

# **RF Test Report**

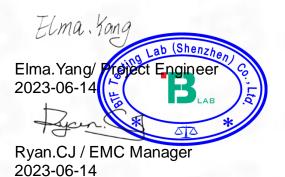
### For

Applicant Name: Address: EUT Name: Brand Name: Model Number: Xwireless LLC 11565 Old Georgetown Road, Rockville, MD, USA Mobile Phone N/A HD60i

## **Issued By**

| Company Name: | BTF Testing Lab (Shenzhen) Co., Ltd.                                   |
|---------------|------------------------------------------------------------------------|
|               | F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park,        |
| Address:      | Tantou Community, Songgang Street, Bao'an District, Shenzhen,<br>China |

Report Number: Test Standards: BTF230601R00104 47 CFR Part 15E


Test Conclusion: FCC ID: Test Date: Date of Issue: Pass 2ADLJ-HD60I 2023-06-01 to 2023-06-13 2023-06-14

Prepared By:

Date:

Approved By:

Date:



Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. Page 1 of 118

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



| Revision History |            |                   |      |
|------------------|------------|-------------------|------|
| Version          | Issue Date | Revisions Content |      |
| R_V0             | 2023-06-14 | Original          | 1.00 |
|                  |            |                   |      |
|                  |            |                   |      |

Note: Once the revision has been made, then previous versions reports are invalid.

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 2 of 118BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



#### **Table of Contents**

| 1 | INTR       | ODUCTION                                           | 5  |
|---|------------|----------------------------------------------------|----|
|   | 1.1        | Identification of Testing Laboratory               |    |
|   | 1.2        | Identification of the Responsible Testing Location |    |
|   | 1.3        | Announcement                                       |    |
| 2 | PRO        | DUCT INFORMATION                                   |    |
|   | 2.1        | Application Information                            |    |
|   | 2.2<br>2.3 | Manufacturer Information                           |    |
|   | 2.3        | General Description of Equipment under Test (EUT)  |    |
|   | 2.5        | Technical Information                              |    |
| 3 | SUM        | MARY OF TEST RESULTS                               | 7  |
|   | 3.1        | Test Standards                                     |    |
|   | 3.2        | Uncertainty of Test                                | 7  |
|   | 3.3        | Summary of Test Result                             | 7  |
| 4 | TEST       | CONFIGURATION                                      | 8  |
|   | 4.1        | Test Equipment List                                |    |
|   | 4.2        | Test Auxiliary Equipment1                          |    |
|   | 4.3        | Test Modes1                                        |    |
| 5 |            | UATION RESULTS (EVALUATION) 1                      |    |
|   | 5.1        | Antenna requirement1                               |    |
| 6 | RADI       | O SPECTRUM MATTER TEST RESULTS (RF) 1              |    |
|   | 6.1        | Conducted Emission at AC power line1               | 5  |
|   |            | 6.1.1 E.U.T. Operation:                            |    |
|   |            | 6.1.2 Test Setup Diagram:                          |    |
|   | 6.2        | 6.1.3 Test Data:                                   |    |
|   | 0.2        | 6.2.1 E.U.T. Operation:                            |    |
|   |            | 6.2.2 Test Data:                                   |    |
|   | 6.3        | Maximum conducted output power1                    |    |
|   |            | 6.3.1 E.U.T. Operation:                            | 20 |
|   |            | 6.3.2 Test Data:                                   |    |
|   | 6.4        | Power spectral density                             |    |
|   |            | 6.4.1 E.U.T. Operation:                            |    |
|   | 6.5        | 6.4.2 Test Data:                                   |    |
|   | 0.5        | 6.5.1 E.U.T. Operation:                            |    |
|   |            | 6.5.2 Test Data:                                   |    |
|   | 6.6        | Band edge emissions (Radiated)                     | 25 |
|   |            | 6.6.1 E.U.T. Operation:                            | 26 |
|   |            | 6.6.2 Test Setup Diagram:                          |    |
|   | 67         | 6.6.3 Test Data:                                   |    |
|   | 6.7        | Undesirable emission limits (below 1GHz)           |    |
|   |            | 6.7.1 E.U.I. Operation:                            |    |
|   |            | 6.7.3 Test Data:                                   |    |
|   | 6.8        | Undesirable emission limits (above 1GHz)           |    |
|   |            | 6.8.1 E.U.T. Operation:                            | 57 |
|   |            |                                                    |    |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 3 of 118BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



|     | 6.8.2 Test Dat   | ta:                      |  |
|-----|------------------|--------------------------|--|
| 7   | TEST SETUP PHOTO | )\$                      |  |
| 8   | EUT CONSTRUCTIO  | NAL DETAILS (EUT PHOTOS) |  |
| APP | ENDIX            |                          |  |

### 1 Introduction

### 1.1 Identification of Testing Laboratory

| Company Name: | BTF Testing Lab (Shenzhen) Co., Ltd.                                                                                                |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------|--|
| Address:      | F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China |  |
| Phone Number: | +86-0755-23146130                                                                                                                   |  |
| Fax Number:   | +86-0755-23146130                                                                                                                   |  |

#### **1.2** Identification of the Responsible Testing Location

| Company Name:                                                                                                                                | BTF Testing Lab (Shenzhen) Co., Ltd. |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|--|
| Address: F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China |                                      |  |  |
| Phone Number:                                                                                                                                | +86-0755-23146130                    |  |  |
| Fax Number:                                                                                                                                  | +86-0755-23146130                    |  |  |
| FCC Registration Number:                                                                                                                     | 518915                               |  |  |
| Designation Number:                                                                                                                          | CN1330                               |  |  |

#### 1.3 Announcement

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.



### 2 **Product Information**

### 2.1 Application Information

| Company Name:                                          | Xwireless LLC                                                                                          |  |  |  |  |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|--|--|
| Address:                                               | 11565 Old Georgetown Road, Rockville, MD, USA                                                          |  |  |  |  |
| 2.2 Manufacturer Information                           |                                                                                                        |  |  |  |  |
| Company Name:                                          | mpany Name: Xwireless LLC                                                                              |  |  |  |  |
| Address:                                               | 11565 Old Georgetown Road, Rockville, MD, USA                                                          |  |  |  |  |
| 2.3 Factory Informa                                    | tion                                                                                                   |  |  |  |  |
| Company Name:                                          | ZTECH COMMNICATION(SZ) CO LTD                                                                          |  |  |  |  |
| Address:                                               | FL 7 BLOCK D BAO'AN ZHIGU INNOVATION PARK YIN'TIAN ROAD NO.4<br>XI'XIANG STR' BAO'AN DISTRICT SZ CHINA |  |  |  |  |
| 2.4. Concret Description of Equipment under Test (EUT) |                                                                                                        |  |  |  |  |

#### 2.4 General Description of Equipment under Test (EUT)

| EUT Name:          | Mobile Phone |
|--------------------|--------------|
| Test Model Number: | HD60i        |

### 2.5 Technical Information

| Power Supply:        | DC 3.8V from Battery                                                                                                                                                                                                                                                 |  |  |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Operation Frequency: | 802.11a/n(HT20) :<br>U-NII Band 1: 5180MHz to 5240MHz;<br>U-NII Band 2A: 5260MHz to 5320MHz;<br>U-NII Band 3: 5745MHz to 5825MHz;<br>802.11n(HT40) :<br>U-NII Band 1: 5190MHz to 5230MHz;<br>U-NII Band 2A: 5270MHz to 5310MHz;<br>U-NII Band 3: 5755MHz to 5795MHz; |  |  |  |
| Number of Channels:  | 802.11a/n(HT20):<br>U-NII Band 1: 4;<br>U-NII Band 2A: 4;<br>U-NII Band 3: 5;<br>802.11n(HT40):<br>U-NII Band 1: 2;<br>U-NII Band 2A: 2;<br>U-NII Band 3: 2;                                                                                                         |  |  |  |
| Modulation Type:     | 802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM);<br>802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM);                                                                                                                                                                                |  |  |  |
| Antenna Type:        | PIFA Antenna                                                                                                                                                                                                                                                         |  |  |  |
| Antenna Gain:        | 2.39 dBi                                                                                                                                                                                                                                                             |  |  |  |
| Note:                |                                                                                                                                                                                                                                                                      |  |  |  |

#### Note:

#: The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



## 3 Summary of Test Results

#### 3.1 Test Standards

The tests were performed according to following standards: 47 CFR Part 15E: Unlicensed National Information Infrastructure Devices

#### 3.2 Uncertainty of Test

| Item                                                                                                      | Measurement Uncertainty |  |  |  |
|-----------------------------------------------------------------------------------------------------------|-------------------------|--|--|--|
| Conducted Emission (150 kHz-30 MHz)                                                                       | ±2.64dB                 |  |  |  |
| The following measurement uncertainty levels have been estimated for tests performed on the EUT as        |                         |  |  |  |
| specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately |                         |  |  |  |

| Item                                                    | Standard        | Requirement                                                                                                                                                                             | Result |  |
|---------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|
| Antenna requirement                                     | 47 CFR Part 15E | Part 15.203                                                                                                                                                                             | Pass   |  |
| Conducted Emission at AC power line                     | 47 CFR Part 15E | 47 CFR Part 15.207(a)                                                                                                                                                                   | Pass   |  |
| Maximum conducted output power                          | 47 CFR Part 15E | 47 CFR Part 15.407(a)(1)(i)<br>47 CFR Part 15.407(a)(1)(ii)<br>47 CFR Part 15.407(a)(1)(iii)<br>47 CFR Part 15.407(a)(1)(iv)<br>47 CFR Part 15.407(a)(2)<br>47 CFR Part 15.407(a)(3)(i) | Pass   |  |
| Power spectral density                                  | 47 CFR Part 15E | 47 CFR Part 15.407(a)(1)(i)<br>47 CFR Part 15.407(a)(1)(ii)<br>47 CFR Part 15.407(a)(1)(iii)<br>47 CFR Part 15.407(a)(1)(iv)<br>47 CFR Part 15.407(a)(2)<br>47 CFR Part 15.407(a)(3)(i) | Pass   |  |
| Emission bandwidth and occupied bandwidth               | 47 CFR Part 15E | U-NII 1, U-NII 2A, U-NII 2C:<br>No limits, only for report use.<br>47 CFR Part 15.407(e)                                                                                                | Pass   |  |
| Channel Availability Check Time                         | 47 CFR Part 15E | 47 CFR Part 15.407(h)(2)(ii)                                                                                                                                                            | Pass   |  |
| U-NII Detection Bandwidth                               | 47 CFR Part 15E | 47 CFR Part 15.407(h)(2)                                                                                                                                                                | Pass   |  |
| Statistical Performance Check                           | 47 CFR Part 15E | KDB 935210 D02, Clause 5.1<br>Table 2                                                                                                                                                   | Pass   |  |
| Channel Move Time, Channel<br>Closing Transmission Time | 47 CFR Part 15E | 47 CFR Part 15.407(h)(2)(iii)                                                                                                                                                           | Pass   |  |
| Non-Occupancy Period Test                               | 47 CFR Part 15E | 47 CFR Part 15.407(h)(2)(iv)                                                                                                                                                            | Pass   |  |
| DFS Detection Thresholds                                | 47 CFR Part 15E | KDB 905462 D02, Clause 5.2<br>Table 3                                                                                                                                                   | Pass   |  |
| Band edge emissions (Radiated)                          | 47 CFR Part 15E | 47 CFR Part 15.407(b)(1)<br>47 CFR Part 15.407(b)(2)<br>47 CFR Part 15.407(b)(4)<br>47 CFR Part 15.407(b)(10)                                                                           | Pass   |  |
| Undesirable emission limits (below 1GHz)                | 47 CFR Part 15E | 47 CFR Part 15.407(b)(9)                                                                                                                                                                | Pass   |  |
| Undesirable emission limits (above<br>1GHz)             | 47 CFR Part 15E | 47 CFR Part 15.407(b)(1)<br>47 CFR Part 15.407(b)(2)<br>47 CFR Part 15.407(b)(4)<br>47 CFR Part 15.407(b)(10)                                                                           | Pass   |  |

#### 3.3 Summary of Test Result

the 95% confidence level using a coverage factor of k=2.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

#### **Test Configuration** 4

#### **Test Equipment List** 4.1

| Conducted Emission at AC power line |                   |             |              |            |              |
|-------------------------------------|-------------------|-------------|--------------|------------|--------------|
| Equipment                           | Manufacturer      | Model No    | Inventory No | Cal Date   | Cal Due Date |
| Pulse Limiter                       | SCHWARZBECK       | VTSD 9561-F | 00953        | 2022-11-24 | 2023-11-23   |
| Coaxial Switcher                    | SCHWARZBECK       | CX210       | CX210        | 2022-11-24 | 2023-11-23   |
| V-LISN                              | SCHWARZBECK       | NSLK 8127   | 01073        | 2022-11-24 | 2023-11-23   |
| LISN                                | AFJ               | LS16/110VAC | 16010020076  | 2023-02-23 | 2024-02-22   |
| EMI Receiver                        | ROHDE&SCHWA<br>RZ | ESCI3       | 101422       | 2022-11-24 | 2023-11-23   |

| Duty Cycle                                               |                                                             |           |              |            |              |
|----------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|
| Equipment                                                | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |
| RFTest software                                          | /                                                           | V1.00     | /            | /          | /            |
| RF Control Unit                                          | Techy                                                       | TR1029-1  | /            | 2022-11-24 | 2023-11-23   |
| RF Sensor Unit                                           | Techy                                                       | TR1029-2  | /            | 2022-11-24 | 2023-11-23   |
| Programmable<br>constant temperature<br>and humidity box | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |
| Adjustable Direct<br>Current Regulated<br>Power Supply   | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER               | Rohde & Schwarz                                             | CMW500    | 161997       | 2022-11-24 | 2023-11-23   |
| MXA Signal Analyzer                                      | KEYSIGHT                                                    | N9020A    | MY50410020   | 2022-11-24 | 2023-11-23   |

| Maximum conducted output power                           |                                                             |           |              |            |              |  |  |  |
|----------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|--|--|
| Equipment                                                | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |  |  |
| RFTest software                                          | /                                                           | V1.00     | /            | /          | /            |  |  |  |
| RF Control Unit                                          | Techy                                                       | TR1029-1  | /            | 2022-11-24 | 2023-11-23   |  |  |  |
| RF Sensor Unit                                           | Techy                                                       | TR1029-2  | /            | 2022-11-24 | 2023-11-23   |  |  |  |
| Programmable<br>constant temperature<br>and humidity box | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |  |  |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply   | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |  |  |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER               | Rohde & Schwarz                                             | CMW500    | 161997       | 2022-11-24 | 2023-11-23   |  |  |  |
| MXA Signal Analyzer                                      | KEYSIGHT                                                    | N9020A    | MY50410020   | 2022-11-24 | 2023-11-23   |  |  |  |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 8 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



| Power spectral density                                   |                                                             |           |              |            |              |  |  |  |
|----------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|--|--|
| Equipment                                                | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |  |  |
| RFTest software                                          | /                                                           | V1.00     | /            | /          | /            |  |  |  |
| RF Control Unit                                          | Techy                                                       | TR1029-1  | /            | 2022-11-24 | 2023-11-23   |  |  |  |
| RF Sensor Unit                                           | Techy                                                       | TR1029-2  | /            | 2022-11-24 | 2023-11-23   |  |  |  |
| Programmable<br>constant temperature<br>and humidity box | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |  |  |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply   | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |  |  |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER               | Rohde & Schwarz                                             | CMW500    | 161997       | 2022-11-24 | 2023-11-23   |  |  |  |
| MXA Signal Analyzer                                      | KEYSIGHT                                                    | N9020A    | MY50410020   | 2022-11-24 | 2023-11-23   |  |  |  |

| Equipment                                                | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |
|----------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|
| RFTest software                                          | /                                                           | V1.00     | /            | /          | /            |
| RF Control Unit                                          | Techy                                                       | TR1029-1  | /            | 2022-11-24 | 2023-11-23   |
| RF Sensor Unit                                           | Techy                                                       | TR1029-2  | /            | 2022-11-24 | 2023-11-23   |
| Programmable<br>constant temperature<br>and humidity box | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |
| Adjustable Direct<br>Current Regulated<br>Power Supply   | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER               | Rohde & Schwarz                                             | CMW500    | 161997       | 2022-11-24 | 2023-11-23   |
| MXA Signal Analyzer                                      | KEYSIGHT                                                    | N9020A    | MY50410020   | 2022-11-24 | 2023-11-23   |

| Channel Availability Check Time                          |                                                             |           |              |            |              |  |  |  |
|----------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|--|--|
| Equipment                                                | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |  |  |
| RFTest software                                          | /                                                           | V1.00     | /            | /          | /            |  |  |  |
| RF Control Unit                                          | Techy                                                       | TR1029-1  | /            | 2022-11-24 | 2023-11-23   |  |  |  |
| RF Sensor Unit                                           | Techy                                                       | TR1029-2  | /            | 2022-11-24 | 2023-11-23   |  |  |  |
| Programmable<br>constant temperature<br>and humidity box | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |  |  |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply   | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |  |  |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER               | Rohde & Schwarz                                             | CMW500    | 161997       | 2022-11-24 | 2023-11-23   |  |  |  |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 9 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 9 of 118



| MXA Signal Analyzer                                      | KEYSIGHT                                                    | N9020A    | MY50410020   | 2022-11-24 | 2023-11-23   |  |  |  |  |  |
|----------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|--|--|--|--|
| U-NII Detection Bandwidth                                |                                                             |           |              |            |              |  |  |  |  |  |
| Equipment                                                | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |  |  |  |  |
| RFTest software                                          | /                                                           | V1.00     | /            | /          | /            |  |  |  |  |  |
| RF Control Unit                                          | Techy                                                       | TR1029-1  | /            | 2022-11-24 | 2023-11-23   |  |  |  |  |  |
| RF Sensor Unit                                           | Techy                                                       | TR1029-2  | /            | 2022-11-24 | 2023-11-23   |  |  |  |  |  |
| Programmable<br>constant temperature<br>and humidity box | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |  |  |  |  |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply   | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |  |  |  |  |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER               | Rohde & Schwarz                                             | CMW500    | 161997       | 2022-11-24 | 2023-11-23   |  |  |  |  |  |
| MXA Signal Analyzer                                      | KEYSIGHT                                                    | N9020A    | MY50410020   | 2022-11-24 | 2023-11-23   |  |  |  |  |  |

| Statistical Performance Check                            |                                                             |           |              |            |              |  |  |  |
|----------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|--|--|
| Equipment                                                | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |  |  |
| RFTest software                                          | /                                                           | V1.00     | /            | /          | /            |  |  |  |
| RF Control Unit                                          | Techy                                                       | TR1029-1  | /            | 2022-11-24 | 2023-11-23   |  |  |  |
| RF Sensor Unit                                           | Techy                                                       | TR1029-2  | /            | 2022-11-24 | 2023-11-23   |  |  |  |
| Programmable<br>constant temperature<br>and humidity box | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |  |  |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply   | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |  |  |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER               | Rohde & Schwarz                                             | CMW500    | 161997       | 2022-11-24 | 2023-11-23   |  |  |  |
| MXA Signal Analyzer                                      | KEYSIGHT                                                    | N9020A    | MY50410020   | 2022-11-24 | 2023-11-23   |  |  |  |

| Channel Move Time, Channel Closing Transmission Time     |                                                             |           |              |            |              |  |  |  |  |
|----------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|--|--|--|
| Equipment                                                | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |  |  |  |
| RFTest software                                          | /                                                           | V1.00     | /            | /          | /            |  |  |  |  |
| RF Control Unit                                          | Techy                                                       | TR1029-1  | /            | 2022-11-24 | 2023-11-23   |  |  |  |  |
| RF Sensor Unit                                           | Techy                                                       | TR1029-2  | /            | 2022-11-24 | 2023-11-23   |  |  |  |  |
| Programmable<br>constant temperature<br>and humidity box | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |  |  |  |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply   | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |  |  |  |  |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 10 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER | Rohde & Schwarz | CMW500 | 161997     | 2022-11-24 | 2023-11-23 |
|--------------------------------------------|-----------------|--------|------------|------------|------------|
| MXA Signal Analyzer                        | KEYSIGHT        | N9020A | MY50410020 | 2022-11-24 | 2023-11-23 |

| Non-Occupancy Period Test                                |                                                             |           |              |            |              |  |  |  |
|----------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|--|--|
| Equipment                                                | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |  |  |
| RFTest software                                          | /                                                           | V1.00     | /            | /          | /            |  |  |  |
| RF Control Unit                                          | Techy                                                       | TR1029-1  | /            | 2022-11-24 | 2023-11-23   |  |  |  |
| RF Sensor Unit                                           | Techy                                                       | TR1029-2  | /            | 2022-11-24 | 2023-11-23   |  |  |  |
| Programmable<br>constant temperature<br>and humidity box | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |  |  |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply   | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |  |  |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER               | Rohde & Schwarz                                             | CMW500    | 161997       | 2022-11-24 | 2023-11-23   |  |  |  |
| MXA Signal Analyzer                                      | KEYSIGHT                                                    | N9020A    | MY50410020   | 2022-11-24 | 2023-11-23   |  |  |  |

| DFS Detection Thresholds                                 |                                                             |           |              |            |              |  |  |  |
|----------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|--|--|
| Equipment                                                | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |  |  |
| RFTest software                                          | /                                                           | V1.00     | /            | /          | /            |  |  |  |
| RF Control Unit                                          | Techy                                                       | TR1029-1  | /            | 2022-11-24 | 2023-11-23   |  |  |  |
| RF Sensor Unit                                           | Techy                                                       | TR1029-2  | /            | 2022-11-24 | 2023-11-23   |  |  |  |
| Programmable<br>constant temperature<br>and humidity box | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |  |  |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply   | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |  |  |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER               | Rohde & Schwarz                                             | CMW500    | 161997       | 2022-11-24 | 2023-11-23   |  |  |  |
| MXA Signal Analyzer                                      | KEYSIGHT                                                    | N9020A    | MY50410020   | 2022-11-24 | 2023-11-23   |  |  |  |

| Band edge emissions (Radiated) |              |                     |              |            |              |  |  |  |  |
|--------------------------------|--------------|---------------------|--------------|------------|--------------|--|--|--|--|
| Equipment                      | Manufacturer | Model No            | Inventory No | Cal Date   | Cal Due Date |  |  |  |  |
| Coaxial cable Multiflex 141    | Schwarzbeck  | N/SMA 0.5m          | 517386       | 2023-03-24 | 2024-03-23   |  |  |  |  |
| Preamplifier                   | SCHWARZBECK  | BBV9744             | 00246        | 2022-11-24 | 2023-11-23   |  |  |  |  |
| RE Cable                       | REBES Talent | UF1-SMASMAM-1<br>0m | 21101566     | 2022-11-24 | 2023-11-23   |  |  |  |  |
| RE Cable                       | REBES Talent | UF2-NMNM-10m        | 21101570     | 2022-11-24 | 2023-11-23   |  |  |  |  |
| RE Cable                       | REBES Talent | UF1-SMASMAM-1<br>m  | 21101568     | 2022-11-24 | 2023-11-23   |  |  |  |  |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 11 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



