichever is greater.

# 5.5.2 Test Setup

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Partial Reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



The section 4.5 test setup 5 description is used for conducted test, and the test setup description is used for radiated test. The photo of test setup please refer to ANNEX B.

# 5.5.3 Test Procedure

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log(P) dB. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency blocks a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

The EUT is coupled to the system simulator and spectrum analyzer; the RF load attached to EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

CMW500 is used to establish communication with the EUT, and its parameters are set to force the EUT transmitting at maximum output power.

The RF output of the transmitter is connected to the input of the spectrum analyzer through sufficient attenuation.

Spurious emissions are tested with 0.001MHz RBW for frequency less than 150kHz, 0.01MHz RBW for frequency less than 30MHz, 0.1MHz RBW for frequency less than 1GHz, and 1MHz RBW for frequency above 1GHz. And sweep point number are at least 401, referring to following formula.

Sweep point number = Span/RBW VBW=3*RBW Detector Mode=mean or average power

Record the frequencies and levels of spurious emissions.

5.5.4 Test Result

Please refer to ANNEX A.5



# 5.6 Band Edge Emission

5.6.1 Limit

FCC § 2.1051 & 22.917(a) & 24.238(a) & 27.53(a) & 27.53(c) & 27.53(g) & 27.53(h) & 27.53(m) & 90.691& 90.543; RSS-130 4.7, RSS-132 5.5, RSS-133 6.5, RSS-139 6.6, RSS199 4.5

In the 1 MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

FCC § 22.917(a) & 24.238(a), RSS-132 5.5, RSS-133 6.5

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10*log(P) dB. This is calculated to be -13 dBm.

FCC § 27.53(a) (4), RSS-139 6.6

For mobile and portable stations operating in the 2305-2315MHz and 2350-2360MHz bands:

- (1) By a factor of not less than: 43 + 10 log (P) dB on all frequencies between 2305 and 2320MHz and on all frequencies between 2345 and 2360MHz that are outside the licensed band(s) of operation, not less than 55 + 10 log (P) dB on all frequencies between 2320 and 2324MHz and on all frequencies between 2341 and 2345MHz, not less than 61 + 10 log (P) dB on all frequencies between 2324 and 2328MHz and on all frequencies between 2337 and 2341MHz, and not less than 67 + 10 log (P) dB on all frequencies between 2328 and 2337MHz.
- (2) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2300 and 2305MHz, 55 + 10 log (P) dB on all frequencies between 2296 and 2300MHz, 61 + 10 log (P) dB on all frequencies between 2292 and 2296MHz, 67 + 10 log (P) dB on all frequencies between 2288 and 2292MHz, and 70 + 10 log (P) dB below 2288MHz.
- (3) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2360 and 2365MHz, and not less than 70 + 10 log (P) dB above 2365MHz.

FCC § 27.53(c), RSS-139 6.6

For operations in the 746–758 MHz band and the 776–788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

- (1) On any frequency outside the 746–758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (2) On any frequency outside the 776–788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (3) On all frequencies between 763–775 MHz and 793–805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25Hz band segment, for base and fixed stations;



- (4) On all frequencies between 763–775 MHz and 793–805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25kHz band segment, for mobile and portable stations;
- (5) Compliance with the provisions of paragraphs (c)(1) and (c)(2) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater.

However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed;

(6) Compliance with the provisions of paragraphs (c)(3) and (c)(4) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.

FCC § 27.53(g), RSS-139 6.6

For operations in the 600MHz band and the 698-746MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43+10*log(P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

FCC § 27.53(h) (1), RSS-139 6.6

Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB.

FCC § 27.53(m) (4), RSS-139 6.6

For mobile digital stations (BRS and EBS stations), the attenuation factor shall be not less than:

• 40+10logP dB (-10 dBm, 100 nW) on all frequencies between the channel edge and 5 MHz from the channel edge.

• 43+10logP dB (-13 dBm, 50 nW) on all frequencies between 5 MHz and X MHz from the channel edge,

• 55+10logP dB (-25 dBm, 3 nW) on all frequencies more than X MHz from the channel edge, where X is the greater of 6 MHz or the actual emission bandwidth (26 dB).

In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

## FCC § 90.691

(a) Out-of-band emission requirement shall apply only to the "outer" channels included in an EA license and to spectrum adjacent to interior channels used by incumbent licensees. The emission limits are as follows:
(1) For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 Log10(f/6.1) decibels



or 50 + 10 Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz.

- (2) For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 43 + 10Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.
- (b) When an emission outside of the authorized bandwidth causes harmful interference, the Commission may, at its discretion, require greater attenuation than specified in this section.

# FCC § 90.543

- (e) For operations in the 758–768 MHz and the 788–798 MHz bands, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:
- (1) On all frequencies between 769–775 MHz and 799–805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations.
- (2) On all frequencies between 769–775 MHz and 799–805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations.
- (3) On any frequency between 775–788 MHz, above 805 MHz, and below 758 MHz, by at least 43 + 10 log (P) dB.
- (4) Compliance with the provisions of paragraphs (e)(1) and (2) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.

# RSS199 4.5

- (a) for base station and fixed subscriber equipment, the power of any unwanted emissions measured as above shall be attenuated (in dB) below the transmitter power, P (dBW), by at least 43 + 10 log10 p.
- (b) for mobile subscriber equipment, the power of any unwanted emissions measured as above shall be attenuated (in dB) below the transmitter power, P (dBW), by at least:
  - (i) 40 + 10 log10 p from the channel edges to 5 MHz away
  - (ii) 43 + 10 log10 p between 5 MHz and X MHz from the channel edges, and
  - (iii) 55 + 10 log10 p at X MHz and beyond from the channel edges
- In addition, the attenuation shall not be less than 43 + 10 log10 p on all frequencies between 2490.5 MHz and 2496 MHz, and 55 + 10 log10 p at or below 2490.5 MHz.
- In (a) and (b), p is the transmitter power measured in watts and X is 6 MHz or the equipment occupied bandwidth, whichever is greater.

# 5.6.2 Test Setup

The section 4.5 test setup 5 description is used for conducted test, and the test setup description is used for radiated test. The photo of test setup please refer to ANNEX B.

# 5.6.3 Test Procedure



The EUT, which is powered by the Battery, is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 50 Ohm; the path loss as the factor is calibrated to correct the reading.

- 1. The EUT is coupled to the system simulator and spectrum analyzer; the RF load attached to EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.
- 2. CMW500 is used to establish communication with the EUT, and its parameters are set to force the EUT transmitting at maximum output power.
- 3. The RF output of the transmitter is connected to the input of the spectrum analyzer through sufficient attenuation.
- 4. The center of the spectrum analyzer was set to block edge frequency.
- 5. Band edge are tested with 1%*cBW (RBW), and sweep point number referred to following formula. Sweep point number = 2*Span/RBW VBW=3RBW
- 6. Record the frequencies and levels of spurious emissions.

For mobile and portable stations, on all frequencies between 763–775 MHz and 793–805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment. Since it was not possible to set the resolution bandwidth to 6.25 kHz with the available equipment, a bandwidth of 10 kHz was used instead to show compliance. By using a 10 kHz bandwidth on the spectrum analyzer.

10*log(10 kHz / 6.25 kHz) = 2.04 dB Limit Line = -35 dBm + 2.04 dB = -32.96dBm

5.6.4 Test Result

Please refer to ANNEX A.6



# 5.7 Field Strength of Spurious Radiation

5.7.1 Limit

FCC § 2.1053 & 22.917(a) & 24.238(a) & 27.53(a) & 27.53(c) & 27.53(f) & 27.53(g) & 27.53(h) & 27.53(m) & 90.691& 90.543 ; RSS-130 4.7, RSS-132 5.5, RSS-133 6.5, RSS-139 6.6, RSS199 4.5

FCC § 22.917(a) & 24.238(a)

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10*log(P) dB. This is calculated to be -13 dBm.

FCC § 27.53(a) (4), RSS-139 6.6

For mobile and portable stations operating in the 2305-2315MHz and 2350-2360MHz bands:

(1) By a factor of not less than: 43 + 10 log (P) dB on all frequencies between 2305 and 2320MHz and on all frequencies between 2345 and 2360MHz that are outside the licensed band(s) of operation, not less than 55 + 10 log (P) dB on all frequencies between 2320 and 2324MHz and on all frequencies between 2341 and 2345MHz, not less than 61 + 10 log (P) dB on all frequencies between 2324 and 2328MHz and on all frequencies between 2337 and 2341MHz, and not less than 67 + 10 log (P) dB on all frequencies between 2328 and 2337MHz.

(2) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2300 and 2305MHz, 55 + 10 log (P) dB on all frequencies between 2296 and 2300MHz, 61 + 10 log (P) dB on all frequencies between 2292 and 2296MHz, 67 + 10 log (P) dB on all frequencies between 2288 and 2292MHz, and 70 + 10 log (P) dB below 2288MHz.

(3) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2360 and 2365MHz, and not less than 70 + 10 log (P) dB above 2365MHz.

FCC § 27.53(c), RSS-139 6.6

For operations in the 746–758 MHz band and the 776–788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

(1) On any frequency outside the 746–758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;

(2) On any frequency outside the 776–788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least  $43 + 10 \log (P) dB$ ;

(3) On all frequencies between 763–775 MHz and 793–805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations;

(4) On all frequencies between 763–775 MHz and 793–805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations;

(5) Compliance with the provisions of paragraphs (c)(1) and (c)(2) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater.

However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed;

(6) Compliance with the provisions of paragraphs (c)(3) and (c)(4) of this section is based on the use of

measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.

