

RF Test Report

For

Applicant Name: Xwireless LLC

Address: 11565 Old Georgetown Road, Rockville, MD, USA

EUT Name: Mobile Phone

Brand Name: Vortex Model Number: HD55

Issued By

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen,

China

Report Number: BTF240105R00404 Test Standards: 47 CFR Part 15E

Test Conclusion: Pass

FCC ID: 2ADLJ-HD55

Test Date: 2024-01-06 to 2024-01-24

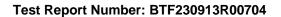
Date of Issue: 2024-01-26

Prepared By:

Address:

Chris Liu / Project Ingineer

Date: 2024-01-26

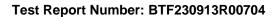

Approved By:

Ryan.CJ / EMC Manager

Date: 2024-01-26

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.

ab (Shenzi



Revision History			
Version	Issue Date	Revisions Content	
R_V0	2024-01-26	Original	
Note: Once the	revision has been made, then prev	vious versions reports are invalid	

Table of Contents

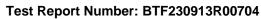
1	INTF	RODUCTION	5
	1.1	Identification of Testing Laboratory	5
	1.2	Identification of the Responsible Testing Location	
	1.3	Announcement	
2	PRO	DDUCT INFORMATION	
	2.1	Application Information	
	2.2	Manufacturer Information	
	2.3 2.4	Factory Information General Description of Equipment under Test (EUT)	
	2.5	Technical Information	
3	SUM	MMARY OF TEST RESULTS	7
	3.1	Test Standards	7
	3.2	Uncertainty of Test	
	3.3	Summary of Test Result	7
4	TES	T CONFIGURATION	8
	4.1	Test Equipment List	8
	4.2	Test Auxiliary Equipment	
_	4.3	Test Modes	
5		LUATION RESULTS (EVALUATION)	
	5.1	Antenna requirement	
6		DIO SPECTRUM MATTER TEST RESULTS (RF)	
	6.1	Conducted Emission at AC power line	
		6.1.1 E.U.T. Operation:	
		6.1.2 Test Setup Diagram: 6.1.3 Test Data:	
	6.2	Duty Cycle	
	0.2	6.2.1 E.U.T. Operation:	
		6.2.2 Test Data:	
	6.3	Maximum conducted output power	19
		6.3.1 E.U.T. Operation:	
		6.3.2 Test Data:	
	6.4	Power spectral density	
		6.4.1 E.U.T. Operation: 6.4.2 Test Data:	
	6.5	Emission bandwidth and occupied bandwidth	
	0.5	6.5.1 E.U.T. Operation:	
		6.5.2 Test Data:	
	6.6	Band edge emissions (Radiated)	25
		6.6.1 E.U.T. Operation:	
		6.6.2 Test Setup Diagram:	
		6.6.3 Test Data:	
	6.7	Undesirable emission limits (below 1GHz)	
		6.7.1 E.U.T. Operation: 6.7.2 Test Setup Diagram:	
		6.7.3 Test Data:	
	6.8	Undesirable emission limits (above 1GHz)	
		6.8.1 E.U.T. Operation:	

	6.8.2 Test Data:	39
7	TEST SETUP PHOTOS	43
	EUT CONSTRUCTIONAL DETAILS (EUT PHOTOS)	
	ENDIX	

Test Report Number: BTF230913R00704

1 Introduction

1.1 Identification of Testing Laboratory


Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.	
Address: F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China		
Phone Number:	+86-0755-23146130	
Fax Number:	+86-0755-23146130	

1.2 Identification of the Responsible Testing Location

		•
Company Name: BTF Testing Lab (Shenzhen) Co., Ltd		BTF Testing Lab (Shenzhen) Co., Ltd.
		F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
	Phone Number:	+86-0755-23146130
	Fax Number:	+86-0755-23146130
	FCC Registration Number:	518915
	Designation Number:	CN1330

1.3 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2 Product Information

2.1 Application Information

Company Name:	Xwireless LLC	
Address:	11565 Old Georgetown Road, Rockville, MD, USA	

2.2 Manufacturer Information

Company Name:	Xwireless LLC
Address:	11565 Old Georgetown Road, Rockville, MD, USA

2.3 Factory Information

Company Name:	ZTECH COMMNICATION(SZ) CO LTD		
Addraga	FL 7 BLOCK D BAO'AN ZHIGU INNOVATION PARK YIN'TIAN ROAD NO.4		
Address:	XI'XIANG STR' BAO'AN DISTRICT SZ CHINA		

2.4 General Description of Equipment under Test (EUT)

EUT Name:	Mobile Phone		
Test Model Number:	HD55		
Hardware Version:	N/A		
Software Version:	N/A		

2.5 Technical Information

Power Supply:	DC 3.8V form battery
Power Adaptor:	Input:100-240V 50/60Hz 0.15A Output:5.0V==1.0A
Operation Frequency Range	U-NII Band 1: 5.18~5.24 GHz U-NII Band 3: 5.745~5.825 GHz
Frequency Block	U-NII Band 1: 5.15~5.25 GHz U-NII Band 3: 5.725~5.85 GHz
Channel Bandwidth	802.11a: 20 MHz 802.11n: 20 MHz, 40 MHz 802.11ac: 20 MHz, 40 MHz, 80 MHz
Antenna Type:	FPC Antenna
Antenna Gain:	1.36dBi

Note:

^{#:} The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

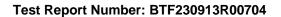
Test Report Number: BTF230913R00704

3 Summary of Test Results

3.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15E: Unlicensed National Information Infrastructure Devices


3.2 Uncertainty of Test

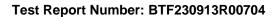
Item	Measurement Uncertainty
Conducted Emission (150 kHz-30 MHz)	±2.64dB
Occupied Bandwidth	±69kHz
Transmitter Power, Conducted	±0.87dB
Power Spectral Density	±0.69dB
Conducted Spurious Emissions	±0.95dB
Radiated Spurious Emissions (above 1GHz)	1-6GHz: ±3.94dB 6-18GHz: ±4.16dB
Radiated Spurious Emissions (30M - 1GHz)	±4.12dB

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.3 Summary of Test Result

Item	Standard	Requirement	Result
Antenna requirement	47 CFR Part 15E	Part 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15E	47 CFR Part 15.207(a)	Pass
Maximum conducted output power	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Power spectral density	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Emission bandwidth and occupied bandwidth	47 CFR Part 15E	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. 47 CFR Part 15.407(e)	Pass
Channel Availability Check Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(ii)	Pass
U-NII Detection Bandwidth	47 CFR Part 15E	47 CFR Part 15.407(h)(2)	Pass
Statistical Performance Check	47 CFR Part 15E	KDB 935210 D02, Clause 5.1 Table 2	Pass
Channel Move Time, Channel Closing Transmission Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iii)	Pass
Non-Occupancy Period Test	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iv)	Pass
DFS Detection Thresholds	47 CFR Part 15E	KDB 905462 D02, Clause 5.2 Table 3	Pass
Band edge emissions (Radiated)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass

Undesirable emission limits (below 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(9)	Pass
Undesirable emission limits (above 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass

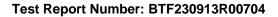

Test Configuration

Test Equipment List

Conducted Emission at AC power line								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	00953	2023-11-16	2024-11-15			
Coaxial Switcher	SCHWARZBECK	CX210	CX210	2023-11-16	2024-11-15			
V-LISN	SCHWARZBECK	NSLK 8127	01073	2023-11-16	2024-11-15			
LISN	AFJ	LS16/110VAC	16010020076	2023-02-23	2024-02-22			
EMI Receiver	ROHDE&SCHWA RZ	ESCI3	101422	2023-11-16	2024-11-15			

Duty Cycle					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	1	V1.00	1	1	/
RF Control Unit	Techy	TR1029-1	1	2023-11-16	2024-11-15
RF Sensor Unit	Techy	TR1029-2	1	2023-11-16	2024-11-15
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15

Maximum conducted output power							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	1	V1.00	1	/	1		
RF Control Unit	Techy	TR1029-1	1	2023-11-16	2024-11-15		
RF Sensor Unit	Techy	TR1029-2	1	2023-11-16	2024-11-15		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15		
WIDEBAND RADIO COMMNUNICATION	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15		



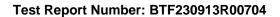
TESTER					
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15

Power spectral density							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	1	/	1		
RF Control Unit	Techy	TR1029-1	1	2023-11-16	2024-11-15		
RF Sensor Unit	Techy	TR1029-2	1	2023-11-16	2024-11-15		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15		

Emission bandwidth and occupied bandwidth							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	1	V1.00	1	1	/		
RF Control Unit	Techy	TR1029-1	1	2023-11-16	2024-11-15		
RF Sensor Unit	Techy	TR1029-2	1	2023-11-16	2024-11-15		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15		

Channel Availability Check Time								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	1	V1.00	1	/	1			
RF Control Unit	Techy	TR1029-1	1	2023-11-16	2024-11-15			
RF Sensor Unit	Techy	TR1029-2	/	2023-11-16	2024-11-15			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15			
Adjustable Direct	Dongguan	etm-6050c	20211026123	2023-11-16	2024-11-15			

Current Regulated Power Supply	Tongmen Electronic Technology Co., LTD	31			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15

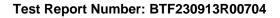

U-NII Detection Bandwidth								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	1	V1.00	1	1	/			
RF Control Unit	Techy	TR1029-1	1	2023-11-16	2024-11-15			
RF Sensor Unit	Techy	TR1029-2	1	2023-11-16	2024-11-15			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15			

Statistical Performance Check							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	1	V1.00	1	/	/		
RF Control Unit	Techy	TR1029-1	1	2023-11-16	2024-11-15		
RF Sensor Unit	Techy	TR1029-2	1	2023-11-16	2024-11-15		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15		

Channel Move Time, Channel Closing Transmission Time								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	1	V1.00	1	1	/			
RF Control Unit	Techy	TR1029-1	1	2023-11-16	2024-11-15			
RF Sensor Unit	Techy	TR1029-2	1	2023-11-16	2024-11-15			
Programmable constant temperature	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15			

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 10 of 13 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 10 of 131



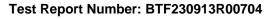
and humidity box					
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15

Non-Occupancy Perio	Non-Occupancy Period Test				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	1
RF Control Unit	Techy	TR1029-1	/	2023-11-16	2024-11-15
RF Sensor Unit	Techy	TR1029-2	/	2023-11-16	2024-11-15
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15

DFS Detection Thresh	DFS Detection Thresholds				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	1	V1.00	1	1	/
RF Control Unit	Techy	TR1029-1	1	2023-11-16	2024-11-15
RF Sensor Unit	Techy	TR1029-2	1	2023-11-16	2024-11-15
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15

Band edge emissions (Radiated)					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23
Preamplifier	SCHWARZBECK	BBV9744	00246	2023-11-16	2023-11-23

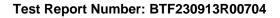
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2023-11-16	2024-11-15
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2023-11-16	2024-11-15
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2023-11-16	2024-11-15
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2023-11-16	2024-11-15
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2023-11-16	2024-11-15
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	2024-11-15
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2023-11-16	2024-11-15
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2023-11-16	2024-11-15
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2023-11-16	2024-11-15
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	80000	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	1	1	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2023-11-16	2024-11-15


Undesirable emission	limits (below 1GH	lz)			
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23
Preamplifier	SCHWARZBECK	BBV9744	00246	2023-11-16	2024-11-15
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2023-11-16	2024-11-15
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2023-11-16	2024-11-15
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2023-11-16	2024-11-15
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2023-11-16	2024-11-15
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2023-11-16	2024-11-15
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2023-11-16	2024-11-15
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2023-11-16	2024-11-15
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2023-11-16	2024-11-15
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	80000	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	1	1	1
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1

Test Report Number: BTF230913R00704

Log periodic antenna SCHWARZBECK	VULB 9168	01328	2021-11-28	2024-11-15
------------------------------------	-----------	-------	------------	------------

Undesirable emission limits (above 1GHz)					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23
Preamplifier	SCHWARZBECK	BBV9744	00246	2023-11-16	2024-11-15
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2023-11-16	2024-11-15
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2023-11-16	2024-11-15
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2023-11-16	2024-11-15
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2023-11-16	2024-11-15
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2023-11-16	2024-11-15
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2023-11-16	2024-11-15
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2023-11-16	2024-11-15
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2023-11-16	2024-11-15
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	1	1	1
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2023-11-16	2024-11-15



4.2 Test Auxiliary Equipment

The EUT was tested as an independent device.

4.3 Test Modes

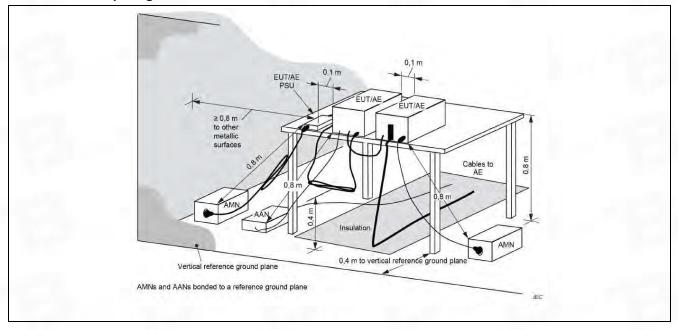
No.	Test Modes	Description
TM1	802.11a mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
TM2	802.11n mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
ТМ3	802.11ac mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. Only the data of worst case is recorded in the report.
TM4	Normal Operating	Keep the EUT works in normal operating mode and connect to companion device

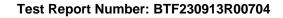
5 Evaluation Results (Evaluation)

5.1 Antenna requirement

	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
--	--

6 Radio Spectrum Matter Test Results (RF)

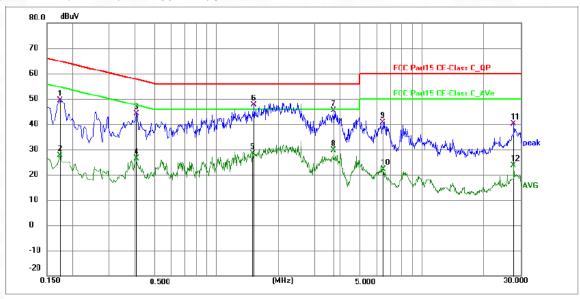

6.1 Conducted Emission at AC power line

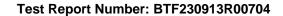

Test Requirement:	47 CFR Part 15.207(a)			
Test Method:		Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices		
	Frequency of emission (MHz)	Conducted limit (di	• •	
Test Limit:	0.15-0.5	Quasi-peak 66 to 56*	Average 56 to 46*	
	0.5-5 5-30	56 60	46 50	
	*Decreases with the logarithm of the frequency.			

6.1.1 E.U.T. Operation:

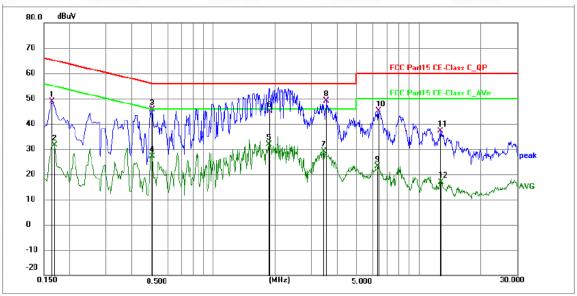
Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.1.2 Test Setup Diagram:

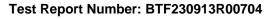



6.1.3 Test Data:

TM1 / Line: Line / Band 1/Mode:802.11a/CH:M


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1725	38.83	10.50	49.33	64.84	-15.51	QP	Р	
2	0.1725	17.20	10.50	27.70	54.84	-27.14	AVG	Р	
3	0.4065	33.68	10.57	44.25	57.72	-13.47	QP	Р	
4	0.4065	15.93	10.57	26.50	47.72	-21.22	AVG	Р	
5	1.5000	17.80	10.66	28.46	46.00	-17.54	AVG	Р	
6 *	1.5225	36.93	10.66	47.59	56.00	-8.41	QP	Р	
7	3.7095	34.85	10.65	45.50	56.00	-10.50	QP	Р	
8	3.7095	18.94	10.65	29.59	46.00	-16.41	AVG	Р	
9	6.4410	29.96	10.78	40.74	60.00	-19.26	QP	Р	
10	6.4545	11.44	10.78	22.22	50.00	-27.78	AVG	Р	
11	27.8070	28.97	11.22	40.19	60.00	-19.81	QP	Р	
12	27.8070	12.51	11.22	23.73	50.00	-26.27	AVG	Р	

Note:Reading=Receiver reading
Factor=Antenna factor+Cable loss
Level=Reading+Factor
Limit=Limit stated in standard
Margin=Measurement-Limits

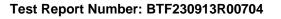


TM1 / Line: Neutral / Band 1/Mode:802.11a/CH:M

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1635	38.32	10.48	48.80	65.28	-16.48	QP	Р	
2	0.1680	21.14	10.49	31.63	55.06	-23.43	AVG	Р	
3	0.5055	35.01	10.58	45.59	56.00	-10.41	QP	Р	
4	0.5055	16.59	10.58	27.17	46.00	-18.83	AVG	Р	
5	1.8600	21.15	10.67	31.82	46.00	-14.18	AVG	Р	
6	1.8690	34.33	10.67	45.00	56.00	-11.00	QP	Р	
7	3.4395	18.53	10.64	29.17	46.00	-16.83	AVG	Р	
8 *	3.5565	38.39	10.64	49.03	56.00	-6.97	QP	Р	
9	6.3239	12.24	10.78	23.02	50.00	-26.98	AVG	Р	
10	6.3735	34.33	10.78	45.11	60.00	-14.89	QP	Р	_
11	12.7545	26.32	10.83	37.15	60.00	-22.85	QP	Р	
12	12.7905	6.16	10.83	16.99	50.00	-33.01	AVG	Р	

N Note:Reading=Receiver reading
Factor=Antenna factor+Cable loss
Level=Reading+Factor
Limit=Limit stated in standard
Margin=Measurement-Limits

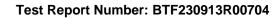
6.2 Duty Cycle


Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Method:	ANSI C63.10-2013 section 12.2 (b)
Test Limit:	No limits, only for report use.
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

6.2.1 E.U.T. Operation:

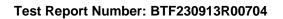
Operating Environment:			
Temperature:	25.5 °C		
Humidity:	50.6 %		
Atmospheric Pressure:	1010 mbar		

6.2.2 Test Data:


Please Refer to Appendix for Details.