| RE Cable                    | REBES Talent      | UF2-NMNM-1m   | 21101576 | 2022-11-24 | 2023-11-23 |
|-----------------------------|-------------------|---------------|----------|------------|------------|
| RE Cable                    | REBES Talent      | UF2-NMNM-2.5m | 21101573 | 2022-11-24 | 2023-11-23 |
| POSITIONAL<br>CONTROLLER    | SKET              | PCI-GPIB      | /        | /          | /          |
| Horn Antenna                | SCHWARZBECK       | BBHA9170      | 01157    | 2021-11-28 | 2023-11-27 |
| EMI TEST RECEIVER           | ROHDE&SCHWA<br>RZ | ESCI7         | 101032   | 2022-11-24 | 2023-11-23 |
| SIGNAL ANALYZER             | ROHDE&SCHWA<br>RZ | FSQ40         | 100010   | 2022-11-24 | 2023-11-23 |
| POSITIONAL<br>CONTROLLER    | SKET              | PCI-GPIB      | /        | /          | /          |
| Broadband<br>Preamplilifier | SCHWARZBECK       | BBV9718D      | 00008    | 2023-03-24 | 2024-03-23 |
| Horn Antenna                | SCHWARZBECK       | BBHA9120D     | 2597     | 2022-05-22 | 2024-05-21 |
| EZ_EMC                      | Frad              | FA-03A2 RE+   | /        | /          | /          |
| POSITIONAL<br>CONTROLLER    | SKET              | PCI-GPIB      | /        | /          | /          |
| Log periodic antenna        | SCHWARZBECK       | VULB 9168     | 01328    | 2021-11-28 | 2023-11-27 |

| Equipment                      | Manufacturer      | Model No            | Inventory No | Cal Date   | Cal Due Date |
|--------------------------------|-------------------|---------------------|--------------|------------|--------------|
| Coaxial cable Multiflex<br>141 | Schwarzbeck       | N/SMA 0.5m          | 517386       | 2023-03-24 | 2024-03-23   |
| Preamplifier                   | SCHWARZBECK       | BBV9744             | 00246        | 2022-11-24 | 2023-11-23   |
| RE Cable                       | REBES Talent      | UF1-SMASMAM-1<br>0m | 21101566     | 2022-11-24 | 2023-11-23   |
| RE Cable                       | REBES Talent      | UF2-NMNM-10m        | 21101570     | 2022-11-24 | 2023-11-23   |
| RE Cable                       | REBES Talent      | UF1-SMASMAM-1<br>m  | 21101568     | 2022-11-24 | 2023-11-23   |
| RE Cable                       | REBES Talent      | UF2-NMNM-1m         | 21101576     | 2022-11-24 | 2023-11-23   |
| RE Cable                       | REBES Talent      | UF2-NMNM-2.5m       | 21101573     | 2022-11-24 | 2023-11-23   |
| POSITIONAL<br>CONTROLLER       | SKET              | PCI-GPIB            | /            | /          | /            |
| Horn Antenna                   | SCHWARZBECK       | BBHA9170            | 01157        | 2021-11-28 | 2023-11-27   |
| EMI TEST RECEIVER              | ROHDE&SCHWA<br>RZ | ESCI7               | 101032       | 2022-11-24 | 2023-11-23   |
| SIGNAL ANALYZER                | ROHDE&SCHWA<br>RZ | FSQ40               | 100010       | 2022-11-24 | 2023-11-23   |
| POSITIONAL<br>CONTROLLER       | SKET              | PCI-GPIB            | /            | /          | /            |
| Broadband<br>Preamplilifier    | SCHWARZBECK       | BBV9718D            | 00008        | 2023-03-24 | 2024-03-23   |
| Horn Antenna                   | SCHWARZBECK       | BBHA9120D           | 2597         | 2022-05-22 | 2024-05-21   |
| EZ_EMC                         | Frad              | FA-03A2 RE+         | /            | /          | /            |
| POSITIONAL<br>CONTROLLER       | SKET              | PCI-GPIB            | /            | /          | /            |
| Log periodic antenna           | SCHWARZBECK       | VULB 9168           | 01328        | 2021-11-28 | 2023-11-27   |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 12 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



| Equipment                   | Manufacturer      | Model No            | Inventory No | Cal Date   | Cal Due Date |
|-----------------------------|-------------------|---------------------|--------------|------------|--------------|
| Coaxial cable Multiflex     | Manalaotarer      |                     |              | Our Dute   | Cal Duc Duc  |
| 141                         | Schwarzbeck       | N/SMA 0.5m          | 517386       | 2023-03-24 | 2024-03-23   |
| Preamplifier                | SCHWARZBECK       | BBV9744             | 00246        | 2022-11-24 | 2023-11-23   |
| RE Cable                    | REBES Talent      | UF1-SMASMAM-1<br>0m | 21101566     | 2022-11-24 | 2023-11-23   |
| RE Cable                    | REBES Talent      | UF2-NMNM-10m        | 21101570     | 2022-11-24 | 2023-11-23   |
| RE Cable                    | REBES Talent      | UF1-SMASMAM-1<br>m  | 21101568     | 2022-11-24 | 2023-11-23   |
| RE Cable                    | REBES Talent      | UF2-NMNM-1m         | 21101576     | 2022-11-24 | 2023-11-23   |
| RE Cable                    | REBES Talent      | UF2-NMNM-2.5m       | 21101573     | 2022-11-24 | 2023-11-23   |
| POSITIONAL<br>CONTROLLER    | SKET              | PCI-GPIB            | /            | /          | /            |
| Horn Antenna                | SCHWARZBECK       | BBHA9170            | 01157        | 2021-11-28 | 2023-11-27   |
| EMI TEST RECEIVER           | ROHDE&SCHWA<br>RZ | ESCI7               | 101032       | 2022-11-24 | 2023-11-23   |
| SIGNAL ANALYZER             | ROHDE&SCHWA<br>RZ | FSQ40               | 100010       | 2022-11-24 | 2023-11-23   |
| POSITIONAL<br>CONTROLLER    | SKET              | PCI-GPIB            | /            | /          | /            |
| Broadband<br>Preamplilifier | SCHWARZBECK       | BBV9718D            | 00008        | 2023-03-24 | 2024-03-23   |
| Horn Antenna                | SCHWARZBECK       | BBHA9120D           | 2597         | 2022-05-22 | 2024-05-21   |
| EZ_EMC                      | Frad              | FA-03A2 RE+         | /            | /          | /            |
| POSITIONAL<br>CONTROLLER    | SKET              | PCI-GPIB            | /            | /          | /            |
| Log periodic antenna        | SCHWARZBECK       | VULB 9168           | 01328        | 2021-11-28 | 2023-11-27   |



### 4.2 Test Auxiliary Equipment

The EUT was tested as an independent device.

#### 4.3 Test Modes

| No. | Test Modes       | Description                                                                                                                                                                                                                                                                    |
|-----|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TM1 | 802.11a mode     | Keep the EUT connect to AC power line and works in continuously<br>transmitting mode with 802.11a modulation type. All data rates has been<br>tested and found the data rate @ 6Mbps is the worst case. Only the data<br>of worst case is recorded in the report.              |
| TM2 | 802.11n mode     | Keep the EUT connect to AC power line and works in continuously<br>transmitting mode with 802.11n modulation type. All bandwidth and data<br>rates has been tested and found the data rate @ MCS0 is the worst case.<br>Only the data of worst case is recorded in the report. |
| TM5 | Normal Operating | Keep the EUT works in normal operating mode and connect to companion device                                                                                                                                                                                                    |

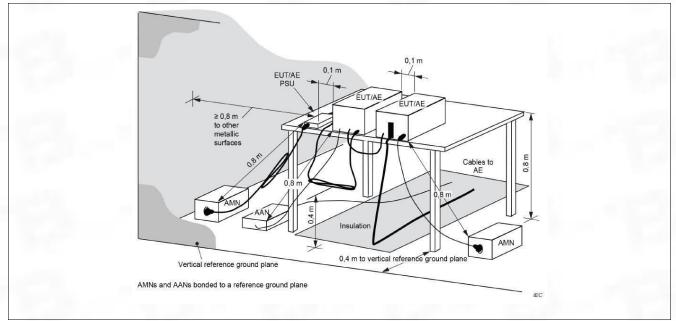


## 5 Evaluation Results (Evaluation)

#### 5.1 Antenna requirement

|                   | An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a                  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Requirement: | permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. |

## 6 Radio Spectrum Matter Test Results (RF)


### 6.1 Conducted Emission at AC power line

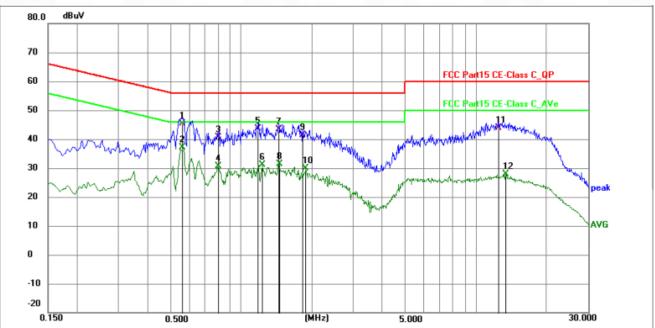
| Test Requirement: | 47 CFR Part 15.207(a)                                                                                                              |                        |           |  |  |  |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------|--|--|--|--|
| Test Method:      | Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices |                        |           |  |  |  |  |
|                   | Frequency of emission (MHz)                                                                                                        | Conducted limit (dBµV) |           |  |  |  |  |
|                   |                                                                                                                                    | Quasi-peak             | Average   |  |  |  |  |
| Toot Limit:       | 0.15-0.5                                                                                                                           | 66 to 56*              | 56 to 46* |  |  |  |  |
| Test Limit:       | 0.5-5                                                                                                                              | 56                     | 46        |  |  |  |  |
|                   | 5-30                                                                                                                               | 60                     | 50        |  |  |  |  |
|                   | *Decreases with the logarithm of the frequency.                                                                                    |                        |           |  |  |  |  |

#### 6.1.1 E.U.T. Operation:

| Operating Environment: |           |      |                                                                                                                 |  |
|------------------------|-----------|------|-----------------------------------------------------------------------------------------------------------------|--|
| Temperature:           | 25.5 °C   |      |                                                                                                                 |  |
| Humidity:              | 50.6 %    | 1.00 | 1 million 1 |  |
| Atmospheric Pressure:  | 1010 mbar |      |                                                                                                                 |  |

#### 6.1.2 Test Setup Diagram:

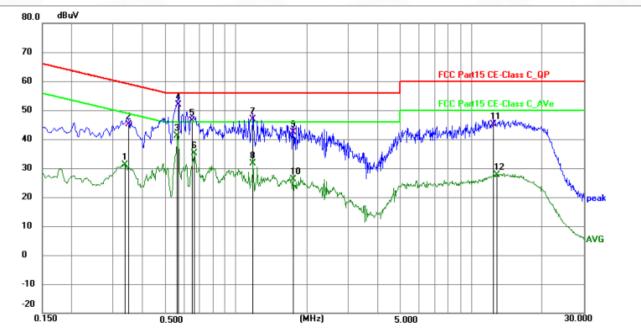



Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. Page 15 of 118

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



#### 6.1.3 Test Data:


TM1 / Line: Line / Band: U-NII 1 / BW: 20 / CH: L



| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB) | Level<br>(dBuV) | Limit<br>(dBuV) | Margin<br>(dB) | Detector | P/F | Remark |
|-----|--------------------|-------------------|----------------|-----------------|-----------------|----------------|----------|-----|--------|
| 1   | 0.5639             | 34.69             | 10.65          | 45.34           | 56.00           | -10.66         | QP       | Ρ   |        |
| 2 * | 0.5639             | 26.55             | 10.65          | 37.20           | 46.00           | -8.80          | AVG      | Ρ   |        |
| 3   | 0.7980             | 29.93             | 10.75          | 40.68           | 56.00           | -15.32         | QP       | Р   |        |
| 4   | 0.7980             | 19.94             | 10.75          | 30.69           | 46.00           | -15.31         | AVG      | Ρ   |        |
| 5   | 1.1849             | 32.99             | 10.76          | 43.75           | 56.00           | -12.25         | QP       | Р   |        |
| 6   | 1.2343             | 20.40             | 10.76          | 31.16           | 46.00           | -14.84         | AVG      | Р   |        |
| 7   | 1.4415             | 32.62             | 10.74          | 43.36           | 56.00           | -12.64         | QP       | Р   |        |
| 8   | 1.4503             | 20.69             | 10.74          | 31.43           | 46.00           | -14.57         | AVG      | Ρ   |        |
| 9   | 1.8285             | 30.61             | 10.71          | 41.32           | 56.00           | -14.68         | QP       | Ρ   |        |
| 10  | 1.8780             | 19.16             | 10.70          | 29.86           | 46.00           | -16.14         | AVG      | Р   |        |
| 11  | 12.4573            | 32.92             | 10.94          | 43.86           | 60.00           | -16.14         | QP       | Ρ   |        |
| 12  | 13.3393            | 16.87             | 10.93          | 27.80           | 50.00           | -22.20         | AVG      | Р   |        |

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China





TM1 / Line: Neutral / Band: U-NII 1 / BW: 20 / CH: L

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB) | Level<br>(dBuV) | Limit<br>(dBuV) | Margin<br>(dB) | Detector | P/F | Remark |
|-----|--------------------|-------------------|----------------|-----------------|-----------------|----------------|----------|-----|--------|
| 1   | 0.3345             | 20.49             | 10.62          | 31.11           | 49.34           | -18.23         | AVG      | Р   |        |
| 2   | 0.3480             | 34.50             | 10.62          | 45.12           | 59.01           | -13.89         | QP       | Р   |        |
| 3   | 0.5639             | 30.50             | 10.65          | 41.15           | 46.00           | -4.85          | AVG      | Р   |        |
| 4 * | 0.5685             | 41.25             | 10.65          | 51.90           | 56.00           | -4.10          | QP       | Р   |        |
| 5   | 0.6493             | 35.63             | 10.69          | 46.32           | 56.00           | -9.68          | QP       | Р   |        |
| 6   | 0.6630             | 24.45             | 10.71          | 35.16           | 46.00           | -10.84         | AVG      | Р   |        |
| 7   | 1.1805             | 36.23             | 10.76          | 46.99           | 56.00           | -9.01          | QP       | Р   |        |
| 8   | 1.1805             | 20.79             | 10.76          | 31.55           | 46.00           | -14.45         | AVG      | Р   |        |
| 9   | 1.7475             | 31.68             | 10.71          | 42.39           | 56.00           | -13.61         | QP       | Ρ   |        |
| 10  | 1.7475             | 15.49             | 10.71          | 26.20           | 46.00           | -19.80         | AVG      | Р   |        |
| 11  | 12.4395            | 34.12             | 10.89          | 45.01           | 60.00           | -14.99         | QP       | Р   |        |
| 12  | 12.8490            | 16.78             | 10.88          | 27.66           | 50.00           | -22.34         | AVG      | Р   |        |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 17 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 17 of 118



### 6.2 Duty Cycle

| Test Requirement: | All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.                                                                                                                                                                                             |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | ANSI C63.10-2013 section 12.2 (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Test Limit:       | No limits, only for report use.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Procedure:        | <ul> <li>i) Set the center frequency of the instrument to the center frequency of the transmission.</li> <li>ii) Set RBW &gt;= EBW if possible; otherwise, set RBW to the largest available value.</li> <li>iii) Set VBW &gt;= RBW.</li> <li>iv) Set detector = peak.</li> <li>v) The zero-span measurement method shall not be used unless both RBW and VBW are &gt; 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.</li> </ul> |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

#### 6.2.1 E.U.T. Operation:

| Operating Environment: |           |  |  |
|------------------------|-----------|--|--|
| Temperature:           | 25.5 °C   |  |  |
| Humidity:              | 50.6 %    |  |  |
| Atmospheric Pressure:  | 1010 mbar |  |  |

#### 6.2.2 Test Data:

Please Refer to Appendix for Details.



### 6.3 Maximum conducted output power

|                         | 47 CFR Part 15.407(a)(1)(i)                                                          |
|-------------------------|--------------------------------------------------------------------------------------|
|                         | 47 CFR Part 15.407(a)(1)(ii)                                                         |
| <b>-</b> ( <b>D</b> ) ( | 47 CFR Part 15.407(a)(1)(iii)                                                        |
| Test Requirement:       | 47 CFR Part 15.407(a)(1)(iv)                                                         |
|                         | 47 CFR Part 15.407(a)(2)                                                             |
|                         | 47 CFR Part 15.407(a)(3)(i)                                                          |
| Test Method:            | ANSI C63.10-2013, section 12.3                                                       |
|                         |                                                                                      |
|                         | For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum         |
|                         | conducted output power over the frequency band of operation shall not exceed 1       |
|                         | W provided the maximum antenna gain does not exceed 6 dBi.                           |
|                         | If transmitting antennas of directional gain greater than 6 dBi are used, the        |
|                         | maximum conducted output power shall be reduced by the amount in dB that the         |
|                         | directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any           |
|                         | elevation angle above 30 degrees as measured from the horizon must not exceed        |
|                         | 125 mW (21 dBm).                                                                     |
|                         |                                                                                      |
|                         | For an indoor access point operating in the band 5.15-5.25 GHz, the maximum          |
|                         | conducted output power over the frequency band of operation shall not exceed 1       |
|                         | W provided the maximum antenna gain does not exceed 6 dBi.                           |
|                         | If transmitting antennas of directional gain greater than 6 dBi are used, the        |
|                         | maximum conducted output power shall be reduced by the amount in dB that the         |
|                         | directional gain of the antenna exceeds 6 dBi.                                       |
|                         |                                                                                      |
|                         | For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the      |
|                         | maximum conducted output power over the frequency band of operation shall not        |
|                         | exceed 1 W.                                                                          |
|                         | Fixed point-to-point U-NII devices may employ antennas with directional gain up to   |
|                         | 23 dBi without any corresponding reduction in the maximum conducted output           |
|                         | power.                                                                               |
| To add Line it.         | For fixed point-to-point transmitters that employ a directional antenna gain greater |
| Test Limit:             | than 23 dBi, a 1 dB reduction in maximum conducted output power is required for      |
|                         | each 1 dB of antenna gain in excess of 23 dBi.                                       |
|                         | Fixed, point-to-point operations exclude the use of point-to-multipoint systems,     |
|                         | omnidirectional applications, and multiple collocated transmitters transmitting the  |
|                         | same information. The operator of the U-NII device, or if the equipment is           |
|                         | professionally installed, the installer, is responsible for ensuring that systems    |
|                         | employing high gain directional antennas are used exclusively for fixed,             |
|                         | point-to-point operations.                                                           |
|                         |                                                                                      |
|                         | For client devices in the 5.15-5.25 GHz band, the maximum conducted output           |
|                         | power over the frequency band of operation shall not exceed 250 mW provided the      |
|                         | maximum antenna gain does not exceed 6 dBi.                                          |
|                         | If transmitting antennas of directional gain greater than 6 dBi are used, the        |
|                         | maximum conducted output power shall be reduced by the amount in dB that the         |
|                         | directional gain of the antenna exceeds 6 dBi.                                       |
|                         |                                                                                      |
|                         | For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output         |
|                         | power over the frequency bands of operation shall not exceed the lesser of 250       |
|                         | mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.       |
|                         | If transmitting antennas of directional gain greater than 6 dBi are used, the        |
|                         | maximum conducted output power shall be reduced by the amount in dB that the         |
|                         | directional gain of the antenna exceeds 6 dBi.                                       |
|                         | מולטנוטרומו אמווי טו נווב מונכוווומ בגטבבעט ט עשו.                                   |
|                         |                                                                                      |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 19 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



|                         | For the band 5.725-5.850 GHz, the maximum conducted output power over the                                                                                                  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | frequency band of operation shall not exceed 1 W.                                                                                                                          |
|                         | If transmitting antennas of directional gain greater than 6 dBi are used, the                                                                                              |
|                         | maximum conducted output power shall be reduced by the amount in dB that the                                                                                               |
|                         | directional gain of the antenna exceeds 6 dBi.                                                                                                                             |
|                         | However, fixed point-to-point U-NII devices operating in this band may employ                                                                                              |
|                         | transmitting antennas with directional gain greater than 6 dBi without any                                                                                                 |
|                         | corresponding reduction in transmitter conducted power. Fixed, point-to-point                                                                                              |
|                         | operations exclude the use of point-to-multipoint systems, omnidirectional                                                                                                 |
|                         | applications, and multiple collocated transmitters transmitting the same                                                                                                   |
|                         | information. The operator of the U-NII device, or if the equipment is professionally                                                                                       |
|                         | installed, the installer, is responsible for ensuring that systems employing high gair                                                                                     |
|                         | directional antennas are used exclusively for fixed, point-to-point operations.                                                                                            |
|                         | Method SA-1                                                                                                                                                                |
|                         | a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.                                                                                                    |
|                         | b) Set RBW = 1 MHz.                                                                                                                                                        |
|                         | c) Set VBW >= 3 MHz.                                                                                                                                                       |
|                         | d) Number of points in sweep >= [2 × span / RBW]. (This gives bin-to-bin spacing <= RBW / 2, so                                                                            |
|                         | that narrowband signals are not lost between frequency bins.)                                                                                                              |
|                         | e) Sweep time = auto.                                                                                                                                                      |
|                         | f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample                                                                                             |
|                         | detector mode.                                                                                                                                                             |
|                         | g) If transmit duty cycle < 98%, use a video trigger with the trigger level set to                                                                                         |
|                         | enable triggering                                                                                                                                                          |
|                         | only on full power pulses. The transmitter shall operate at maximum power control                                                                                          |
|                         | level for the                                                                                                                                                              |
| Procedure:              | entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF                                                                                       |
|                         | intervals) or                                                                                                                                                              |
|                         | at duty cycle >= 98%, and if each transmission is entirely at the maximum power                                                                                            |
|                         | control level,                                                                                                                                                             |
|                         | then the trigger shall be set to "free run."                                                                                                                               |
|                         | <ul><li>h) Trace average at least 100 traces in power averaging (rms) mode.</li><li>i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW</li></ul> |
|                         | of the signal                                                                                                                                                              |
|                         | using the instrument's band power measurement function, with band limits set                                                                                               |
|                         | equal to the                                                                                                                                                               |
|                         | EBW or OBW band edges. If the instrument does not have a band power function,                                                                                              |
|                         | then sum the                                                                                                                                                               |
|                         | spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB                                                                                             |
|                         | EBW or 99%                                                                                                                                                                 |
|                         | OBW of the spectrum.                                                                                                                                                       |
| 6.3.1 E.U.T. Operation: |                                                                                                                                                                            |

#### 6.3.1 E.U.T. Operation:

| Operating Environment: |           |  |  |
|------------------------|-----------|--|--|
| Temperature:           | 25.5 °C   |  |  |
| Humidity:              | 50.6 %    |  |  |
| Atmospheric Pressure:  | 1010 mbar |  |  |

#### 6.3.2 Test Data:

Please Refer to Appendix for Details.