FCC § 27.53(f), RSS-139 6.6

For operations in the 746–758 MHz, 775–788 MHz, and 805–806 MHz bands, emissions in the band 1559–1610 MHz shall be limited to - 70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

FCC § 27.53(g), RSS-139 6.6

For operations in the 600MHz band and the 698-746MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43+10*log(P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

# FCC § 27.53(h) (1), RSS-139 6.6

Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB. FCC § 27.53(m) (4) For mobile digital stations (BRS and EBS stations), the attenuation factor shall be not less than:

• 40+10logP dB (-10 dBm, 100 nW) on all frequencies between the channel edge and 5 MHz from the channel edge.

• 43+10logP dB (-13 dBm, 50 nW) on all frequencies between 5 MHz and X MHz from the channel edge,

• 55+10logP dB (-25 dBm, 3 nW) on all frequencies more than X MHz from the channel edge, where X is the greater of 6 MHz or the actual emission bandwidth (26 dB).

In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

# FCC § 90.691

(a) Out-of-band emission requirement shall apply only to the "outer" channels included in an EA license and to spectrum adjacent to interior channels used by incumbent licensees. The emission limits are as follows:
(1) For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 Log10(f/6.1) decibels or 50 + 10 Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the block in kilohertz and where f is greater than 12.5 kHz.

(2) For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 43 + 10Log10(P) decibels or 80



decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.

(b) When an emission outside of the authorized bandwidth causes harmful interference, the Commission may, at its discretion, require greater attenuation than specified in this section.

# FCC § 90.543

(e) For operations in the 758–768 MHz and the 788–798 MHz bands, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

(1) On all frequencies between 769–775 MHz and 799–805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations.

(2) On all frequencies between 769–775 MHz and 799–805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations.

(3) On any frequency between 775–788 MHz, above 805 MHz, and below 758 MHz, by at least 43 + 10 log (P) dB.

(4) Compliance with the provisions of paragraphs (e)(1) and (2) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.

# RSS199 4.5

- (a) for base station and fixed subscriber equipment, the power of any unwanted emissions measured as above shall be attenuated (in dB) below the transmitter power, P (dBW), by at least 43 + 10 log10 p.
- (b) for mobile subscriber equipment, the power of any unwanted emissions measured as above shall be attenuated (in dB) below the transmitter power, P (dBW), by at least:
  - (i) 40 + 10 log10 p from the channel edges to 5 MHz away
  - (ii) 43 + 10 log10 p between 5 MHz and X MHz from the channel edges, and
  - (iii) 55 + 10 log10 p at X MHz and beyond from the channel edges
- In addition, the attenuation shall not be less than 43 + 10 log10 p on all frequencies between 2490.5 MHz and 2496 MHz, and 55 + 10 log10 p at or below 2490.5 MHz.
- In (a) and (b), p is the transmitter power measured in watts and X is 6 MHz or the equipment occupied bandwidth, whichever is greater.

# 5.7.2 Test Setup

The section 4.5 test setup 4 description is used for conducted test, and the test setup description is used for radiated test. The photo of test setup please refer to ANNEX B.

# 5.7.3 Test Procedure

1. On a test site, the EUT shall be placed at 80cm height on a turn table, and in the position close to normal use as declared by the applicant.

2. The test antenna shall be oriented initially for vertical polarization located 3 m from EUT to correspond to the fundamental frequency of the transmitter.

3. The output of the test antenna shall be connected to the measuring receiver and the peak detector is used for the measurement.

## Test Report Number: BTF230725R01104

Page 46 of 74



4. During the measurement of the EUT, the resolution bandwidth was to 1 MHz and the average bandwidth was set to 1 MHz.

5. The transmitter shall be switched on; the measuring receiver shall be tuned to the frequency of the transmitter under test.

6. The test antenna shall be raised and lowered through the specified range of height until the maximum signal level is detected by the measuring receiver.

7. The transmitter shall be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.

8. The test antenna shall be raised and lowered again through the specified range of height until the maximum signal level is detected by the measuring receiver.

9. The maximum signal level detected by the measuring receiver shall be noted.

10. The EUT was replaced by half-wave dipole (824 ~ 849 MHz) or horn antenna (1 850 ~ 1 910 MHz) connected to a signal generator.

11. In necessary, the input attenuator setting on the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.

12. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.

13. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring received, which is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.

14. The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.

15. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.

Final measurement calculation as below:

The relevant equation for determining the ERP/EIRP from the radiated RF output power is: ERP/EIRP (dBm) = SA Read Value (dBm) + Correction Factor (dB)

where:

ERP/EIRP = effective or equivalent radiated power, in dBm;

SA Read Value = measured transmitter power received by EMI receiver or spectrum analyzer, in dBm; Correction Factor = total correction factor including cable loss, in dB;

During the test, the data of Correction Factor (dB) is added in the EMI receiver or spectrum analyzer, so SA Read Value (dBm) is the final values which contains the data of Correction Factor (dB).

For example:

In the ERP test, when SA read value for GSM850 is 21dBm, and correction factor is 8dB, then final ERP value for GSM850 is: ERP (dBm) = 21dBm + 8dB = 29dBm

# 5.7.4 Test Result

## Please refer to ANNEX A.7



# **ANNEX A Test Results**

# A.1 Transmitter Radiated Power (ERP/EIRP)

Refer to appendix report.

# A.2 Peak to Average Ratio

Refer to appendix report.

# A.3 Occupied Bandwidth

Refer to appendix report.

# A.4 Frequency Stability

Refer to appendix report.

# A.5 Spurious Emission at Antenna Terminals

Refer to appendix report.

# A.6 Band Edge Emission

Refer to appendix report.

# A.7 Field Strength of Spurious Radiation GSM850 / Polarization:Horizontal / CH:L

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1636.434	-41.12	-31.50	-72.62	-13.00	-59.62	peak	P
2	2590.367	-37.50	-30.21	-67.71	-13.00	-54.71	peak	P
3	3669.624	-34.56	-29.03	-63.59	-13.00	-50.59	peak	P
4	5842.449	-32.57	-25.84	-58.41	-13.00	-45.41	peak	P
5	7884.364	-29.93	-25.35	-55.28	-13.00	-42.28	peak	P
6 *	11211.375	-24.05	-23.28	-47.33	-13.00	-34.33	peak	P

## GSM850 / Polarization:Vertical / CH:L

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1418.282	-40.60	-31.26	-71.86	-13.00	-58.86	peak	Р
2	2286.301	-36.27	-30.61	-66.88	-13.00	-53.88	peak	P
3	3838.874	-32.27	-29.01	-61.28	-13.00	-48.28	peak	P
4	5391.360	-29.20	-27.04	-56.24	-13.00	-43.24	peak	P
5	6880.870	-28.29	-25.04	-53.33	-13.00	-40.33	peak	P
6 *	9952.717	-25.24	-24.19	-49.43	-13.00	-36.43	peak	P

GSM850 / Polarization: Horizontal / CH:M

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	2066.924	-38.48	-30.85	-69.33	-13.00	-56.33	peak	P
2	3025.306	-35.02	-29.48	-64.50	-13.00	-51.50	peak	Р
3	4362.012	-33.39	-28.84	-62.23	-13.00	-49.23	peak	P
4	6136.695	-30.57	-25.34	-55.91	-13.00	-42.91	peak	Р
5	8733.802	-27.83	-24.85	-52.68	-13.00	-39.68	peak	Р
6 *	13022.129	-21.26	-21.33	-42.59	-13.00	-29.59	peak	P

GSM850 / Polarization: Vertical / CH:M

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1355.752	-39.18	-30.92	-70.10	-13.00	-57.10	peak	Р
2	3020.937	-38.80	-29.50	-68.30	-13.00	-55.30	peak	P
3	5022.780	-29.69	-27.36	-57.05	-13.00	-44.05	peak	Р
4	8917.462	-25.28	-24.47	-49.75	-13.00	-36.75	peak	Р
5	12695.084	-22.28	-21.51	-43.79	-13.00	-30.79	peak	P
6 *	17472.023	-23.36	-16.43	-39.79	-13.00	-26.79	peak	P



# GSM850 / Polarization: Horizontal / CH:H

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1623.243	-40.76	-31.52	-72.28	-13.00	-59.28	peak	P
2	2775.634	-35.14	-29.89	-65.03	-13.00	-52.03	peak	P
3	3630.589	-32.34	-29.04	-61.38	-13.00	-48.38	peak	P
4	5350.996	-28.63	-27.08	-55.71	-13.00	-42.71	peak	Р
5	7358.100	-25.11	-24.82	-49.93	-13.00	-36.93	peak	P
6 *	11640.655	-24.83	-22.82	-47.65	-13.00	-34.65	peak	P

# GSM850 / Polarization: Vertical / CH:H

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1618.091	-40.55	-31.52	-72.07	-13.00	-59.07	peak	P
2	2471.157	-37.28	-30.40	-67.68	-13.00	-54.68	peak	P
3	3415.787	-34.35	-29.13	-63.48	-13.00	-50.48	peak	Р
4	4529.032	-32.22	-28.71	-60.93	-13.00	-47.93	peak	P
5	8274.271	-25.54	-25.42	-50.96	-13.00	-37.96	peak	P
6 *	11368.003	-23.15	-23.17	-46.32	-13.00	-33.32	peak	P

## GSM1900 / Polarization: Horizontal / CH:L

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1629.354	-40.63	-31.50	-72.13	-13.00	-59.13	peak	P
2	2442.045	-33.47	-30.43	-63.90	-13.00	-50.90	peak	P
3	3381.406	-32.41	-29.16	-61.57	-13.00	-48.57	peak	P
4	5728.739	-26.96	-26.21	-53.17	-13.00	-40.17	peak	P
5 *	8226.577	-22.93	-25.44	-48.37	-13.00	-35.37	peak	P
6	12054.972	-27.16	-22.13	-49.29	-13.00	-36.29	peak	P