6.3 Maximum conducted output power

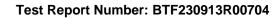
6.3 Maximum cond	ucted output power
Test Requirement:	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)
Test Method:	ANSI C63.10-2013, section 12.3
	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Test Limit:	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


	For the band 5.725-5.850 GHz, the maximum conducted output power over the
	frequency band of operation shall not exceed 1 W.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi.
	However, fixed point-to-point U-NII devices operating in this band may employ
	transmitting antennas with directional gain greater than 6 dBi without any
	corresponding reduction in transmitter conducted power. Fixed, point-to-point
	operations exclude the use of point-to-multipoint systems, omnidirectional
	applications, and multiple collocated transmitters transmitting the same
	information. The operator of the U-NII device, or if the equipment is professionally
	installed, the installer, is responsible for ensuring that systems employing high gain
	directional antennas are used exclusively for fixed, point-to-point operations.
	Method SA-1
	a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.
	b) Set RBW = 1 MHz.
	c) Set VBW >= 3 MHz.
	d) Number of points in sweep >= [2 × span / RBW]. (This gives bin-to-bin spacing
	<= RBW / 2, so
	that narrowband signals are not lost between frequency bins.)
	e) Sweep time = auto.
	f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample
	detector mode.
	g) If transmit duty cycle < 98%, use a video trigger with the trigger level set to
	enable triggering
	only on full power pulses. The transmitter shall operate at maximum power control
	level for the
Procedure:	entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF
	intervals) or
	at duty cycle >= 98%, and if each transmission is entirely at the maximum power
	control level,
	then the trigger shall be set to "free run."
	h) Trace average at least 100 traces in power averaging (rms) mode.
	i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW
	of the signal
	using the instrument's band power measurement function, with band limits set
	equal to the
	EBW or OBW band edges. If the instrument does not have a band power function,
	then sum the
	spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB
	EBW or 99%
	OBW of the spectrum.

6.3.1 E.U.T. Operation:

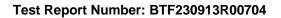
Operating Environment:			
Temperature:	25.5 °C		
Humidity:	50.6 %		
Atmospheric Pressure:	1010 mbar		

6.3.2 Test Data:


Please Refer to Appendix for Details.

Power spectral density

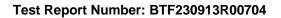
6.4 Power spectral	density
	47 CFR Part 15.407(a)(1)(i)
	47 CFR Part 15.407(a)(1)(ii)
Test Requirement:	47 CFR Part 15.407(a)(1)(iii)
	47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2)
	47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)
Test Method:	ANSI C63.10-2013, section 12.5
10011110010001	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum
	power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi.
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum
	power spectral density shall not exceed 17 dBm in any 1 megahertz band.
	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.
	Fixed point-to-point U-NII devices may employ antennas with directional gain up to
	23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain
	greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.
	Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is
Test Limit:	professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed,
	point-to-point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the band 5.725-5.850 GHz, the maximum power spectral density shall not
	exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum power spectral density shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII
	devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter
	g g. zata. man o azi manoa any semespenang rodustron in danomito


	conducted power.
	Fixed, point-to-point operations exclude the use of point-to-multipoint systems,
	omnidirectional applications, and multiple collocated transmitters transmitting the
	same information. The operator of the U-NII device, or if the equipment is
	professionally installed, the installer, is responsible for ensuring that systems
	employing high gain directional antennas are used exclusively for fixed,
	point-to-point operations.
	a) Create an average power spectrum for the EUT operating mode being tested by following the
	instructions in 12.3.2 for measuring maximum conducted output power using a
	spectrum
	analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2,
	SA-3, or their
	respective alternatives) and apply it up to, but not including, the step labeled,
	"Compute
	power" (This procedure is required even if the maximum conducted output
	power
	measurement was performed using the power meter method PM.)
	b) Use the peak search function on the instrument to find the peak of the spectrum.
	c) Make the following adjustments to the peak value of the spectrum, if applicable:
	1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty
	cycle, to the peak of the spectrum.
	2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7,
	add
Procedure:	1 dB to the final result to compensate for the difference between linear averaging
Procedure.	and
	power averaging.
	d) The result is the PPSD.
	e) The procedure in item a) through item c) requires the use of 1 MHz resolution
	bandwidth to
	satisfy the 1 MHz measurement bandwidth specified by some regulatory
	authorities.This
	requirement also permits use of resolution bandwidths less than 1 MHz "provided
	that the
	measured power is integrated to show the total power over the measurement
	bandwidth" (i.e.,
	1 MHz). If measurements are performed using a reduced resolution bandwidth and
	integrated
	over 1 MHz bandwidth, the following adjustments to the procedures apply:
	1) Set RBW >= 1 / T, where T is defined in 12.2 a).
	2) Set VBW >= [3 × RBW].
	3) Care shall be taken such that the measurements are performed during a period
	of continuous transmission or are corrected upward for duty cycle.

6.4.1 E.U.T. Operation:

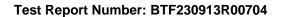
Operating Environment:		
Temperature:	25.5 °C	
Humidity:	50.6 %	
Atmospheric Pressure:	1010 mbar	

6.4.2 Test Data:


Please Refer to Appendix for Details.

6.5 Emission bandwidth and occupied bandwidth

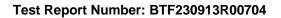
	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Requirement:	U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
Test Method:	ANSI C63.10-2013, section 6.9.3 & 12.4
rest inethod.	KDB 789033 D02, Clause C.2
Test Limit:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the
100t Elitilit.	minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
	Emission bandwidth:
	a) Set RBW = approximately 1% of the emission bandwidth.
	b) Set the VBW > RBW.
	c) Detector = peak. d) Trace mode = max hold.
	e) Measure the maximum width of the emission that is 26 dB down from the peak
	of the emission.
	Compare this with the RBW setting of the instrument. Readjust RBW and repeat
	measurement
	as needed until the RBW/EBW ratio is approximately 1%.
	Occupied bandwidth:
	a) The instrument center frequency is set to the nominal EUT channel center
	frequency. The
	frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times
	the OBW.
	b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW,
	and VBW shall be approximately three times the RBW, unless otherwise specified
	by the
	applicable requirement.
	c) Set the reference level of the instrument as required, keeping the signal from
Procedure:	exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral
Flocedule.	envelope
	shall be more than [10 log (OBW/RBW)] below the reference level. Specific
	guidance is given
	in 4.1.5.2.
	d) Step a) through step c) might require iteration to adjust within the specified range.
	e) Video averaging is not permitted. Where practical, a sample detection and single
	sweep mode
	shall be used. Otherwise, peak detection and max hold mode (until the trace
	stabilizes) shall be
	used. f) Use the 99% power bandwidth function of the instrument (if available) and report
	the measured
	bandwidth.
	g) If the instrument does not have a 99% power bandwidth function, then the trace
	data points are
	recovered and directly summed in linear power terms. The recovered amplitude data points,
	beginning at the lowest frequency, are placed in a running sum until 0.5% of the
	total is reached;
	that frequency is recorded as the lower frequency. The process is repeated until
	99.5% of the
	total is reached; that frequency is recorded as the upper frequency. The 99%


power bandwidth is
the difference between these two frequencies.
h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument
display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may
be reported in addition to the plot(s).
6 dB emission bandwidth:
a) Set RBW = 100 kHz.
b) Set the video bandwidth (VBW) ≥ 3 >= RBW.
c) Detector = Peak.
d) Trace mode = max hold.
e) Sweep = auto couple.
f) Allow the trace to stabilize.
g) Measure the maximum width of the emission that is constrained by the
frequencies associated with the two outermost amplitude points (upper and lower
frequencies) that are attenuated by 6 dB relative to the maximum level measured
in the fundamental emission.

6.5.1 E.U.T. Operation:

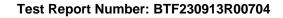
Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.5.2 Test Data:


Please Refer to Appendix for Details.

6.6 Band edge emissions (Radiated)

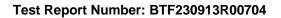
	47 CFR Part 15.407(b)	(1)						
	47 CFR Part 15.407(b)							
Test Requirement:	47 CFR Part 15.407(b)							
	47 CFR Part 15.407(b)	` '						
Test Method:			7.6					
Test Metriou.	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6 For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the							
	5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.							
	5. 15-5.55 GHZ balld Si	iaii not exceed an e.i.r.	p. 01 –27 abili/iv	IΠZ.				
	For transmitters operated All emissions shall be low the band edge, a linearly to a level of 15 from 5 MHz above or be dBm/MHz at the band of the shall be s	imited to a level of −27 e increasing linearly to and from 25 MHz above 6 dBm/MHz at 5 MHz elow the band edge inc	dBm/MHz at 75 10 dBm/MHz at e or below the ba above or below t	MHz or more above 25 MHz above or and edge increasing the band edge, and				
	MHz	· · · · ·	MUI	CH-				
		MHz	MHz	GHz				
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15				
	¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46				
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75				
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5				
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2				
	4.20725-4.20775	73-74.6	1645.5-1646.	9.3-9.5				
	4.20725-4.20775	73-74.0		9.3-9.5				
			5					
	6.215-6.218 6.26775-6.26825	74.8-75.2 108-121.94	1660-1710 1718.8-1722.	10.6-12.7 13.25-13.4				
Test Limit:	6.31175-6.31225	123-138	2 2200-2300	14.47-14.5				
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2				
	8.362-8.366	156.52475-156.525 25	2483.5-2500	17.7-21.4				
	8.37625-8.38675 8.41425-8.41475 12.29-12.293 12.51975-12.52025 12.57675-12.57725 13.36-13.41	156.7-156.9 162.0125-167.17 167.72-173.2 240-285 322-335.4	2690-2900 3260-3267 3332-3339 3345.8-3358 3600-4400	22.01-23.12 23.6-24.0 31.2-31.8 36.43-36.5 (²)				
	¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.							
	² Above 38.6							
	The field strength of en exceed the limits show MHz, compliance with measurement instrume 1000 MHz, compliance based on the average 15.35apply to these measurement in the strength of the str	n in § 15.209. At frequenthe limits in § 15.209shentation employing a Clewith the emission limit value of the measured	encies equal to c all be demonstra SPR quasi-peak s in § 15.209sha	or less than 1000 ated using a detector. Above all be demonstrated				
	Except as provided els	ewhere in this subpart,	the emissions fi	rom an intentional				



	radiator shall not exceed th	ne field strength levels specified	d in the following table:
	Frequency (MHz)	Field strength	Measurement
		(microvolts/meter)	distance
		,	(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	Above 1GHz:	300	3
Procedure:	above the ground at a 3 medegrees to determine the pb. The EUT was set 3 meter was mounted on the top of c. The antenna height is varied determine the maximum varied polarizations of the antenna d. For each suspected emitthe antenna was tuned to hof below 30MHz, the antenwas turned from 0 degrees e. The test-receiver system Bandwidth with Maximum has the emission level of the specified, then testing coul reported. Otherwise the emission level of the specified, then testing coul reported. Otherwise the emission adata sheet. g. Test the EUT in the lower has the EUT	IT was placed on the top of a reter fully-anechoic chamber. The position of the highest radiation ers away from the interference-a variable-height antenna town aried from one meter to four measure of the field strength. Both he are set to make the measure sion, the EUT was arranged to the lights from 1 meter to 4 meter na was tuned to heights 1 meter to 360 degrees to find the maximum as set to Peak Detect Functional Mode. The EUT in peak mode was 10dE and be stopped and the peak valuations that did not have 10dE peak or average method as specific and the X axis positioning which is until all frequencies measure on the lights are the highest emissions of the highest emissions of the highest emissions of the peak measurement is should all the peak measurement is should when testing, so only the above the did when testing, so only the above the highest emissions of the peak measurement is should when testing, so only the above the did when testing, so only the above the peak measurement is should when testing, so only the above the peak measurement is should when testing, so only the above the peak measurement is should when testing, so only the above the peak measurement is should when testing, so only the above the peak measurement is should when testing, so only the above the peak measurement is should when testing, so only the above the peak measurement is should when testing, so only the above the peak measurement is should when testing, so only the above the peak measurement is should when testing, so only the above the peak measurement is should when testing, so only the above the peak measurement is should when testing, so only the above the peak measurement is should when testing, so only the above the peak measurement is should when testing the peak measurement is should when testing the peak measurement is should when testing the peak measurement is the peak measurement is should when testing the peak measurement is the peak measurement is the peak measurement is the peak measurement is the peak measu	ne table was rotated 360 receiving antenna, which er. eters above the ground to norizontal and vertical ment. o its worst case and then rs (for the test frequency er) and the rotatable table ximum reading. ion and Specified B lower than the limit ues of the EUT would be recified and then reported I, the Highest channel. Lixis positioning for the it is the worst case. d was complete. The could be found when replitude of spurious an 20dB below the limit the field strength limits right of any emission shall and above by more than 20 whose peak level is lower win in the report. Inarmonics were the

6.6.1 E.U.T. Operation:

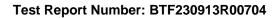
Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %

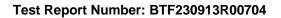


Atmospheric Pressure:

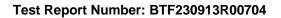
1010 mbar

6.6.2 Test Setup Diagram:



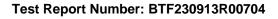

6.6.3 Test Data:

					_		Hz_Horizont	- 635	1	
No		Frequer (MHz		eading (BuV)	Facto (dB/m		Limit) (dBuV/m)	Margin (dB)	Detector	P/F
1		5096.6	75 4	2.32	5.28	47.60	68.2	-20.6	peak	P
2		5150.0	00 4	3.26	5.33	48.59	68.2	-19.61	peak	P
				UN	II-1 802	.11a _5180I	//Hz_Vertica	l		
N	D.	Frequer (MHz	7.5	ading BuV)	Factor (dB/m	The second second second	Limit) (dBuV/m)	Margin (dB)	Detector	P/F
		5085.1	55 40	0.95	5.28	46.23	68.2	-21.97	peak	P
2	2	5150.0	00 43	3.62	5.33	48.95	68.2	-19.25	peak	P
				UNII	-1 802.1	1a 5240M	Hz_Horizont	al		
No.		equency MHz)	Reading (dBuV)	g F	actor dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	53	50.000	42.29		5.45	47.74	68.2	-20,46	peak	Р
2	54	60.000	43.65	r =	5.52	49.17	68.2	-19.03	peak	Р
<u>`</u>				UN	II-1 802	.11a _5240I	//Hz_Vertica	ı		
No).	Frequen (MHz)		ding uV)	Factor (dB/m)		Limit (dBuV/m)	Margin (dB)	Detector	P/F
1		5350.00	0 42	.29	5.45	47.74	68.2	-20.46	peak	P
2		5460.00	0 44.	.32	5.52	49.84	68.2	-18.36	peak	P
				UNII	-3 802.1	1a _5745M	Hz_Horizont	al		
No.		equency (MHz)	Reading (dBuV)	-	Factor dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1		5650	47.01	7.1	5.63	52.64	68.2	-15.56	peak	P
2	1 = 1	5700	47.79	rž.	5.7	50.23	105.2	-54.97	peak	P
3		5720	48.99		5.66	50.06	110.8	-60.74	peak	Р
				UN	III-3 802	.11a _5745I	MHz_Vertica			
No.	1	requency (MHz)	Readii (dBu\		Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	74 Ji	5650	47.46	6	5.63	53.09	68.2	-15.11	peak	Р
2	-1 [5700	48.24	4	5.7	50.23	105.2	-54.97	peak	P
		5720	49.44		5.66	50.06	110.8	-60.74	peak	Р


- 1	-	www.co.co		_		Hz_Horizont		T- T	
No.		uency IHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	58	355	54.45	5.73	51.37	110.8	-59.43	peak	Р
2	58	375	51.34	5.74	57.08	105.2	-48.12	peak	Р
3	59	925	47.34	5.79	53.13	68.2	-15.07	peak	Р
				UNII-3 802	.11a _5825N	/IHz_ Vertica	ıl		
No.		equency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1		5855	53.79	5.73	51.37	110.8	-59.43	peak	Р
2		5875	50.68	5.74	56.42	105.2	-48.78	peak	Р
3		5925	46.68	5.79	52.47	68.2	-15.73	peak	P
					(10) =100				
	T		1	1	· ,-	MHz_Horizo		1 1	
No.		equency MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	50	60.880	44.51	5.28	49.79	68.2	-18.41	peak	Р
2	51	50.000	45.45	5.33	50.78	68.2	-17.42	peak	Р
			U	NII-1 802.1	1n(40) _519	0MHz_Verti	cal		
No	D.	Frequence (MHz)	6.0	100		Limit) (dBuV/m)	Margin (dB)	Detector	P/F
1		5049.36	0 43.9	3 5.28	49.21	68.2	-18.99	peak	P
2		5150.00	0 46.6	5.33	51.93	68.2	-16.27	peak	Р
			UN	II-1 802.11	n(40) _5230	MHz_Horizo	ntal		
No.		uency IHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5350	0.000	45.48	5.51	50.99	68.2	-17.21	peak	P
2	5460	0.000	46.84	5.58	52.42	68.2	-15.78	peak	P
			U	NII-1 802.	l1n(40)_523	0MHz_Vertic	al		
No).	Frequenc (MHz)	y Readin (dBuV	E III Latera v		Limit (dBuV/m)	Margin (dB)	Detector	P/F
1		5350.000	45.16	5.51	50.67	68.2	-17.53	peak	Р
2		5460.000	47.19	5.58	52.77	68.2	-15.43	peak	P
			UN	II-3 8 <mark>02.11</mark>	n(40) _5750	MHz_Horizo	ntal		
No.	-	uency IHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	56	650	45.91	5.63	51.54	68.2	-16.66	peak	Р
2	57	700	47.54	5.7	50.23	105.2	-54.97	peak	Р
2	0,								

	The same					I Deliverate 1		
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
7.55	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	7 22.22	10000
1	5650	46.34	5.63	51.97	68.2	-16.23	peak	P
2	5700	47.12	5.7	50.23	105.2	-54.97	peak	Р
3	5720	48.32	5.66	50.06	110.8	-60.74	peak	Р
		UNI	I-3802.11ı	n(40) _5795	MHz_Horizo	ontal		
	Frequency	Reading	Factor	Level	Limit	Margin		5/5
No.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	P/F
1	5855	51.78	5.73	51.37	110.8	-59.43	peak	Р
2	5875	49.23	5.74	54.97	105.2	-50.23	peak	Р
3	5925	44.56	5.79	50.35	68.2	-17.85	peak	Р
		UN	III-3 802.1	1n(40)_579	5MHz_ Verti	ical		
	Frequency	Reading	Factor	Level	Limit	Margin	6.14.11	5.5
No.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	P/F
1	5855	53.34	5.73	51.37	110.8	-59.43	peak	P
2	5875	50.23	5.74	55.97	105.2	-49.23	peak	Р
3	5925	46.23	5.79	52.02	68.2	-16.18	peak	Р