### 6.4 Power spectral density

| -                 | ucitoity                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | 47 CFR Part 15.407(a)(1)(i)                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                   | 47 CFR Part 15.407(a)(1)(ii)                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Test Requirement: | 47 CFR Part 15.407(a)(1)(iii)                                                                                                                                                                                                                                                                                                                                                                                                                        |
| lest requirement. | 47 CFR Part 15.407(a)(1)(iv)                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | 47 CFR Part 15.407(a)(2)                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                   | 47 CFR Part 15.407(a)(3)(i)                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Test Method:      | ANSI C63.10-2013, section 12.5                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   | For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.                                                                                       |
|                   | For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.                                                                                        |
|                   | For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.                                                                                                                                                                                                                                                                                      |
|                   | Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.                                                             |
| Test Limit:       | Fixed, point-to-point operations exclude the use of point-to-multipoint systems,<br>omnidirectional applications, and multiple collocated transmitters transmitting the<br>same information. The operator of the U-NII device, or if the equipment is<br>professionally installed, the installer, is responsible for ensuring that systems<br>employing high gain directional antennas are used exclusively for fixed,<br>point-to-point operations. |
|                   | For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.                                                                                                                                                                                                                                                                                                                    |
|                   | If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.                                                                                                                                                                                                                                            |
|                   | For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.                                                                                                                                                                                                                                                                                                                  |
|                   | If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.                                                                                                                                                                                                                                            |
|                   | For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.<br>If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the                                                                                                                                                                          |
|                   | directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter                                                                                                                                                                                                       |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 21 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 21 of 118



| conducted neuror                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| conducted power.<br>Fixed, point-to-point operations exclude the use of point-to-multipoint systems,<br>omnidirectional applications, and multiple collocated transmitters transmitting the<br>same information. The operator of the U-NII device, or if the equipment is<br>professionally installed, the installer, is responsible for ensuring that systems<br>employing high gain directional antennas are used exclusively for fixed,<br>point-to-point operations. |
| a) Create an average power spectrum for the EUT operating mode being tested by                                                                                                                                                                                                                                                                                                                                                                                           |
| following the instructions in 12.3.2 for measuring maximum conducted output power using a                                                                                                                                                                                                                                                                                                                                                                                |
| spectrum<br>analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2,<br>SA-3, or their                                                                                                                                                                                                                                                                                                                                                         |
| respective alternatives) and apply it up to, but not including, the step labeled,<br>"Compute                                                                                                                                                                                                                                                                                                                                                                            |
| power" (This procedure is required even if the maximum conducted output power                                                                                                                                                                                                                                                                                                                                                                                            |
| measurement was performed using the power meter method PM.)<br>b) Use the peak search function on the instrument to find the peak of the spectrum.<br>c) Make the following adjustments to the peak value of the spectrum, if applicable:<br>1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty                                                                                                                                         |
| cycle, to the peak of the spectrum.<br>2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7,<br>add                                                                                                                                                                                                                                                                                                                                           |
| 1 dB to the final result to compensate for the difference between linear averaging and                                                                                                                                                                                                                                                                                                                                                                                   |
| power averaging.<br>d) The result is the PPSD.                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>e) The procedure in item a) through item c) requires the use of 1 MHz resolution<br/>bandwidth to</li> </ul>                                                                                                                                                                                                                                                                                                                                                    |
| satisfy the 1 MHz measurement bandwidth specified by some regulatory authorities. This                                                                                                                                                                                                                                                                                                                                                                                   |
| requirement also permits use of resolution bandwidths less than 1 MHz "provided that the                                                                                                                                                                                                                                                                                                                                                                                 |
| measured power is integrated to show the total power over the measurement bandwidth" (i.e.,                                                                                                                                                                                                                                                                                                                                                                              |
| 1 MHz). If measurements are performed using a reduced resolution bandwidth and integrated                                                                                                                                                                                                                                                                                                                                                                                |
| over 1 MHz bandwidth, the following adjustments to the procedures apply:<br>1) Set RBW $\geq 1 / T$ , where T is defined in 12.2 a).                                                                                                                                                                                                                                                                                                                                     |
| <ul> <li>2) Set VBW &gt;= [3 x RBW].</li> <li>3) Care shall be taken such that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.</li> </ul>                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

#### 6.4.1 E.U.T. Operation:

| Operating Environment: |           |  |  |  |
|------------------------|-----------|--|--|--|
| Temperature:           | 25.5 °C   |  |  |  |
| Humidity:              | 50.6 %    |  |  |  |
| Atmospheric Pressure:  | 1010 mbar |  |  |  |

#### 6.4.2 Test Data:

Please Refer to Appendix for Details.



### 6.5 Emission bandwidth and occupied bandwidth

| Test Requirement:U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.<br>U-NII 3, U-NII 4: 47 CFR Part 15.407(e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Test Method: ANSI C63.10-2013, section 6.9.3 & 12.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |
| KDB 789033 D02, Clause C.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   |
| U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |
| Test Limit: U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   |
| <ul> <li>Emission bandwidth: <ul> <li>a) Set RBW = approximately 1% of the emission bandwidth.</li> <li>b) Set the VBW &gt; RBW.</li> <li>c) Detector = peak.</li> <li>d) Trace mode = max hold.</li> <li>e) Measure the maximum width of the emission that is 26 dB down from the peof the emission.</li> <li>Compare this with the RBW setting of the instrument. Readjust RBW and repear measurement</li> <li>as needed until the RBW/EBW ratio is approximately 1%.</li> </ul> </li> <li>Occupied bandwidth: <ul> <li>a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 time OBW.</li> <li>b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% the OBW.</li> <li>and VBW shall be approximately three times the RBW, unless otherwise specifies by the OBW.</li> <li>and VBW shall be approximately three times the RBW, unless otherwise specifies uninnum input mixer level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the specific guidance is given in 4.1.5.2.</li> <li>d) Step a) through step c) might require iteration to adjust within the specified range.</li> <li>e) Video averaging is not permitted. Where practical, a sample detection and sir sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.</li> <li>f) Use the 99% power bandwidth function of the instrument (if available) and re the measured bandwidth.</li> <li>g) If the instrument does not have a 99% power bandwidth function, then the tra data points are recorvered and directly summed in linear power terms. The recovered amplitude data points are recorvered as the lower frequency. The process is repeated unt 99.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated</li></ul></li></ul> | nes<br>6 of<br>ed<br>tral<br>ogle |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 23 of 118BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



| power bandwidth is                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------|
| the difference between these two frequencies.                                                                        |
| <ul> <li>h) The occupied bandwidth shall be reported by providing plot(s) of the measuring<br/>instrument</li> </ul> |
| display; the plot axes and the scale units per division shall be clearly labeled.<br>Tabular data may                |
| be reported in addition to the plot(s).                                                                              |
| 6 dB emission bandwidth:                                                                                             |
| a) Set RBW = 100 kHz.                                                                                                |
| b) Set the video bandwidth (VBW) ≥ 3 >= RBW.                                                                         |
| c) Detector = Peak.                                                                                                  |
| d) Trace mode = max hold.                                                                                            |
| e) Sweep = auto couple.                                                                                              |
| f) Allow the trace to stabilize.                                                                                     |
| g) Measure the maximum width of the emission that is constrained by the                                              |
| frequencies associated with the two outermost amplitude points (upper and lower                                      |
| frequencies) that are attenuated by 6 dB relative to the maximum level measured                                      |
| in the fundamental emission.                                                                                         |

#### 6.5.1 E.U.T. Operation:

| Operating Environment: |           |  |  |  |
|------------------------|-----------|--|--|--|
| Temperature:           | 25.5 °C   |  |  |  |
| Humidity:              | 50.6 %    |  |  |  |
| Atmospheric Pressure:  | 1010 mbar |  |  |  |

#### 6.5.2 Test Data:

Please Refer to Appendix for Details.



#### 6.6 Band edge emissions (Radiated)

|                   | 47 CFR Part 15.407(b)                                          |                                                                                  |                   |                    |  |  |  |  |
|-------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------|--------------------|--|--|--|--|
| Test Requirement: | 47 CFR Part 15.407(b)                                          |                                                                                  |                   |                    |  |  |  |  |
| lest Requirement. | 47 CFR Part 15.407(b)                                          | )(4)                                                                             |                   |                    |  |  |  |  |
|                   | 47 CFR Part 15.407(b)                                          |                                                                                  |                   |                    |  |  |  |  |
| Test Method:      | ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6               |                                                                                  |                   |                    |  |  |  |  |
|                   |                                                                | ting in the 5.15-5.25 GH                                                         |                   |                    |  |  |  |  |
|                   | 5.15-5.35 GHz band sl                                          | hall not exceed an e.i.r.                                                        | p. of −27 dBm/N   | 1Hz.               |  |  |  |  |
|                   |                                                                |                                                                                  |                   |                    |  |  |  |  |
|                   |                                                                | ting in the 5.25-5.35 GH<br>hall not exceed an e.i.r.                            |                   |                    |  |  |  |  |
|                   | IHZ.                                                           |                                                                                  |                   |                    |  |  |  |  |
|                   | For transmitters operating solely in the 5.725-5.850 GHz band: |                                                                                  |                   |                    |  |  |  |  |
|                   |                                                                | limited to a level of $-27$                                                      |                   |                    |  |  |  |  |
|                   |                                                                | e increasing linearly to                                                         |                   |                    |  |  |  |  |
|                   |                                                                | and from 25 MHz above                                                            |                   |                    |  |  |  |  |
|                   |                                                                | .6 dBm/MHz at 5 MHz                                                              |                   |                    |  |  |  |  |
|                   |                                                                | elow the band edge inc                                                           |                   |                    |  |  |  |  |
|                   | dBm/MHz at the band                                            |                                                                                  | , each g meanly   |                    |  |  |  |  |
|                   | MHz                                                            | MHz                                                                              | MHz               | GHz                |  |  |  |  |
|                   | 0.090-0.110                                                    | 16.42-16.423                                                                     | 399.9-410         | 4.5-5.15           |  |  |  |  |
|                   | <sup>1</sup> 0.495-0.505                                       | 16.69475-16.69525                                                                | 608-614           | 5.35-5.46          |  |  |  |  |
|                   | 2.1735-2.1905                                                  | 16.80425-16.80475                                                                | 960-1240          | 7.25-7.75          |  |  |  |  |
|                   | 4.125-4.128                                                    | 25.5-25.67                                                                       | 1300-1427         | 8.025-8.5          |  |  |  |  |
|                   | 4.17725-4.17775                                                | 37.5-38.25                                                                       | 1435-1626.5       | 9.0-9.2            |  |  |  |  |
|                   | 4.20725-4.20775                                                | 73-74.6                                                                          | 1645.5-1646.      | 9.3-9.5            |  |  |  |  |
|                   |                                                                |                                                                                  | 5                 |                    |  |  |  |  |
|                   | 6.215-6.218                                                    | 74.8-75.2                                                                        | 1660-1710         | 10.6-12.7          |  |  |  |  |
|                   | 6.26775-6.26825                                                | 108-121.94                                                                       | 1718.8-1722.      | 13.25-13.4         |  |  |  |  |
| Test Limit:       |                                                                | 100.100                                                                          | 2                 |                    |  |  |  |  |
|                   | 6.31175-6.31225                                                | 123-138                                                                          | 2200-2300         | 14.47-14.5         |  |  |  |  |
|                   | 8.291-8.294                                                    | 149.9-150.05                                                                     | 2310-2390         | 15.35-16.2         |  |  |  |  |
|                   | 8.362-8.366                                                    | 156.52475-156.525                                                                | 2483.5-2500       | 17.7-21.4          |  |  |  |  |
|                   | 8.37625-8.38675                                                | 25<br>156.7-156.9                                                                | 2690-2900         | 22.01-23.12        |  |  |  |  |
|                   | 8.41425-8.41475                                                | 162.0125-167.17                                                                  | 3260-3267         | 23.6-24.0          |  |  |  |  |
|                   | 12.29-12.293                                                   | 167.72-173.2                                                                     | 3332-3339         | 31.2-31.8          |  |  |  |  |
|                   | 12.51975-12.52025                                              | 240-285                                                                          | 3345.8-3358       | 36.43-36.5         |  |  |  |  |
|                   | 12.57675-12.57725                                              | 322-335.4                                                                        | 3600-4400         | ( <sup>2</sup> )   |  |  |  |  |
|                   | 13.36-13.41                                                    |                                                                                  |                   | ()                 |  |  |  |  |
|                   |                                                                |                                                                                  |                   |                    |  |  |  |  |
|                   | <sup>1</sup> Until February 1, 1999                            | 9, this restricted band sl                                                       | hall be 0.490-0.5 | 510 MHz.           |  |  |  |  |
|                   |                                                                |                                                                                  |                   |                    |  |  |  |  |
|                   | <sup>2</sup> Above 38.6                                        |                                                                                  |                   |                    |  |  |  |  |
|                   |                                                                |                                                                                  |                   |                    |  |  |  |  |
|                   |                                                                | The field strength of emissions appearing within these frequency bands shall not |                   |                    |  |  |  |  |
|                   |                                                                | exceed the limits shown in § 15.209. At frequencies equal to or less than 1000   |                   |                    |  |  |  |  |
|                   |                                                                | the limits in § 15.209sh                                                         |                   |                    |  |  |  |  |
|                   |                                                                | entation employing a CI                                                          |                   |                    |  |  |  |  |
|                   |                                                                | with the emission limit                                                          |                   |                    |  |  |  |  |
|                   |                                                                | value of the measured                                                            | emissions. The    | PLOVISIONS IN S    |  |  |  |  |
|                   | 10.00appiy to these me                                         | 15.35apply to these measurements.                                                |                   |                    |  |  |  |  |
|                   | Except as provided els                                         | ewhere in this subpart,                                                          | the emissions fr  | rom an intentional |  |  |  |  |
|                   | EXCEPT as provided els                                         | ewnere in this suppart,                                                          | THE ETHISSIONS II | on an intentional  |  |  |  |  |

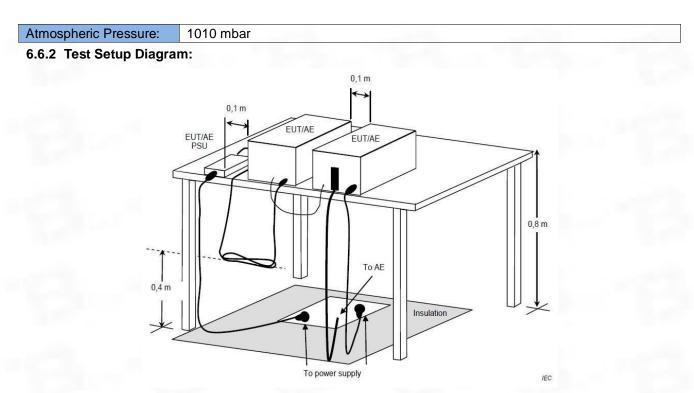
Except as provided elsewhere in this subpart, the emissions from an intentional

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 25 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 25 of 118



|            | radiator shall not exceed t                                                                                                                                     | he field strength levels sp  | ecified in the following table:  |  |  |  |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------|--|--|--|--|
|            | Frequency (MHz)                                                                                                                                                 | Field strength               | Measurement                      |  |  |  |  |
|            |                                                                                                                                                                 | (microvolts/meter)           | distance                         |  |  |  |  |
|            |                                                                                                                                                                 |                              | (meters)                         |  |  |  |  |
|            | 0.009-0.490                                                                                                                                                     | 2400/F(kHz)                  | 300                              |  |  |  |  |
|            | 0.490-1.705                                                                                                                                                     |                              |                                  |  |  |  |  |
|            |                                                                                                                                                                 | 24000/F(kHz)                 | 30                               |  |  |  |  |
|            | 1.705-30.0                                                                                                                                                      | 30                           | 30                               |  |  |  |  |
|            | 30-88                                                                                                                                                           | 100 **                       | 3                                |  |  |  |  |
|            | 88-216                                                                                                                                                          | 150 **                       | 3                                |  |  |  |  |
|            | 216-960                                                                                                                                                         | 200 **                       | 3                                |  |  |  |  |
|            | Above 960                                                                                                                                                       | 500                          | 3                                |  |  |  |  |
|            | Above 1GHz:                                                                                                                                                     |                              |                                  |  |  |  |  |
|            | a. For above 1GHz, the El                                                                                                                                       | JT was placed on the top     | of a rotating table 1.5 meters   |  |  |  |  |
|            |                                                                                                                                                                 |                              | per. The table was rotated 360   |  |  |  |  |
|            | degrees to determine the                                                                                                                                        |                              |                                  |  |  |  |  |
|            |                                                                                                                                                                 |                              | ence-receiving antenna, which    |  |  |  |  |
|            | was mounted on the top o                                                                                                                                        |                              |                                  |  |  |  |  |
|            |                                                                                                                                                                 |                              | our meters above the ground to   |  |  |  |  |
|            |                                                                                                                                                                 |                              | Both horizontal and vertical     |  |  |  |  |
|            | polarizations of the antenr                                                                                                                                     | •                            |                                  |  |  |  |  |
|            |                                                                                                                                                                 |                              |                                  |  |  |  |  |
|            |                                                                                                                                                                 |                              | nged to its worst case and then  |  |  |  |  |
|            |                                                                                                                                                                 |                              | meters (for the test frequency   |  |  |  |  |
|            |                                                                                                                                                                 |                              | 1 meter) and the rotatable table |  |  |  |  |
|            | was turned from 0 degrees                                                                                                                                       |                              |                                  |  |  |  |  |
|            | e. The test-receiver system was set to Peak Detect Function and Specified                                                                                       |                              |                                  |  |  |  |  |
|            | Bandwidth with Maximum Hold Mode.                                                                                                                               |                              |                                  |  |  |  |  |
|            | f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be |                              |                                  |  |  |  |  |
|            |                                                                                                                                                                 |                              |                                  |  |  |  |  |
|            | reported. Otherwise the er                                                                                                                                      | nissions that did not have   | 10dB margin would be             |  |  |  |  |
|            | re-tested one by one using                                                                                                                                      | peak or average method       | as specified and then reported   |  |  |  |  |
| Procedure: | in a data sheet.                                                                                                                                                | 5                            |                                  |  |  |  |  |
|            |                                                                                                                                                                 | est channel, the middle ch   | nannel, the Highest channel.     |  |  |  |  |
|            | h. The radiation measuren                                                                                                                                       |                              |                                  |  |  |  |  |
|            |                                                                                                                                                                 |                              | which it is the worst case.      |  |  |  |  |
|            | i. Repeat above procedure                                                                                                                                       |                              |                                  |  |  |  |  |
|            | Remark:                                                                                                                                                         | es until all frequencies fre | asured was complete.             |  |  |  |  |
|            |                                                                                                                                                                 | bla Laga i Antonna Eastai    | , Droomp Footor                  |  |  |  |  |
|            | 1. Level= Read Level+ Ca                                                                                                                                        |                              |                                  |  |  |  |  |
|            |                                                                                                                                                                 |                              | ove 18GHz was very low. The      |  |  |  |  |
|            |                                                                                                                                                                 |                              | ions could be found when         |  |  |  |  |
|            | testing, so only above poir                                                                                                                                     |                              |                                  |  |  |  |  |
|            |                                                                                                                                                                 | or which are attenuated m    | ore than 20dB below the limit    |  |  |  |  |
|            | need not be reported.                                                                                                                                           |                              |                                  |  |  |  |  |
|            |                                                                                                                                                                 |                              | GHz, the field strength limits   |  |  |  |  |
|            |                                                                                                                                                                 |                              | d strength of any emission shall |  |  |  |  |
|            | not exceed the maximum                                                                                                                                          | permitted average limits s   | pecified above by more than 20   |  |  |  |  |
|            |                                                                                                                                                                 |                              | sions whose peak level is lower  |  |  |  |  |
|            | than the average limit, onl                                                                                                                                     |                              |                                  |  |  |  |  |
|            | 4. The disturbance above                                                                                                                                        |                              |                                  |  |  |  |  |
|            |                                                                                                                                                                 |                              | he above harmonics had been      |  |  |  |  |
|            | displayed.                                                                                                                                                      | ia mon tooting, so only t    |                                  |  |  |  |  |
|            | alopiayou.                                                                                                                                                      |                              |                                  |  |  |  |  |


#### 6.6.1 E.U.T. Operation:

| Operating Environment: |         |
|------------------------|---------|
| Temperature:           | 25.5 °C |
| Humidity:              | 50.6 %  |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 26 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 26 of 118





Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 27 of 118BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



#### 6.6.3 Test Data:

#### UNII-1 & 2A 20M 5180MHz Horizontal

|     | Frequency | Reading | Factor | Level    | Limit    | Margin | Ditertor | D/F |
|-----|-----------|---------|--------|----------|----------|--------|----------|-----|
| No. | (MHz)     | (dBuV)  | (dB/m) | (dBuV/m) | (dBuV/m) | (dB)   | Detector | P/F |
| 1   | 5136.783  | 84.99   | -32.26 | 52.73    | 74.00    | -21.27 | peak     | Р   |
| 2   | 5150.000  | 85.59   | -32.22 | 53.37    | 74.00    | -20.63 | peak     | Р   |

#### UNII-1 & 2A\_20M\_5180MHz\_Vertical

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 5124.828           | 82.87             | -32.19           | 50.68             | 74.00             | -23.32         | peak     | Р   |
| 2   | 5150.000           | 83.47             | -32.15           | 51.32             | 74.00             | -22.68         | peak     | Р   |

#### UNII-1 & 2A\_20M\_5320MHz\_Horizontal

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 5350.000           | 85.68             | -32.27           | 53.41             | 74.00             | -20.59         | peak     | Р   |
| 2   | 5460.000           | 84.05             | -32.23           | 51.82             | 74.00             | -22.18         | peak     | Р   |

#### UNII-1 & 2A\_20M\_5320MHz\_Vertical

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 5350.000           | 85.61             | -32.12           | 53.49             | 74.00             | -20.51         | peak     | Р   |
| 2   | 5460.000           | 82.98             | -32.08           | 50.90             | 74.00             | -23.10         | peak     | Р   |

#### UNII-3\_20M\_5745MHz\_Horizontal

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 5650.000           | 85.60             | -31.90           | 53.70             | 74.00             | -20.30         | peak     | Р   |
| 2   | 5700.000           | 92.54             | -32.01           | 60.53             | 74.00             | -13.47         | peak     | Р   |
| 3   | 5720.000           | 93.44             | -32.07           | 61.37             | 74.00             | -12.63         | peak     | Р   |

#### UNII-3\_20M\_5745MHz\_Vertical

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 5650.000           | 85.94             | -31.76           | 54.18             | 74.00             | -19.82         | peak     | Р   |
| 2   | 5700.000           | 92.88             | -31.87           | 61.01             | 74.00             | -12.99         | peak     | Р   |
| 3   | 5720.000           | 93.78             | -31.93           | 61.85             | 74.00             | -12.15         | peak     | Р   |

#### UNII-3\_20M\_5825MHz\_Horizontal

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 5850.000           | 86.58             | -31.77           | 54.81             | 74.00             | -19.19         | peak     | Р   |
| 2   | 5875.000           | 93.52             | -31.88           | 61.64             | 74.00             | -12.36         | peak     | Р   |
| 3   | 5925.000           | 94.42             | -31.94           | 62.48             | 74.00             | -11.52         | peak     | Р   |

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



#### UNII-3\_20M\_5825MHz\_Vertical

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |  |  |  |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|--|--|--|
| 1   | 5850.000           | 85.63             | -31.78           | 53.85             | 74.00             | -20.15         | peak     | Р   |  |  |  |
| 2   | 5875.000           | 92.57             | -31.89           | 60.68             | 74.00             | -13.32         | peak     | Р   |  |  |  |
| 3   | 5925.000           | 93.47             | -31.95           | 61.52             | 74.00             | -12.48         | peak     | Р   |  |  |  |