GSM1900 / Polarization: Vertical / CH:L

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1552.574	-40.02	-31.63	-71.65	-13.00	-58.65	peak	P
2	2882.746	-31.65	-29.71	-61.36	-13.00	-48.36	peak	P
3	3925.269	-32.12	-29.01	-61.13	-13.00	-48.13	peak	P
4	6147.347	-27.28	-25.35	-52.63	-13.00	-39.63	peak	P
5	8226.577	-26.43	-25.44	-51.87	-13.00	-38.87	peak	P
6 *	13078.709	-24.21	-21.28	-45.49	-13.00	-32.49	peak	P



# GSM1900 / Polarization: Horizontal / CH:M

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1567.454	-40.64	-31.60	-72.24	-13.00	-59.24	peak	P
2	3281.274	-36.40	-29.25	-65.65	-13.00	-52.65	peak	P
3	4193.872	-35.77	-28.92	-64.69	-13.00	-51.69	peak	P
4	6562.312	-30.37	-25.32	-55.69	-13.00	-42.69	peak	P
5	8868.624	-25.73	-24.58	-50.31	-13.00	-37.31	peak	P
6 *	11875.141	-24.52	-22.41	-46.93	-13.00	-33.93	peak	P

# GSM1900 / Polarization: Vertical / CH:M

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1550.332	-40.34	-31.63	-71.97	-13.00	-58.97	peak	P
2	2615.192	-36.33	-30.17	-66.50	-13.00	-53.50	peak	P
3	3501.758	-36.84	-29.05	-65.89	-13.00	-52.89	peak	P
4	5802.060	-29.69	-25.97	-55.66	-13.00	-42.66	peak	Р
5	7510.660	-25.68	-24.80	-50.48	-13.00	-37.48	peak	P
6 *	10303.978	-23.99	-24.42	-48.41	-13.00	-35.41	peak	P

GSM1900 / Polarization: Horizontal / CH:H

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1527.647	-40.99	-31.66	-72.65	-13.00	-59.65	peak	P
2	2828.274	-39.64	-29.80	-69.44	-13.00	-56.44	peak	P
3	3700.512	-38.31	-29.03	-67.34	-13.00	-54.34	peak	Р
4	5583.251	-35.41	-26.68	-62.09	-13.00	-49.09	peak	P
5	7319.917	-29.41	-24.83	-54.24	-13.00	-41.24	peak	P
6 *	11082.501	-23.79	-23.37	-47.16	-13.00	-34.16	peak	P

GSM1900 / Polarization: Vertical / CH:H

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1715.376	-39.71	-31.37	-71.08	-13.00	-58.08	peak	P
2	2635.681	-33.26	-30.13	-63.39	-13.00	-50.39	peak	P
3	3267.079	-31.19	-29.27	-60.46	-13.00	-47.46	peak	Р
4	5781.971	-30.01	-26.04	-56.05	-13.00	-43.05	peak	P
5	8987.326	-24.75	-24.34	-49.09	-13.00	-36.09	peak	Р
6 *	12451.603	-24.02	-21.67	-45.69	-13.00	-32.69	peak	P



No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	2256.757	-34.27	-30.65	-64.92	-13.00	-51.92	peak	P
2	3348.339	-31.47	-29.19	-60.66	-13.00	-47.66	peak	P
3	4724.245	-27.70	-28.15	-55.85	-13.00	-42.85	peak	Р
4	5727.084	-27.21	-26.21	-53.42	-13.00	-40.42	peak	P
5	7789.230	-25.55	-25.21	-50.76	-13.00	-37.76	peak	P
6 *	12999.565	-23.25	-21.34	-44.59	-13.00	-31.59	peak	P
VCDMA	A / Polarization: `	Vertical / Band	I:2 / CH:L		1			
No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1624.182	-42.37	-31.52	-73.89	-13.00	-60.89	peak	P
2	2624.279	-34.22	-30.16	-64.38	-13.00	-51.38	peak	P
3	3631.638	-31.68	-29.04	-60.72	-13.00	-47.72	peak	P
4	5271.172	-28.76	-27.15	-55.91	-13.00	-42.91	peak	P
5	7670.816	-24.40	-25.04	-49.44	-13.00	-36.44	peak	P
6 *	12006.290	-21.39	-22.18	-43.57	-13.00	-30.57	peak	Р
VCDMA	A / Polarization:	Horizontal / Ba	and:2 / CH:M					
No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	2159.756	-36.83	-30.76	-67.59	-13.00	-54.59	peak	P
2	3262.361	-35.38	-29.27	-64.65	-13.00	-51.65	peak	P
3	4871.226	-32.60	-27.73	-60.33	-13.00	-47.33	peak	Р
4	8817.505	-22.67	-24.68	-47.35	-13.00	-34.35	peak	P
5	12636.510	-20.66	-21.54	-42.20	-13.00	-29.20	peak	Р
		10 00	0.0 50	00.05	10.00	00.00		-

## WCDMA / Polarization: Horizontal / Band:2 / CH:L

WCDMA / Polarization: Vertical / Band:2 / CH:M

-18.78

-20.50

15046.851

6 *

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1483.266	-38.75	-31.61	-70.36	-13.00	-57.36	peak	Р
2	2430.075	-35.79	-30.45	-66.24	-13.00	-53.24	peak	P
3	3782.700	-31.06	-29.02	-60.08	-13.00	-47.08	peak	P
4	4765.387	-29.84	-28.04	-57.88	-13.00	-44.88	peak	P
5	7225.326	-26.61	-24.86	-51.47	-13.00	-38.47	peak	P
6 *	11590.295	-24.25	-22.91	-47.16	-13.00	-34.16	peak	Р

-39.28

-13.00

-26.28

peak

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China P



No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1420.743	-40.97	-31.27	-72.24	-13.00	-59.24	peak	P
2	2506.404	-36.58	-30.36	-66.94	-13.00	-53.94	peak	P
3	4368.321	-30.41	-28.84	-59.25	-13.00	-46.25	peak	P
4	6120.752	-29.37	-25.34	-54.71	-13.00	-41.71	peak	P
5	9519.419	-24.31	-23.24	-47.55	-13.00	-34.55	peak	P
6 *	13230.796	-22.26	-21.17	-43.43	-13.00	-30.43	peak	P
/CDM/	A / Polarization:	Vertical / Band	1:2 / CH:H					
No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1443.509	-38.53	-31.40	-69.93	-13.00	-56.93	peak	P
2	2235.334	-30.45	-30.67	-61.12	-13.00	-48.12	peak	Р
3	2809.535	-29.12	-29.84	-58.96	-13.00	-45.96	peak	P
4	4089.727	-27.37	-28.96	-56.33	-13.00	-43.33	peak	Р
5	6229.626	-27.20	-25.35	-52.55	-13.00	-39.55	peak	Р
6 *	8655.895	-21.99	-25.00	-46.99	-13.00	-33.99	peak	P
/CDM/	A / Polarization:	Horizontal / Ba	and:4 / CH:L					
No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1557.519	-43.61	-31.62	-75.23	-13.00	-62.23	peak	P
2	2362.890	-34.59	-30.52	-65.11	-13.00	-52.11	peak	P
3	3691.965	-35.59	-29.04	-64.63	-13.00	-51.63	peak	P
4	5180.547	-31.61	-27.21	-58.82	-13.00	-45.82	peak	Р
5	6918.761	-27.85	-25.00	-52.85	-13.00	-39.85	peak	P
6 *	8558.870	-24.74	-25.21	-49.95	-13.00	-36.95	peak	P
/CDM/	A / Polarization:	Vertical / Band	1:4 / CH:L					
200 1	Frequency	Reading	Factor	Level	Limit	Margin	100000	20222

## WCDMA / Polarization: Horizontal / Band:2 / CH:H

Frequency Reading Factor Level Limit Margin No. Detector P/F (MHz) (dBm) (dBm) (dBm) (dB) (dB) 1 1454.398 -41.19 -31.46 -72.65 -13.00 -59.65 P peak 2 2471.157 -34.24 P -30.40 -64.64 -13.00 -51.64 peak 3 3449.521 -33.23 -29.10 -62.33 -13.00 -49.33 P peak 4 4777.800 -31.77 -28.00 -59.77 -13.00 -46.77 peak P 5 7064.254 -26.88-24.91 -51.79 -13.00 -38.79 P peak 6 * 9952.717 -24.93-24.19 -49.12 -13.00 -36.12 P peak



No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1403.600	-37.70	-31.18	-68.88	-13.00	-55.88	peak	Р
2	2206.448	-34.27	-30.70	-64.97	-13.00	-51.97	peak	P
3	3367.751	-30.97	-29.18	-60.15	-13.00	-47.15	peak	Р
4	5075.317	-28.59	-27.30	-55.89	-13.00	-42.89	peak	P
5	8583.644	-22.58	-25.16	-47.74	-13.00	-34.74	peak	P
6 *	12044.523	-20.36	-22.14	-42.50	-13.00	-29.50	peak	P

## WCDMA / Polarization: Horizontal / Band:4 / CH:M

## WCDMA / Polarization: Vertical / Band:4 / CH:M

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1528.530	-39.87	-31.66	-71.53	-13.00	-58.53	peak	P
2	2357.433	-35.61	-30.53	-66.14	-13.00	-53.14	peak	P
3	3328.077	-29.74	-29.21	-58.95	-13.00	-45.95	peak	Р
4	5617.243	-27.40	-26.57	-53.97	-13.00	-40.97	peak	P
5	9593.999	-24.63	-23.40	-48.03	-13.00	-35.03	peak	P
6 *	14912.631	-19.22	-20.53	-39.75	-13.00	-26.75	peak	Р