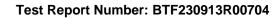
No.	Frequ (Mh		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5071	.013	45.75	5.28	51.03	68.2	-17.17	peak	P
2	5150	.000	46.69	5.33	52.02	68.2	-16.18	peak	P
3	5350	.000	46.27	5.51	51.78	68.2	-16.42	peak	P
4	5460	.000	47.63	5.58	53.21	68.2	-14.99	peak	P
			U	NII-3 802.1	1ac80) _52 ⁻	10MHz_Vert	ical		
- 0	0.	Frequency (MHz)	Readii (dBu\			Limit n) (dBuV/m)	Margin (dB)	Detector	P/F
N		1			FO.00	68.2	-18.2	peak	Р
		5037.325	44.72	5.28	50.00	00.2			
	1						-15.48	peak	P
		5037.325	47.39	5.33	52.72		-15.48 -17.19	peak peak	P



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5650	44.07	5.63	49.7	68.2	-24.3	peak	P
2	5700	47.12	5.7	50.23	105.2	-23.77	peak	Р
3	5720	49.89	5.66	50.06	110.8	-23.94	peak	P
4	5855	50,21	5.73	51.37	110.8	-22.63	peak	Р
5	5875	49.21	5.74	54.95	105.2	-50.25	peak	P
6	5925	46.17	5.79	51.96	68.2	-16.24	peak	Р

UNII-3 802.11ac(80)_5820MHz_ Vertical

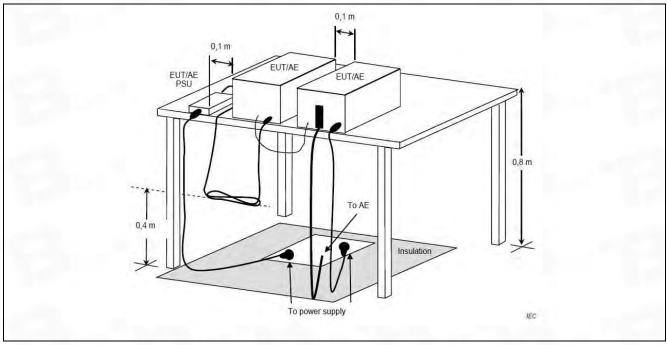
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5650	44.98	5.63	50.61	68.2	-17.59	peak	Р
2	5700	48.23	5.7	50.23	105.2	-54.97	peak	Р
3	5720	48.02	5.66	50.06	110.8	-60.74	peak	Р
4	5855	51,21	5.73	51.37	110.8	-59.43	peak	Р
5	5875	49.76	5.74	55.5	105.2	-49.7	peak	Р
6	5925	45.24	5.79	51.03	68.2	-17.17	peak	Р

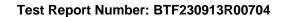

Note:Reading=Receiver reading Factor=Antenna factor+Cable loss Level=Reading+Factor Limit=Limit stated in standard Margin=Measurement-Limits

6.7 Undesirable emission limits (below 1GHz)

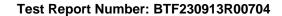
Test Requirement:	47 CFR Part 15.407(b)	, ,	
Test Method:		ction 12.7.4, 12.7.5, 12.7.6	
	limits set forth in § 15.2 Except as provided els	elow 1 GHz must comply with to 209. ewhere in this subpart, the emised the field strength levels specifield strength (microvolts/meter)	ssions from an intentional
Test Limit:		,	(meters)
	0.009-0.490 0.490-1.705 1.705-30.0 30-88 88-216 216-960 Above 960	2400/F(kHz) 24000/F(kHz) 30 100 ** 150 ** 200 ** 500	300 30 30 3 3 3 3 3
Procedure:	above the ground at a a degrees to determine the b. The EUT was set 3 dwhich was mounted on c. The antenna height i determine the maximur polarizations of the antenna was tuned of below 30MHz, the arwas turned from 0 degree. The test-receiver system Bandwidth with Maximur f. If the emission level of specified, then testing or reported. Otherwise the re-tested one by one used that sheet. g. Test the EUT in the left in the rediation measured that the EUT in the left in the rediation measured that the EUT in the left in the EUT. In the left in the EUT in the EUT in the left in the EUT in the EUT in the left in the EUT in the	EUT was placed on the top of 3 meter semi-anechoic chamber he position of the highest radiator 10 meters away from the interpretate the top of a variable-height and so varied from one meter to four movelue of the field strength. Because emission, the EUT was arranged to heights from 1 meter to 4 meterna was tuned to heights 1 meters to 360 degrees to find the stem was set to Peak Detect Fully Hold Mode. Of the EUT in peak mode was 1 could be stopped and the peak elemissions that did not have 10 sing quasi-peak method as specific was are performed in X, Y, different are the highest emission opinits had been displayed. The liator which are attenuated more own 1GHz was very low and the hen testing, so only the above in the strength of the power of the powe	er. The table was rotated 360 cion. Inference-receiving antenna, tenna tower. Interest above the ground to out horizontal and vertical urement. Interest do its worst case and then eters (for the test frequency neter) and the rotatable table maximum reading. Inction and Specified OdB lower than the limit values of the EUT would be odB margin would be cified and then reported in a neel, the Highest channel. It is the worst case. In a value of the worst case. In a value of the worst case. In a value of the worst case. In a could be found when amplitude of spurious at than 20dB below the limit tharmonics were the highest

- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

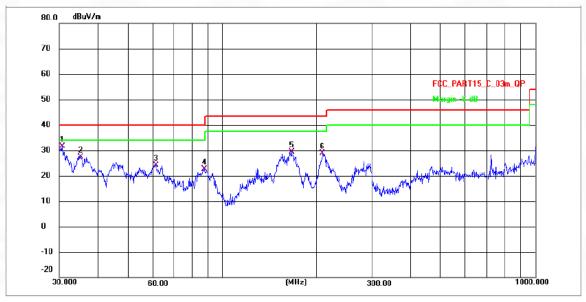

6.7.1 E.U.T. Operation:


Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

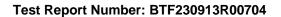
6.7.2 Test Setup Diagram:


6.7.3 Test Data:

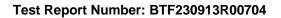
TM1 / Polarization: Horizontal / Band 1/Mode:802.11a/CH:M


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	30.5306	35.01	-18.67	16.34	40.00	-23.66	QP	Р
2	36.9600	33.58	-18.44	15.14	40.00	-24.86	QP	Р
3	141.0822	46.23	-27.86	18.37	43.50	-25.13	QP	Р
4	289.5092	44.81	-25.51	19.30	46.00	-26.70	QP	Р
5	392.0951	50.27	-24.70	25.57	46.00	-20.43	QP	Р
6 *	524.5541	48.45	-21.40	27.05	46.00	-18.95	QP	Р

Note:Reading=Receiver reading
Factor=Antenna factor+Cable loss
Level=Reading+Factor
Limit=Limit stated in standard
Margin=Measurement-Limits



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	30.6379	51.37	-19.63	31.74	40.00	-8.26	QP	Р
2	35.1278	48.02	-20.63	27.39	40.00	-12.61	QP	Р
3	61.2389	44.37	-20.14	24.23	40.00	-15.77	QP	Р
4	87.2645	39.30	-16.69	22.61	40.00	-17.39	QP	Р
5	166.0680	43.60	-14.28	29.32	43.50	-14.18	QP	Р
6	208.9463	44.56	-15.69	28.87	43.50	-14.63	QP	Р

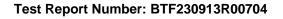

Note:Reading=Receiver reading
Factor=Antenna factor+Cable loss
Level=Reading+Factor
Limit=Limit stated in standard
Margin=Measurement-Limits

6.8 Undesirable emission limits (above 1GHz)

6.8 Undesirable e	mission limits (abov	•							
	47 CFR Part 15.407(b)								
Test Requirement:	47 CFR Part 15.407(b)								
rest requirement.	47 CFR Part 15.407(b))(4)							
	47 CFR Part 15.407(b))(10)							
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6								
		ting in the 5.15-5.25 GH							
		hall not exceed an e.i.r.							
		ting in the 5.25-5.35 GH							
	5.15-5.35 GHz band sl	nall not exceed an e.i.r.	p. of −27 dBm/M	1Hz.					
	For transmitters operate	ting solely in the 5.725-	5 850 GHz band	ı.					
		limited to a level of −27							
		e increasing linearly to							
		and from 25 MHz above							
		.6 dBm/MHz at 5 MHz							
		pelow the band edge in							
	dBm/MHz at the band		breasing inteatry	to a level of 27					
	MHz	MHz	MHz	GHz					
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15					
	10.495-0.505	16.69475-16.69525		5.35-5.46					
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75					
			1300-1427						
	4.125-4.128	25.5-25.67		8.025-8.5					
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2					
	4.20725-4.20775	73-74.6	1645.5-1646.	9.3-9.5					
	0.045.0.040	74.0.75.0	5	40 0 40 7					
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7					
	6.26775-6.26825	108-121.94	1718.8-1722.	13.25-13.4					
	6 24475 6 24225	100 100	2	11 17 11 5					
Test Limit:	6.31175-6.31225	123-138	2200-2300	14.47-14.5					
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2					
	8.362-8.366	156.52475-156.525 25	2483.5-2500	17.7-21.4					
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12					
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0					
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8					
	12.51975-12.52025		3345.8-3358	36.43-36.5					
	12.57675-12.57725	322-335.4	3600-4400	(²)					
	13.36-13.41	322-333.4	3000-4400	()					
	4								
	Until February 1, 1999	9, this restricted band s	hall be 0.490-0.5	510 MHz.					
	² Above 38.6								
	The field strength of er	missions appearing with	nin these frequer	ncy bands shall not					
		n in § 15.209. At freque							
		the limits in § 15.209sh							
		entation employing a CI							
		with the emission limit							
		value of the measured							
	15.35apply to these me								
	Except as provided els	ewhere in this subpart,	the emissions for	rom an intentional					
		ed the field strength lev							
	Frequency (MHz)	Field strength		Measurement					
	1 Toquotioy (IVII IZ)	i ioid sticilgtii		Wicacaroniont					

		(microvolts/meter)	distance
		· · · · · · · · · · · · · · · · · · ·	(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
		150 **	3
	88-216		3
	216-960	200 **	3
	Above 960	500	3
	Above 1GHz:		
		he EUT was placed on the top of	
	above the ground at	a 3 meter fully-anechoic chamber	The table was rotated 360
	degrees to determine	the position of the highest radiat	ion.
		3 meters away from the interferen	
		top of a variable-height antenna t	
		t is varied from one meter to four	
		um value of the field strength. Bo	
		ntenna are set to make the meas	
		d emission, the EUT was arrange	
		ed to heights from 1 meter to 4 me	
		antenna was tuned to heights 1 n	
		grees to 360 degrees to find the	
		system was set to Peak Detect Fu	inction and Specified
	Bandwidth with Maxir	mum Hold Mode.	
	f. If the emission leve	of the EUT in peak mode was 1	0dB lower than the limit
	specified, then testing	g could be stopped and the peak	values of the EUT would be
		the emissions that did not have 10	
		using peak or average method as	
Procedure:	in a data sheet.	domig pour or average moures at	o openiou ana mem reperteu
1 Toobaaro.		e lowest channel, the middle char	nnel the Highest channel
		surements are performed in X, Y,	
		and found the X axis positioning w	
		edures until all frequencies meas	
	Remark:	edures urilii aii irequericies meas	ureu was complete.
		I. Oakla I. aast Automa Fastan F	S
		I+ Cable Loss+ Antenna Factor- F	
		to 40GHz, the disturbance above	
		ove plots are the highest emissior	
		e points had been displayed. The	
		adiator which are attenuated more	e than 20dB below the limit
	need not be reported		
	3. As shown in this se	ection, for frequencies above 1GH	Hz, the field strength limits
		e limits. However, the peak field s	
		num permitted average limits spe	
	TOUCHOOCH THE HIRAIN	inam permitted average ininto spec	Singa above by filore triail 20

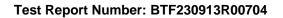
6.8.1 E.U.T. Operation:


Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

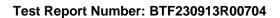
dB under any condition of modulation. For the emissions whose peak level is lower

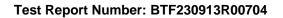
than the average limit, only the peak measurement is shown in the report.

4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been


displayed.

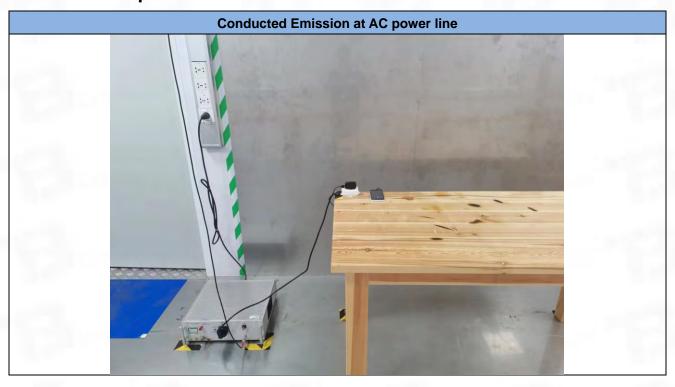
6.8.2 Test Data:

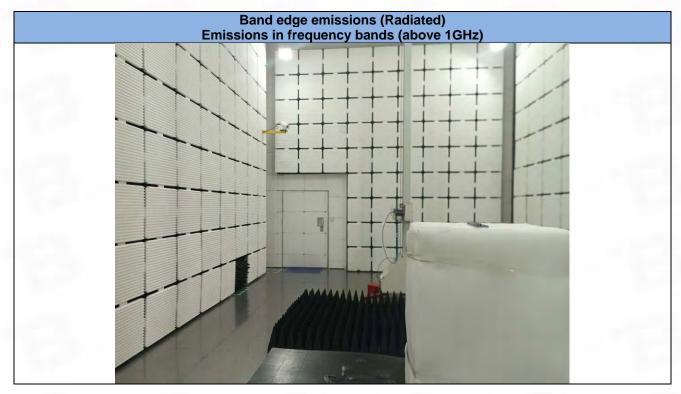

				UNII-1_8	02.11a_518	80MHz_Hor	rizontal			
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	
	1	10360.000	80.68	-24.45	56.23	74.00	-17.77	peak	Р	
	2	15540.000	81.89	-21.50	60.39	74.00	-13.61	peak	Р	
				UNII-1_80)2.11a _518	80MHz_Ve	rtical			
	No.	Frequenc (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	
	1	10360.00	0 81.78	-21.50	60.28	74.00	-13.72	peak	Р	
L	2	15540.00	0 80.77	-24.45	56.32	74.00	-17.68	peak	Р	
			Į	JNII-1_802	2.11a _5200	MHz_Horiz	zontal			
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	
ľ	1	10400.000	80.12	-24.47	55.65	74.00	-18.35	peak	Р	
	2	15600.000	81.33	-21.51	59.82	74.00	-14.18	peak	Р	
				UNII-1 80	02.11a 520	00MHz Vei	rtical			
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	
t	1	10400.000		-24.47	56.40	74.00	-17.60	peak	Р	1
	2	15600.000	81.10	-21.51	59.59	74.00	-14.41	peak	Р	
		•	į (JNII-1_802	2.11a _5240	MHz_Hori	zontal			
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	
	1	10480.000	79.47	-24.51	54.96	74.00	-19.04	peak	Р	
	2	15720.000	80.68	-21.53	59.15	74.00	-14.85	peak	Р	
			-	UNII-1_80	02.11a _52	40MHz_Vei	rtical		-	
	No.	Frequenc (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	
	1	10480.00	0 80.41	-24.51	55.90	74.00	-18.10	peak	Р	
L	2	15720.00	0 80.64	-21.53	59.11	74.00	-14.89	peak	Р	
				UNII-3_80)2.11a _574	45MHz_Hoi	rizontal			
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	
Ī	1	11490.000	81.21	-23.07	58.14	74.00	-15.86	peak	Р	

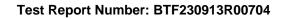

			UNII-3_8	302.11a _57	745MHz_Ve	ertical			
No.	Frequenc (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	
1	11490.00	0 80.84	-23.07	57.77	74.00	-16.23	peak	Р	1
2	17235.00	0 82.69	-17.36	65.33	74.00	-8.67	peak	Р	
			JNII-3_802	2.11a _578	5MHz_Horiz	zontal			
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F	1
INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F	
1	11570.000	80.58	-22.95	57.63	74.00	-16.37	peak	Р	
2	17355.000	82.60	-16.89	65.71	74.00	-8.29	peak	Р	
			UNII-3 80	02.11a 578	85MHz Ver	tical			
	Frogues	ou Dooding	Factor	Level	Limit	+		1	1
No	Frequen (MHz)	-	(dB/m)	(dBuV/m)		Margin (dB)	Detector	P/F	
1	11570.00	_ ` '	-22.95	57.04	74.00	-16.96	peak	P	
2	17355.00		-16.89	64.95	74.00	-9.05	peak	P	
			JNII-3_802	2.11a _582	5MHz_Horiz	zontal			
	Frequency	Reading	Factor	Level	Limit	Margin	5	B.(F	1
No.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	P/F	
1	11650.000	81.60	-22.80	58.80	74.00	-15.20	peak	Р	
2	17475.000	83.62	-16.41	67.21	74.00	-6.79	peak	Р	
		,	UNII-3_80	02.11a _582	25MHz_Ver	tical		•	
No	Frequen (MHz)	,	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	
1	11650.0	_ ` .	-22.80	58.72	74.00	-15.28	peak	Р	
2	17475.0		-16.41	66.96	74.00	-7.04	peak	Р	1

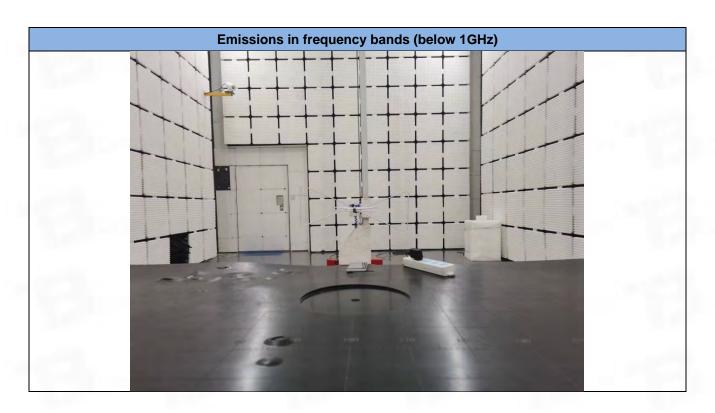
		Ų	JNII-1_802	11n(40)_51	90MHz_Hor	izontal		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10380.000	81.66	-24.45	57.21	74.00	-16.79	peak	Р
2	15570.000	82.87	-21.50	61.37	74.00	-12.63	peak	P
			UNII-1_80	2.11n(40)_5	190MHz_Ve	ertical		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10380.000	81.78	-21.50	60.28	74.00	-13.72	peak	Р
2	15570.000	80.77	-24.45	56.32	74.00	-17.68	peak	Р