#### UNII-1 & 2A\_40M\_5190MHz\_Horizontal

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 5113.850           | 82.10             | -31.83           | 50.27             | 74.00             | -23.73         | peak     | Р   |
| 2   | 5150.000           | 82.70             | -31.79           | 50.91             | 74.00             | -23.09         | peak     | Р   |

#### UNII-1 & 2A\_40M\_5190MHz\_Vertical

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 5095.850           | 82.90             | -31.67           | 51.23             | 74.00             | -22.77         | peak     | Р   |
| 2   | 5150.000           | 83.50             | -31.63           | 51.87             | 74.00             | -22.13         | peak     | Р   |

#### UNII-1 & 2A\_40M\_5310MHz\_Horizontal

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 5350.000           | 84.79             | -31.83           | 52.96             | 74.00             | -21.04         | peak     | Р   |
| 2   | 5460.000           | 82.16             | -31.79           | 50.37             | 74.00             | -23.63         | peak     | Р   |

#### UNII-1 & 2A\_40M\_5310MHz\_Vertical

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 5350.000           | 85.87             | -31.94           | 53.93             | 74.00             | -20.07         | peak     | Р   |
| 2   | 5460.000           | 83.24             | -31.90           | 51.34             | 74.00             | -22.66         | peak     | Р   |

#### UNII-3\_40M\_5755MHz\_Horizontal

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 5650.000           | 84.83             | -31.65           | 53.18             | 74.00             | -20.82         | peak     | Р   |
| 2   | 5700.000           | 91.77             | -31.76           | 60.01             | 74.00             | -13.99         | peak     | Р   |
| 3   | 5720.000           | 92.67             | -31.82           | 60.85             | 74.00             | -13.15         | peak     | Р   |

#### UNII-3\_40M\_5755MHz\_Vertical

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 5650.000           | 85.47             | -31.87           | 53.60             | 74.00             | -20.40         | peak     | Р   |
| 2   | 5700.000           | 92.41             | -31.98           | 60.43             | 74.00             | -13.57         | peak     | Р   |
| 3   | 5720.000           | 93.31             | -32.04           | 61.27             | 74.00             | -12.73         | peak     | Р   |

#### UNII-3\_40M\_5795MHz\_Horizontal

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 5850.000           | 86.63             | -31.58           | 55.05             | 74.00             | -18.95         | peak     | Р   |
| 2   | 5875.000           | 93.57             | -31.69           | 61.88             | 74.00             | -12.12         | peak     | Р   |
| 3   | 5925.000           | 94.47             | -31.75           | 62.72             | 74.00             | -11.28         | peak     | Р   |

#### UNII-3\_40M\_5795MHz\_Vertical

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 5850.000           | 86.74             | -32.01           | 54.73             | 74.00             | -19.27         | peak     | Р   |
| 2   | 5875.000           | 93.68             | -32.12           | 61.56             | 74.00             | -12.44         | peak     | Р   |
| 3   | 5925.000           | 94.58             | -32.18           | 62.40             | 74.00             | -11.60         | peak     | Р   |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 30 of 118BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



#### Undesirable emission limits (below 1GHz) 6.7

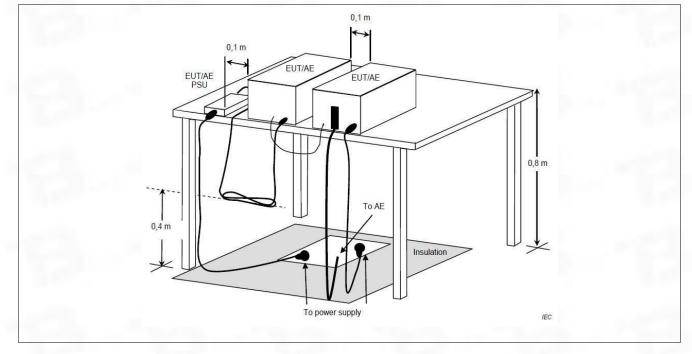
| Test Requirement: | 47 CFR Part 15.407(b)                                                           | (9)                                                                                                                                                                                                                                       |                                |  |  |  |  |  |  |
|-------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--|--|--|--|--|--|
| Test Method:      | ANSI C63.10-2013, see                                                           | ction 12.7.4, 12.7.5, 12.7.6                                                                                                                                                                                                              |                                |  |  |  |  |  |  |
|                   |                                                                                 | Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209.                                                                                                                                  |                                |  |  |  |  |  |  |
|                   |                                                                                 | provided elsewhere in this subpart, the emissions from an intentional nall not exceed the field strength levels specified in the following table:                                                                                         |                                |  |  |  |  |  |  |
|                   | Frequency (MHz)                                                                 | Field strength (microvolts/meter)                                                                                                                                                                                                         | Measurement<br>distance        |  |  |  |  |  |  |
| Test Limit:       |                                                                                 |                                                                                                                                                                                                                                           | (meters)                       |  |  |  |  |  |  |
|                   | 0.009-0.490                                                                     | 2400/F(kHz)                                                                                                                                                                                                                               | 300                            |  |  |  |  |  |  |
|                   | 0.490-1.705                                                                     | 24000/F(kHz)                                                                                                                                                                                                                              | 30                             |  |  |  |  |  |  |
|                   | 1.705-30.0                                                                      | 30                                                                                                                                                                                                                                        | 30                             |  |  |  |  |  |  |
|                   | 30-88                                                                           | 100 **                                                                                                                                                                                                                                    | 3                              |  |  |  |  |  |  |
|                   | 88-216                                                                          | 150 **                                                                                                                                                                                                                                    | 3                              |  |  |  |  |  |  |
|                   | 216-960                                                                         | 200 **                                                                                                                                                                                                                                    | 3                              |  |  |  |  |  |  |
|                   | Above 960                                                                       | 500                                                                                                                                                                                                                                       | 3                              |  |  |  |  |  |  |
|                   | Below 1GHz:                                                                     |                                                                                                                                                                                                                                           |                                |  |  |  |  |  |  |
|                   | a. For below 1GHz. the                                                          | EUT was placed on the top of                                                                                                                                                                                                              | a rotating table 0.8 meters    |  |  |  |  |  |  |
|                   |                                                                                 | 3 meter semi-anechoic chambe                                                                                                                                                                                                              |                                |  |  |  |  |  |  |
|                   |                                                                                 | ne position of the highest radiat                                                                                                                                                                                                         |                                |  |  |  |  |  |  |
|                   |                                                                                 | or 10 meters away from the inte                                                                                                                                                                                                           |                                |  |  |  |  |  |  |
|                   |                                                                                 |                                                                                                                                                                                                                                           |                                |  |  |  |  |  |  |
|                   |                                                                                 | which was mounted on the top of a variable-height antenna tower.<br>c. The antenna height is varied from one meter to four meters above the ground                                                                                        |                                |  |  |  |  |  |  |
|                   |                                                                                 | determine the maximum value of the field strength. Both horizontal and vertical                                                                                                                                                           |                                |  |  |  |  |  |  |
|                   |                                                                                 | polarizations of the antenna are set to make the measurement.                                                                                                                                                                             |                                |  |  |  |  |  |  |
|                   | d. For each suspected emission, the EUT was arranged to its worst case and then |                                                                                                                                                                                                                                           |                                |  |  |  |  |  |  |
|                   |                                                                                 |                                                                                                                                                                                                                                           |                                |  |  |  |  |  |  |
|                   | of below 30MHz, the ar                                                          | the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. |                                |  |  |  |  |  |  |
|                   |                                                                                 | e. The test-receiver system was set to Peak Detect Function and Specified                                                                                                                                                                 |                                |  |  |  |  |  |  |
|                   | Bandwidth with Maximu                                                           |                                                                                                                                                                                                                                           |                                |  |  |  |  |  |  |
|                   | f. If the emission level of                                                     | f. If the emission level of the EUT in peak mode was 10dB lower than the limit                                                                                                                                                            |                                |  |  |  |  |  |  |
|                   | specified, then testing of                                                      | could be stopped and the peak                                                                                                                                                                                                             | values of the EUT would be     |  |  |  |  |  |  |
| Procedure:        | reported. Otherwise the                                                         | e emissions that did not have 1                                                                                                                                                                                                           | 0dB margin would be            |  |  |  |  |  |  |
| Plocedule.        | re-tested one by one us                                                         | sing quasi-peak method as spe                                                                                                                                                                                                             | ecified and then reported in a |  |  |  |  |  |  |
|                   | data sheet.                                                                     |                                                                                                                                                                                                                                           |                                |  |  |  |  |  |  |
|                   | g. Test the EUT in the le                                                       | owest channel, the middle char                                                                                                                                                                                                            | nnel, the Highest channel.     |  |  |  |  |  |  |
|                   | h. The radiation measurements are performed in X, Y, Z axis positioning for     |                                                                                                                                                                                                                                           |                                |  |  |  |  |  |  |
|                   | Transmitting mode, and                                                          | Transmitting mode, and found the X axis positioning which it is the worst case.                                                                                                                                                           |                                |  |  |  |  |  |  |
|                   | i. Repeat above proced                                                          | i. Repeat above procedures until all frequencies measured was complete.                                                                                                                                                                   |                                |  |  |  |  |  |  |
|                   | Remark:                                                                         |                                                                                                                                                                                                                                           |                                |  |  |  |  |  |  |
|                   | 1. Level= Read Level+                                                           | Cable Loss+ Antenna Factor- I                                                                                                                                                                                                             | Preamp Factor                  |  |  |  |  |  |  |
|                   | 2. Scan from 9kHz to 3                                                          | 0MHz, the disturbance below 3                                                                                                                                                                                                             | 0MHz was very low. The         |  |  |  |  |  |  |
|                   | points marked on abov                                                           | e plots are the highest emissio                                                                                                                                                                                                           | ns could be found when         |  |  |  |  |  |  |
|                   | testing, so only above p                                                        | points had been displayed. The                                                                                                                                                                                                            | amplitude of spurious          |  |  |  |  |  |  |
|                   |                                                                                 | ator which are attenuated more                                                                                                                                                                                                            |                                |  |  |  |  |  |  |
|                   | need not be reported.                                                           |                                                                                                                                                                                                                                           |                                |  |  |  |  |  |  |
|                   | 3. The disturbance belo                                                         | ow 1GHz was very low and the nen testing, so only the above l                                                                                                                                                                             | •                              |  |  |  |  |  |  |
|                   | displayed.                                                                      |                                                                                                                                                                                                                                           |                                |  |  |  |  |  |  |
|                   |                                                                                 |                                                                                                                                                                                                                                           |                                |  |  |  |  |  |  |
|                   | Above 1GHz:                                                                     |                                                                                                                                                                                                                                           |                                |  |  |  |  |  |  |
|                   |                                                                                 |                                                                                                                                                                                                                                           |                                |  |  |  |  |  |  |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 31 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



|                    | a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters     |
|--------------------|-------------------------------------------------------------------------------------|
|                    | above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360     |
|                    | degrees to determine the position of the highest radiation.                         |
|                    | b. The EUT was set 3 meters away from the interference-receiving antenna, which     |
|                    | was mounted on the top of a variable-height antenna tower.                          |
|                    | c. The antenna height is varied from one meter to four meters above the ground to   |
|                    | determine the maximum value of the field strength. Both horizontal and vertical     |
|                    | polarizations of the antenna are set to make the measurement.                       |
|                    | d. For each suspected emission, the EUT was arranged to its worst case and then     |
|                    | the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency   |
|                    | of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table   |
|                    | was turned from 0 degrees to 360 degrees to find the maximum reading.               |
|                    | e. The test-receiver system was set to Peak Detect Function and Specified           |
|                    | Bandwidth with Maximum Hold Mode.                                                   |
|                    | f. If the emission level of the EUT in peak mode was 10dB lower than the limit      |
|                    | specified, then testing could be stopped and the peak values of the EUT would be    |
|                    | reported. Otherwise the emissions that did not have 10dB margin would be            |
|                    | re-tested one by one using peak or average method as specified and then reported    |
|                    | in a data sheet.                                                                    |
|                    | g. Test the EUT in the lowest channel, the middle channel, the Highest channel.     |
|                    | h. The radiation measurements are performed in X, Y, Z axis positioning for         |
|                    | Transmitting mode, and found the X axis positioning which it is the worst case.     |
|                    | i. Repeat above procedures until all frequencies measured was complete.             |
|                    | Remark:                                                                             |
|                    | 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor                     |
|                    | 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The          |
|                    | points marked on above plots are the highest emissions could be found when          |
|                    | testing, so only above points had been displayed. The amplitude of spurious         |
|                    | emissions from the radiator which are attenuated more than 20dB below the limit     |
|                    | need not be reported.                                                               |
|                    | 3. As shown in this section, for frequencies above 1GHz, the field strength limits  |
|                    | are based on average limits. However, the peak field strength of any emission shall |
|                    | not exceed the maximum permitted average limits specified above by more than 20     |
|                    | dB under any condition of modulation. For the emissions whose peak level is lower   |
|                    | than the average limit, only the peak measurement is shown in the report.           |
|                    | 4. The disturbance above 18GHz were very low and the harmonics were the             |
|                    | highest point could be found when testing, so only the above harmonics had been     |
|                    | displayed.                                                                          |
|                    |                                                                                     |
| S71 FILT Operation |                                                                                     |

#### 6.7.1 E.U.T. Operation:

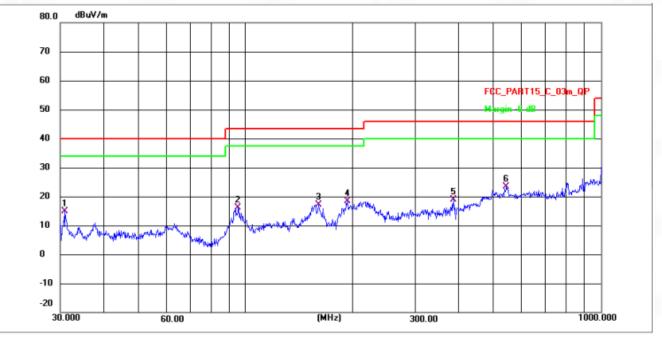

| Operating Environment: |           |
|------------------------|-----------|
| Temperature:           | 25.5 °C   |
| Humidity:              | 50.6 %    |
| Atmospheric Pressure:  | 1010 mbar |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 32 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 32 of 118



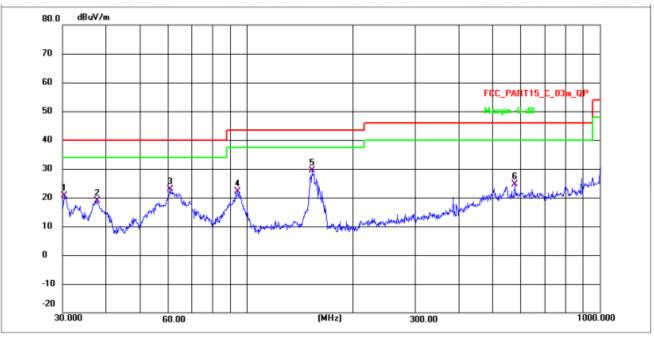
#### 6.7.2 Test Setup Diagram:




Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 33 of 118BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



#### 6.7.3 Test Data:


Note: All the mode have been tested, and only the worst mode are in the report TM1 / Polarization: Horizontal / Band: U-NII 1 / BW: 20 / CH: L



| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 30.9619            | 33.30             | -18.53           | 14.77             | 40.00             | -25.23         | QP       | Р   |
| 2   | 95.0930            | 45.20             | -29.04           | 16.16             | 43.50             | -27.34         | QP       | Р   |
| 3   | 160.6271           | 44.86             | -27.69           | 17.17             | 43.50             | -26.33         | QP       | Р   |
| 4   | 193.7728           | 45.84             | -27.38           | 18.46             | 43.50             | -25.04         | QP       | Р   |
| 5   | 383.9318           | 43.54             | -24.76           | 18.78             | 46.00             | -27.22         | QP       | Р   |
| 6 * | 542.3225           | 45.04             | -21.58           | 23.46             | 46.00             | -22.54         | QP       | Р   |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 34 of 118BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China





#### TM1 / Polarization: Vertical / Band: U-NII 1 / BW: 20 / CH: L

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 30.4238            | 39.56             | -19.00           | 20.56             | 40.00             | -19.44         | QP       | Р   |
| 2   | 37.5479            | 39.47             | -20.58           | 18.89             | 40.00             | -21.11         | QP       | Р   |
| 3   | 60.5980            | 42.96             | -20.15           | 22.81             | 40.00             | -17.19         | QP       | Р   |
| 4   | 94.0979            | 51.28             | -29.21           | 22.07             | 43.50             | -21.43         | QP       | Р   |
| 5 * | 153.2004           | 57.25             | -27.75           | 29.50             | 43.50             | -14.00         | QP       | Р   |
| 6   | 576.6443           | 46.67             | -21.95           | 24.72             | 46.00             | -21.28         | QP       | Р   |



### 6.8 Undesirable emission limits (above 1GHz)

|                   | 47 CFR Part 15.407(b)                                                               |                            |                   |                   |  |  |  |  |  |  |  |
|-------------------|-------------------------------------------------------------------------------------|----------------------------|-------------------|-------------------|--|--|--|--|--|--|--|
| Test Requirement: | 47 CFR Part 15.407(b)                                                               |                            |                   |                   |  |  |  |  |  |  |  |
| ·                 | 47 CFR Part 15.407(b)                                                               |                            |                   |                   |  |  |  |  |  |  |  |
|                   | 47 CFR Part 15.407(b)                                                               |                            |                   |                   |  |  |  |  |  |  |  |
| Test Method:      |                                                                                     | ction 12.7.4, 12.7.5, 12   |                   |                   |  |  |  |  |  |  |  |
|                   |                                                                                     | ing in the 5.15-5.25 GH    |                   |                   |  |  |  |  |  |  |  |
|                   |                                                                                     | hall not exceed an e.i.r.  |                   |                   |  |  |  |  |  |  |  |
|                   |                                                                                     | ing in the 5.25-5.35 GH    |                   |                   |  |  |  |  |  |  |  |
|                   | 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.                     |                            |                   |                   |  |  |  |  |  |  |  |
|                   |                                                                                     |                            |                   |                   |  |  |  |  |  |  |  |
|                   |                                                                                     | ing solely in the 5.725-   |                   |                   |  |  |  |  |  |  |  |
|                   |                                                                                     | imited to a level of -27   |                   |                   |  |  |  |  |  |  |  |
|                   |                                                                                     | e increasing linearly to   |                   |                   |  |  |  |  |  |  |  |
|                   |                                                                                     | and from 25 MHz above      |                   |                   |  |  |  |  |  |  |  |
|                   |                                                                                     | .6 dBm/MHz at 5 MHz a      |                   |                   |  |  |  |  |  |  |  |
|                   |                                                                                     | elow the band edge inc     | creasing linearly | to a level of 27  |  |  |  |  |  |  |  |
|                   | dBm/MHz at the band                                                                 | edge.                      |                   |                   |  |  |  |  |  |  |  |
|                   | MHz                                                                                 | MHz                        | MHz               | GHz               |  |  |  |  |  |  |  |
|                   | 0.090-0.110                                                                         | 16.42-16.423               | 399.9-410         | 4.5-5.15          |  |  |  |  |  |  |  |
|                   | <sup>1</sup> 0.495-0.505                                                            | 16.69475-16.69525          | 608-614           | 5.35-5.46         |  |  |  |  |  |  |  |
|                   | 2.1735-2.1905                                                                       | 16.80425-16.80475          | 960-1240          | 7.25-7.75         |  |  |  |  |  |  |  |
|                   | 4.125-4.128                                                                         | 25.5-25.67                 | 1300-1427         | 8.025-8.5         |  |  |  |  |  |  |  |
|                   | 4.17725-4.17775                                                                     | 37.5-38.25                 | 1435-1626.5       | 9.0-9.2           |  |  |  |  |  |  |  |
|                   | 4.20725-4.20775                                                                     | 73-74.6                    | 1645.5-1646.      | 9.3-9.5           |  |  |  |  |  |  |  |
|                   |                                                                                     |                            | 5                 |                   |  |  |  |  |  |  |  |
|                   | 6.215-6.218                                                                         | 74.8-75.2                  | 1660-1710         | 10.6-12.7         |  |  |  |  |  |  |  |
|                   | 6.26775-6.26825                                                                     | 108-121.94                 | 1718.8-1722.      | 13.25-13.4        |  |  |  |  |  |  |  |
|                   | 0.20775-0.20825                                                                     | 100-121.94                 | 2                 | 13.23-13.4        |  |  |  |  |  |  |  |
|                   | 6.31175-6.31225                                                                     | 123-138                    | 2200-2300         | 14.47-14.5        |  |  |  |  |  |  |  |
| Test Limit:       | 8.291-8.294                                                                         | 149.9-150.05               | 2310-2390         | 15.35-16.2        |  |  |  |  |  |  |  |
|                   | 8.362-8.366                                                                         | 156.52475-156.525          | 2483.5-2500       | 17.7-21.4         |  |  |  |  |  |  |  |
|                   | 8.302-8.300                                                                         | 25                         | 2403.5-2500       | 17.7-21.4         |  |  |  |  |  |  |  |
|                   | 9 2762E 9 2967E                                                                     |                            | 2600 2000         | 22 01 22 12       |  |  |  |  |  |  |  |
|                   | 8.37625-8.38675                                                                     | 156.7-156.9                | 2690-2900         | 22.01-23.12       |  |  |  |  |  |  |  |
|                   | 8.41425-8.41475                                                                     | 162.0125-167.17            | 3260-3267         | 23.6-24.0         |  |  |  |  |  |  |  |
|                   | 12.29-12.293                                                                        | 167.72-173.2               | 3332-3339         | 31.2-31.8         |  |  |  |  |  |  |  |
|                   | 12.51975-12.52025                                                                   | 240-285                    | 3345.8-3358       | 36.43-36.5        |  |  |  |  |  |  |  |
|                   | 12.57675-12.57725                                                                   | 322-335.4                  | 3600-4400         | ( <sup>2</sup> )  |  |  |  |  |  |  |  |
|                   | 13.36-13.41                                                                         |                            |                   |                   |  |  |  |  |  |  |  |
|                   | <sup>1</sup> Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. |                            |                   |                   |  |  |  |  |  |  |  |
|                   |                                                                                     | a, this restricted band si | nall be 0.490-0.5 |                   |  |  |  |  |  |  |  |
|                   | <sup>2</sup> Above 38.6                                                             |                            |                   |                   |  |  |  |  |  |  |  |
|                   | The Collection of the Col                                                           |                            |                   |                   |  |  |  |  |  |  |  |
|                   |                                                                                     | nissions appearing with    |                   |                   |  |  |  |  |  |  |  |
|                   |                                                                                     | n in § 15.209. At freque   |                   |                   |  |  |  |  |  |  |  |
|                   |                                                                                     | the limits in § 15.209sh   |                   |                   |  |  |  |  |  |  |  |
|                   |                                                                                     | entation employing a CI    |                   |                   |  |  |  |  |  |  |  |
|                   |                                                                                     | with the emission limit    |                   |                   |  |  |  |  |  |  |  |
|                   |                                                                                     | value of the measured      | emissions. The p  | provisions in §   |  |  |  |  |  |  |  |
|                   | 15.35apply to these me                                                              | easurements.               |                   |                   |  |  |  |  |  |  |  |
|                   |                                                                                     |                            |                   |                   |  |  |  |  |  |  |  |
|                   | Except as provided els                                                              | ewhere in this subpart,    | the emissions fr  | om an intentional |  |  |  |  |  |  |  |
|                   |                                                                                     | ed the field strength lev  |                   |                   |  |  |  |  |  |  |  |
|                   | Frequency (MHz)                                                                     | Field strength             |                   | Measurement       |  |  |  |  |  |  |  |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 36 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