WCDMA / Polarization: Horizontal / Band:4 / CH:H

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1538.725	-40.92	-31.65	-72.57	-13.00	-59.57	peak	P
2	2684.115	-34.13	-30.06	-64.19	-13.00	-51.19	peak	P
3	4155.261	-32.03	-28.93	-60.96	-13.00	-47.96	peak	P
4	6617.549	-28.72	-25.27	-53.99	-13.00	-40.99	peak	P
5	9652.410	-24.86	-23.54	-48.40	-13.00	-35.40	peak	P
6 *	14822.388	-21.24	-20.68	-41.92	-13.00	-28.92	peak	P
-								

WCDMA / Polarization: Vertical / Band:4 / CH:H

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1670.363	-40.38	-31.44	-71.82	-13.00	-58.82	peak	Р
2	2731.069	-36.16	-29.97	-66.13	-13.00	-53.13	peak	P
3	4207.227	-30.14	-28.91	-59.05	-13.00	-46.05	peak	P
4	5546.257	-28.59	-26.80	-55.39	-13.00	-42.39	peak	P
5	7486.818	-26.48	-24.78	-51.26	-13.00	-38.26	peak	P
6 *	10274.238	-23.50	-24.41	-47.91	-13.00	-34.91	peak	P



# WCDMA / Polarization: Horizontal / Band:5 / CH:L

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1593.492	-40.45	-31.56	-72.01	-13.00	-59.01	peak	Р
2	2178.564	-36.38	-30.73	-67.11	-13.00	-54.11	peak	P
3	3560.957	-32.17	-29.05	-61.22	-13.00	-48.22	peak	P
4	4824.984	-29.18	-27.87	-57.05	-13.00	-44.05	peak	Р
5	6729.422	-29.70	-25.17	-54.87	-13.00	-41.87	peak	P
6 *	13022.129	-25.74	-21.33	-47.07	-13.00	-34.07	peak	P

# WCDMA / Polarization: Vertical / Band:5 / CH:L

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	2155.390	-36.66	-30.76	-67.42	-13.00	-54.42	peak	Р
2	2957.009	-32.95	-29.58	-62.53	-13.00	-49.53	peak	Р
3	4182.976	-30.55	-28.92	-59.47	-13.00	-46.47	peak	P
4	6369.826	-25.08	-25.37	-50.45	-13.00	-37.45	peak	P
5	9866.789	-22.27	-24.00	-46.27	-13.00	-33.27	peak	P
6 *	13423.394	-22.14	-21.03	-43.17	-13.00	-30.17	peak	P
		and the second						

# WCDMA / Polarization: Horizontal / Band:5 / CH:M

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1601.341	-40.42	-31.55	-71.97	-13.00	-58.97	peak	P
2	2335.054	-34.68	-30.56	-65.24	-13.00	-52.24	peak	P
3	3007.868	-30.60	-29.50	-60.10	-13.00	-47.10	peak	P
4	4063.803	-28.30	-28.97	-57.27	-13.00	-44.27	peak	Р
5	6864.978	-23.58	-25.05	-48.63	-13.00	-35.63	peak	P
6 *	11391.026	-23.28	-23.14	-46.42	-13.00	-33.42	peak	P

WCDMA / Polarization: Vertical / Band:5 / CH:M

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1496.616	-38.29	-31.69	-69.98	-13.00	-56.98	peak	Р
2	2262.635	-34.20	-30.63	-64.83	-13.00	-51.83	peak	P
3	3196.094	-30.25	-29.33	-59.58	-13.00	-46.58	peak	P
4	4851.554	-29.65	-27.79	-57.44	-13.00	-44.44	peak	P
5	6729.422	-24.70	-25.17	-49.87	-13.00	-36.87	peak	P
6 *	10001.741	-18.74	-24.29	-43.03	-13.00	-30.03	peak	P



# WCDMA / Polarization: Horizontal / Band:5 / CH:H

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1900.735	-38.58	-31.08	-69.66	-13.00	-56.66	peak	P
2	2740.558	-33.28	-29.96	-63.24	-13.00	-50.24	peak	P
3	3666.443	-29.19	-29.04	-58.23	-13.00	-45.23	peak	P
4	4874.042	-28.59	-27.73	-56.32	-13.00	-43.32	peak	P
5	7336.863	-23.31	-24.83	-48.14	-13.00	-35.14	peak	P
6 *	10247.546	-21.42	-24.40	-45.82	-13.00	-32.82	peak	P

# WCDMA / Polarization: Vertical / Band:5 / CH:H

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1678.106	-36.45	-31.43	-67.88	-13.00	-54.88	peak	P
2	2710.622	-30.29	-30.01	-60.30	-13.00	-47.30	peak	P
3	3965.180	-28.14	-29.00	-57.14	-13.00	-44.14	peak	P
4	5271.172	-27.76	-27.15	-54.91	-13.00	-41.91	peak	P
5	7189.910	-25.73	-24.87	-50.60	-13.00	-37.60	peak	P
6 *	11009.070	-21.64	-23.44	-45.08	-13.00	-32.08	peak	Р
	ing in second section with the string of second second sector is a feature second sector.	<ul> <li>A structure of the last is being the structure of the structu</li></ul>	a second s	A commentation of the local data and the second data and the secon	A second a second as second about the second s	A summaria and a second sec	A second s	

# LTE / Polarization: Horizontal / Band:2 / CH:L

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	3237.000	-32.71	-29.29	-62.00	-13.00	-49.00	peak	Р
2	4886.738	-34.47	-27.69	-62.16	-13.00	-49.16	peak	P
3	6564.209	-32.46	-25.32	-57.78	-13.00	-44.78	peak	P
4	8917.462	-28.83	-24.47	-53.30	-13.00	-40.30	peak	P
5	10738.789	-27.27	-24.00	-51.27	-13.00	-38.27	peak	P
6 *	13985.797	-24.52	-21.08	-45.60	-13.00	-32.60	peak	P

LTE / Polarization: Vertical / Band:2 / CH:L

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	3816.746	-36.00	-29.02	-65.02	-13.00	-52.02	peak	Р
2	4687.520	-34.38	-28.26	-62.64	-13.00	-49.64	peak	P
3	6596.542	-35.09	-25.29	-60.38	-13.00	-47.38	peak	P
4	8397.144	-30.93	-25.36	-56.29	-13.00	-43.29	peak	Р
5	11617.127	-30.51	-22.86	-53.37	-13.00	-40.37	peak	P
6 *	14429.263	-27.12	-21.18	-48.30	-13.00	-35.30	peak	P



# LTE / Polarization: Horizontal / Band:2 / CH:M

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	4345.653	-35.55	-28.85	-64.40	-13.00	-51.40	peak	P
2	5132.851	-34.59	-27.25	-61.84	-13.00	-48.84	peak	Р
3	6509.417	-30.25	-25.37	-55.62	-13.00	-42.62	peak	P
4	8608.490	-28.77	-25.10	-53.87	-13.00	-40.87	peak	Р
5	10851.113	-27.88	-23.76	-51.64	-13.00	-38.64	peak	Р
6 *	15204.236	-24.41	-20.85	-45.26	-13.00	-32.26	peak	P

# LTE / Polarization: Vertical / Band:2 / CH:M

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	4248.776	-35.05	-28.89	-63.94	-13.00	-50.94	peak	Р
2	5335.552	-34.31	-27.09	-61.40	-13.00	-48.40	peak	P
3	7136.081	-33.53	-24.89	-58.42	-13.00	-45.42	peak	P
4	10289.097	-29.38	-24.42	-53.80	-13.00	-40.80	peak	P
5	13733.429	-30.06	-21.02	-51.08	-13.00	-38.08	peak	P
6 *	16643.882	-26.07	-18.93	-45.00	-13.00	-32.00	peak	P

### LTE / Polarization: Horizontal / Band:2 / CH:H

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	4616.259	-36.98	-28.45	-65.43	-13.00	-52.43	peak	P
2	6432.733	-34.97	-25.37	-60.34	-13.00	-47.34	peak	P
3	8129.663	-28.20	-25.48	-53.68	-13.00	-40.68	peak	P
4	9486.459	-28.64	-23.23	-51.87	-13.00	-38.87	peak	P
5	11240.577	-26.72	-23.26	-49.98	-13.00	-36.98	peak	P
6 *	15398.832	-23.41	-21.28	-44.69	-13.00	-31.69	peak	P

LTE / Polarization: Vertical / Band:2 / CH:H

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	3218.342	-35.91	-29.32	-65.23	-13.00	-52.23	peak	P
2	4208.443	-35.01	-28.91	-63.92	-13.00	-50.92	peak	P
3	5927.496	-33.62	-25.57	-59.19	-13.00	-46.19	peak	Р
4	9861.086	-32.45	-23.99	-56.44	-13.00	-43.44	peak	P
5	13211.689	-30.70	-21.18	-51.88	-13.00	-38.88	peak	P
6 *	15226.224	-27.30	-20.90	-48.20	-13.00	-35.20	peak	P