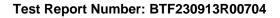
	Frequency	Reading	Factor	Level	Limit	Margin		
No.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	P/F
1	10460.000	80.87	-24.51	56.36	74.00	-17.64	peak	P
2	15690.000	82.08	-21.53	60.55	74.00	-13.45	peak	Р
			JNII-1_802	2.11n(40)_52	30MHz_Vert	tical		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10460.000	80.41	-24.51	55.90	74.00	-18.10	peak	Р
2	15690.000	80.64	-21.53	59.11	74.00	-14.89	peak	Р
		ι	JNII-3_802	.11n(40) _57	55MHz_Hor	rizontal		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11510.000	80.65	-23.07	57.58	74.00	-16.42	peak	Р
2	17265.000	82.67	-17.36	65.31	74.00	-8.69	peak	Р
	Frequency	Reading	UNII-3_80 Factor	2.11n(40)_5 Level	755MHz_Ve	ertical Margin		P/F
No.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	
	(IVII-IZ)	(ubuv)			(42477117)	1/		P/F
1	11590.000	79.63	-23.07	56.56	74.00	-17.44	peak	P
1 2				56.56 64.12	,		peak peak	3.77
	11590.000	79.63 81.48	-23.07 -17.36		74.00 74.00	-17.44 -9.88		Р
	11590.000	79.63 81.48	-23.07 -17.36	64.12	74.00 74.00	-17.44 -9.88		P P
2	11590.000 17385.000 Frequency	79.63 81.48 U Reading	-23.07 -17.36 NII-3_802. Factor	64.12 11n(40)_5799 Level	74.00 74.00 5MHz_Horiz Limit	-17.44 -9.88 contal Margin	peak	P P
No.	11590.000 17385.000 Frequency (MHz)	79.63 81.48 U Reading (dBuV)	-23.07 -17.36 NII-3_802. Factor (dB/m)	64.12 11n(40)_5799 Level (dBuV/m)	74.00 74.00 5MHz_Horiz Limit (dBuV/m)	-17.44 -9.88 contal Margin (dB)	peak	P P
2 No.	11590.000 17385.000 Frequency (MHz) 11590.000	79.63 81.48 U Reading (dBuV) 80.00 82.02	-23.07 -17.36 NII-3_802. Factor (dB/m) -22.80 -16.41	64.12 11n(40)_5799 Level (dBuV/m) 57.20	74.00 74.00 5MHz_Horiz Limit (dBuV/m) 74.00 74.00	-17.44 -9.88 contal Margin (dB) -16.80 -8.39	peak Detector peak	P P
2 No.	11590.000 17385.000 Frequency (MHz) 11590.000 17385.000	79.63 81.48 U Reading (dBuV) 80.00 82.02	-23.07 -17.36 NII-3_802. Factor (dB/m) -22.80 -16.41	64.12 11n(40)_5799 Level (dBuV/m) 57.20 65.61	74.00 74.00 5MHz_Horiz Limit (dBuV/m) 74.00 74.00	-17.44 -9.88 contal Margin (dB) -16.80 -8.39	peak Detector peak	P P
No. 1 2	11590.000 17385.000 Frequency (MHz) 11590.000 17385.000	79.63 81.48 U Reading (dBuV) 80.00 82.02	-23.07 -17.36 NII-3_802. Factor (dB/m) -22.80 -16.41 JNII-3_802 Factor	64.12 11n(40)_5799 Level (dBuV/m) 57.20 65.61 2.11n(40)_579 Level	74.00 74.00 5MHz_Horiz Limit (dBuV/m) 74.00 74.00 95MHz_Veri	-17.44 -9.88 contal Margin (dB) -16.80 -8.39 tical Margin	Detector peak peak	P P

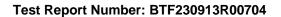

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10420.000	80.49	-24.56	55.93	74.00	-18.07	peak	Р
2	15630.000	81.70	-21.61	60.09	74.00	-13.91	peak	Р
			UNII-1_80	2.11ac(80)_5	210MHz_Ve	ertical		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10420.000	81.78	-21.50	60.28	74.00	-13.72	peak	Р
2	15630.000	80.77	-24.45	56.32	74.00	-17.68	peak	Р
		UI	VII-3_802.	11ac(80)_577	5MHz_Horiz	ontal		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11550.000	80.12	-24.63	55.49	74.00	-18.51	peak	Р
2	17325.000	81.33	-21.67	59.66	74.00	-14.34	peak	Р
		l	JNII-3_802	2.11ac(80)_57	75MHz_Ver	tical		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11550.000	81.61	-24.63	56.98	74.00	-17.02	peak	Р
2	17325.000	81.84	-21.67	60.17	74.00	-13.83	peak	Р

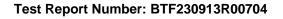

Note:Reading=Receiver reading Factor=Antenna factor+Cable loss Level=Reading+Factor Limit=Limit stated in standard Margin=Measurement-Limits




Test Setup Photos



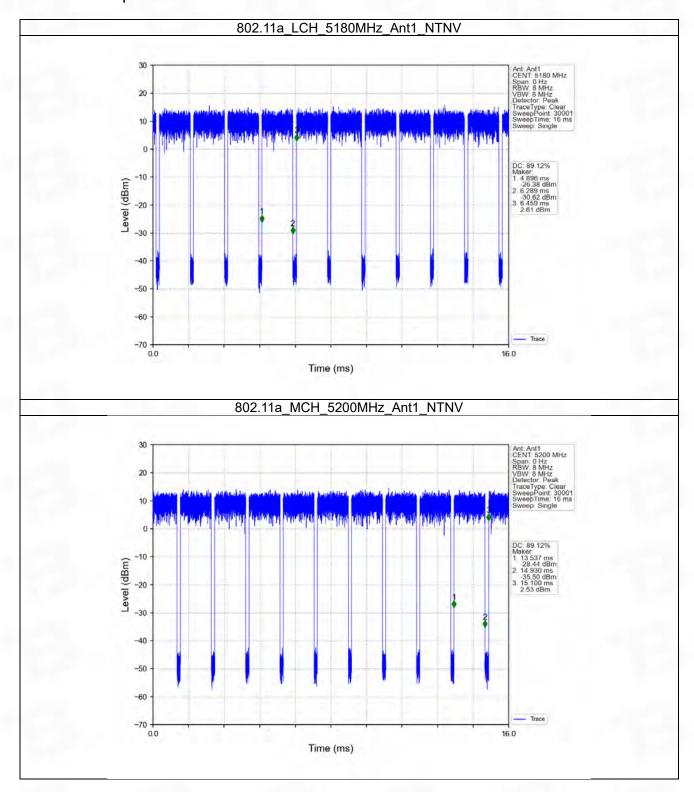



EUT Constructional Details (EUT Photos)

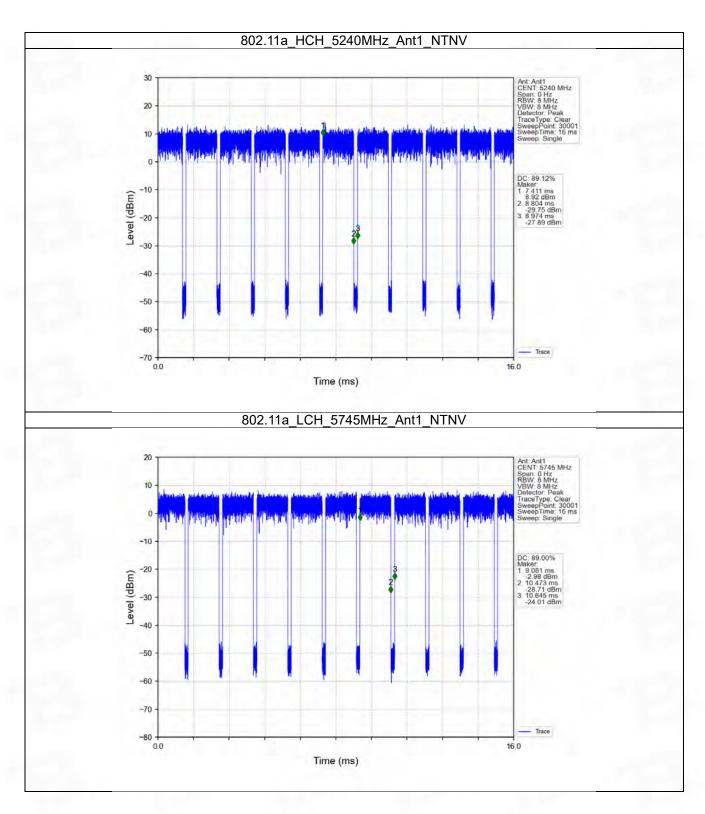
Please refer to the test report No. BTF240105R00401

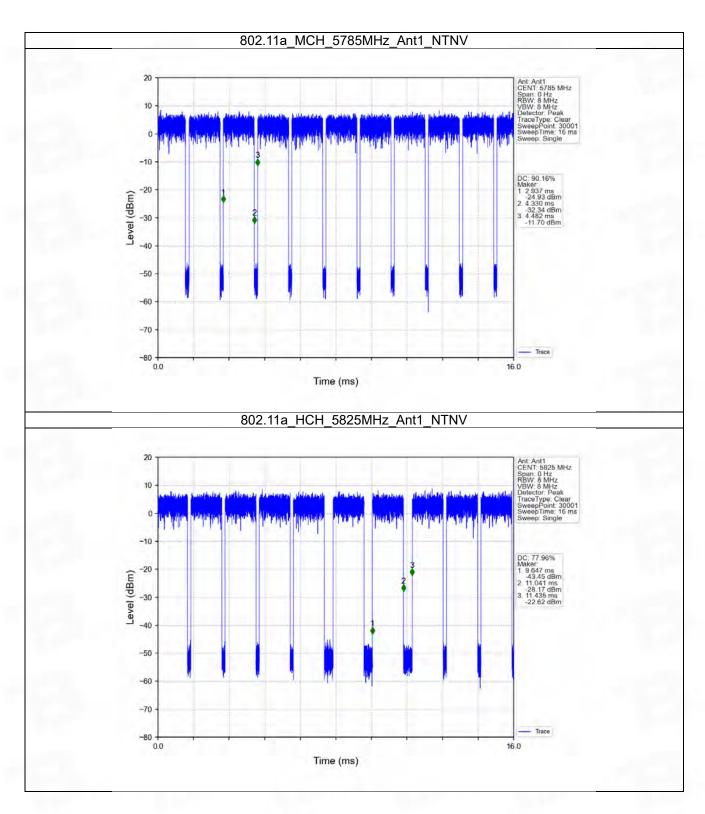
Appendix

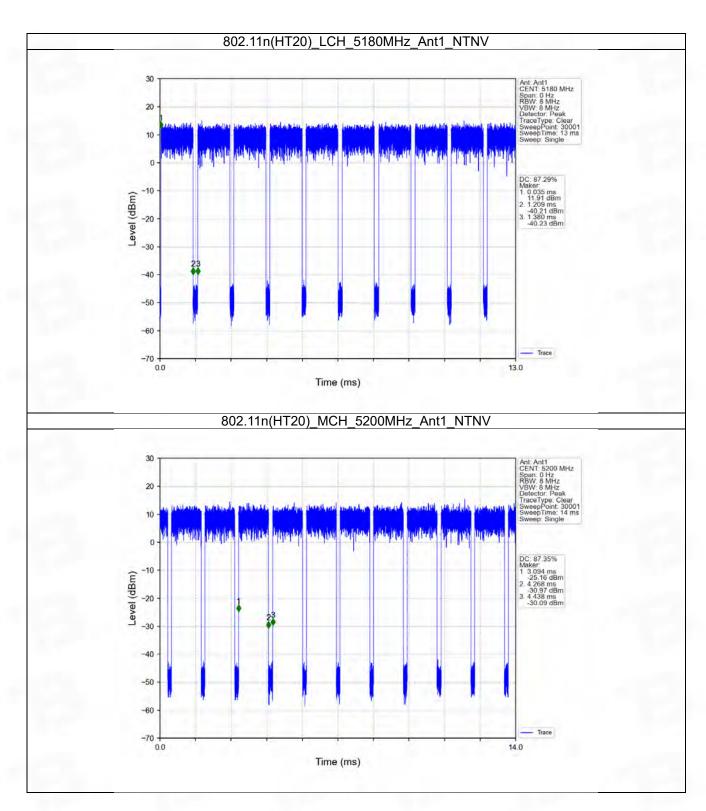
1. Duty Cycle

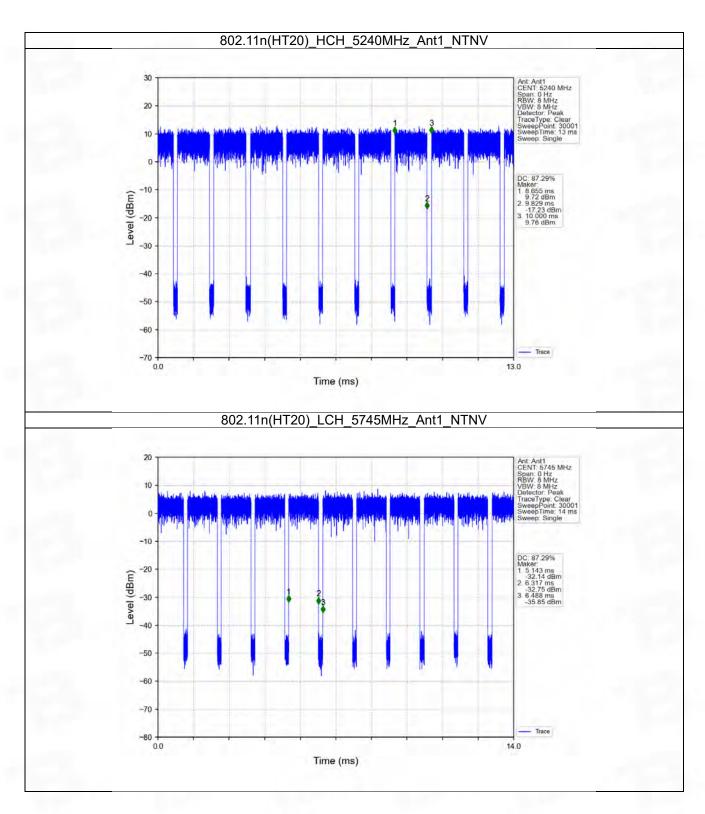

1.1 Ant1

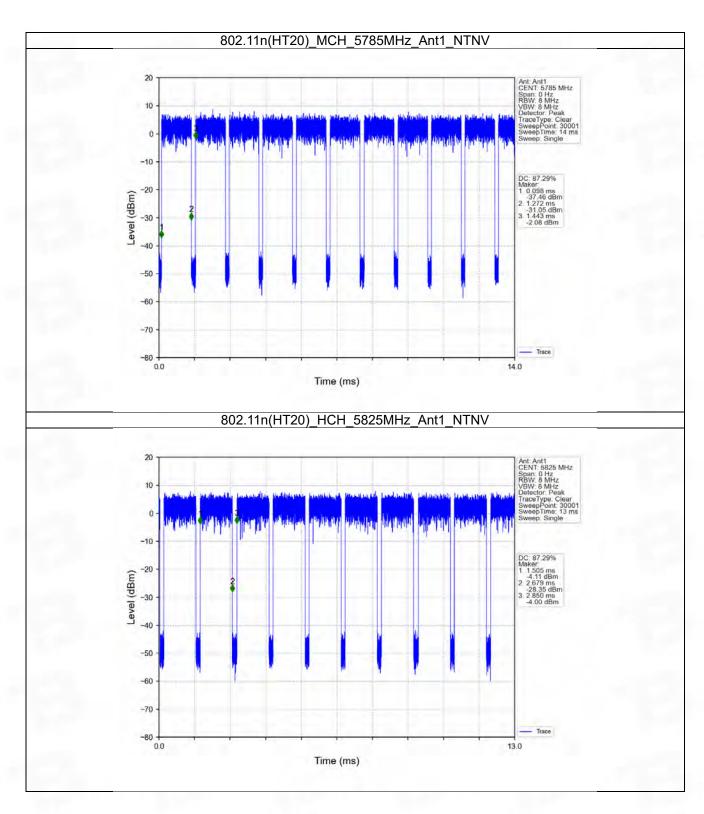
1.1.1 Test Result

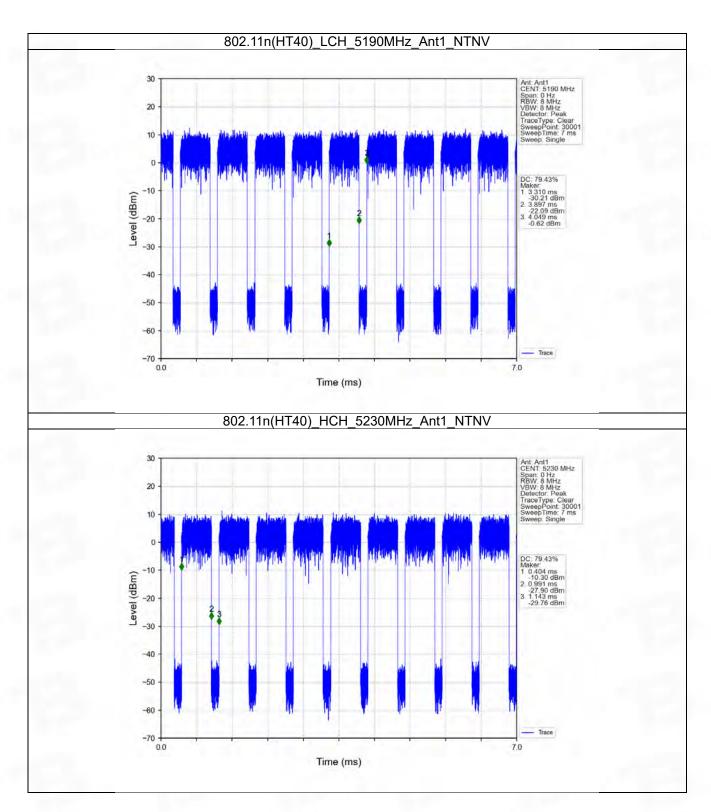

					Ant1		
Mode	TX	Frequency	T_on	Period	Duty Cycle	Duty Cycle	Max. DC
wode	Type	(MHz)	(ms)	(ms)	(%)	Correction Factor (dB)	Variation (%)
		5180	1.393	1.563	89.12	0.50	1.58
		5200	1.393	1.563	89.12	0.50	1.58
802.11a	SISO	5240	1.393	1.563	89.12	0.50	1.58
002.11a	3130	5745	1.392	1.564	89.00	0.51	1.67
		5785	1.393	1.545	90.16	0.45	0.53
		5825	1.394	1.788	77.96	1.08	12.75
		5180	1.174	1.345	87.29	0.59	1.78
		5200	1.174	1.344	87.35	0.59	1.79
802.11n	SISO	5240	1.174	1.345	87.29	0.59	1.81
(HT20)	3130	5745	1.174	1.345	87.29	0.59	1.76
		5785	1.174	1.345	87.29	0.59	1.82
		5825	1.174	1.345	87.29	0.59	1.81
		5190	0.587	0.739	79.43	1.00	1.02
802.11n	In SISO	5230	0.587	0.739	79.43	1.00	0.99
(HT40)	3130	5755	0.587	0.739	79.43	1.00	1.00
		5795	0.588	0.739	79.57	0.99	0.99
		5180	1.186	1.356	87.46	0.58	1.78
		5200	1.186	1.356	87.46	0.58	1.82
802.11ac	SISO	5240	1.186	1.356	87.46	0.58	1.82
(VHT20)	3130	5745	1.186	1.356	87.46	0.58	1.75
		5785	1.186	1.356	87.46	0.58	1.78
		5825	1.185	1.356	87.39	0.59	1.82
		5190	0.591	0.761	77.66	1.10	2.90
802.11ac	SISO	5230	0.592	0.761	77.79	1.09	2.86
(VHT40)	3130	5755	0.592	0.743	79.68	0.99	0.99
		5795	0.591	0.761	77.66	1.10	2.86
802.11ac	SISO	5210	0.296	0.466	63.52	1.97	3.92
(VHT80)	3130	5775	0.302	0.466	64.81	1.88	4.04