### Test Report Number: BTF230601R00104



|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (microvolts/meter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (meters)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | 0.009-0.490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2400/F(kHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | 0.490-1.705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24000/F(kHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | 1.705-30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30<br>100 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | 30-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | 88-216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 150 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | 216-960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 200 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | Above 960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Procedure: | above the ground at a 3 me<br>degrees to determine the p<br>b. The EUT was set 3 meter<br>was mounted on the top of<br>c. The antenna height is var<br>determine the maximum var<br>polarizations of the antenn<br>d. For each suspected emit<br>the antenna was tuned to h<br>of below 30MHz, the antenn<br>was turned from 0 degrees<br>e. The test-receiver system<br>Bandwidth with Maximum H<br>f. If the emission level of th<br>specified, then testing coul<br>reported. Otherwise the emiter<br>re-tested one by one using<br>in a data sheet.<br>g. Test the EUT in the lower<br>h. The radiation measurem<br>Transmitting mode, and fou<br>i. Repeat above procedure<br>Remark:<br>1. Level= Read Level+ Cat<br>2. Scan from 18GHz to 400<br>points marked on above plutesting, so only above point<br>emissions from the radiato<br>need not be reported.<br>3. As shown in this section<br>are based on average limit<br>not exceed the maximum p<br>dB under any condition of r<br>than the average limit, only<br>4. The disturbance above | IT was placed on the top of a<br>eter fully-anechoic chamber.<br>It was placed on the interference<br>a variable-height antenna to<br>aried from one meter to four n<br>alue of the field strength. Both<br>a are set to make the measure<br>ssion, the EUT was arranged<br>heights from 1 meter to 4 met<br>na was tuned to heights 1 me<br>to 360 degrees to find the me<br>news set to Peak Detect Fun<br>Hold Mode.<br>e EUT in peak mode was 100<br>d be stopped and the peak van<br>issions that did not have 100<br>peak or average method as a<br>st channel, the middle channel<br>ents are performed in X, Y, Z<br>und the X axis positioning wh<br>is until all frequencies measure<br>of Loss+ Antenna Factor- Pr<br>GHz, the disturbance above 16<br>bots are the highest emissions<br>to had been displayed. The a<br>r which are attenuated more to<br>for frequencies above 16<br>d stream displayed. The a<br>r which are attenuated more to<br>so the peak measurement is share<br>a factor. For the emissions<br>to have the sting, so only the a | The table was rotated 360<br>on.<br>e-receiving antenna, which<br>wer.<br>heters above the ground to<br>a horizontal and vertical<br>rement.<br>I to its worst case and then<br>ers (for the test frequency<br>eter) and the rotatable table<br>aximum reading.<br>ction and Specified<br>dB lower than the limit<br>alues of the EUT would be<br>dB margin would be<br>specified and then reported<br>el, the Highest channel.<br>axis positioning for<br>ich it is the worst case.<br>red was complete.<br>eamp Factor<br>BGHz was very low. The<br>scould be found when<br>amplitude of spurious<br>than 20dB below the limit<br>e, the field strength limits<br>ength of any emission shall<br>fied above by more than 20<br>s whose peak level is lower<br>nown in the report.<br>e harmonics were the |

## 6.8.1 E.U.T. Operation:

| Operating Environment: |           |
|------------------------|-----------|
| Temperature:           | 25.5 °C   |
| Humidity:              | 50.6 %    |
| Atmospheric Pressure:  | 1010 mbar |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 37 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



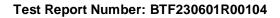
### Test Report Number: BTF230601R00104

### 6.8.2 Test Data:

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 4531.520           | 77.97             | -28.85           | 49.12             | 68.20             | -19.08         | peak     | Р   |
| 2   | 6508.820           | 79.71             | -29.36           | 50.35             | 68.20             | -17.85         | peak     | Р   |
| 3   | 9123.900           | 81.37             | -29.58           | 51.79             | 68.20             | -16.41         | peak     | Р   |
| 4   | 10104.170          | 82.67             | -30.36           | 52.31             | 68.20             | -15.89         | peak     | Р   |
| 5   | 12406.061          | 83.38             | -30.85           | 52.53             | 68.20             | -15.67         | peak     | Р   |
| 6   | 16064.672          | 84.23             | -33.24           | 50.99             | 68.20             | -17.21         | peak     | Р   |

### UNII-1 & 2A\_20M\_5180MHz\_Vertical

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 4643.551           | 77.95             | -28.03           | 49.92             | 68.20             | -18.28         | peak     | Р   |
| 2   | 6620.851           | 79.69             | -28.54           | 51.15             | 68.20             | -17.05         | peak     | Р   |
| 3   | 9235.931           | 81.35             | -28.76           | 52.59             | 68.20             | -15.61         | peak     | Р   |
| 4   | 10216.201          | 82.65             | -29.54           | 53.11             | 68.20             | -15.09         | peak     | Р   |
| 5   | 12518.092          | 83.36             | -30.03           | 53.33             | 68.20             | -14.87         | peak     | Р   |
| 6   | 16176.703          | 84.21             | -32.42           | 51.79             | 68.20             | -16.41         | peak     | Р   |


### UNII-1 & 2A\_20M\_5240MHz\_Horizontal

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 4536.551           | 78.17             | -28.00           | 50.17             | 68.20             | -18.03         | peak     | Р   |
| 2   | 6513.851           | 79.91             | -28.51           | 51.40             | 68.20             | -16.80         | peak     | Р   |
| 3   | 9128.931           | 81.57             | -28.73           | 52.84             | 68.20             | -15.36         | peak     | Р   |
| 4   | 10109.201          | 82.87             | -29.51           | 53.36             | 68.20             | -14.84         | peak     | Р   |
| 5   | 12411.092          | 83.58             | -30.00           | 53.58             | 68.20             | -14.62         | peak     | Р   |
| 6   | 16069.703          | 84.43             | -32.39           | 52.04             | 68.20             | -16.16         | peak     | Р   |

### UNII-1 & 2A\_20M\_5240MHz\_Vertical

| -   |                    |                   |                  |                   |                   |                | 1        |     |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
| 1   | 4634.551           | 79.60             | -28.06           | 51.54             | 68.20             | -16.66         | peak     | Р   |
| 2   | 6611.851           | 81.34             | -28.57           | 52.77             | 68.20             | -15.43         | peak     | Р   |
| 3   | 9226.931           | 83.00             | -28.79           | 54.21             | 68.20             | -13.99         | peak     | Р   |
| 4   | 10207.201          | 84.30             | -29.57           | 54.73             | 68.20             | -13.47         | peak     | Р   |
| 5   | 12509.092          | 85.01             | -30.06           | 54.95             | 68.20             | -13.25         | peak     | Р   |
| 6   | 16167.703          | 85.86             | -32.45           | 53.41             | 68.20             | -14.79         | peak     | Р   |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 38 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China





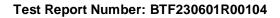
| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 3351.551           | 79.12             | -28.95           | 50.17             | 68.20             | -18.03         | peak     | Р   |
| 2   | 5328.851           | 80.86             | -29.46           | 51.40             | 68.20             | -16.80         | peak     | Р   |
| 3   | 7943.931           | 82.52             | -29.68           | 52.84             | 68.20             | -15.36         | peak     | Р   |
| 4   | 8924.201           | 83.82             | -30.46           | 53.36             | 68.20             | -14.84         | peak     | Р   |
| 5   | 11226.092          | 84.53             | -30.95           | 53.58             | 68.20             | -14.62         | peak     | Р   |
| 6   | 14884.703          | 85.38             | -33.34           | 52.04             | 68.20             | -16.16         | peak     | Р   |

### 5320MHz Horizonta 2014

UNII-1 & 2A\_20M\_5320MHz\_Vertical

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 3246.541           | 79.09             | -28.96           | 50.13             | 68.20             | -18.07         | peak     | Р   |
| 2   | 5223.841           | 80.83             | -29.47           | 51.36             | 68.20             | -16.84         | peak     | Р   |
| 3   | 7838.921           | 82.49             | -29.69           | 52.80             | 68.20             | -15.40         | peak     | Р   |
| 4   | 8819.191           | 83.79             | -30.47           | 53.32             | 68.20             | -14.88         | peak     | Р   |
| 5   | 11121.082          | 84.50             | -30.96           | 53.54             | 68.20             | -14.66         | peak     | Р   |
| 6   | 14779.693          | 85.35             | -33.35           | 52.00             | 68.20             | -16.20         | peak     | Р   |

### UNII-3\_20M\_5745MHz\_Horizontal


| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 3314.521           | 79.16             | -28.84           | 50.32             | 68.20             | -17.88         | peak     | Р   |
| 2   | 5291.821           | 80.90             | -29.35           | 51.55             | 68.20             | -16.65         | peak     | Р   |
| 3   | 7906.901           | 82.56             | -29.57           | 52.99             | 68.20             | -15.21         | peak     | Р   |
| 4   | 8887.171           | 83.86             | -30.35           | 53.51             | 68.20             | -14.69         | peak     | Р   |
| 5   | 11189.062          | 84.57             | -30.84           | 53.73             | 68.20             | -14.47         | peak     | Р   |
| 6   | 14847.673          | 85.42             | -33.23           | 52.19             | 68.20             | -16.01         | peak     | Р   |

### UNII-3\_20M\_5745MHz\_Vertical

|     |                    |                   |                  | <u>•</u> ••       |                   |                |          |     |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
| 1   | 4136.555           | 79.30             | -28.86           | 50.44             | 68.20             | -17.76         | peak     | Р   |
| 2   | 6113.855           | 81.04             | -29.37           | 51.67             | 68.20             | -16.53         | peak     | Р   |
| 3   | 8728.935           | 82.70             | -29.59           | 53.11             | 68.20             | -15.09         | peak     | Р   |
| 4   | 9709.205           | 84.00             | -30.37           | 53.63             | 68.20             | -14.57         | peak     | Р   |
| 5   | 12011.096          | 84.71             | -30.86           | 53.85             | 68.20             | -14.35         | peak     | Р   |
| 6   | 15669.707          | 85.56             | -33.25           | 52.31             | 68.20             | -15.89         | peak     | Р   |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 39 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 39 of 118

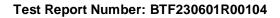




| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 2310.521           | 79.09             | -28.99           | 50.10             | 68.20             | -18.10         | peak     | Р   |
| 2   | 4287.821           | 80.83             | -29.50           | 51.33             | 68.20             | -16.87         | peak     | Р   |
| 3   | 6902.901           | 82.49             | -29.72           | 52.77             | 68.20             | -15.43         | peak     | Р   |
| 4   | 7883.171           | 83.79             | -30.50           | 53.29             | 68.20             | -14.91         | peak     | Р   |
| 5   | 10185.062          | 84.50             | -30.99           | 53.51             | 68.20             | -14.69         | peak     | Р   |
| 6   | 13843.673          | 85.35             | -33.38           | 51.97             | 68.20             | -16.23         | peak     | Р   |

### UNII-3\_20M\_5785MHz\_Vertical

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 2414.551           | 79.09             | -29.03           | 50.06             | 68.20             | -18.14         | peak     | Р   |
| 2   | 4391.851           | 80.83             | -29.54           | 51.29             | 68.20             | -16.91         | peak     | Р   |
| 3   | 7006.931           | 82.49             | -29.76           | 52.73             | 68.20             | -15.47         | peak     | Р   |
| 4   | 7987.201           | 83.79             | -30.54           | 53.25             | 68.20             | -14.95         | peak     | Р   |
| 5   | 10289.092          | 84.50             | -31.03           | 53.47             | 68.20             | -14.73         | peak     | Р   |
| 6   | 13947.703          | 85.35             | -33.42           | 51.93             | 68.20             | -16.27         | peak     | Р   |


### UNII-3 20M 5825MHz Horizontal

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 2513.625           | 79.13             | -29.10           | 50.03             | 68.20             | -18.17         | peak     | Р   |
| 2   | 4490.925           | 80.87             | -29.61           | 51.26             | 68.20             | -16.94         | peak     | Р   |
| 3   | 7106.005           | 82.53             | -29.83           | 52.70             | 68.20             | -15.50         | peak     | Р   |
| 4   | 8086.275           | 83.83             | -30.61           | 53.22             | 68.20             | -14.98         | peak     | Р   |
| 5   | 10388.166          | 84.54             | -31.10           | 53.44             | 68.20             | -14.76         | peak     | Р   |
| 6   | 14046.777          | 85.39             | -33.49           | 51.90             | 68.20             | -16.30         | peak     | Р   |

### UNII-3\_20M\_5825MHz\_Vertical

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 2643.525           | 79.17             | -29.10           | 50.07             | 68.20             | -18.13         | peak     | Р   |
| 2   | 4620.825           | 80.91             | -29.61           | 51.30             | 68.20             | -16.90         | peak     | Р   |
| 3   | 7235.905           | 82.57             | -29.83           | 52.74             | 68.20             | -15.46         | peak     | Р   |
| 4   | 8216.175           | 83.87             | -30.61           | 53.26             | 68.20             | -14.94         | peak     | Р   |
| 5   | 10518.066          | 84.58             | -31.10           | 53.48             | 68.20             | -14.72         | peak     | Р   |
| 6   | 14176.677          | 85.43             | -33.49           | 51.94             | 68.20             | -16.26         | peak     | Р   |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 40 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China





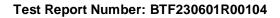
| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 2137.525           | 76.88             | -29.59           | 47.29             | 68.20             | -20.91         | peak     | Р   |
| 2   | 4114.825           | 79.97             | -30.10           | 49.87             | 68.20             | -18.33         | peak     | Р   |
| 3   | 6729.905           | 81.96             | -30.32           | 51.64             | 68.20             | -16.56         | peak     | Р   |
| 4   | 7710.175           | 83.89             | -31.10           | 52.79             | 68.20             | -15.41         | peak     | Р   |
| 5   | 10012.066          | 84.80             | -31.59           | 53.21             | 68.20             | -14.99         | peak     | Р   |
| 6   | 13670.677          | 85.90             | -33.98           | 51.92             | 68.20             | -16.28         | peak     | Р   |

### 5100MHz Horizonta INIT 1011

### UNII-1 & 2A\_40M\_5190MHz\_Vertical

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 2237.524           | 76.78             | -29.70           | 47.08             | 68.20             | -21.12         | peak     | Р   |
| 2   | 4214.824           | 79.87             | -30.21           | 49.66             | 68.20             | -18.54         | peak     | Р   |
| 3   | 6829.904           | 81.86             | -30.43           | 51.43             | 68.20             | -16.77         | peak     | Р   |
| 4   | 7810.174           | 83.79             | -31.21           | 52.58             | 68.20             | -15.62         | peak     | Р   |
| 5   | 10112.065          | 84.70             | -31.70           | 53.00             | 68.20             | -15.20         | peak     | Р   |
| 6   | 13770.676          | 85.80             | -34.09           | 51.71             | 68.20             | -16.49         | peak     | Р   |

### UNII-1 & 2A\_40M\_5310MHz\_Horizontal


| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 2343.522           | 77.45             | -30.06           | 47.39             | 68.20             | -20.81         | peak     | Р   |
| 2   | 4320.822           | 80.54             | -30.57           | 49.97             | 68.20             | -18.23         | peak     | Р   |
| 3   | 6935.902           | 82.53             | -30.79           | 51.74             | 68.20             | -16.46         | peak     | Р   |
| 4   | 7916.172           | 84.46             | -31.57           | 52.89             | 68.20             | -15.31         | peak     | Р   |
| 5   | 10218.063          | 85.37             | -32.06           | 53.31             | 68.20             | -14.89         | peak     | Р   |
| 6   | 13876.674          | 86.47             | -34.45           | 52.02             | 68.20             | -16.18         | peak     | Р   |

UNII-1 & 2A\_40M\_5310MHz\_Vertical

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 2447.551           | 77.34             | -29.78           | 47.56             | 68.20             | -20.64         | peak     | Р   |
| 2   | 4424.851           | 80.43             | -30.29           | 50.14             | 68.20             | -18.06         | peak     | Р   |
| 3   | 7039.931           | 82.42             | -30.51           | 51.91             | 68.20             | -16.29         | peak     | Р   |
| 4   | 8020.201           | 84.35             | -31.29           | 53.06             | 68.20             | -15.14         | peak     | Р   |
| 5   | 10322.092          | 85.26             | -31.78           | 53.48             | 68.20             | -14.72         | peak     | Р   |
| 6   | 13980.703          | 86.36             | -34.17           | 52.19             | 68.20             | -16.01         | peak     | Р   |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 41 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 41 of 118





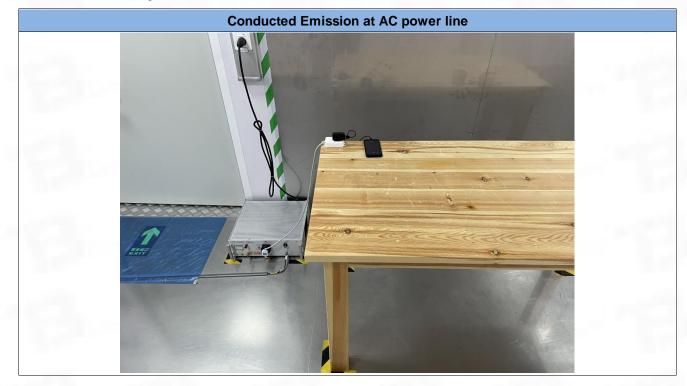
|     |                    |                   | UNII-3_40        | M_5755MHz         | _Horizontal       |                |          |     |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
| 1   | 2730.814           | 77.42             | -29.63           | 47.79             | 68.20             | -20.41         | peak     | Р   |
| 2   | 4708.114           | 80.51             | -30.14           | 50.37             | 68.20             | -17.83         | peak     | Р   |
| 3   | 7323.194           | 82.50             | -30.36           | 52.14             | 68.20             | -16.06         | peak     | Р   |
| 4   | 8303.464           | 84.43             | -31.14           | 53.29             | 68.20             | -14.91         | peak     | Р   |
| 5   | 10605.355          | 85.34             | -31.63           | 53.71             | 68.20             | -14.49         | peak     | Р   |
| 6   | 14263.966          | 86.44             | -34.02           | 52.42             | 68.20             | -15.78         | peak     | Р   |

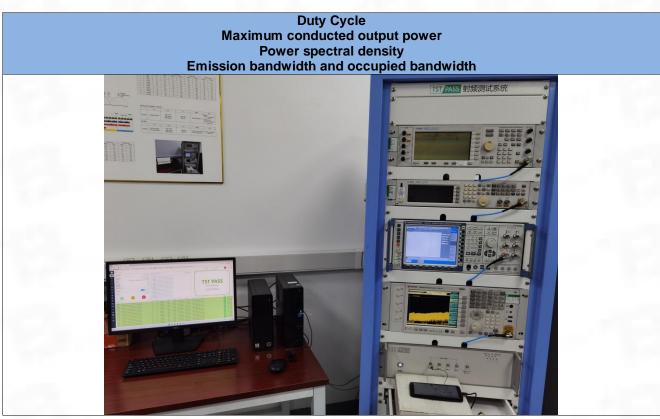
| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 2843.525           | 77.56             | -29.53           | 48.03             | 68.20             | -20.17         | peak     | Р   |
| 2   | 4820.825           | 80.65             | -30.04           | 50.61             | 68.20             | -17.59         | peak     | Р   |
| 3   | 7435.905           | 82.64             | -30.26           | 52.38             | 68.20             | -15.82         | peak     | Р   |
| 4   | 8416.175           | 84.57             | -31.04           | 53.53             | 68.20             | -14.67         | peak     | Р   |
| 5   | 10718.066          | 85.48             | -31.53           | 53.95             | 68.20             | -14.25         | peak     | Р   |
| 6   | 14376.677          | 86.58             | -33.92           | 52.66             | 68.20             | -15.54         | peak     | Р   |

### UNII-3\_40M\_5795MHz\_Horizontal

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 2943.504           | 76.88             | -29.62           | 47.26             | 68.20             | -20.94         | peak     | Р   |
| 2   | 4920.804           | 79.97             | -30.13           | 49.84             | 68.20             | -18.36         | peak     | Р   |
| 3   | 7535.884           | 81.96             | -30.35           | 51.61             | 68.20             | -16.59         | peak     | Р   |
| 4   | 8516.154           | 83.89             | -31.13           | 52.76             | 68.20             | -15.44         | peak     | Р   |
| 5   | 10818.045          | 84.80             | -31.62           | 53.18             | 68.20             | -15.02         | peak     | Р   |
| 6   | 14476.656          | 85.90             | -34.01           | 51.89             | 68.20             | -16.31         | peak     | Р   |

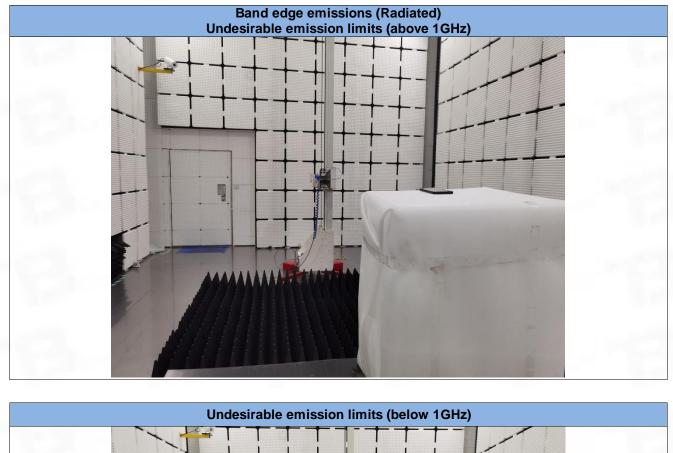
UNII-3\_40M\_5795MHz\_Vertical

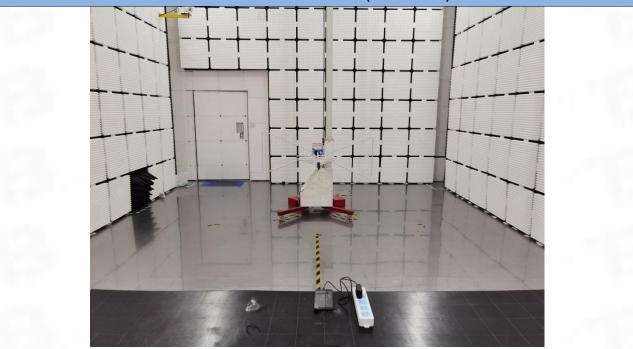

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 3103.420           | 77.49             | -29.94           | 47.55             | 68.20             | -20.65         | peak     | Р   |
| 2   | 5080.720           | 80.58             | -30.45           | 50.13             | 68.20             | -18.07         | peak     | Р   |
| 3   | 7695.800           | 82.57             | -30.67           | 51.90             | 68.20             | -16.30         | peak     | Р   |
| 4   | 8676.070           | 84.50             | -31.45           | 53.05             | 68.20             | -15.15         | peak     | Р   |
| 5   | 10977.961          | 85.41             | -31.94           | 53.47             | 68.20             | -14.73         | peak     | Р   |
| 6   | 14636.572          | 86.51             | -34.33           | 52.18             | 68.20             | -16.02         | peak     | Р   |


Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 42 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 42 of 118