No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	(dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	4166.084	-39.88	-28.93	-68.81	-13.00	-55.81	peak	P
2	5346.358	-36.76	-27.08	-63.84	-13.00	-50.84	peak	P
3	6509.417	-33.75	-25.37	-59.12	-13.00	-46.12	peak	P
4	9666.369	-27.94	-23.56	-51.50	-13.00	-38.50	peak	P
5	13188.797	-24.40	-21.20	-45.60	-13.00	-32.60	peak	P
6 *	16485.883	-25.66	-19.25	-44.91	-13.00	-31.91	peak	P
ΓΕ / Po	olarization: Verti	cal / Band:4 / (	CH:L					
No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	2642.546	-34.00	-30.13	-64.13	-13.00	-51.13	peak	Р
2	3071.120	-34.07	-29.45	-63.52	-13.00	-50.52	peak	P
3	4241.414	-33.96	-28.90	-62.86	-13.00	-49.86	peak	P
4	5927.496	-31.12	-25.57	-56.69	-13.00	-43.69	peak	Р
5	8786.975	-28.43	-24.74	-53.17	-13.00	-40.17	peak	P
6 *	14341.946	-19.12	-21.17	-40.29	-13.00	-27.29	peak	P
ΓΕ / Po	olarization: Horiz	zontal / Band:4	/ CH:M					
No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	4184.185	-37.14	-28.92	-66.06	-13.00	-53.06	peak	P
2	6032.932	-33.63	-25.33	-58.96	-13.00	-45.96	peak	P
3	6983.051	-30.70	-24.95	-55.65	-13.00	-42.65	peak	P
4	9781.602	-29.60	-23.81	-53.41	-13.00	-40.41	peak	P
5	12244.602	-27.93	-21.91	-49.84	-13.00	-36.84	peak	P
6 *	16239.954	-21.10	-20.43	-41.53	-13.00	-28.53	peak	P

# LTE / Polarization: Horizontal / Band:4 / CH:L

LTE / Polarization: Vertical / Band:4 / CH:M

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	3444.539	-33.73	-29.10	-62.83	-13.00	-49.83	peak	Р
2	4576.404	-36.16	-28.57	-64.73	-13.00	-51.73	peak	P
3	6414.166	-32.95	-25.38	-58.33	-13.00	-45.33	peak	P
4	8475.171	-29.76	-25.33	-55.09	-13.00	-42.09	peak	P
5	11985.486	-27.95	-22.22	-50.17	-13.00	-37.17	peak	P
6 *	15541.920	-26.47	-21.51	-47.98	-13.00	-34.98	peak	P



# LTE / Polarization: Horizontal / Band:4 / CH:H

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	3374.572	-34.14	-29.16	-63.30	-13.00	-50.30	peak	Р
2	4675.342	-29.27	-28.28	-57.55	-13.00	-44.55	peak	P
3	6855.064	-28.58	-25.06	-53.64	-13.00	-40.64	peak	P
4	9344.944	-24.59	-23.55	-48.14	-13.00	-35.14	peak	Р
5	12676.751	-21.10	-21.52	-42.62	-13.00	-29.62	peak	P
6 *	16687.234	-15.96	-18.85	-34.81	-13.00	-21.81	peak	P

# LTE / Polarization: Vertical / Band:4 / CH:H

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	3816.746	-35.50	-29.02	-64.52	-13.00	-51.52	peak	P
2	4804.110	-34.67	-27.92	-62.59	-13.00	-49.59	peak	Р
3	6200.883	-31.27	-25.35	-56.62	-13.00	-43.62	peak	P
4	8502.160	-26.76	-25.32	-52.08	-13.00	-39.08	peak	Р
5	10851.113	-26.88	-23.76	-50.64	-13.00	-37.64	peak	P
6 *	16319.948	-25.33	-20.05	-45.38	-13.00	-32.38	peak	P

## LTE / Polarization: Horizontal / Band:5 / CH:L

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	2837.281	-34.11	-29.79	-63.90	-13.00	-50.90	peak	Р
2	4417.841	-27.76	-28.82	-56.58	-13.00	-43.58	peak	P
3	6236.832	-28.38	-25.35	-53.73	-13.00	-40.73	peak	P
4	7827.598	-25.88	-25.27	-51.15	-13.00	-38.15	peak	P
5	11580.249	-20.77	-22.92	-43.69	-13.00	-30.69	peak	P
6 *	15960.745	-21.11	-21.59	-42.70	-13.00	-29.70	peak	P

LTE / Polarization: Vertical / Band:5 / CH:L

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	3325.192	-30.38	-29.21	-59.59	-13.00	-46.59	peak	Р
2	4966.479	-33.85	-27.46	-61.31	-13.00	-48.31	peak	P
3	6833.303	-30.81	-25.08	-55.89	-13.00	-42.89	peak	P
4	9486.459	-28.64	-23.23	-51.87	-13.00	-38.87	peak	P
5	12422.844	-24.78	-21.71	-46.49	-13.00	-33.49	peak	P
6 *	15541.920	-20.47	-21.51	-41.98	-13.00	-28.98	peak	P



# LTE / Polarization: Horizontal / Band:5/ CH:M

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	3856.668	-32.55	-29.01	-61.56	-13.00	-48.56	peak	P
2	5275.745	-32.44	-27.13	-59.57	-13.00	-46.57	peak	P
3	6537.700	-33.68	-25.35	-59.03	-13.00	-46.03	peak	P
4	8421.450	-30.60	-25.35	-55.95	-13.00	-42.95	peak	P
5	10942.450	-29.28	-23.56	-52.84	-13.00	-39.84	peak	P
6 *	16282.255	-26.61	-20.23	-46.84	-13.00	-33.84	peak	P
TE / Po	olarization: Verti	cal / Band:5 / (	CH:M		1			
No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	3734.898	-41.76	-29.03	-70.79	-13.00	-57.79	peak	Р
2	5233.221	-36.72	-27.17	-63.89	-13.00	-50.89	peak	P
3	6215.238	-36.07	-25.36	-61.43	-13.00	-48.43	peak	P
4	8421.450	-32.10	-25.35	-57.45	-13.00	-44.45	peak	Р
5	10024.895	-28.21	-24.30	-52.51	-13.00	-39.51	peak	P
6 *	15358.827	-20.89	-21.18	-42.07	-13.00	-29.07	peak	P
TE / Po	olarization: Horiz	zontal / Band:5	5 / CH:H					
No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	3032.310	-40.33	-29.48	-69.81	-13.00	-56.81	peak	P
2	5522.263	-36.71	-26.88	-63.59	-13.00	-50.59	peak	Р
3	7943.838	-32.32	-25.45	-57.77	-13.00	-44.77	peak	Р
4	9829.784	-30.89	-23.92	-54.81	-13.00	-41.81	peak	Р
5	14185.284	-23.86	-21.13	-44.99	-13.00	-31.99	peak	P
6 *	16485.883	-24.66	-19.25	-43.91	-13.00	-30.91	peak	Р
TE / Po	olarization: Verti	cal / Band:5 / (	CH:H					
No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	2824.190	-36.69	-29.82	-66.51	-13.00	-53.51	peak	P
2	3988.168	-34.97	-29.00	-63.97	-13.00	-50.97	peak	P
3	6432.733	-30.97	-25.37	-56.34	-13.00	-43.34	peak	P
			and the second s					

-53.27

-47.95

-42.65

-13.00

-13.00

-13.00

-40.27

-34.95

-29.65

peak

peak

peak

-23.78

-21.96

-21.15

-29.49

-25.99

-21.50

4

5

6 *

9237.525

12202.206

16090.440

P

P

P



# LTE / Polarization: Horizontal / Band:12 / CH:L

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	3734.898	-33.76	-29.03	-62.79	-13.00	-49.79	peak	Р
2	4208.443	-31.51	-28.91	-60.42	-13.00	-47.42	peak	P
3	5496.784	-33.86	-26.95	-60.81	-13.00	-47.81	peak	P
4	7766.749	-29.07	-25.18	-54.25	-13.00	-41.25	peak	Р
5	11015.436	-29.01	-23.43	-52.44	-13.00	-39.44	peak	P
6 *	15025.121	-26.67	-20.46	-47.13	-13.00	-34.13	peak	P

# LTE / Polarization: Vertical / Band:12 / CH:L

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	3242.619	-32.40	-29.29	-61.69	-13.00	-48.69	peak	P
2	4400.000	-30.29	-28.83	-59.12	-13.00	-46.12	peak	P
3	6106.616	-31.77	-25.34	-57.11	-13.00	-44.11	peak	Р
4	8539.102	-27.48	-25.24	-52.72	-13.00	-39.72	peak	P
5	11964.719	-24.75	-22.25	-47.00	-13.00	-34.00	peak	P
6 *	15305.648	-19.42	-21.06	-40.48	-13.00	-27.48	peak	Р

# LTE / Polarization: Horizontal / Band:12 / CH:M

No.	Frequency (MHz)	(dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	3258.591	-33.32	-29.28	-62.60	-13.00	-49.60	peak	Р
2	4018.252	-31.55	-28.99	-60.54	-13.00	-47.54	peak	P
3	5170.075	-32.44	-27.23	-59.67	-13.00	-46.67	peak	P
4	7971.439	-25.97	-25.49	-51.46	-13.00	-38.46	peak	Р
5	11769.213	-27.29	-22.60	-49.89	-13.00	-36.89	peak	P
6 *	15398.832	-26.41	-21.28	-47.69	-13.00	-34.69	peak	P

LTE / Polarization: Vertical / Band:12 / CH:M

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	2864.473	-29.37	-29.75	-59.12	-13.00	-46.12	peak	Р
2	3349.307	-30.16	-29.19	-59.35	-13.00	-46.35	peak	P
3	4345.653	-32.55	-28.85	-61.40	-13.00	-48.40	peak	P
4	6556.624	-26.93	-25.33	-52.26	-13.00	-39.26	peak	Р
5	9486.459	-25.64	-23.23	-48.87	-13.00	-35.87	peak	P
6 *	15204.236	-21.41	-20.85	-42.26	-13.00	-29.26	peak	P



# LTE / Polarization: Horizontal / Band:12 / CH:H

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	4492.526	-33.20	-28.79	-61.99	-13.00	-48.99	peak	P
2	5507.917	-35.41	-26.92	-62.33	-13.00	-49.33	peak	P
3	8240.856	-28.54	-25.43	-53.97	-13.00	-40.97	peak	Р
4	10088.844	-31.00	-24.33	-55.33	-13.00	-42.33	peak	Р
5	12061.943	-29.74	-22.12	-51.86	-13.00	-38.86	peak	Р
6 *	15699.944	-25.65	-21.53	-47.18	-13.00	-34.18	peak	P