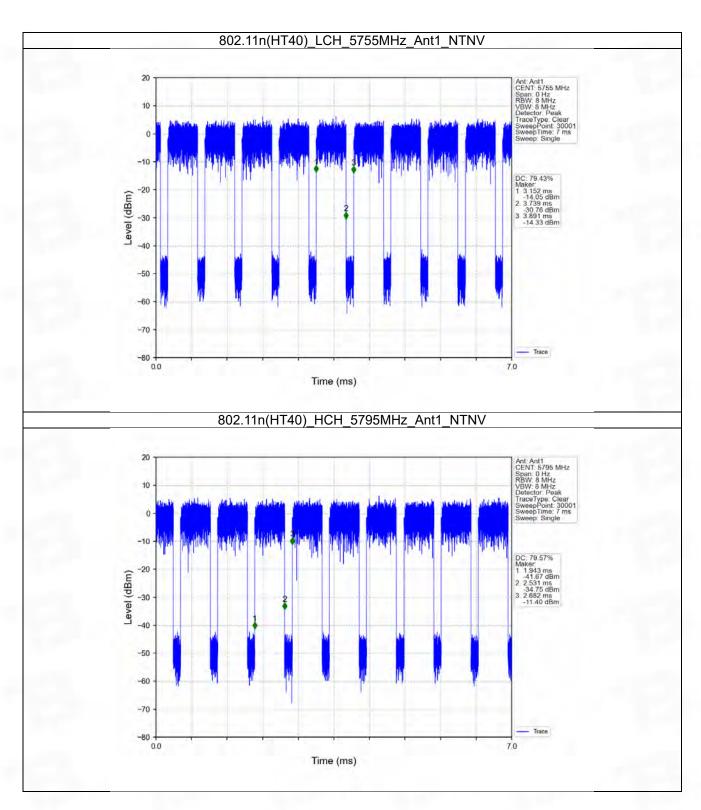

1.1.2 Test Graph



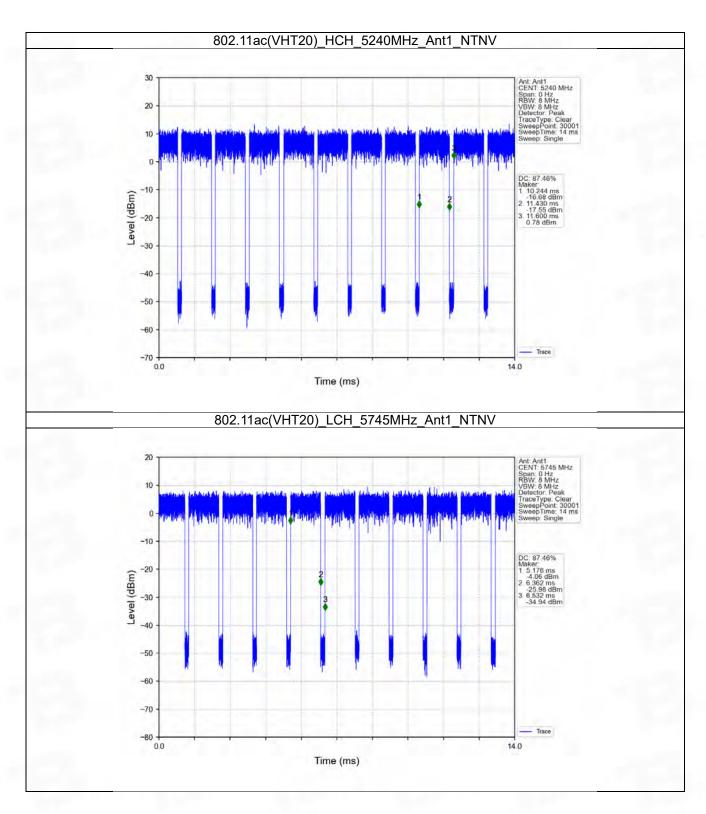


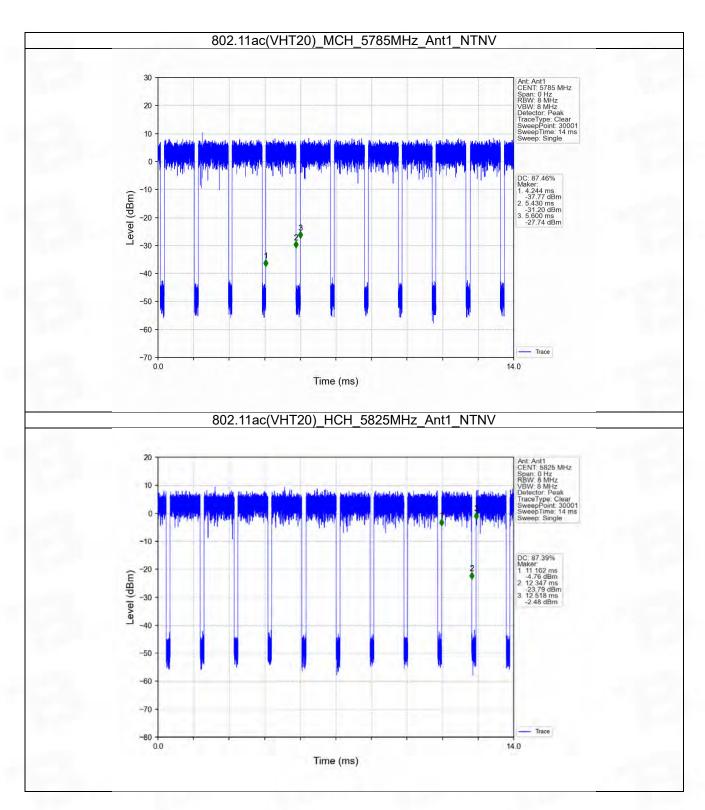


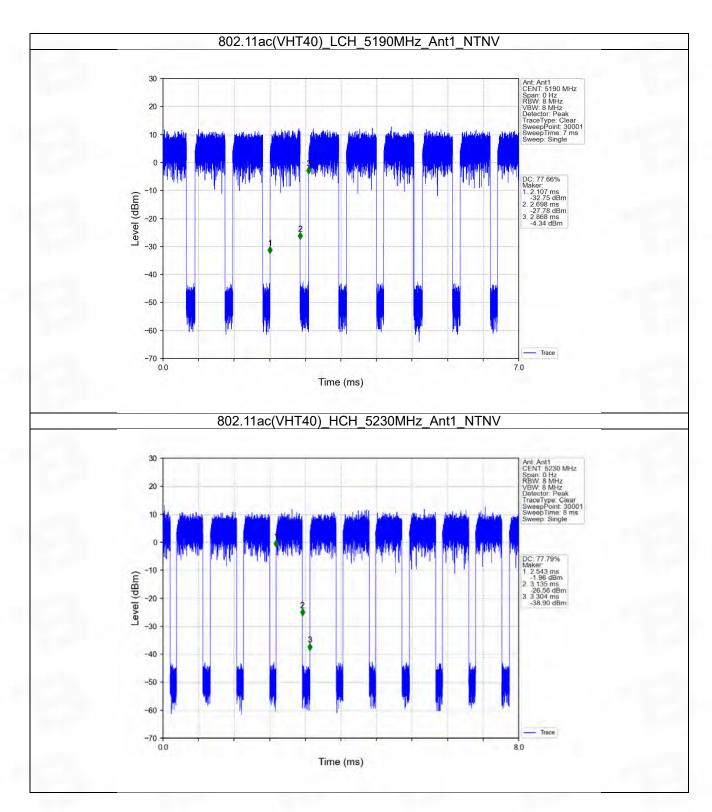


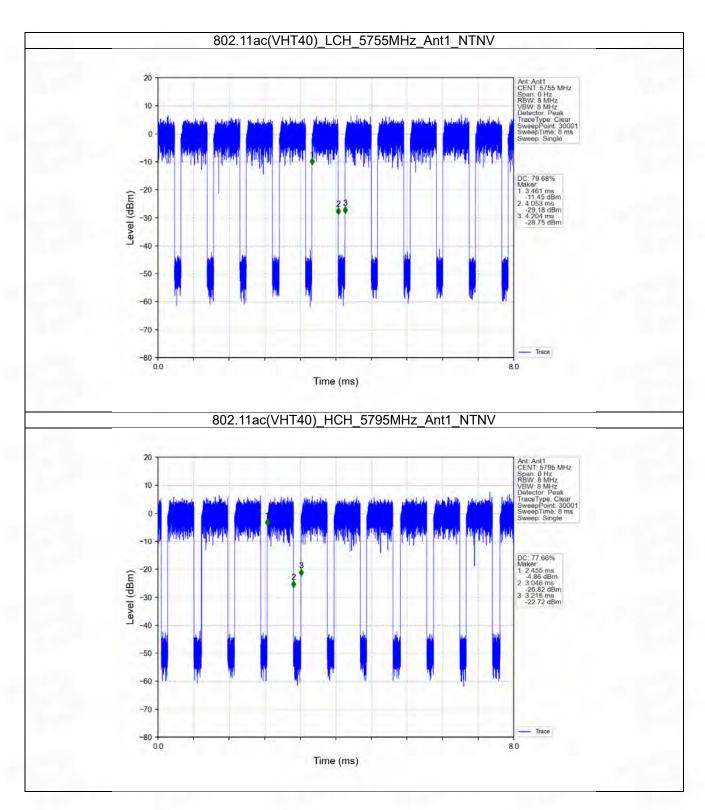


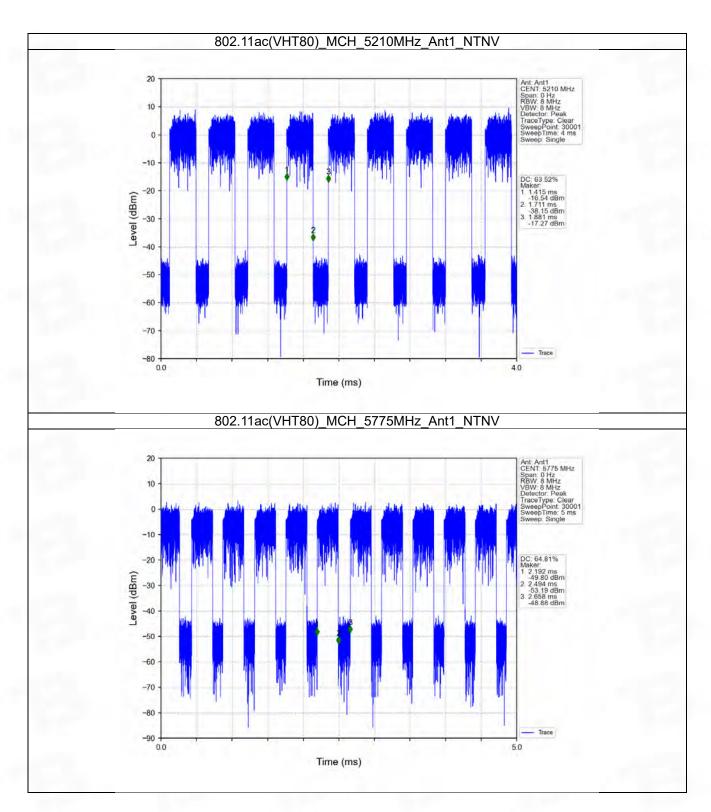


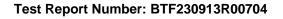




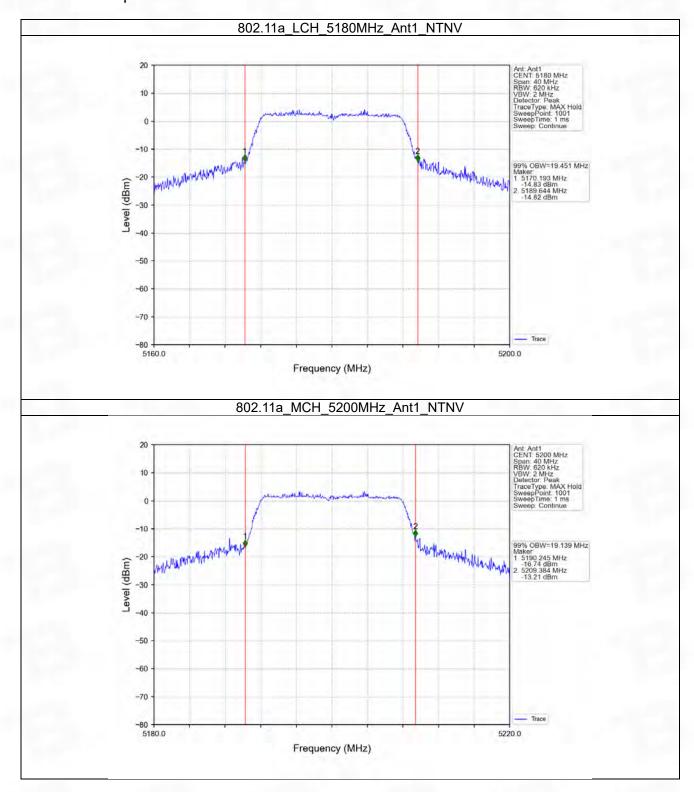




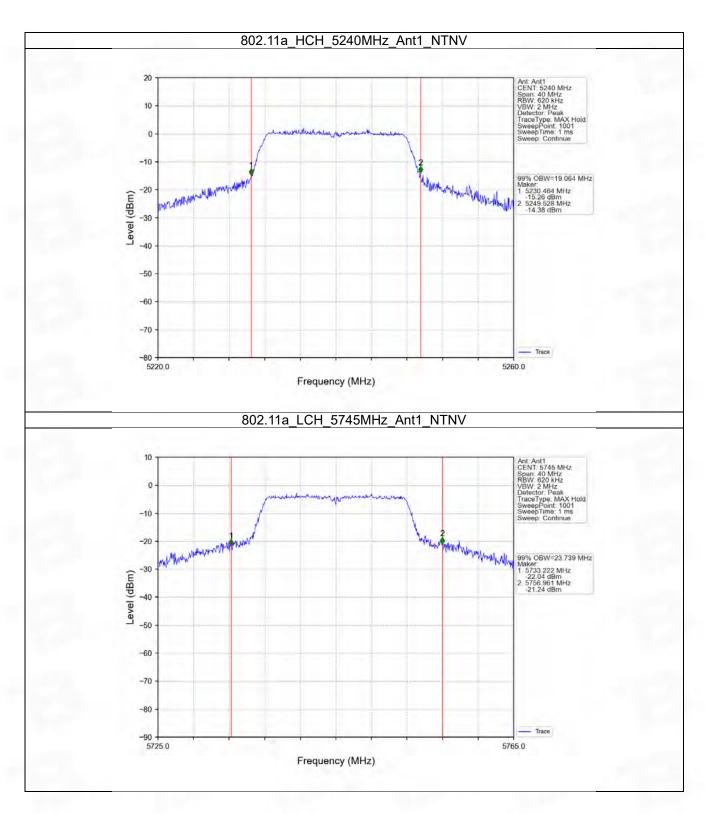


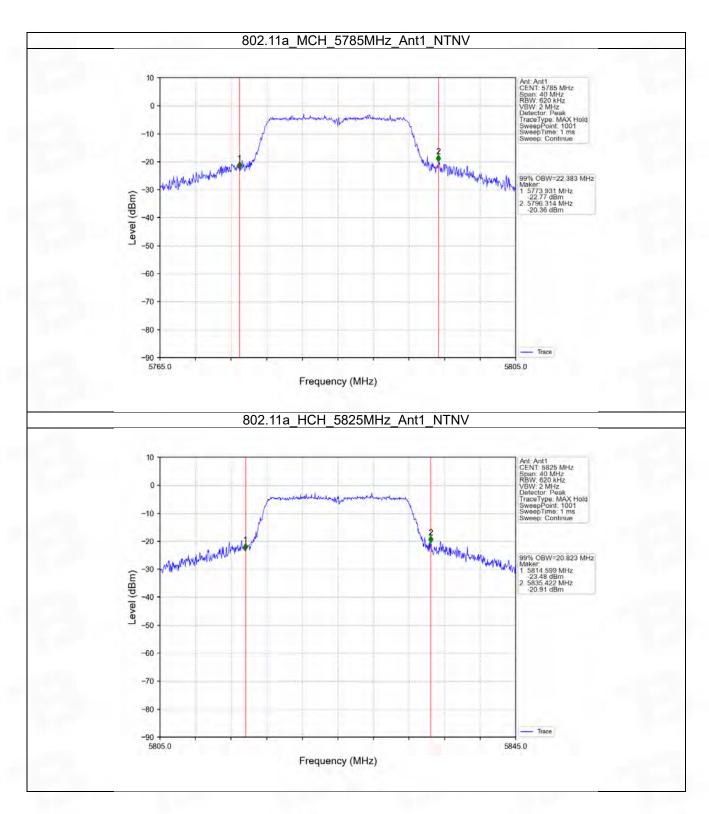


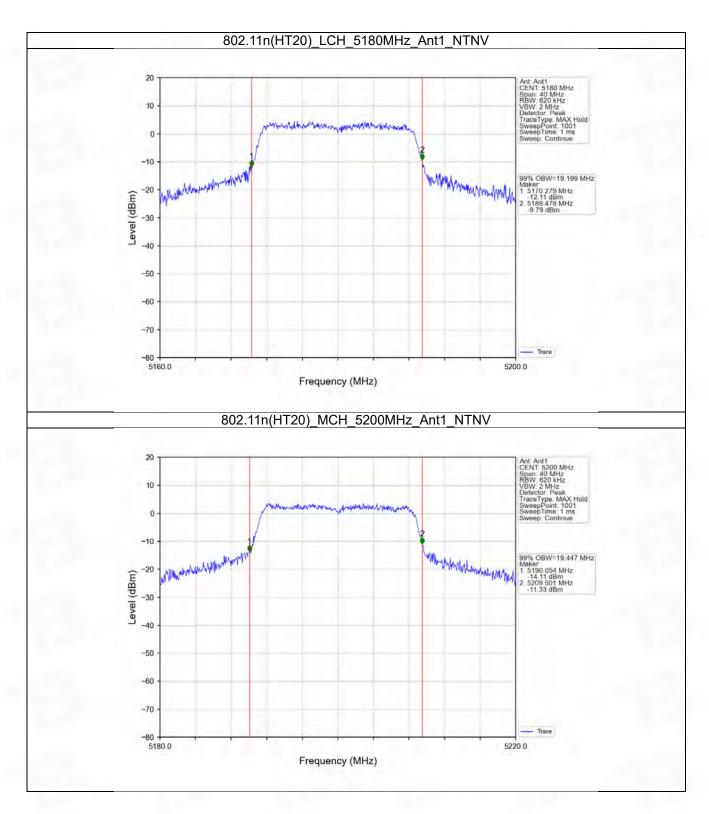
2. Bandwidth

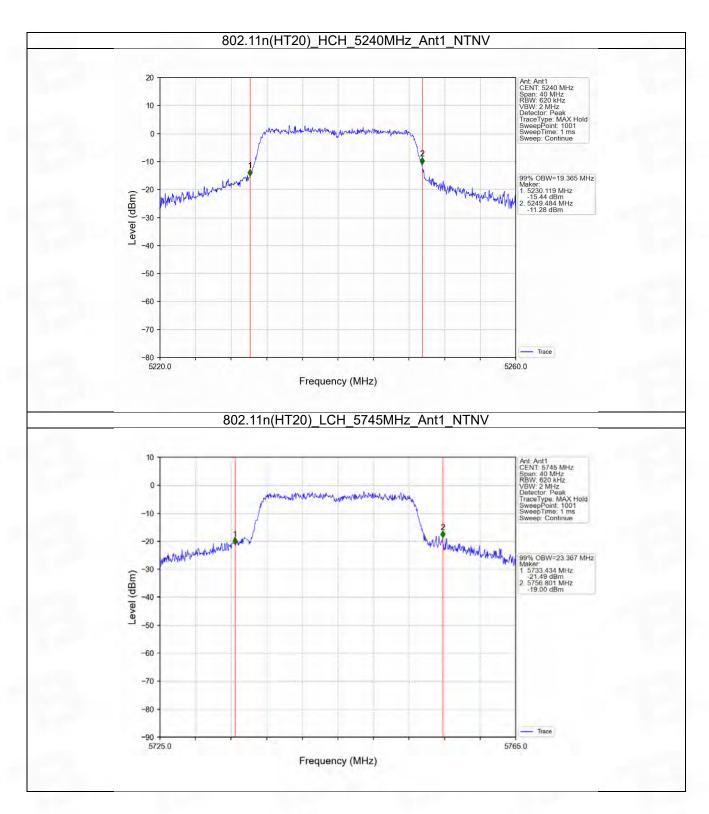

2.1 OBW

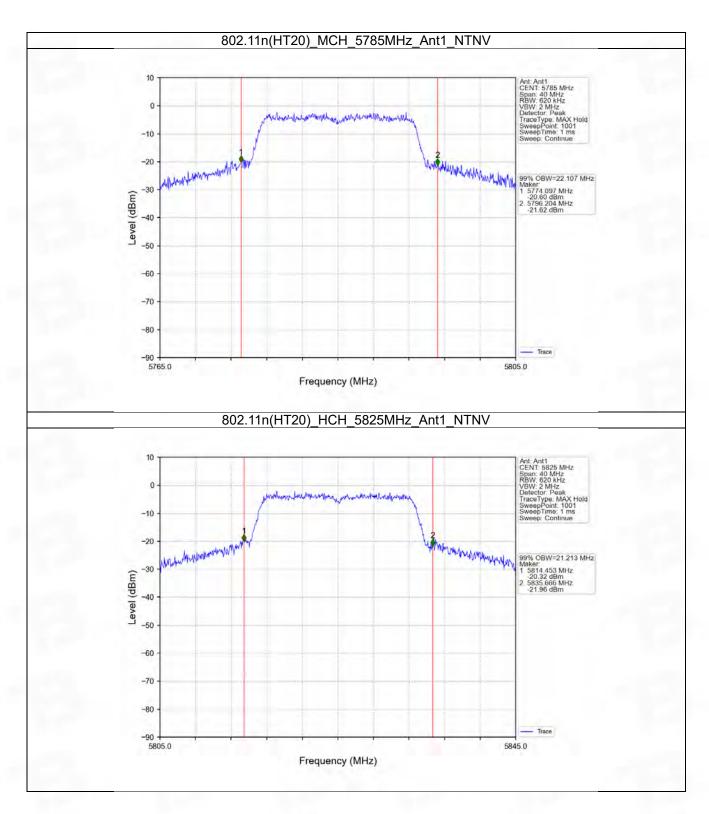
2.1.1 Test Result

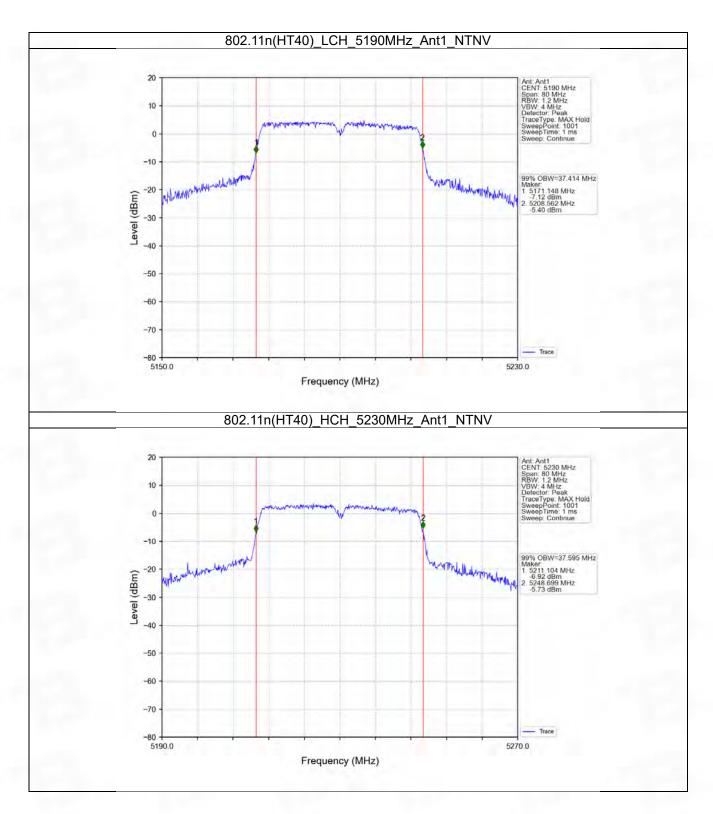

Mada	TX	Frequency	ANT	99% Occupied Ba	andwidth (MHz)	Vordict
Mode	Type	(MHz)	AIVI	Result	Limit	Verdict
		5180	1	19.451	1	Pass
		5200	1	19.139	1	Pass
000 11-	CICO	5240	1	19.064	1	Pass
802.11a	SISO	5745	1	23.739	1	Pass
		5785	1	22.383	1	Pass
		5825	1	20.823	1	Pass
		5180	1	19.199	1	Pass
		5200	1	19.447	1	Pass
802.11n	CICO	5240	1	19.365	1	Pass
(HT20)		5745	1	23.367	1	Pass
		5785	1	22.107	1	Pass
		5825	1	21.213	1	Pass
		5190	1	37.414	1	Pass
802.11n	SISO	5230	1	37.595	1	Pass
(HT40)	5150	5755	1	42.830	1	Pass
		5795	1	40.127	1	Pass
		5180	1	19.079	1	Pass
		5200	1	18.916	1	Pass
802.11ac	SISO	5240	1	18.892	1	Pass
(VHT20)	5150	5745	1	22.978	1	Pass
		5785	1	22.321	1	Pass
		5825	1	21.064	1	Pass
		5190	1	38.229	1	Pass
802.11ac	SISO	5230	1	38.490	1	Pass
(VHT40)	3130	5755	1	41.977		Pass
		5795	1	42.396	1	Pass
802.11ac	SISO	5210	1	77.707	1	Pass
(VHT80)	3130	5775	1	80.451	1	Pass