# 7 Test Setup Photos






Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 43 of 118BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China





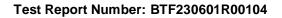


Test Report Number: BTF230601R00104



# 8 EUT Constructional Details (EUT Photos)

Please refer to the report No.BTF230601R00101


Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 45 of 118BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



Test Report Number: BTF230601R00104

# Appendix

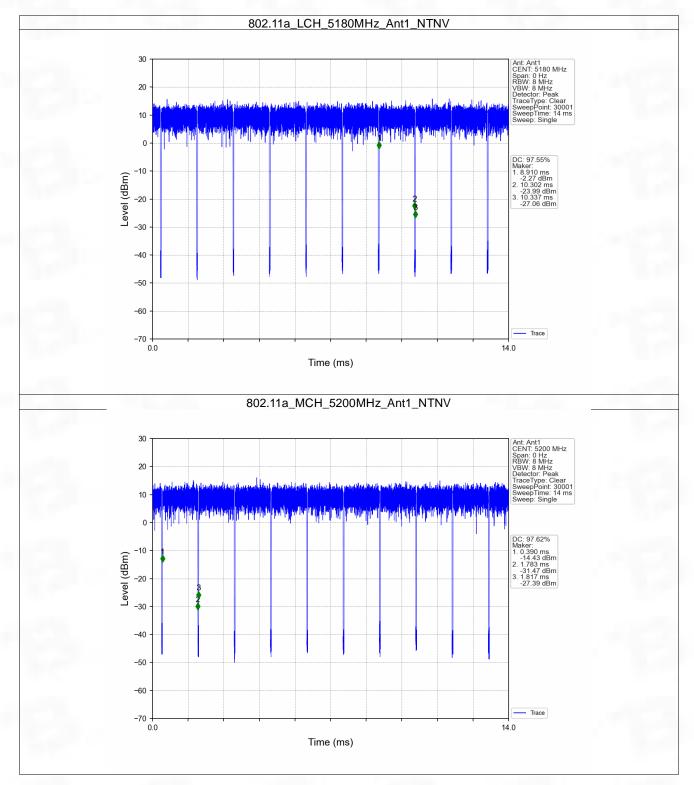
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 46 of 118BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China





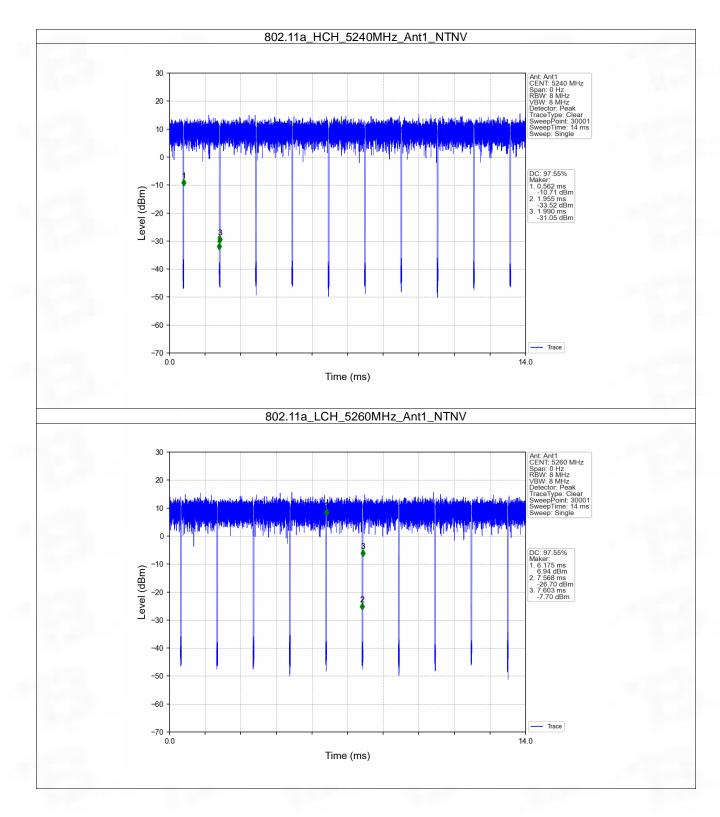
# 1. Duty Cycle

# 1.1 Ant1


# 1.1.1 Test Result

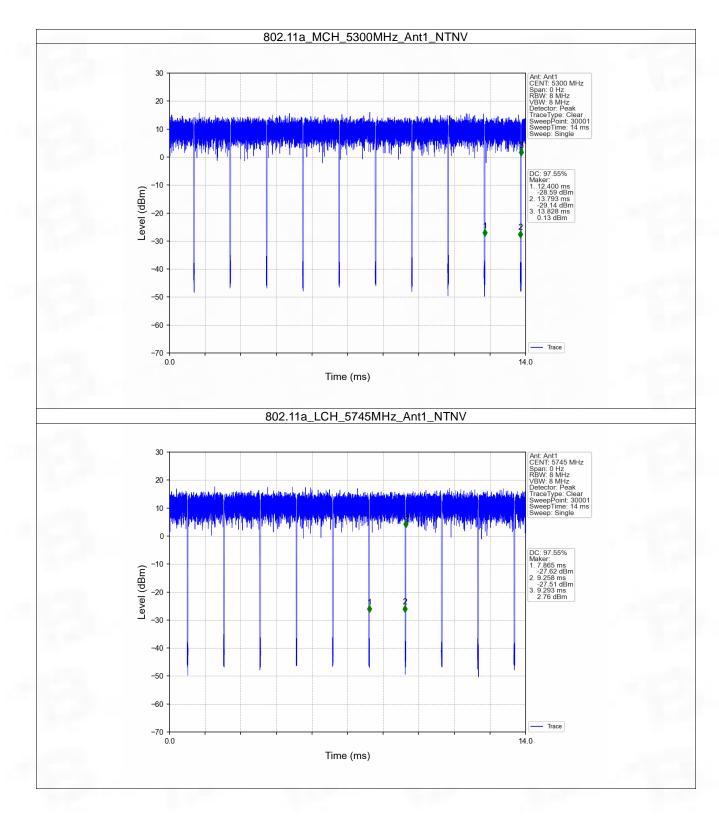
|         |            |                    |              |                | Ant1              | and the second se |                          |
|---------|------------|--------------------|--------------|----------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Mode    | TX<br>Type | Frequency<br>(MHz) | T_on<br>(ms) | Period<br>(ms) | Duty Cycle<br>(%) | Duty Cycle<br>Correction Factor (dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Max. DC<br>Variation (%) |
|         | туре       |                    | · · ·        | · · /          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |
|         |            | 5180               | 1.392        | 1.427          | 97.55             | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.07                     |
|         |            | 5200               | 1.393        | 1.427          | 97.62             | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03                     |
|         |            | 5240               | 1.393        | 1.428          | 97.55             | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03                     |
| 802.11a | SISO       | 5260               | 1.393        | 1.428          | 97.55             | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03                     |
| 002.114 | 0100       | 5300               | 1.393        | 1.428          | 97.55             | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.06                     |
|         |            | 5745               | 1.393        | 1.428          | 97.55             | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.06                     |
|         |            | 5785               | 1.393        | 1.428          | 97.55             | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03                     |
|         |            | 5825               | 1.393        | 1.428          | 97.55             | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.07                     |
|         |            | 5180               | 1.301        | 1.336          | 97.38             | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.07                     |
|         |            | 5200               | 1.301        | 1.336          | 97.38             | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03                     |
|         |            | 5240               | 1.301        | 1.336          | 97.38             | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03                     |
| 000 44. |            | 5260               | 1.301        | 1.335          | 97.45             | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03                     |
| 802.11n | SISO       | 5300               | 1.300        | 1.335          | 97.38             | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.04                     |
| (HT20)  |            | 5320               | 1.301        | 1.335          | 97.45             | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03                     |
|         |            | 5745               | 1.301        | 1.336          | 97.38             | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03                     |
|         |            | 5785               | 1.301        | 1.336          | 97.38             | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.07                     |
|         |            | 5825               | 1.301        | 1.336          | 97.38             | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03                     |
|         |            | 5190               | 0.649        | 0.683          | 95.02             | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.04                     |
|         |            | 5230               | 0.649        | 0.683          | 95.02             | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03                     |
| 802.11n | 000        | 5270               | 0.648        | 0.683          | 94.88             | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03                     |
| (HT40)  | SISO       | 5310               | 0.648        | 0.682          | 95.01             | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.04                     |
|         |            | 5755               | 0.649        | 0.683          | 95.02             | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03                     |
|         |            | 5795               | 0.649        | 0.683          | 95.02             | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03                     |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 47 of 118BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