# LTE / Polarization: Vertical / Band:12 / CH:H

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	4604.266	-27.76	-28.49	-56.25	-13.00	-43.25	peak	Р
2	5864.443	-31.75	-25.77	-57.52	-13.00	-44.52	peak	P
3	7925.491	-25.51	-25.42	-50.93	-13.00	-37.93	peak	Р
4	10405.737	-27.76	-24.48	-52.24	-13.00	-39.24	peak	P
5	12422.844	-26.28	-21.71	-47.99	-13.00	-34.99	peak	Р
6 *	15960.745	-24.11	-21.59	-45.70	-13.00	-32.70	peak	P

LTE / Polarization: Horizontal / Band:13 / CH:L

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1582.019	-45.69	-31.58	-77.27	-40.00	-37.27	peak	P
2	2634.919	-42.82	-30.13	-72.95	-13.00	-59.95	peak	P
3	4199.937	-40.76	-28.91	-69.67	-13.00	-56.67	peak	P
4	8080.467	-29.84	-25.50	-55.34	-13.00	-42.34	peak	P
5	10942.450	-31.38	-23.56	-54.94	-13.00	-41.94	peak	P
6 *	16225.879	-24.04	-20.51	-44.55	-13.00	-31.55	peak	P

LTE / Polarization: Vertical / Band:13 / CH:L

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1 *	1569.721	-44.65	-31.60	-76.25	-40.00	-36.25	peak	Р
2	2263.289	-36.82	-30.63	-67.45	-13.00	-54.45	peak	P
3	2813.598	-44.22	-29.83	-74.05	-13.00	-61.05	peak	P
4	5216.608	-37.86	-27.19	-65.05	-13.00	-52.05	peak	P
5	7432.914	-32.03	-24.80	-56.83	-13.00	-43.83	peak	P
6	10692.331	-29.55	-24.10	-53.65	-13.00	-40.65	peak	P



No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1582.019	-44.19	-31.58	-75.77	-40.00	-35.77	peak	Р
2	2058.577	-33.97	-30.87	-64.84	-13.00	-51.84	peak	P
3	2920.485	-36.11	-29.65	-65.76	-13.00	-52.76	peak	P
4	4429.348	-34.28	-28.82	-63.10	-13.00	-50.10	peak	Р
5	9173.667	-27.31	-23.93	-51.24	-13.00	-38.24	peak	P
6 *	14496.147	-21.69	-21.20	-42.89	-13.00	-29.89	peak	P

## LTE / Polarization: Horizontal / Band:13 / CH:M

LTE / Polarization: Vertical / Band:13 / CH:M

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1 *	1576.542	-43.99	-31.58	-75.57	-40.00	-35.57	peak	Р
2	1861.588	-35.16	-31.14	-66.30	-13.00	-53.30	peak	P
3	3806.830	-39.72	-29.02	-68.74	-13.00	-55.74	peak	P
4	5266.604	-32.42	-27.15	-59.57	-13.00	-46.57	peak	P
5	7183.679	-29.73	-24.88	-54.61	-13.00	-41.61	peak	P
6	12198.680	-28.46	-21.96	-50.42	-13.00	-37.42	peak	P

LTE / Polarization: Horizontal / Band:13 / CH:H

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1 *	1576.542	-44.99	-31.58	-76.57	-40.00	-36.57	peak	P
2	2193.729	-36.15	-30.71	-66.86	-13.00	-53.86	peak	P
3	3876.785	-32.45	-29.02	-61.47	-13.00	-48.47	peak	P
4	5366.485	-33.42	-27.07	-60.49	-13.00	-47.49	peak	P
5	8889.155	-33.31	-24.54	-57.85	-13.00	-44.85	peak	P
6	11513.500	-27.45	-23.04	-50.49	-13.00	-37.49	peak	P

LTE / Polarization: Vertical / Band:13 / CH:H

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1582.019	-44.19	-31.58	-75.77	-40.00	-35.77	peak	P
2	2157.260	-29.58	-30.76	-60.34	-13.00	-47.34	peak	P
3	3264.247	-38.60	-29.27	-67.87	-13.00	-54.87	peak	P
4	4750.260	-35.22	-28.08	-63.30	-13.00	-50.30	peak	P
5	8502.160	-31.66	-25.32	-56.98	-13.00	-43.98	peak	P
6 *	16090.440	-25.92	-21.15	-47.07	-13.00	-34.07	peak	P

Total or partial reproduction of this document without permission of the Laboratory is not allowed.

Page 62 of 74

BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



# LTE / Polarization: Horizontal / Band:25 / CH:L

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	2251.544	-36.47	-30.65	-67.12	-13.00	-54.12	peak	P
2	2857.031	-31.59	-29.75	-61.34	-13.00	-48.34	peak	P
3	3800.234	-33.01	-29.02	-62.03	-13.00	-49.03	peak	P
4	5346.358	-29.76	-27.08	-56.84	-13.00	-43.84	peak	P
5	7428.618	-27.86	-24.80	-52.66	-13.00	-39.66	peak	P
6 *	13674.016	-26.34	-21.01	-47.35	-13.00	-34.35	peak	P

# LTE / Polarization: Vertical / Band:25 / CH:L

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	2434.293	-37.21	-30.45	-67.66	-13.00	-54.66	peak	P
2	3734.898	-33.26	-29.03	-62.29	-13.00	-49.29	peak	P
3	4895.220	-34.64	-27.67	-62.31	-13.00	-49.31	peak	Р
4	7626.601	-29.26	-24.97	-54.23	-13.00	-41.23	peak	P
5	11427.301	-26.33	-23.11	-49.44	-13.00	-36.44	peak	P
6 *	14584.403	-23.53	-21.06	-44.59	-13.00	-31.59	peak	P

LTE / Polarization: Horizontal / Band:25 / CH:M

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	3045.485	-34.30	-29.47	-63.77	-13.00	-50.77	peak	P
2	4923.600	-32.66	-27.59	-60.25	-13.00	-47.25	peak	P
3	6564.209	-31.46	-25.32	-56.78	-13.00	-43.78	peak	P
4	9005.529	-29.42	-24.30	-53.72	-13.00	-40.72	peak	P
5	12086.372	-25.96	-22.09	-48.05	-13.00	-35.05	peak	P
6 *	16044.000	-26.35	-21.38	-47.73	-13.00	-34.73	peak	Р
						-		

LTE / Polarization: Vertical / Band:25 / CH:M

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1706.968	-39.70	-31.39	-71.09	-13.00	-58.09	peak	Р
2	2702.018	-38.71	-30.02	-68.73	-13.00	-55.73	peak	Р
3	3553.760	-35.51	-29.05	-64.56	-13.00	-51.56	peak	Р
4	6384.572	-36.34	-25.36	-61.70	-13.00	-48.70	peak	P
5	10460.015	-34.35	-24.50	-58.85	-13.00	-45.85	peak	P
6 *	14830.959	-30.39	-20.67	-51.06	-13.00	-38.06	peak	P



# LTE / Polarization: Horizontal / Band:25 / CH:H

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1562.930	-41.01	-31.61	-72.62	-13.00	-59.62	peak	P
2	2751.671	-38.23	-29.94	-68.17	-13.00	-55.17	peak	P
3	4739.289	-36.38	-28.10	-64.48	-13.00	-51.48	peak	P
4	7179.527	-30.89	-24.88	-55.77	-13.00	-42.77	peak	P
5	9719.600	-29.12	-23.68	-52.80	-13.00	-39.80	peak	P
6 *	15398.832	-23.91	-21.28	-45.19	-13.00	-32.19	peak	P

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	(dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	2564.294	-41.37	-30.26	-71.63	-13.00	-58.63	peak	P
2	3903.772	-35.13	-29.01	-64.14	-13.00	-51.14	peak	Р
3	5594.559	-39.26	-26.64	-65.90	-13.00	-52.90	peak	Р
4	7602.392	-33.57	-24.93	-58.50	-13.00	-45.50	peak	Р
5	9719.600	-31.12	-23.68	-54.80	-13.00	-41.80	peak	P
6 *	15519.475	-24.29	-21.50	-45.79	-13.00	-32.79	peak	Р

LTE / Polarization: Horizontal / Band:26 (part22)/ CH:L

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	2177.305	-33.12	-30.73	-63.85	-13.00	-50.85	peak	Р
2	2634.158	-37.65	-30.14	-67.79	-13.00	-54.79	peak	P
3	3916.203	-42.55	-29.01	-71.56	-13.00	-58.56	peak	Р
4	6338.604	-39.79	-25.36	-65.15	-13.00	-52.15	peak	P
5	9208.201	-30.71	-23.85	-54.56	-13.00	-41.56	peak	Р
6 *	15138.459	-23.08	-20.70	-43.78	-13.00	-30.78	peak	P

LTE / Polarization: Vertical / Band:26(Part22) / CH:L

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1886.504	-33.95	-31.11	-65.06	-13.00	-52.06	peak	P
2	2347.913	-39.53	-30.54	-70.07	-13.00	-57.07	peak	P
3	5132.851	-39.09	-27.25	-66.34	-13.00	-53.34	peak	P
4	6617.549	-35.37	-25.27	-60.64	-13.00	-47.64	peak	Р
5	9861.086	-31.45	-23.99	-55.44	-13.00	-42.44	peak	P
6 *	14741.211	-24.71	-20.81	-45.52	-13.00	-32.52	peak	P



No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	(dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1262.336	-38.44	-30.41	-68.85	-13.00	-55.85	peak	Р
2	2716.897	-35.24	-29.99	-65.23	-13.00	-52.23	peak	P
3	3559.928	-35.64	-29.05	-64.69	-13.00	-51.69	peak	Р
4	5780.300	-34.65	-26.04	-60.69	-13.00	-47.69	peak	Р
5	8615.957	-32.05	-25.08	-57.13	-13.00	-44.13	peak	Р
6 *	14758.264	-26.07	-20.78	-46.85	-13.00	-33.85	peak	P