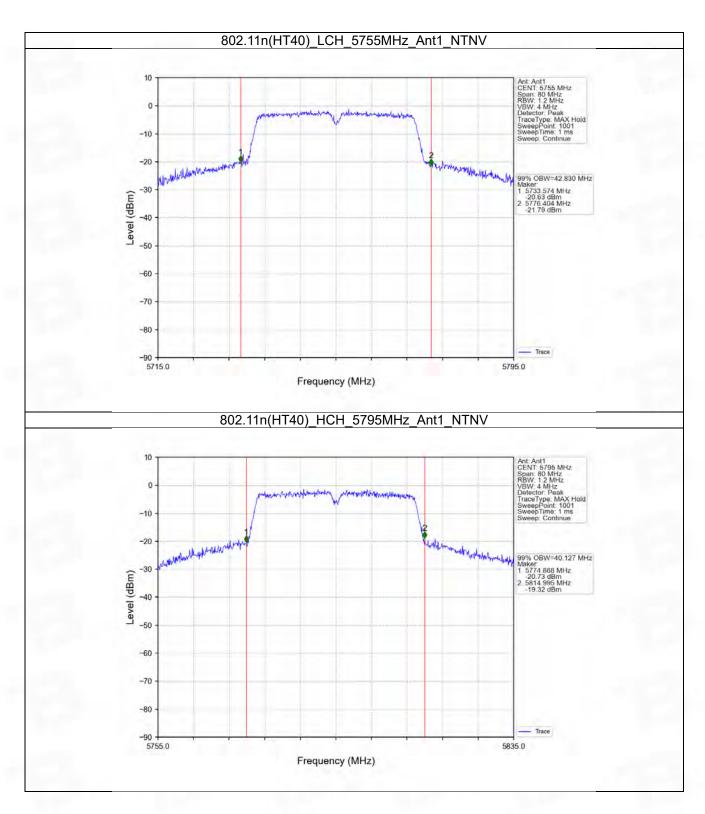

2.1.2 Test Graph

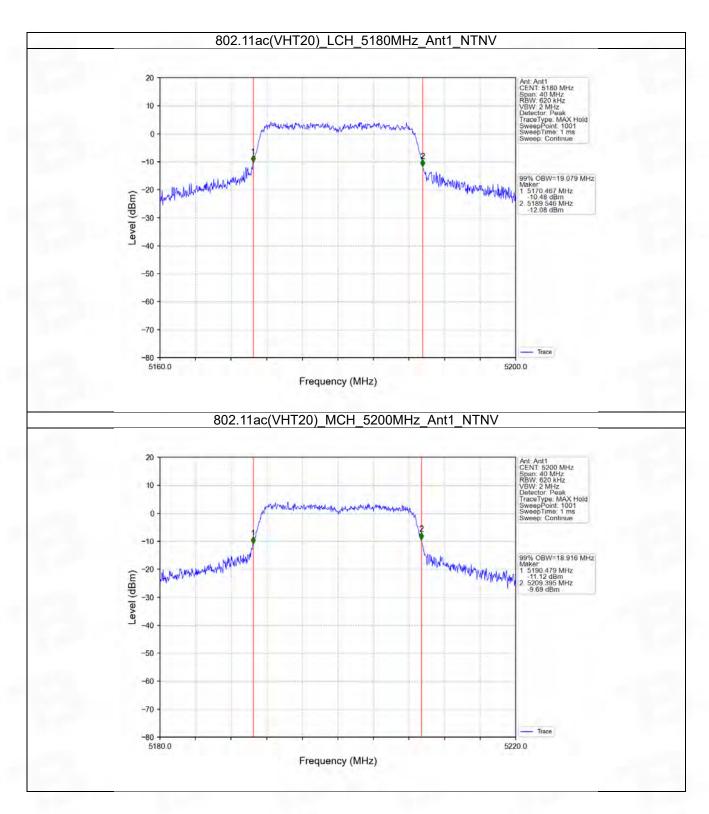


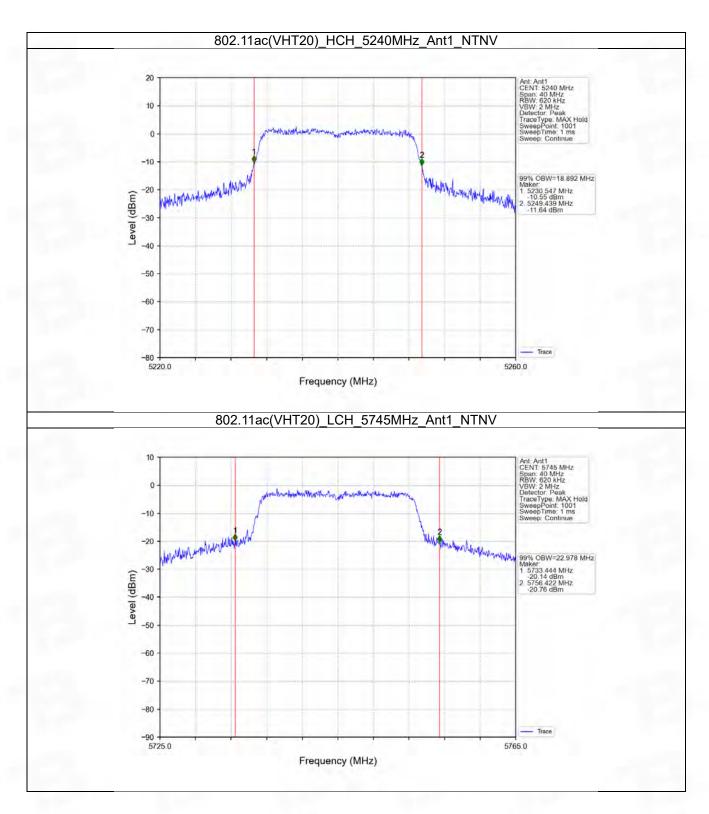


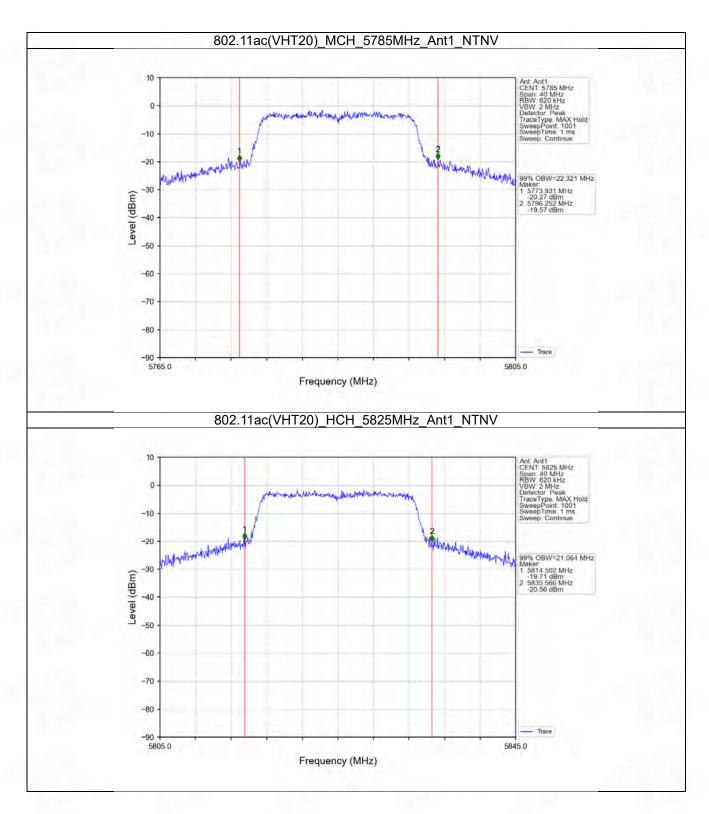


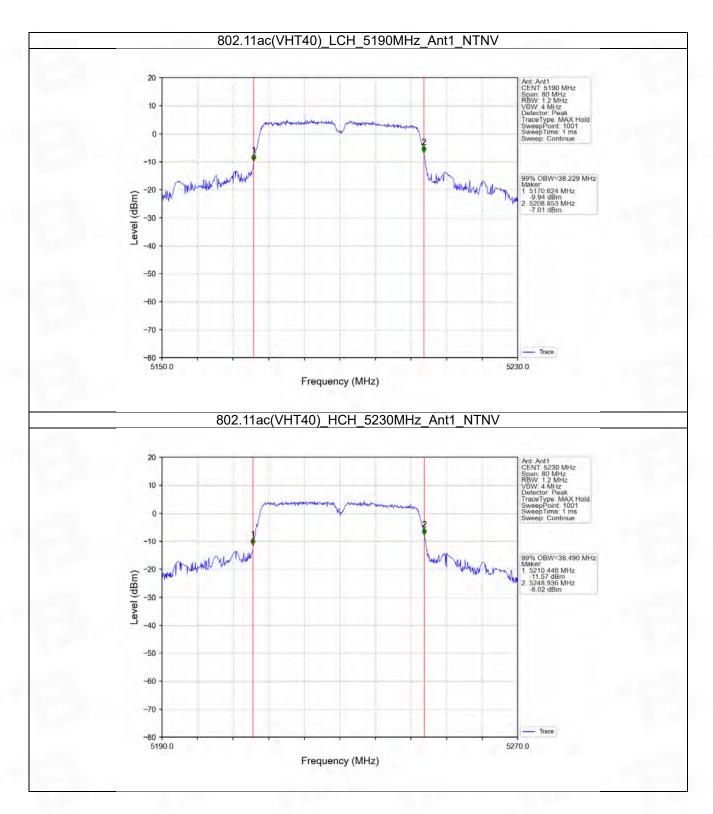


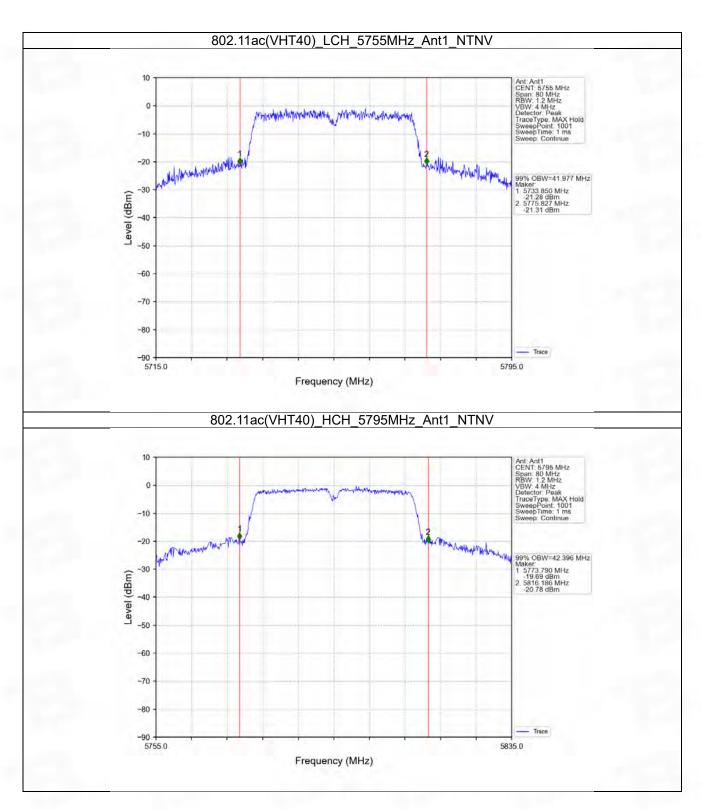


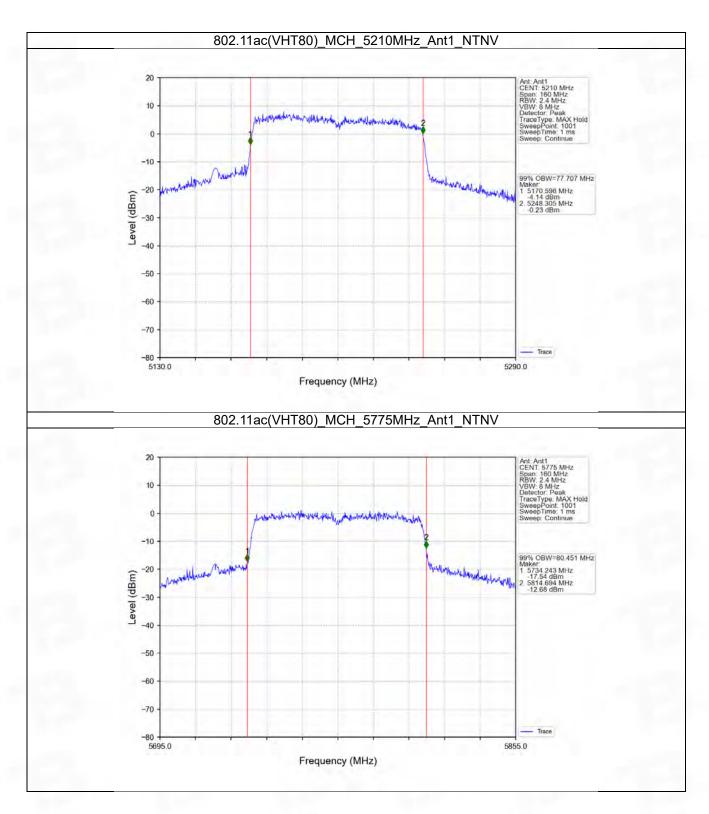


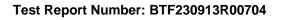


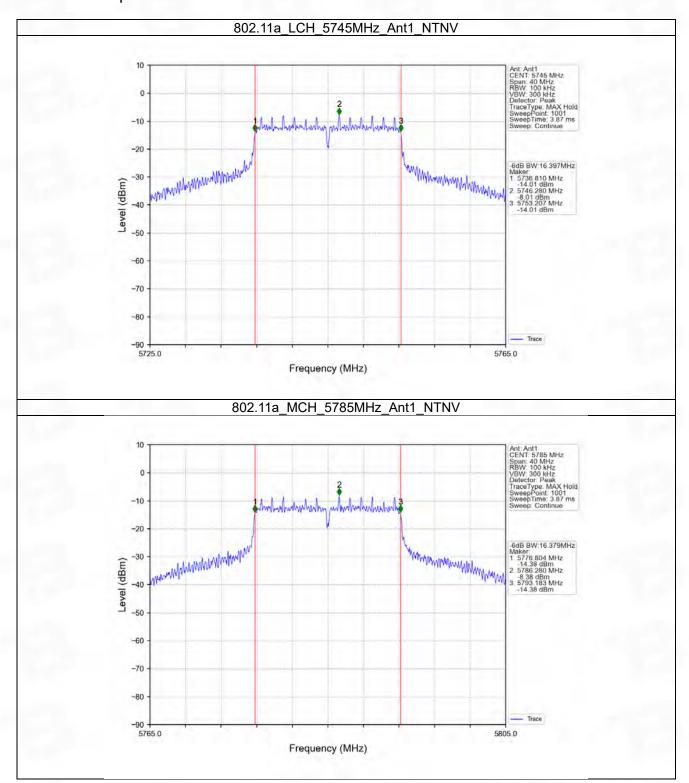




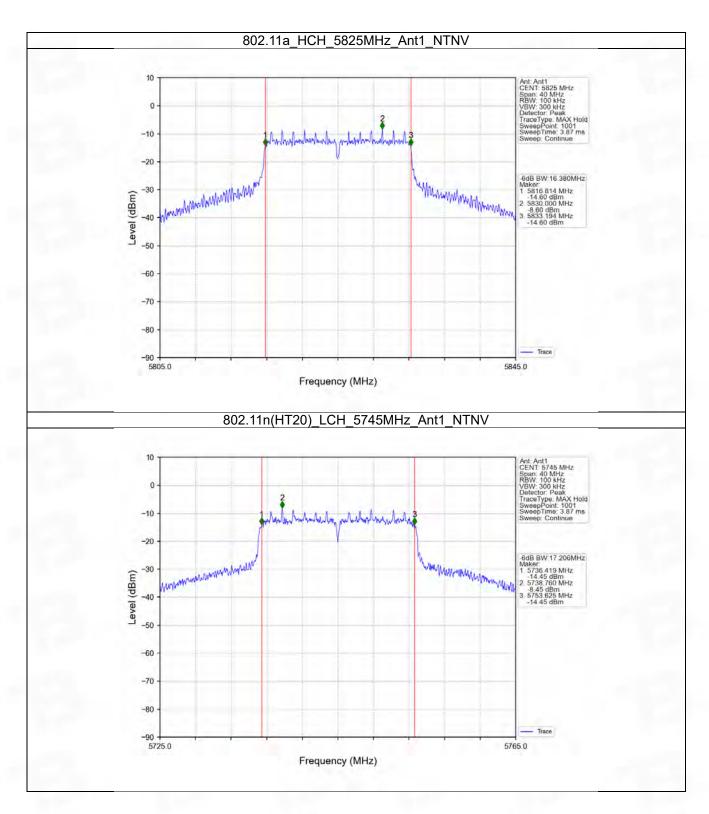


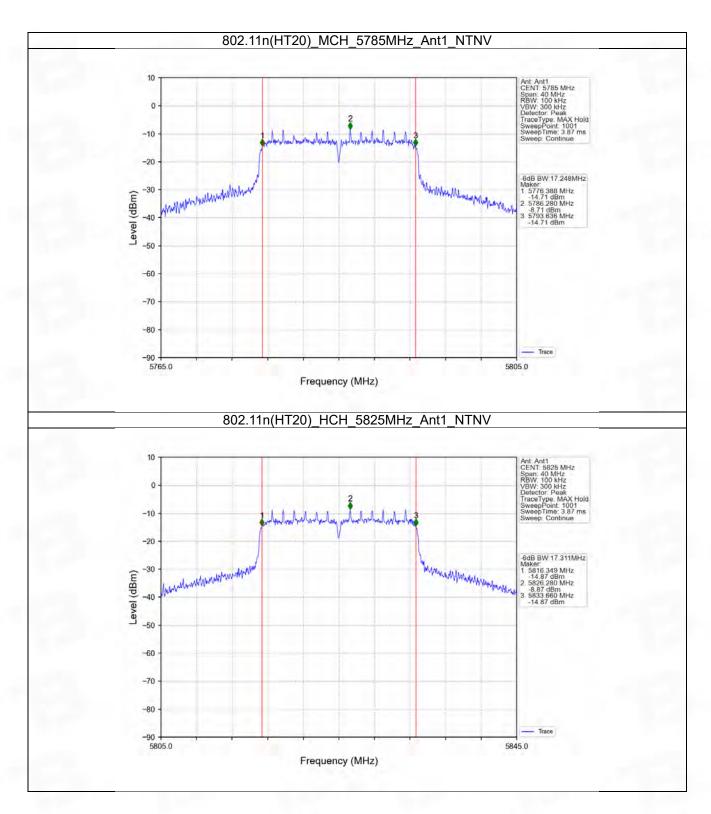


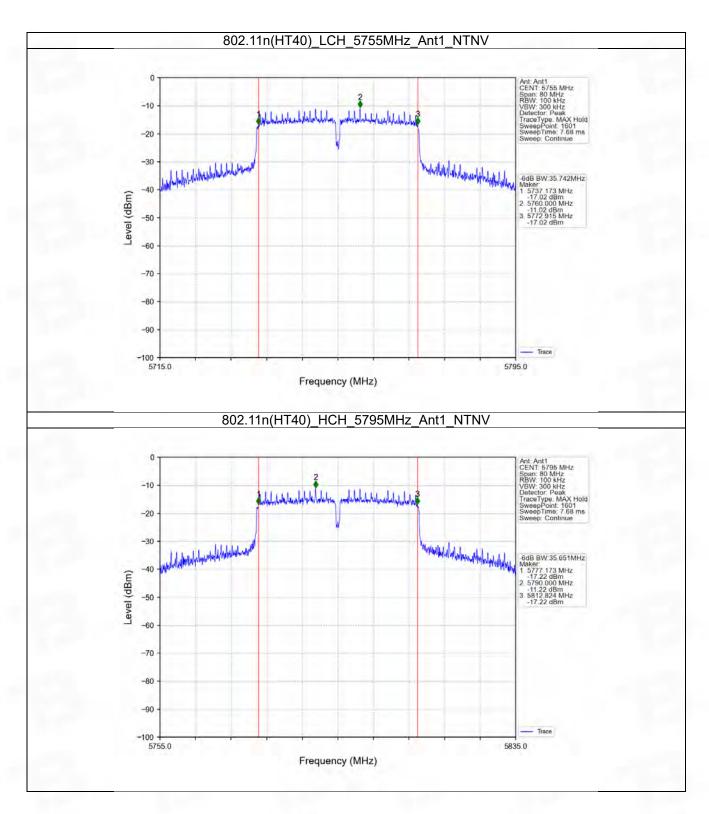


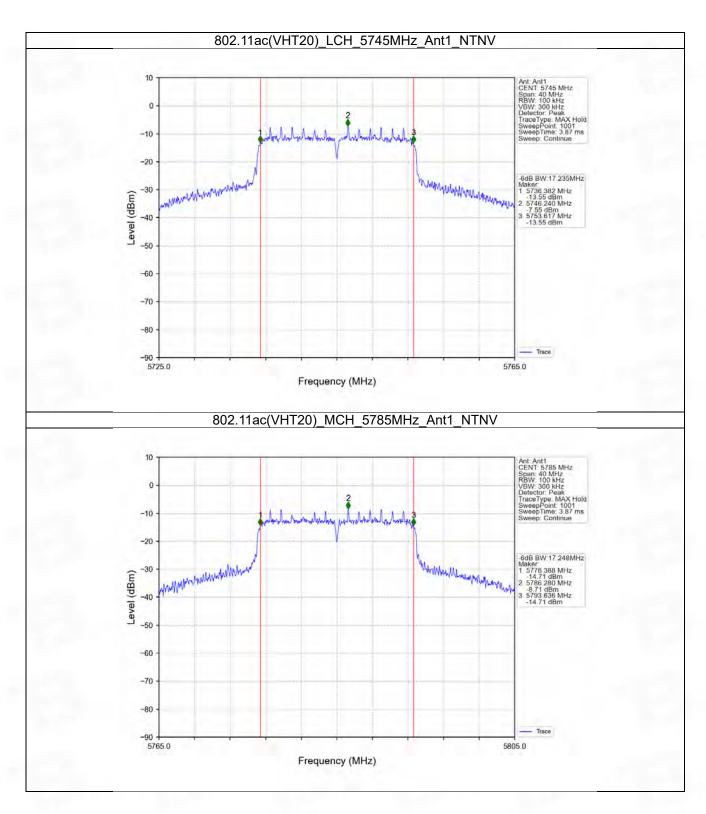

2.2 6dB BW

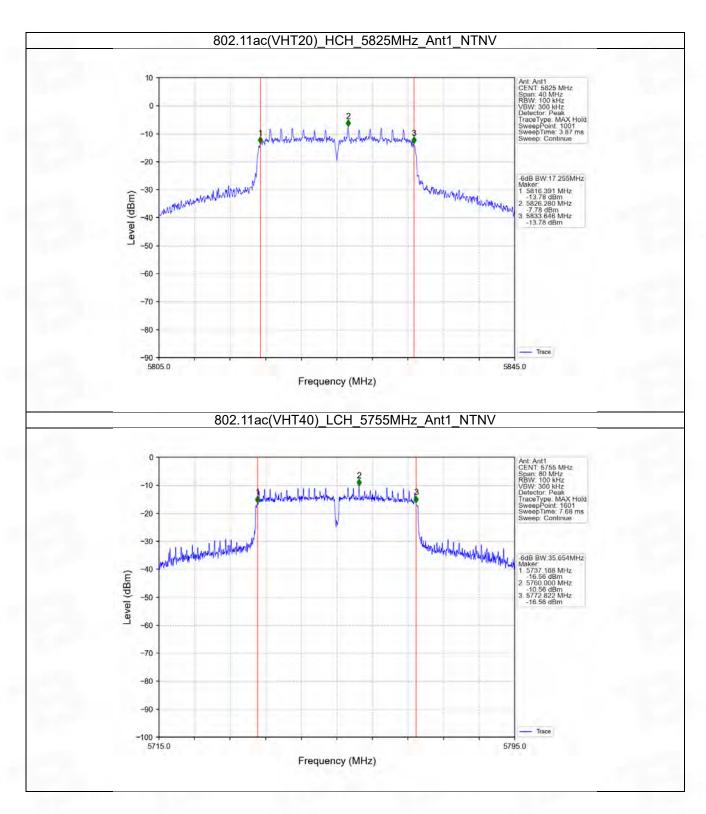