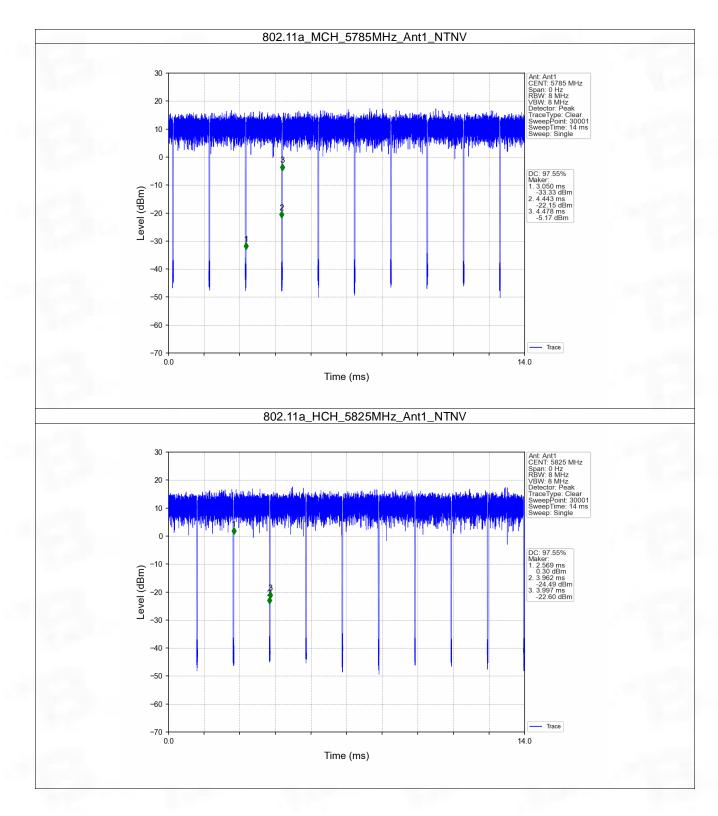

# 1.1.2 Test Graph




Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. Page 48 of 118

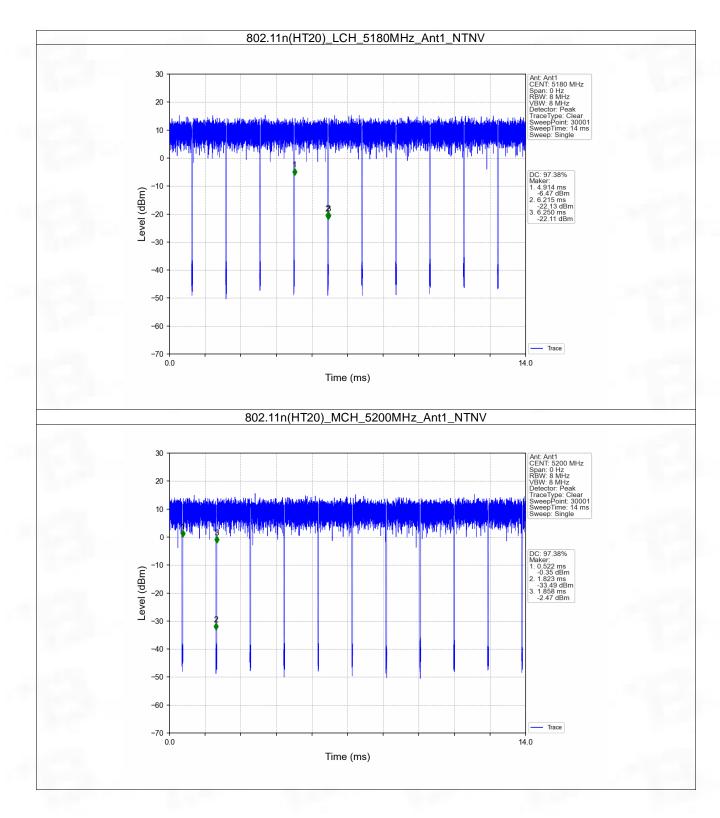




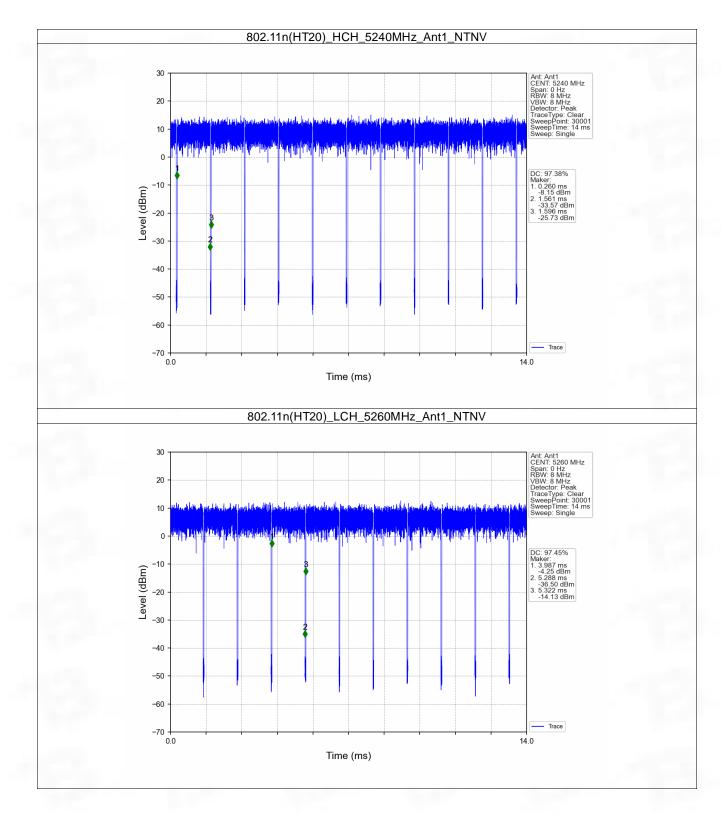

Page 49 of 118





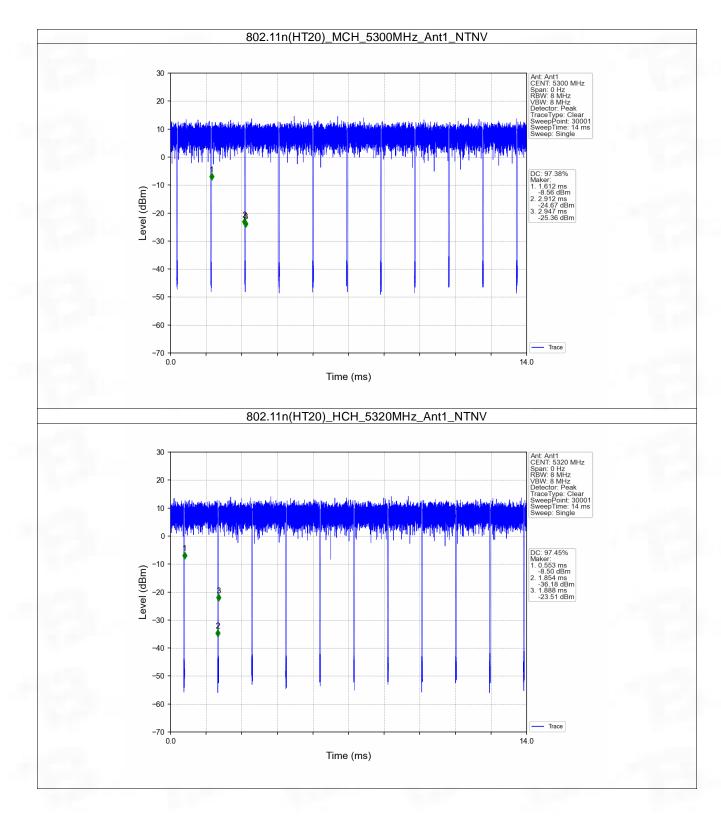

Page 50 of 118





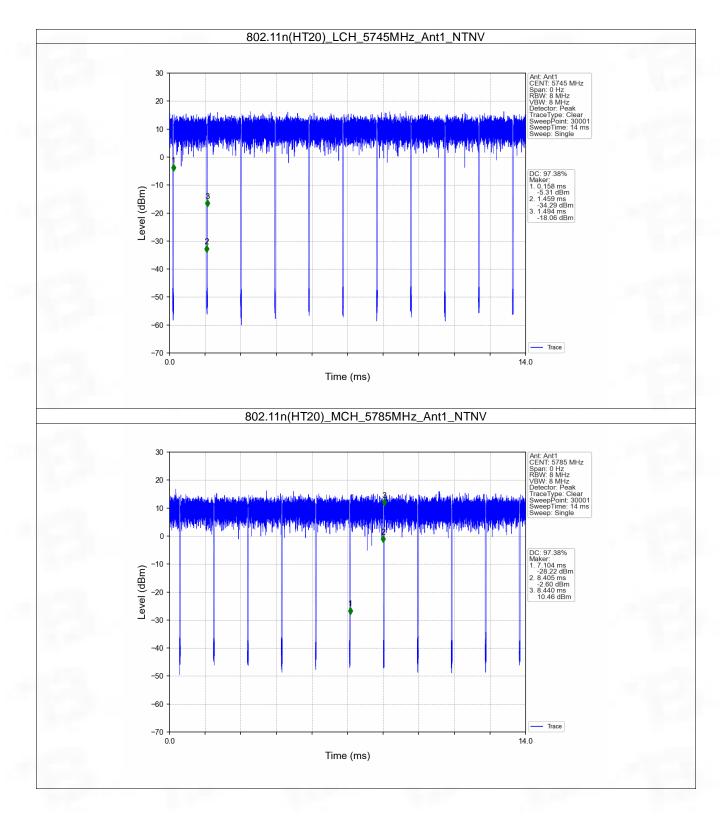

Page 51 of 118



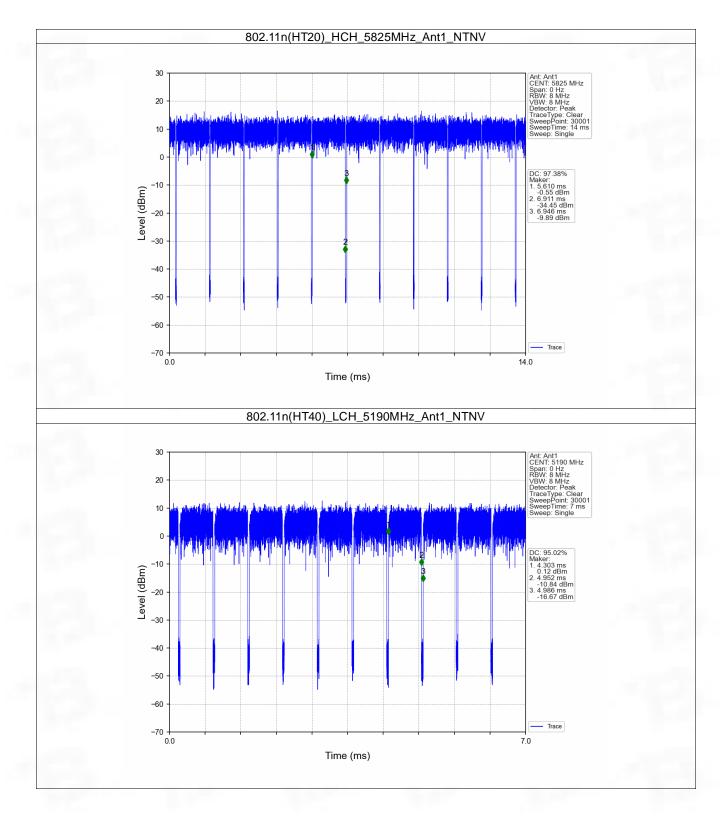






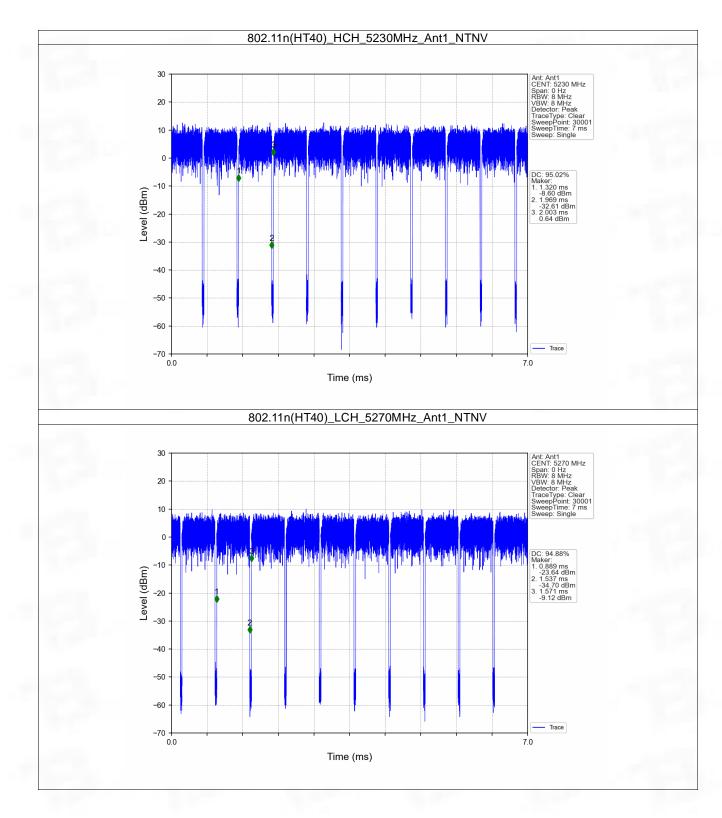


Page 53 of 118





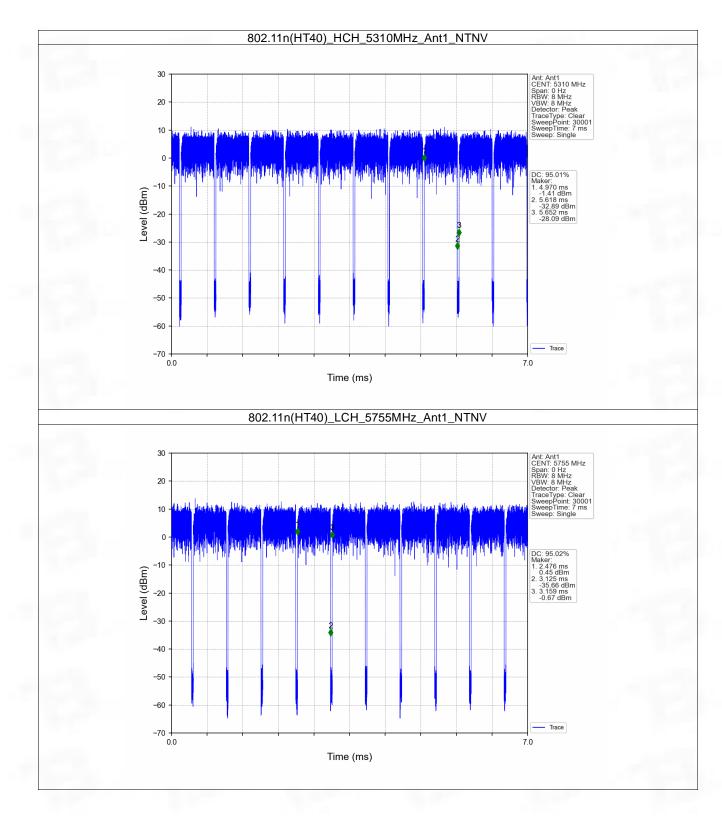

Page 54 of 118





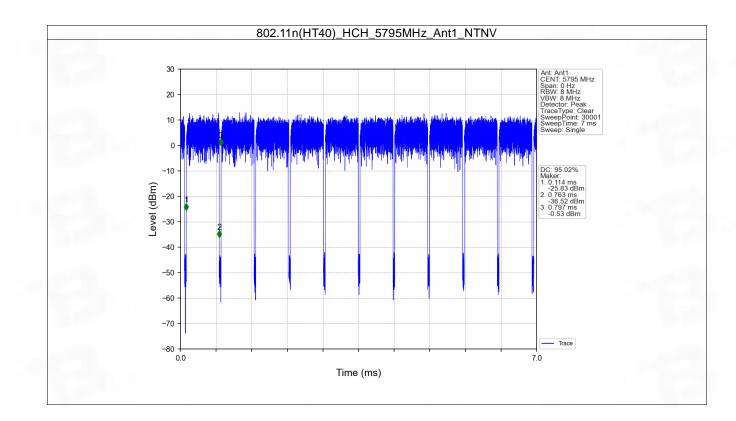






Page 56 of 118






Page 57 of 118





Page 58 of 118

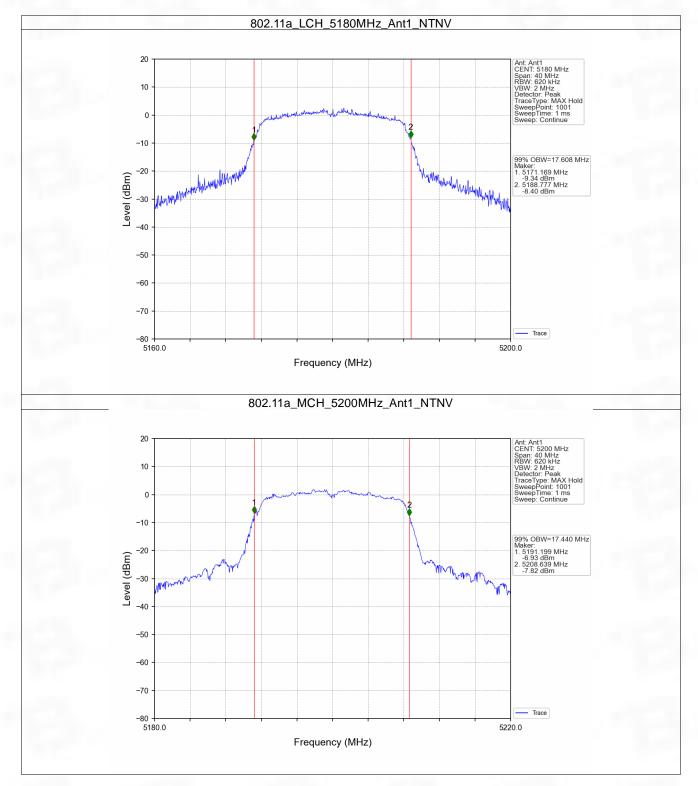






### Test Report Number: BTF230601R00104

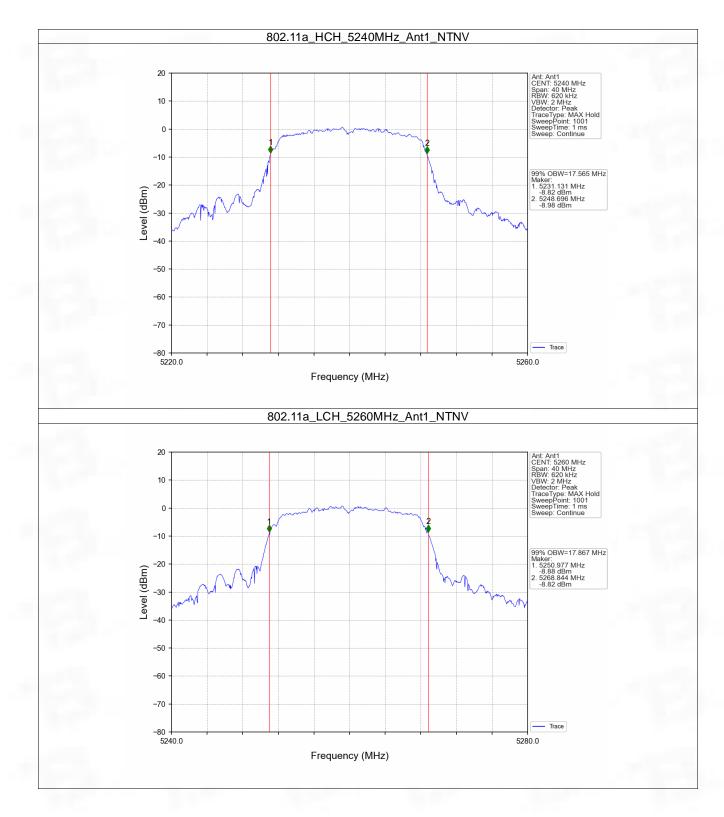
# 2. Bandwidth


## 2.1 OBW

## 2.1.1 Test Result

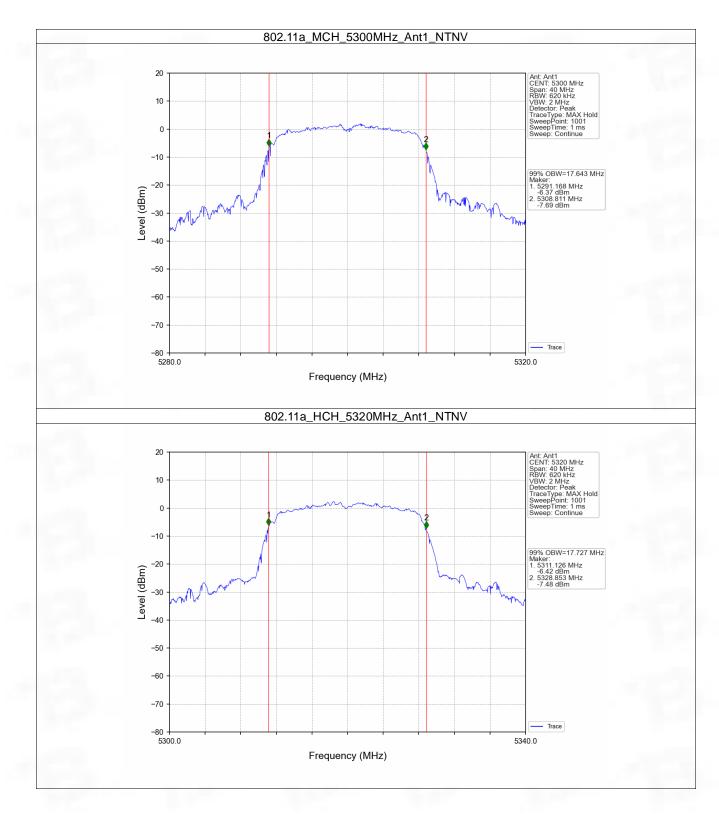
| Mode    | TX                                    | Frequency | ANT  | 99% Occupied Bandwidth (MHz) | Verdict |
|---------|---------------------------------------|-----------|------|------------------------------|---------|
| Mode    | Туре                                  | (MHz)     | ANT  | Result                       | verdict |
|         |                                       | 5180      | 1    | 17.608                       | Pass    |
|         |                                       | 5200      | 1    | 17.440                       | Pass    |
|         |                                       | 5240      | 1    | 17.565                       | Pass    |
|         |                                       | 5260      | 1    | 17.867                       | Pass    |
| 802.11a | SISO                                  | 5300      | 1    | 17.643                       | Pass    |
|         |                                       | 5320      | 1    | 17.727                       | Pass    |
|         | 1                                     | 5745      | 1    | 17.480                       | Pass    |
|         |                                       | 5785      | 1    | 17.408                       | Pass    |
|         |                                       | 5825      | 1    | 17.495                       | Pass    |
|         |                                       | 5180      | 1    | 18.028                       | Pass    |
|         |                                       | 5200      | 1    | 18.001                       | Pass    |
|         |                                       | 5240      | 1    | 18.077                       | Pass    |
| 802.11n |                                       |           | 5260 | 1                            | 18.072  |
|         | SISO                                  | 5300      | 1    | 18.023                       | Pass    |
| (HT20)  |                                       | 5320      | 1    | 18.078                       | Pass    |
|         | · · · · · · · · · · · · · · · · · · · | 5745      | 1    | 17.962                       | Pass    |
|         |                                       | 5785      | 1    | 17.963                       | Pass    |
|         |                                       | 5825      | 1    | 17.969                       | Pass    |
|         |                                       | 5190      | 1    | 36.429                       | Pass    |
|         |                                       | 5230      | 1    | 36.421                       | Pass    |
| 802.11n |                                       | 5270      | 1    | 36.417                       | Pass    |
| (HT40)  | SISO                                  | 5310      | 1    | 36.391                       | Pass    |
|         |                                       | 5755      | 1    | 36.287                       | Pass    |
|         |                                       | 5795      | 1    | 36.274                       | Pass    |




# 2.1.2 Test Graph

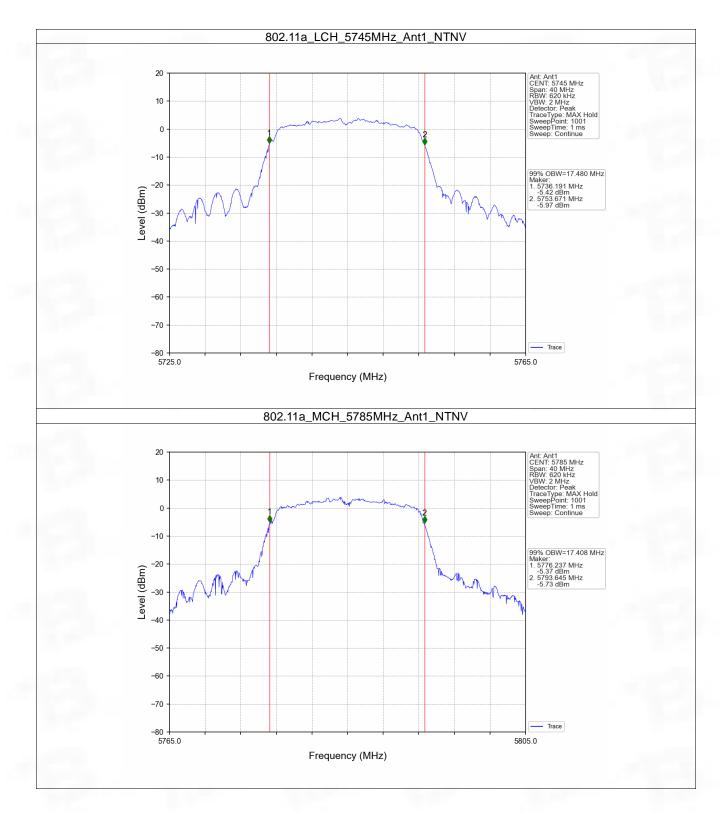


Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page BTF Testing Lab (Shenzhen) Co., Ltd.