# LTE / Polarization: Horizontal / Band:26 (part22)/ CH:M

# LTE / Polarization: Vertical / Band:26(Part22) / CH:M

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1874.005	-35.51	-31.13	-66.64	-13.00	-53.64	peak	P
2	2660.941	-37.09	-30.09	-67.18	-13.00	-54.18	peak	Р
3	3980.107	-38.80	-29.00	-67.80	-13.00	-54.80	peak	P
4	5812.131	-33.96	-25.94	-59.90	-13.00	-46.90	peak	P
5	8397.144	-30.43	-25.36	-55.79	-13.00	-42.79	peak	P
6 *	15358.827	-25.39	-21.18	-46.57	-13.00	-33.57	peak	P

# LTE / Polarization: Horizontal / Band:26 (part22)/ CH:H

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1314.084	-37.59	-30.69	-68.28	-13.00	-55.28	peak	Р
2	1744.375	-40.30	-31.32	-71.62	-13.00	-58.62	peak	P
3	2539.217	-36.44	-30.30	-66.74	-13.00	-53.74	peak	P
4	5197.044	-33.48	-27.20	-60.68	-13.00	-47.68	peak	P
5	9861.086	-32.95	-23.99	-56.94	-13.00	-43.94	peak	P
6 *	15025.121	-28.67	-20.46	-49.13	-13.00	-36.13	peak	P

LTE / Polarization: Vertical / Band:26(Part22) / CH:H

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1539.615	-40.61	-31.65	-72.26	-13.00	-59.26	peak	P
2	2857.031	-35.59	-29.75	-65.34	-13.00	-52.34	peak	P
3	3615.927	-39.45	-29.04	-68.49	-13.00	-55.49	peak	P
4	5101.791	-33.56	-27.28	-60.84	-13.00	-47.84	peak	P
5	8502.160	-29.26	-25.32	-54.58	-13.00	-41.58	peak	P
6 *	14660.479	-22.36	-20.94	-43.30	-13.00	-30.30	peak	P



# LTE / Polarization: Horizontal / Band:26 (part90)/ CH:L

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1959.304	-33.25	-30.99	-64.24	-13.00	-51.24	peak	P
2	3980.107	-34.30	-29.00	-63.30	-13.00	-50.30	peak	P
3	5101.791	-31.56	-27.28	-58.84	-13.00	-45.84	peak	P
4	7387.935	-32.78	-24.81	-57.59	-13.00	-44.59	peak	P
5	10636.847	-27.84	-24.22	-52.06	-13.00	-39.06	peak	P
6 *	15305.648	-24.42	-21.06	-45.48	-13.00	-32.48	peak	P

# LTE / Polarization: Vertical / Band:26(Part90) / CH:L

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1527.647	-40.20	-31.66	-71.86	-13.00	-58.86	peak	Р
2	1797.088	-39.07	-31.24	-70.31	-13.00	-57.31	peak	P
3	2664.019	-38.11	-30.09	-68.20	-13.00	-55.20	peak	P
4	4304.400	-31.25	-28.87	-60.12	-13.00	-47.12	peak	P
5	7428.618	-28.36	-24.80	-53.16	-13.00	-40.16	peak	P
6 *	14822.388	-23.93	-20.68	-44.61	-13.00	-31.61	peak	P

# LTE / Polarization: Horizontal / Band:26 (part90)/ CH:M

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1713.889	-39.36	-31.37	-70.73	-13.00	-57.73	peak	P
2	2478.310	-35.26	-30.40	-65.66	-13.00	-52.66	peak	P
3	3118.528	-37.34	-29.41	-66.75	-13.00	-53.75	peak	Р
4	5132.851	-35.59	-27.25	-62.84	-13.00	-49.84	peak	P
5	8129.663	-27.70	-25.48	-53.18	-13.00	-40.18	peak	P
6 *	14916.942	-24.34	-20.53	-44.87	-13.00	-31.87	peak	P

LTE / Polarization: Vertical / Band:26(Part90) / CH:M

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	2539.217	-38.44	-30.30	-68.74	-13.00	-55.74	peak	P
2	4586.998	-32.55	-28.54	-61.09	-13.00	-48.09	peak	P
3	6106.616	-31.77	-25.34	-57.11	-13.00	-44.11	peak	P
4	8172.069	-27.76	-25.46	-53.22	-13.00	-40.22	peak	P
5	11523.488	-21.85	-23.02	-44.87	-13.00	-31.87	peak	P
6 *	16485.883	-21.16	-19.25	-40.41	-13.00	-27.41	peak	P



P

P

P

P

P

P

### Frequency Reading Factor Level Limit Margin No. P/F Detector (MHz) (dBm) (dB) (dBm) (dBm) (dB) 1 2553.200 -38.02 -30.28 -68.30 -13.00 -55.30 peak 2 3459.505 -32.72 -29.09 -61.81 -13.00-48.81 peak 3 4532.961 -34.28 -28.69 -62.97 -13.00 -49.97 peak 5967.033 -34.68 -25.44 -60.12 -13.00-47.12 4 peak 5 -27.60 -25.35 -52.95 -39.95 8421.450 -13.00peak -25.89 -47.02 -13.00 -34.02 6 * 14201.694 -21.13 peak

# LTE / Polarization: Horizontal / Band:26 (part90)/ CH:H

# LTE / Polarization: Vertical / Band:26(Part90) / CH:H

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1747.908	-40.07	-31.32	-71.39	-13.00	-58.39	peak	Р
2	3056.067	-33.74	-29.46	-63.20	-13.00	-50.20	peak	P
3	5539.849	-31.38	-26.82	-58.20	-13.00	-45.20	peak	P
4	7171.231	-26.94	-24.88	-51.82	-13.00	-38.82	peak	Р
5	10384.704	-26.49	-24.46	-50.95	-13.00	-37.95	peak	P
6 *	14341.946	-22.62	-21.17	-43.79	-13.00	-30.79	peak	P

## LTE / Polarization: Horizontal / Band:41 / CH:L

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1074.623	-35.19	-29.39	-64.58	-25.00	-39.58	peak	P
2	1870.758	-35.39	-31.13	-66.52	-25.00	-41.52	peak	P
3	2982.762	-37.24	-29.54	-66.78	-25.00	-41.78	peak	P
4	4998.160	-37.51	-27.37	-64.88	-25.00	-39.88	peak	P
5	10578.593	-26.79	-24.34	-51.13	-25.00	-26.13	peak	P
6 *	14736.951	-26.46	-20.82	-47.28	-25.00	-22.28	peak	P

LTE / Polarization: Vertical / Band:41 / CH:L

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1056.148	-34.80	-29.29	-64.09	-25.00	-39.09	peak	Р
2	2191.195	-34.94	-30.71	-65.65	-25.00	-40.65	peak	P
3	3389.234	-34.57	-29.15	-63.72	-25.00	-38.72	peak	P
4	5987.765	-29.96	-25.37	-55.33	-25.00	-30.33	peak	P
5	10630.700	-25.41	-24.23	-49.64	-25.00	-24.64	peak	P
6 *	15332.214	-23.89	-21.12	-45.01	-25.00	-20.01	peak	P

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Page 67 of 74

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



# LTE / Polarization: Horizontal / Band:41)/ CH:M

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1704.503	-39.47	-31.39	-70.86	-25.00	-45.86	peak	P
2	2417.465	-32.33	-30.46	-62.79	-25.00	-37.79	peak	P
3	3948.026	-33.27	-29.01	-62.28	-25.00	-37.28	peak	P
4	5357.186	-34.05	-27.07	-61.12	-25.00	-36.12	peak	Р
5	10478.171	-28.31	-24.51	-52.82	-25.00	-27.82	peak	P
6 *	15107.861	-27.59	-20.64	-48.23	-25.00	-23.23	peak	P

# LTE / Polarization: Vertical / Band:41 / CH:M

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	2205.810	-34.53	-30.70	-65.23	-25.00	-40.23	peak	P
2	3780.514	-34.78	-29.03	-63.81	-25.00	-38.81	peak	P
3	5281.848	-32.46	-27.13	-59.59	-25.00	-34.59	peak	Р
4	6375.352	-28.93	-25.37	-54.30	-25.00	-29.30	peak	P
5	8830.257	-28.09	-24.65	-52.74	-25.00	-27.74	peak	P
6 *	13865.049	-26.38	-21.06	-47.44	-25.00	-22.44	peak	P

LTE / Polarization: Horizontal / Band:41)/ CH:H

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1100.715	-35.74	-29.52	-65.26	-25.00	-40.26	peak	P
2	1828.525	-35.80	-31.19	-66.99	-25.00	-41.99	peak	P
3	2533.352	-34.75	-30.32	-65.07	-25.00	-40.07	peak	P
4	4872.634	-31.25	-27.73	-58.98	-25.00	-33.98	peak	P
5	7117.542	-27.00	-24.89	-51.89	-25.00	-26.89	peak	P
6 *	14042.505	-26.67	-21.10	-47.77	-25.00	-22.77	peak	Р

LTE / Polarization: Vertical / Band:41 / CH:H

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1569.721	-40.00	-31.60	-71.60	-25.00	-46.60	peak	P
2	2765.224	-36.26	-29.91	-66.17	-25.00	-41.17	peak	P
3	3807.931	-34.98	-29.02	-64.00	-25.00	-39.00	peak	P
4	4957.873	-37.06	-27.49	-64.55	-25.00	-39.55	peak	P
5	7950.729	-28.99	-25.45	-54.44	-25.00	-29.44	peak	P
6 *	14491.958	-29.97	-21.20	-51.17	-25.00	-26.17	peak	P