2.2.1 Test Result

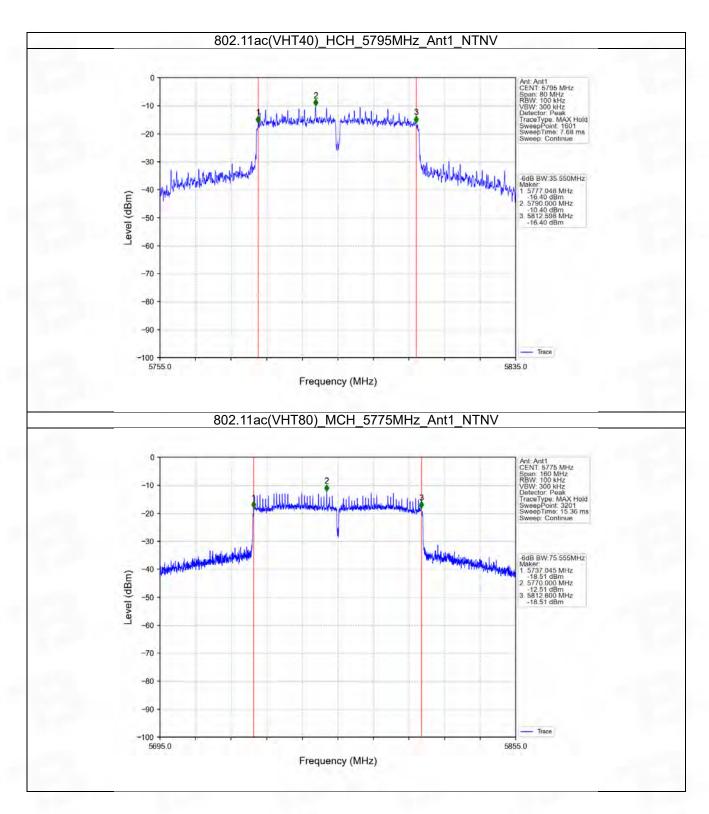

Mode	TX	Frequency (MHz)	ANT	6dB Bandwidth (MHz)		Vandiat
	Туре		ANI	Result	Limit	Verdict
802.11a	SISO	5745	1	16.397	>=0.5	Pass
		5785	1	16.379	>=0.5	Pass
		5825	1	16.380	>=0.5	Pass
802.11n (HT20)	SISO	5745	1	17.206	>=0.5	Pass
		5785	1	17.248	>=0.5	Pass
		5825	1	17.311	>=0.5	Pass
802.11n (HT40)	SISO	5755	1	35.742	>=0.5	Pass
		5795	1	35.651	>=0.5	Pass
802.11ac (VHT20)	SISO	5745	1	17.235	>=0.5	Pass
		5785	1	17.248	>=0.5	Pass
		5825	1	17.255	>=0.5	Pass
802.11ac (VHT40)	SISO	5755	1	35.654	>=0.5	Pass
		5795	1	35.550	>=0.5	Pass
802.11ac (VHT80)	SISO	5775	1	75.555	>=0.5	Pass