Page 61 of 118

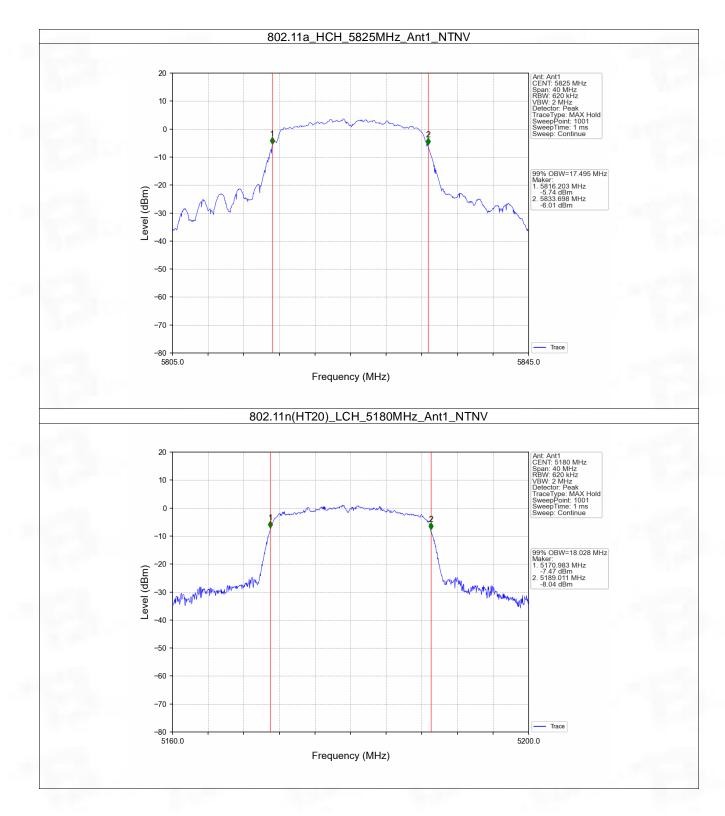




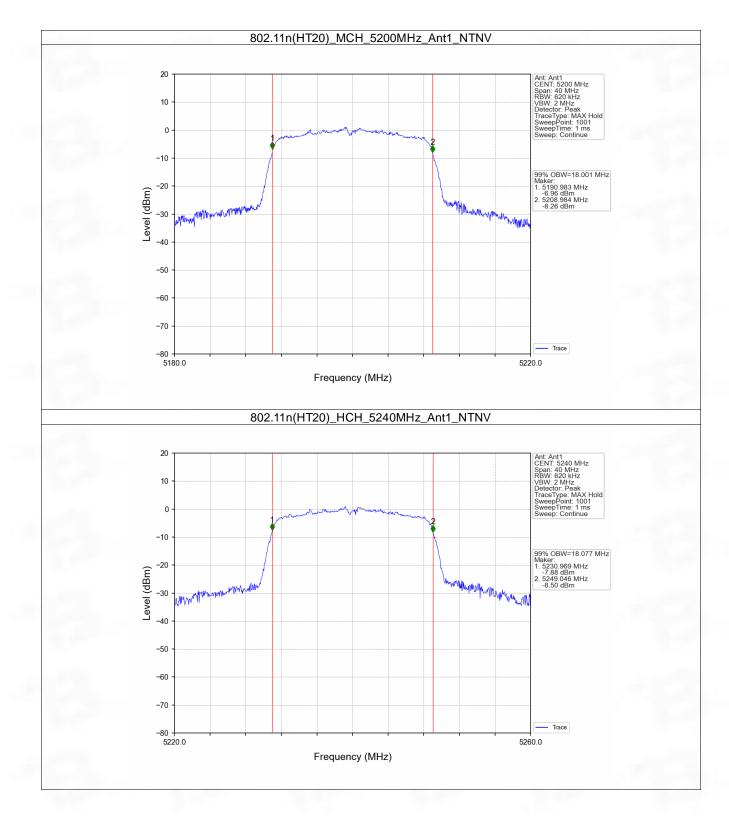

Page 62 of 118





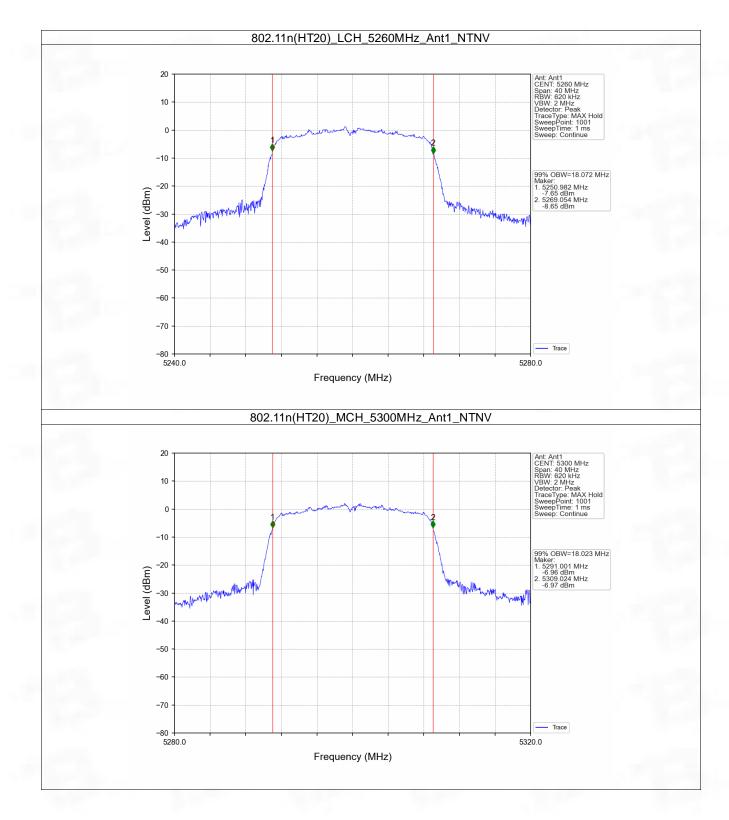

Page 63 of 118





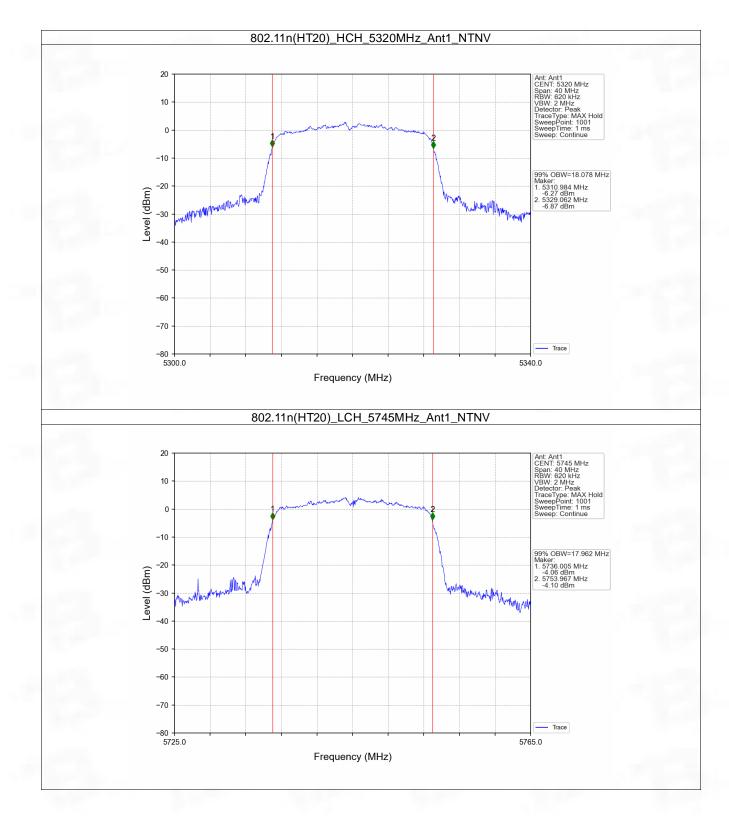

Page 64 of 118





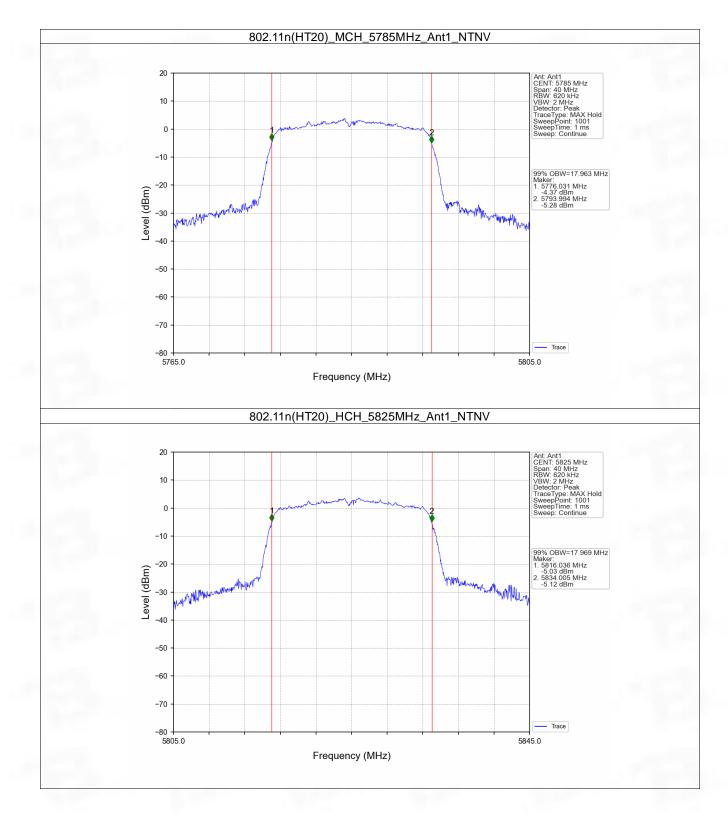






Page 66 of 118

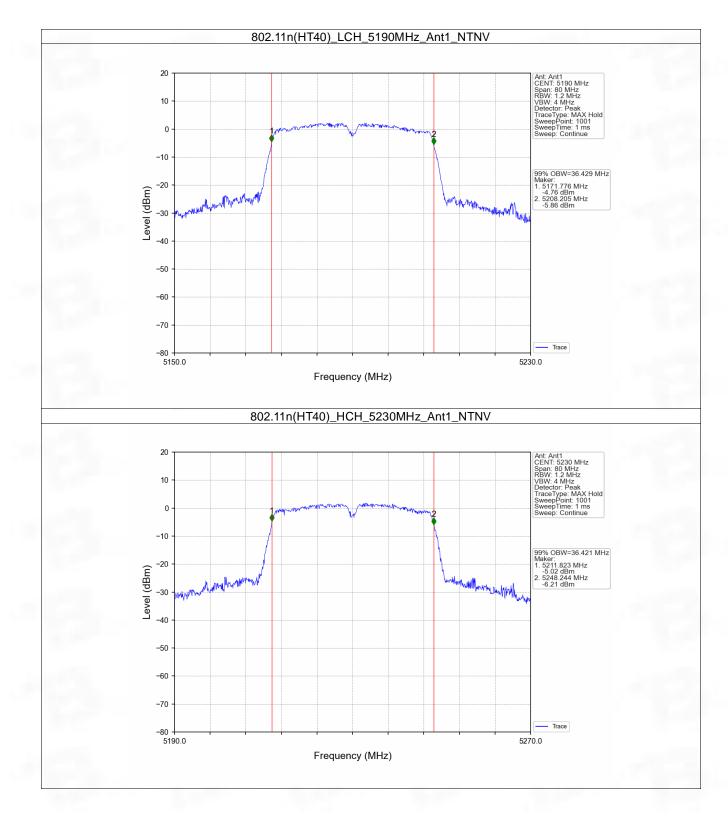





Page 67 of 118

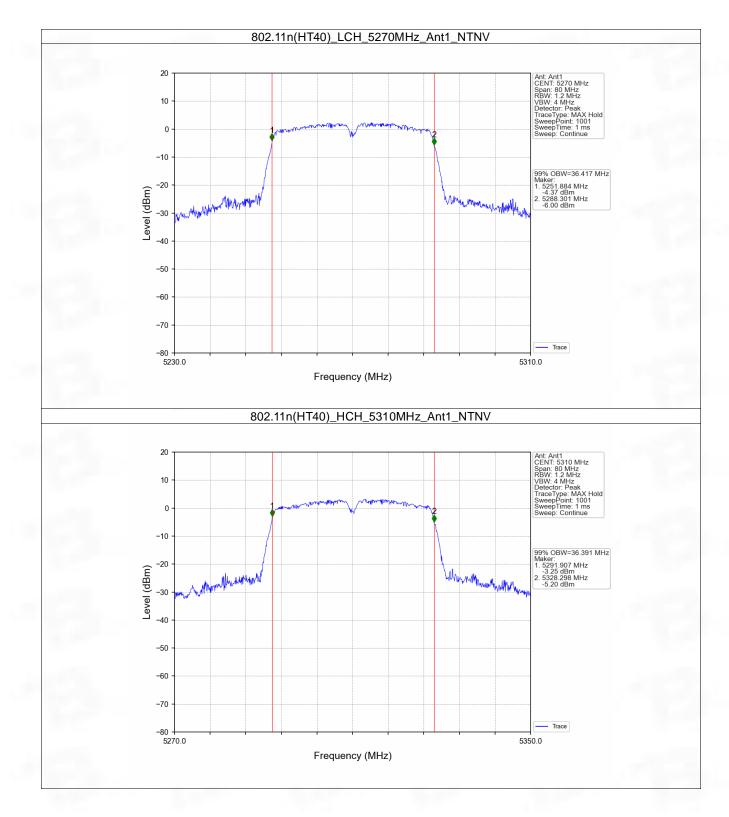





Page 68 of 118

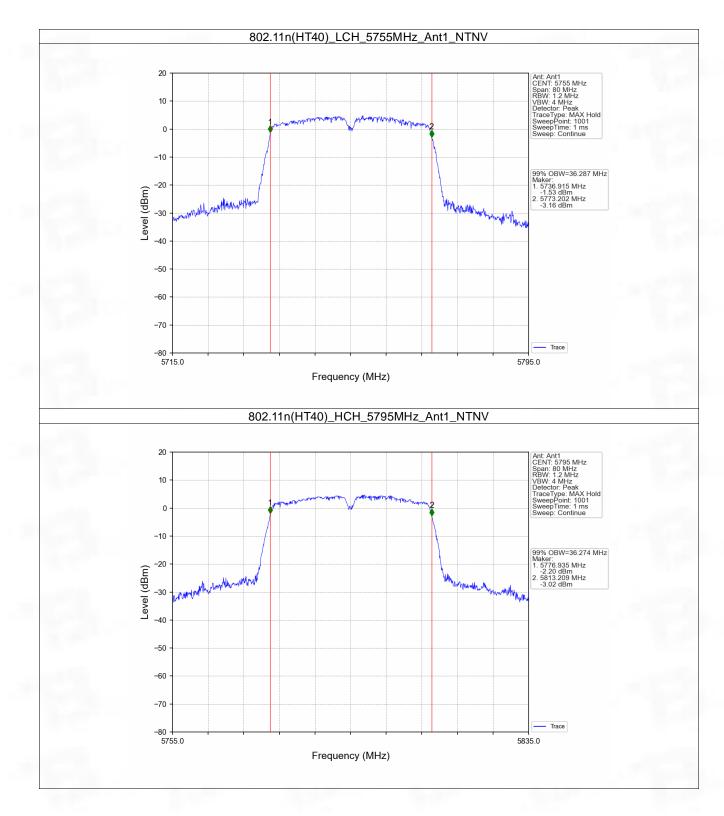





Page 69 of 118






Page 70 of 118





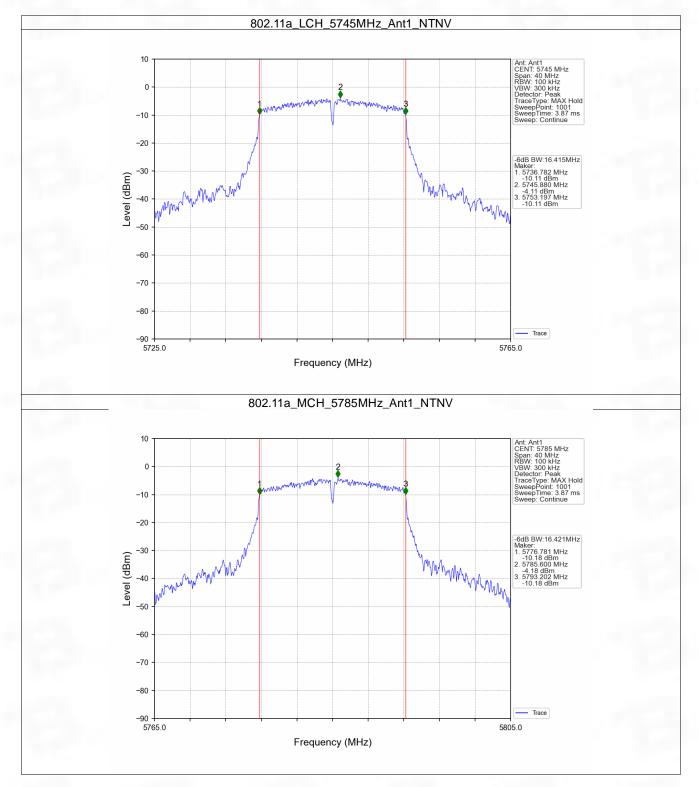
Page 71 of 118





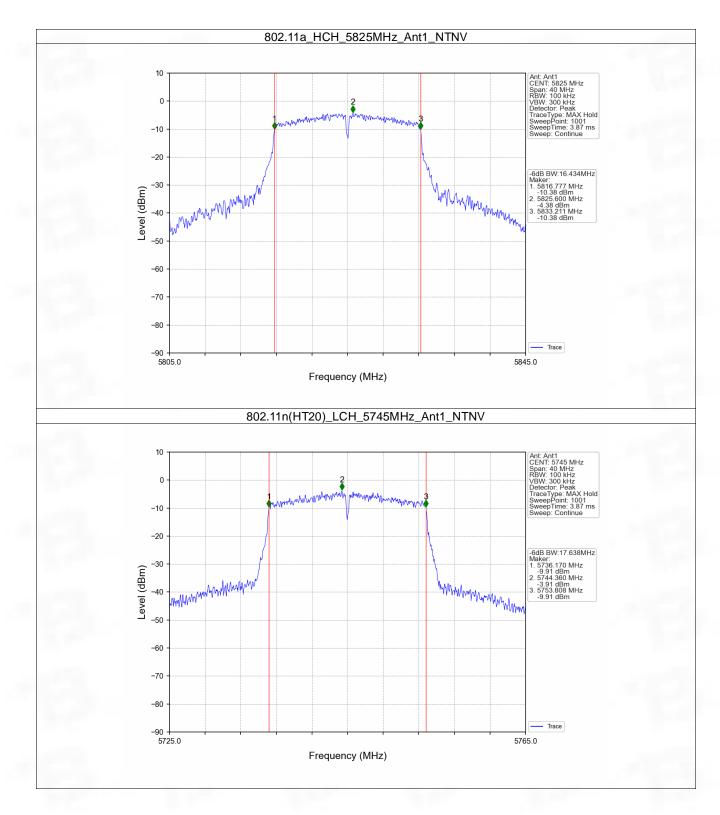


### Test Report Number: BTF230601R00104


# 2.2 6dB BW

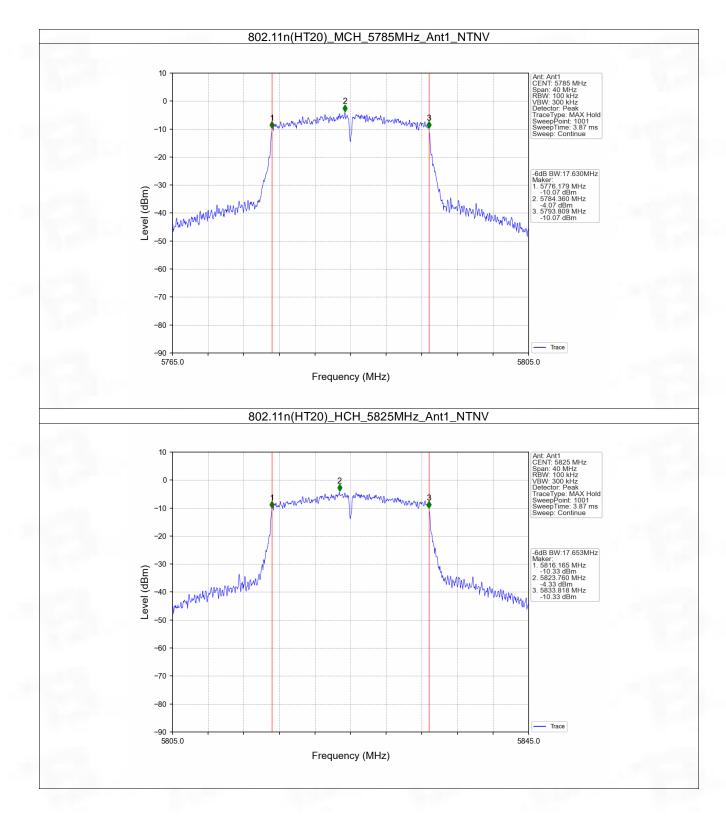
# 2.2.1 Test Result

| Mode              | TX<br>Type | Frequency<br>(MHz) | ANT | 6dB Bandwidth (MHz) |       | Verdiet |
|-------------------|------------|--------------------|-----|---------------------|-------|---------|
|                   |            |                    |     | Result              | Limit | Verdict |
| 802.11a           | SISO       | 5745               | 1   | 16.415              | >=0.5 | Pass    |
|                   |            | 5785               | 1   | 16.421              | >=0.5 | Pass    |
|                   |            | 5825               | 1   | 16.434              | >=0.5 | Pass    |
| 802.11n<br>(HT20) | SISO       | 5745               | 1   | 17.638              | >=0.5 | Pass    |
|                   |            | 5785               | 1   | 17.630              | >=0.5 | Pass    |
|                   |            | 5825               | 1   | 17.653              | >=0.5 | Pass    |
| 802.11n<br>(HT40) | SISO       | 5755               | 1   | 36.395              | >=0.5 | Pass    |
|                   |            | 5795               | 1   | 36.394              | >=0.5 | Pass    |



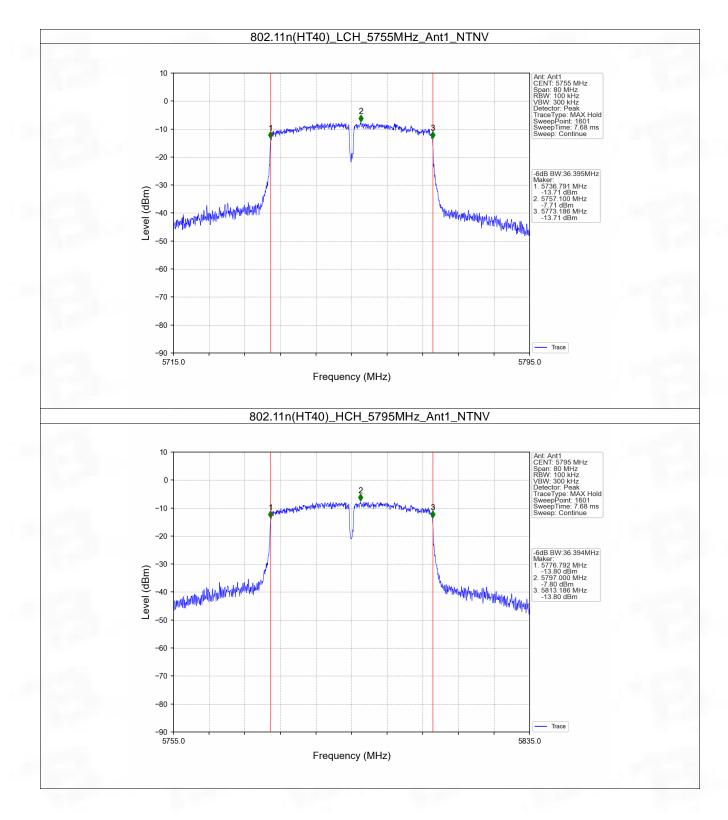

# 2.2.2 Test Graph




Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China






Page 75 of 118





Page 76 of 118

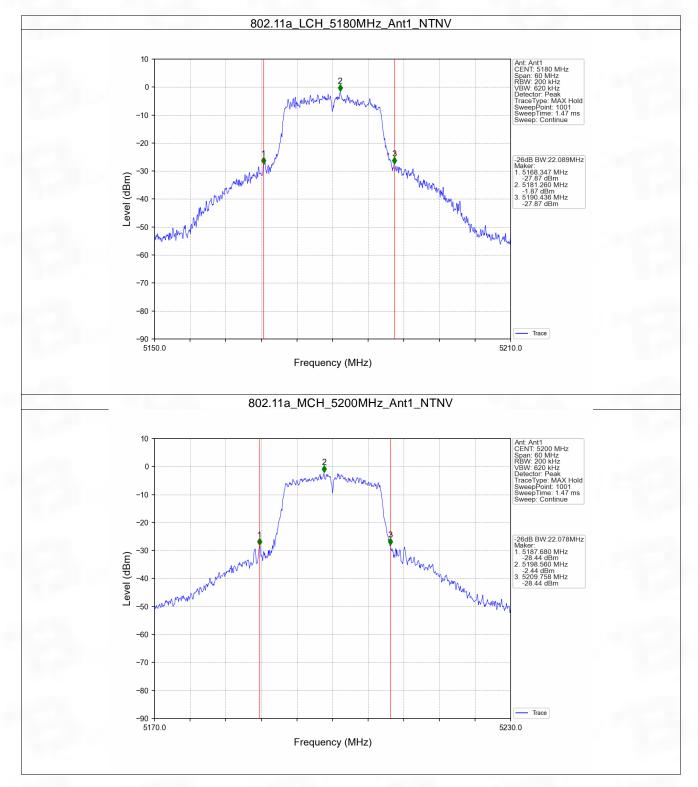




Page 77 of 118

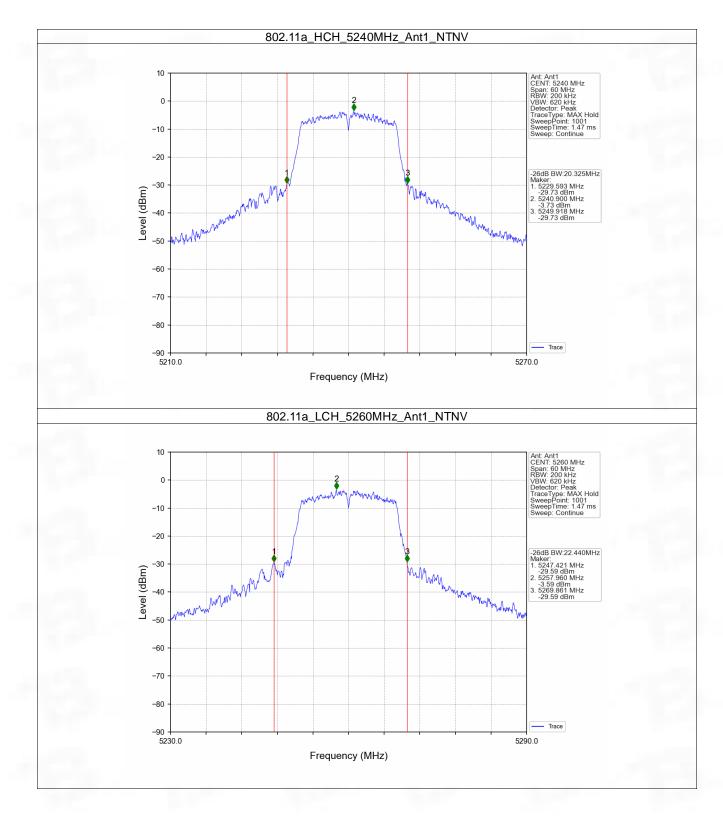


# 2.3 26dB BW


# 2.3.1 Test Result

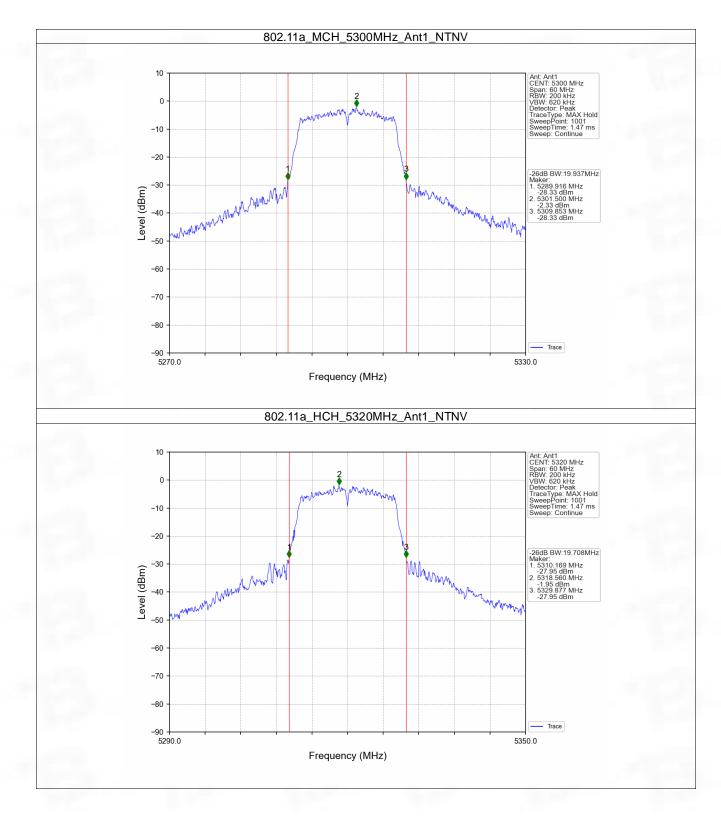
| Mode              | TX   | Frequency<br>(MHz) | ANT | 26dB Bandwidth (MHz) | Verdict |
|-------------------|------|--------------------|-----|----------------------|---------|
|                   | Туре |                    | ANT | Result               |         |
| 802.11a           | SISO | 5180               | 1   | 22.089               | Pass    |
|                   |      | 5200               | 1   | 22.078               | Pass    |
|                   |      | 5240               | 1   | 20.325               | Pass    |
|                   |      | 5260               | 1   | 22.440               | Pass    |
|                   |      | 5300               | 1   | 19.937               | Pass    |
|                   |      | 5320               | 1   | 19.708               | Pass    |
|                   | SISO | 5180               | 1   | 19.913               | Pass    |
| 802.11n<br>(HT20) |      | 5200               | 1   | 19.875               | Pass    |
|                   |      | 5240               | 1   | 20.140               | Pass    |
|                   |      | 5260               | 1   | 19.985               | Pass    |
|                   |      | 5300               | 1   | 19.825               | Pass    |
|                   |      | 5320               | 1   | 19.877               | Pass    |
| 802.11n<br>(HT40) | SISO | 5190               | 1   | 41.801               | Pass    |
|                   |      | 5230               | 1   | 40.821               | Pass    |
|                   |      | 5270               | 1   | 43.409               | Pass    |
|                   |      | 5310               | 1   | 42.305               | Pass    |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 78 of 118BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



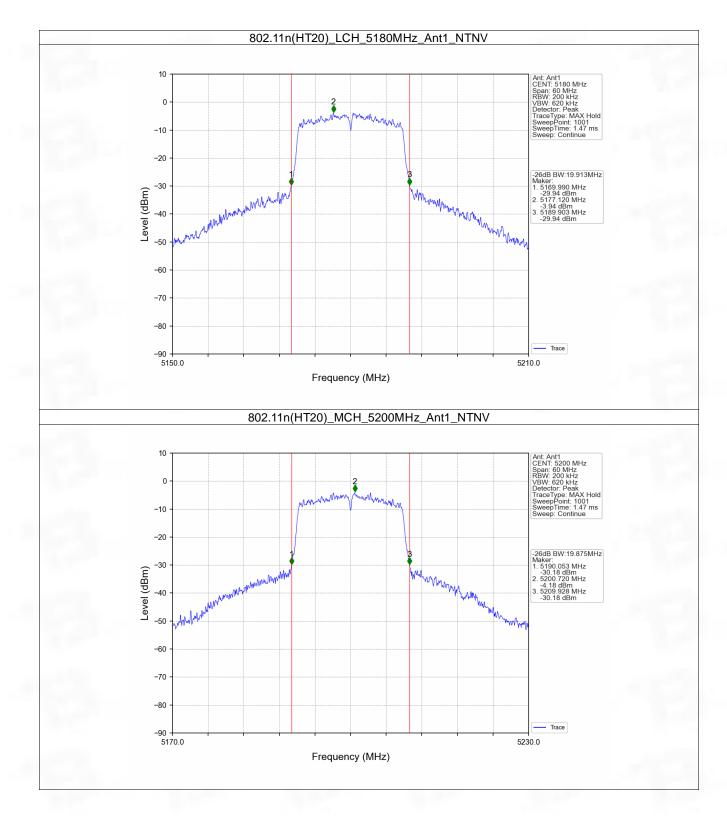

# 2.3.2 Test Graph




Total or partial reproduction of this document without permission of the Laboratory is not allowed. P. BTF Testing Lab (Shenzhen) Co., Ltd.

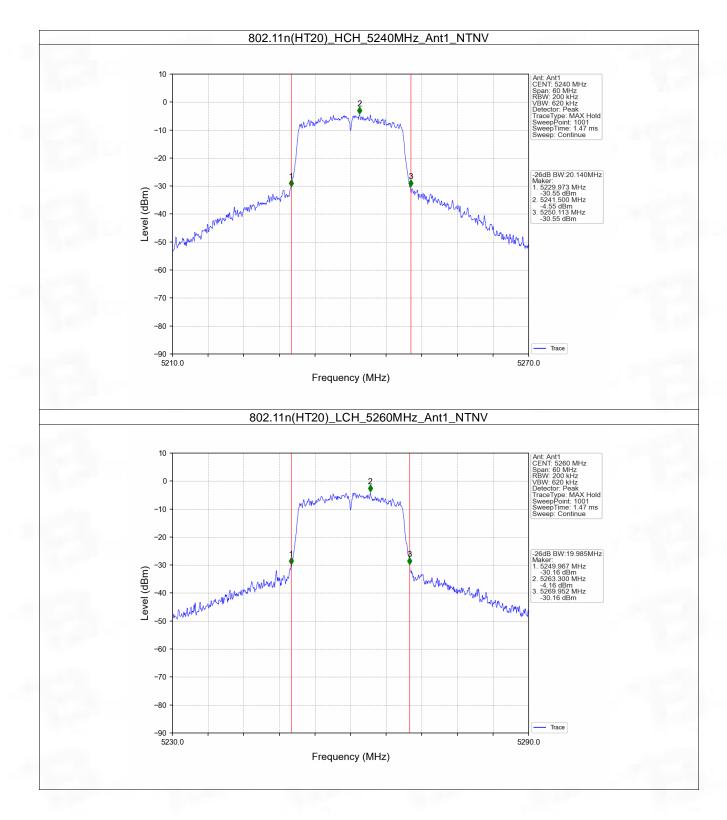





Page 80 of 118






Page 81 of 118





Page 82 of 118





Page 83 of 118