# LTE / Polarization: Horizontal / Band:66/ CH:L

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1717.857	-40.52	-31.37	-71.89	-13.00	-58.89	peak	Р
2	2112.830	-33.17	-30.80	-63.97	-13.00	-50.97	peak	P
3	3577.463	-40.15	-29.05	-69.20	-13.00	-56.20	peak	P
4	5400.718	-34.30	-27.03	-61.33	-13.00	-48.33	peak	P
5	6849.122	-27.30	-25.07	-52.37	-13.00	-39.37	peak	P
6 *	12647.472	-23.48	-21.53	-45.01	-13.00	-32.01	peak	P
TE / P	olarization: Verti	cal / Band:66	/ CH:L		-1			
No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1646.397	-42.28	-31.48	-73.76	-13.00	-60.76	peak	P
2	2415.370	-32.41	-30.46	-62.87	-13.00	-49.87	peak	P
3	3916.203	-36.05	-29.01	-65.06	-13.00	-52.06	peak	Р
4	5664.525	-33.75	-26.41	-60.16	-13.00	-47.16	peak	P
5	8312.624	-31.11	-25.40	-56.51	-13.00	-43.51	peak	Р
6 *	14429.263	-27.62	-21.18	-48.80	-13.00	-35.80	peak	P
TE / P	olarization: Horiz	zontal / Band:	56/ CH:M					
No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1846.049	-39.97	-31.17	-71.14	-13.00	-58.14	peak	P
2	2392.441	-43.27	-30.49	-73.76	-13.00	-60.76	peak	Р
3	3553.760	-40.01	-29.05	-69.06	-13.00	-56.06	peak	P
4	5496.784	-39.36	-26.95	-66.31	-13.00	-53.31	peak	P
5	9861.086	-32.95	-23.99	-56.94	-13.00	-43.94	peak	P
6 *	14916.942	-25.34	-20.53	-45.87	-13.00	-32.87	peak	Р
TE / P	olarization: Verti	cal / Band:66	/ CH:M	1.0				1.0
No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1241.350	-38.99	-30.29	-69.28	-13.00	-56.28	peak	Р
2	1903.484	-35.83	-31.08	-66.91	-13.00	-53.91	peak	Р
3	3071.120	-33.57	-29.45	-63.02	-13.00	-50.02	peak	P
4	4264.771	-37.17	-28.88	-66.05	-13.00	-53.05	peak	P
5	8539.102	-27.48	-25.24	-52.72	-13.00	-39.72	peak	P
6 *	13489.514	-26.52	-20.98	-47.50	-13.00	-34.50	peak	P



No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1218.599	-36.41	-30.17	-66.58	-13.00	-53.58	peak	P
2	1539.615	-41.11	-31.65	-72.76	-13.00	-59.76	peak	P
3	2493.398	-38.49	-30.37	-68.86	-13.00	-55.86	peak	P
4	4042.716	-36.21	-28.98	-65.19	-13.00	-52.19	peak	P
5	8271.879	-29.73	-25.42	-55.15	-13.00	-42.15	peak	P
6 *	13211.689	-28.70	-21.18	-49.88	-13.00	-36.88	peak	P

# LTE / Polarization: Horizontal / Band:66/ CH:H

# LTE / Polarization: Vertical / Band:66 / CH:H

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1512.707	-40.27	-31.68	-71.95	-13.00	-58.95	peak	P
2	2358.796	-35.27	-30.53	-65.80	-13.00	-52.80	peak	P
3	3345.437	-32.60	-29.19	-61.79	-13.00	-48.79	peak	P
4	6200.883	-29.77	-25.35	-55.12	-13.00	-42.12	peak	P
5	10384.704	-27.49	-24.46	-51.95	-13.00	-38.95	peak	P
6 *	15025.121	-22.67	-20.46	-43.13	-13.00	-30.13	peak	P

# LTE / Polarization: Horizontal / Band:71/ CH:L

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1786.213	-37.69	-31.26	-68.95	-13.00	-55.95	peak	Р
2	2660.941	-40.09	-30.09	-70.18	-13.00	-57.18	peak	Р
3	3680.246	-39.33	-29.04	-68.37	-13.00	-55.37	peak	Р
4	6657.838	-32.74	-25.23	-57.97	-13.00	-44.97	peak	P
5	9344.944	-29.09	-23.55	-52.64	-13.00	-39.64	peak	P
6 *	15204.236	-27.91	-20.85	-48.76	-13.00	-35.76	peak	P

LTE / Polarization: Vertical / Band:71 / CH:L

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	2087.939	-35.31	-30.83	-66.14	-13.00	-53.14	peak	Р
2	3452.513	-40.25	-29.10	-69.35	-13.00	-56.35	peak	Р
3	4765.387	-32.07	-28.04	-60.11	-13.00	-47.11	peak	Р
4	6278.432	-32.15	-25.36	-57.51	-13.00	-44.51	peak	P
5	10384.704	-28.49	-24.46	-52.95	-13.00	-39.95	peak	P
6 *	15722.650	-21.34	-21.53	-42.87	-13.00	-29.87	peak	P

Total or partial reproduction of this document without permission of the Laboratory is not allowed.

Page 70 of 74

BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1527.647	-42.70	-31.66	-74.36	-13.00	-61.36	peak	P
2	3071.120	-34.07	-29.45	-63.52	-13.00	-50.52	peak	P
3	3966.326	-37.88	-29.00	-66.88	-13.00	-53.88	peak	P
4	5864.443	-40.25	-25.77	- <mark>6</mark> 6.02	-13.00	-53.02	peak	P
5	9666.369	-31.94	-23.56	-55.50	-13.00	-42.50	peak	P
6 *	14429.263	-31.12	-21.18	-52.30	-13.00	-39.30	peak	P

# LTE / Polarization: Horizontal / Band:71/ CH:M

# LTE / Polarization: Vertical / Band:71 / CH:M

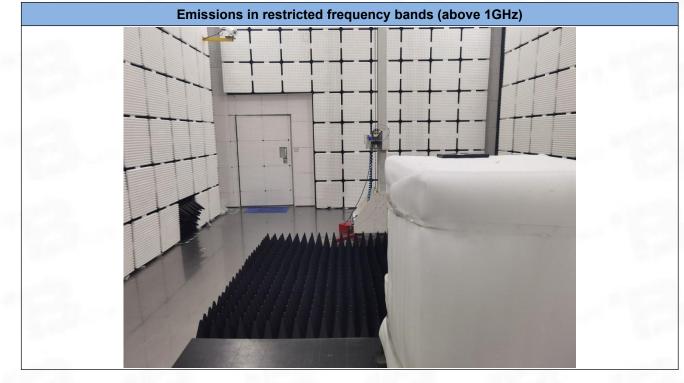
No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1821.140	-38.35	-31.21	-69.56	-13.00	- <u>56.5</u> 6	peak	P
2	3459.505	-35.72	-29.09	-64.81	-13.00	-51.81	peak	P
3	4007.812	-34.90	-29.00	-63.90	-13.00	-50.90	peak	P
4	6432.733	-33.47	-25.37	-58.84	-13.00	-45.84	peak	P
5	10150.267	-27.45	-24.36	-51.81	-13.00	-38.81	peak	P
6 *	14429.263	-27.62	-21.18	-48.80	-13.00	-35.80	peak	P

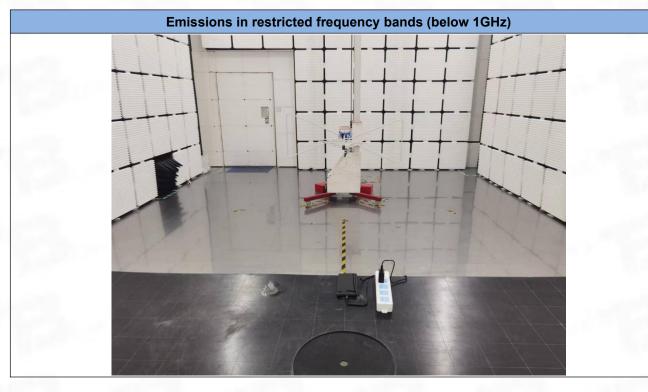
# LTE / Polarization: Horizontal / Band:71/ CH:H

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1310.670	-37.85	-30.67	-68.52	-13.00	-55.52	peak	P
2	1980.370	-35.47	-30.96	-66.43	-13.00	-53.43	peak	P
3	3196.094	-40.23	-29.33	-69.56	-13.00	-56.56	peak	P
4	4687.520	-35.88	-28.26	-64.14	-13.00	-51.14	peak	P
5	7543.293	-29.68	-24.85	-54.53	-13.00	-41.53	peak	Р
6 *	13921.267	-23.36	-21.07	-44.43	-13.00	-31.43	peak	P

# LTE / Polarization: Vertical / Band:71 / CH:H

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1392.287	-38.75	-31.12	-69.87	-13.00	-56.87	peak	Р
2	2093.983	-32.65	-30.82	-63.47	-13.00	-50.47	peak	P
3	2973.293	-36.54	-29.56	-66.10	-13.00	-53.10	peak	P
4	4273.408	-36.13	-28.88	-65.01	-13.00	-52.01	peak	P
5	7766.749	-29.57	-25.18	-54.75	-13.00	-41.75	peak	P
6 *	13489.514	-24.02	-20.98	-45.00	-13.00	-32.00	peak	P


Total or partial reproduction of this document without permission of the Laboratory is not allowed.


Page 71 of 74

BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



# ANNEX B TEST SETUP PHOTOS







Test Report Number: BTF230725R01104

# ANNEX C EUT PHOTOS

Please refer to the report No. BTF230725R01001





BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

www.btf-lab.com

# --END OF REPORT--