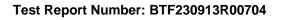

2.2.2 Test Graph

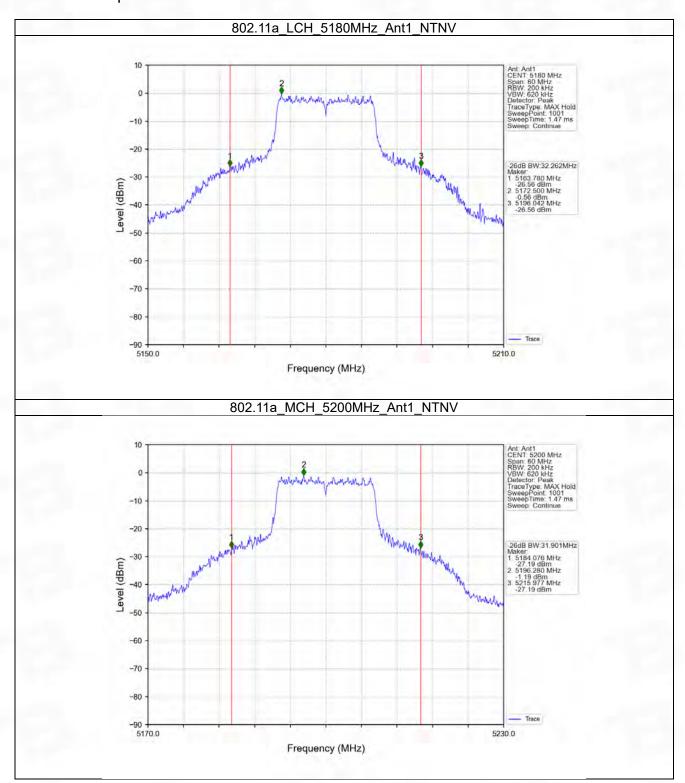




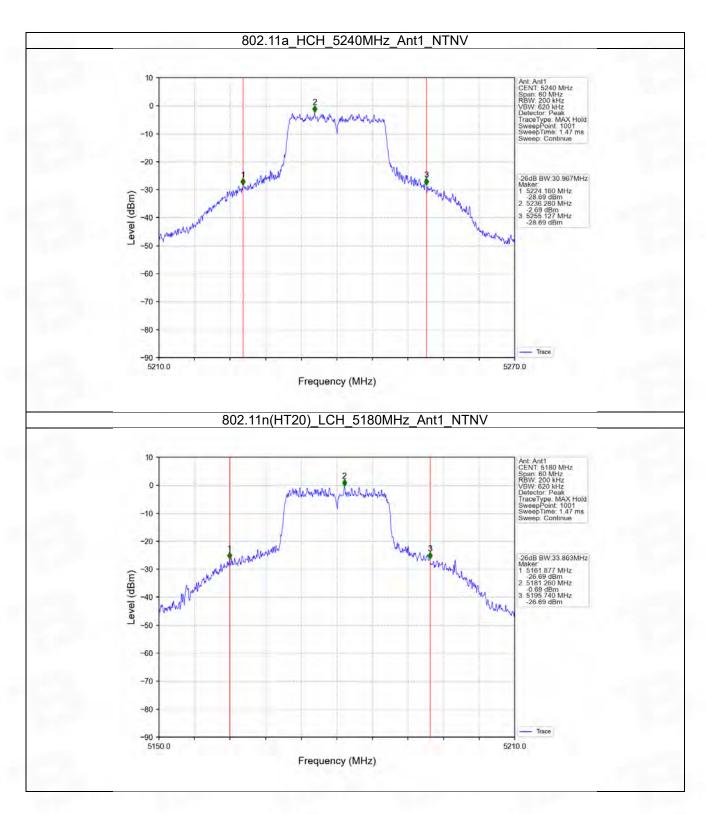


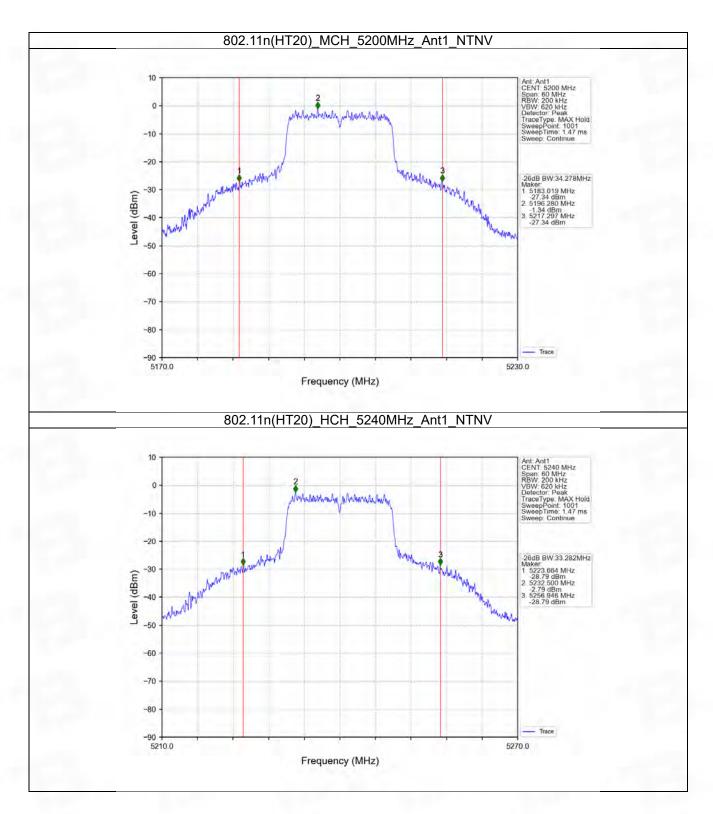


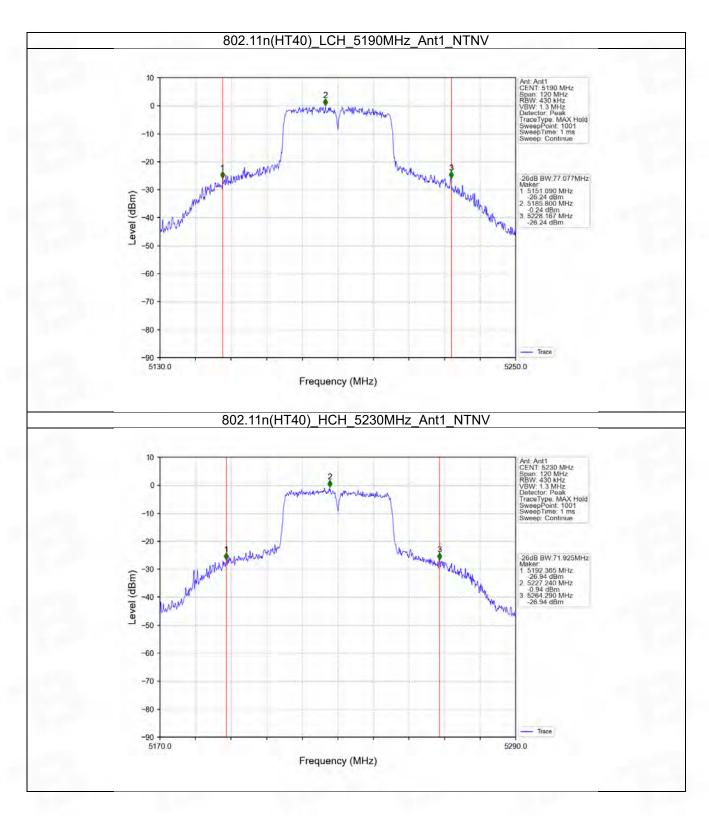


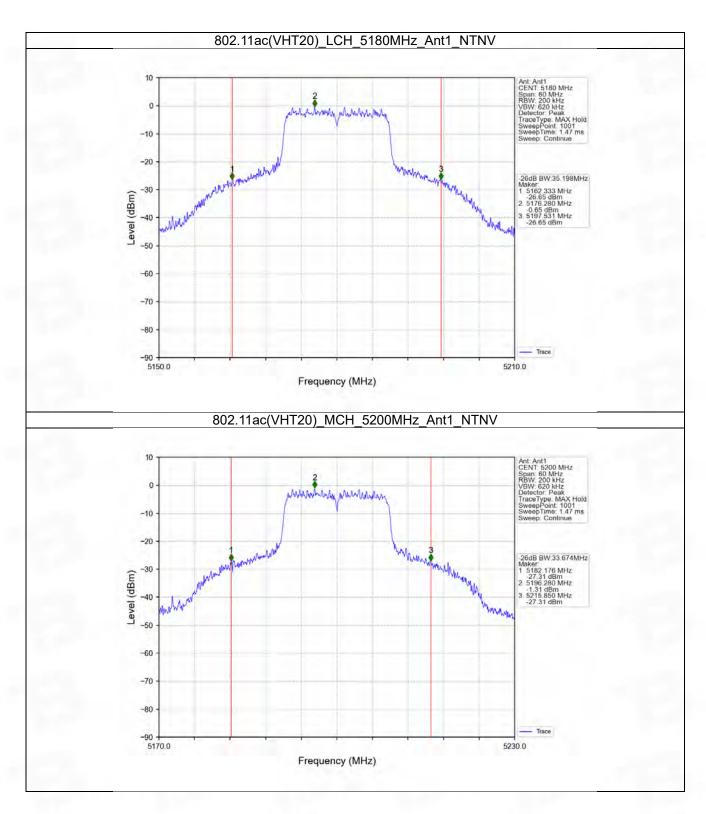

2.3 26dB BW

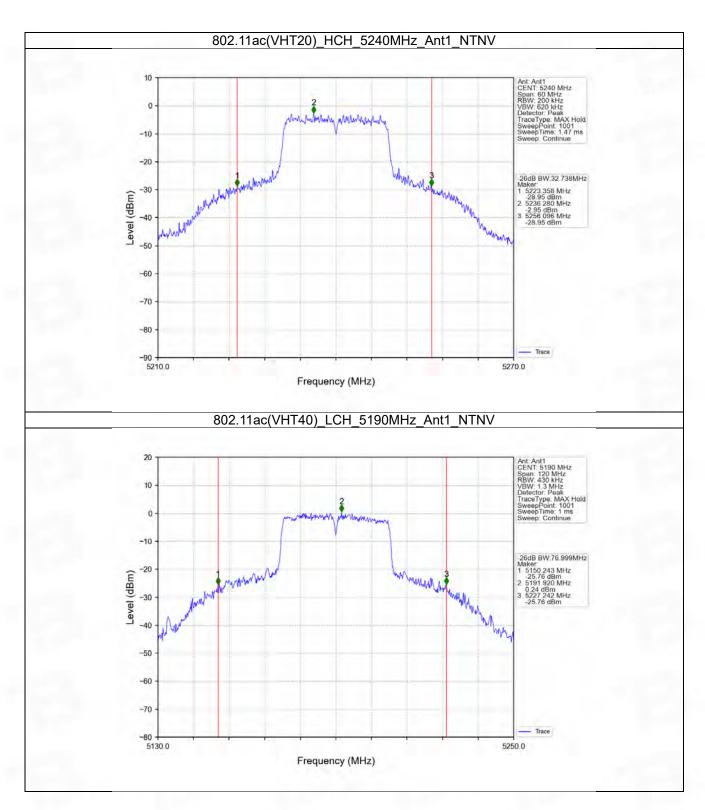
2.3.1 Test Result

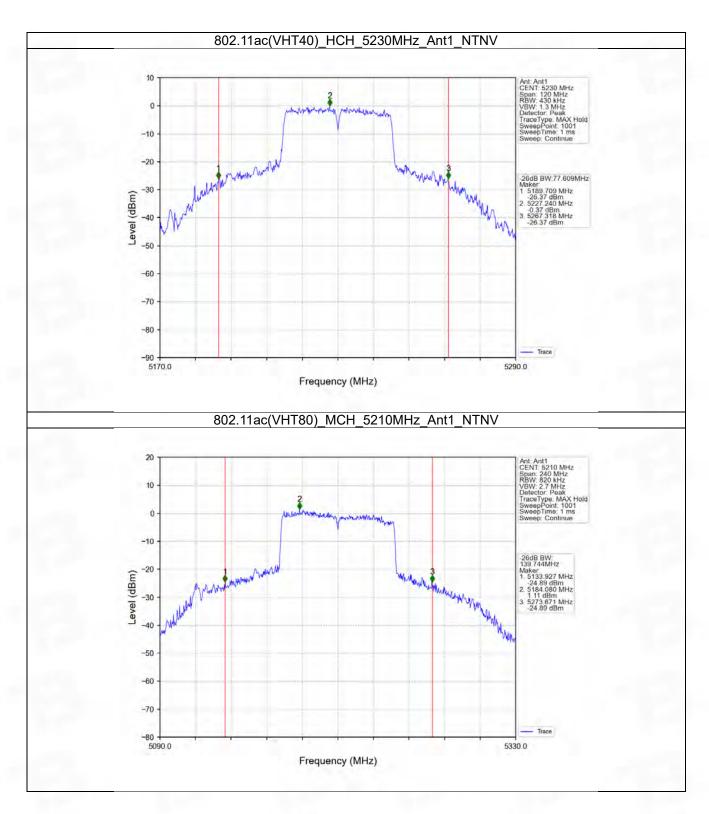

Mode	TX	Frequency (MHz)	ANT	26dB Bandwidth (MHz)		Vordist
	Type			Result	Limit	Verdict
802.11a	SISO	5180	1	32.262	1	Pass
		5200	1	31.901	1	Pass
		5240	1	30.967	1	Pass
802.11n (HT20)	SISO	5180	1	33.863	1	Pass
		5200	1	34.278	1	Pass
		5240	1	33.282	1	Pass
802.11n (HT40)	SISO	5190	1	77.077	1	Pass
		5230	1	71.925	1	Pass
802.11ac (VHT20)	SISO	5180	1	35.198	1	Pass
		5200	1	33.674	1	Pass
		5240	1	32.738	1	Pass
802.11ac (VHT40)	SISO	5190	1	76.999	1	Pass
		5230	1	77.609	1	Pass
802.11ac (VHT80)	SISO	5210	1	139.744	1	Pass

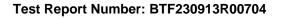

2.3.2 Test Graph

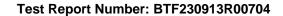






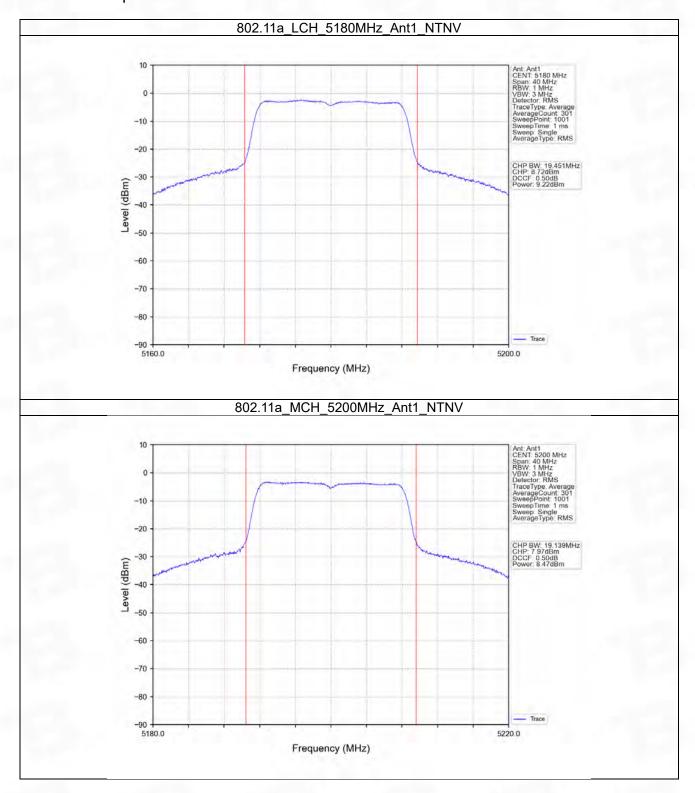




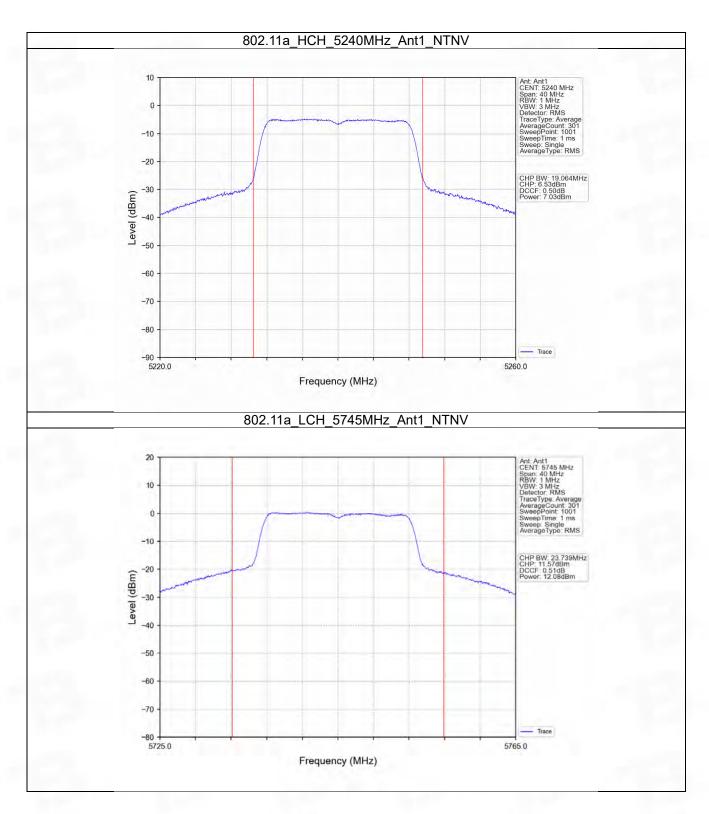


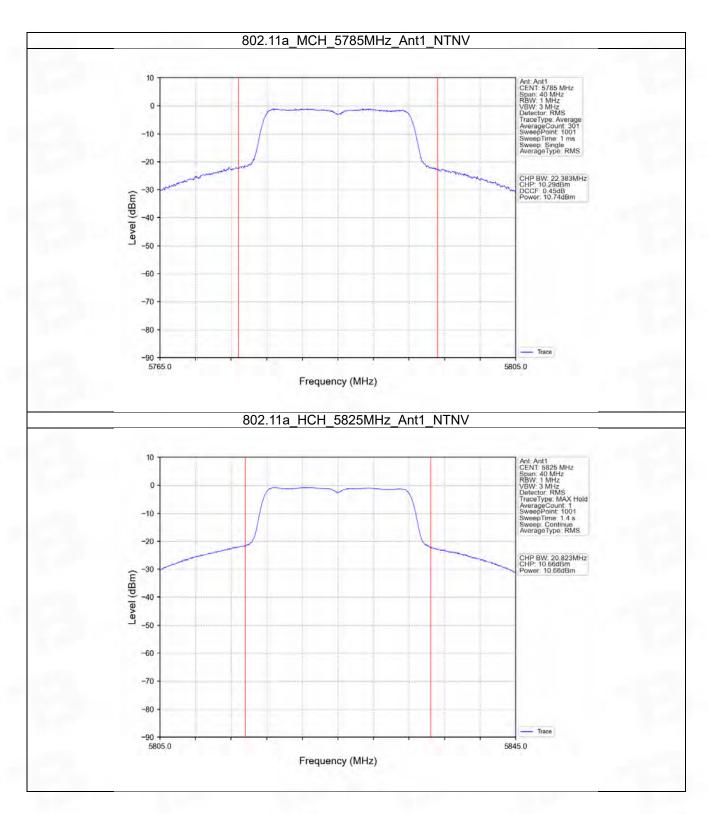
3. Maximum Conducted Output Power

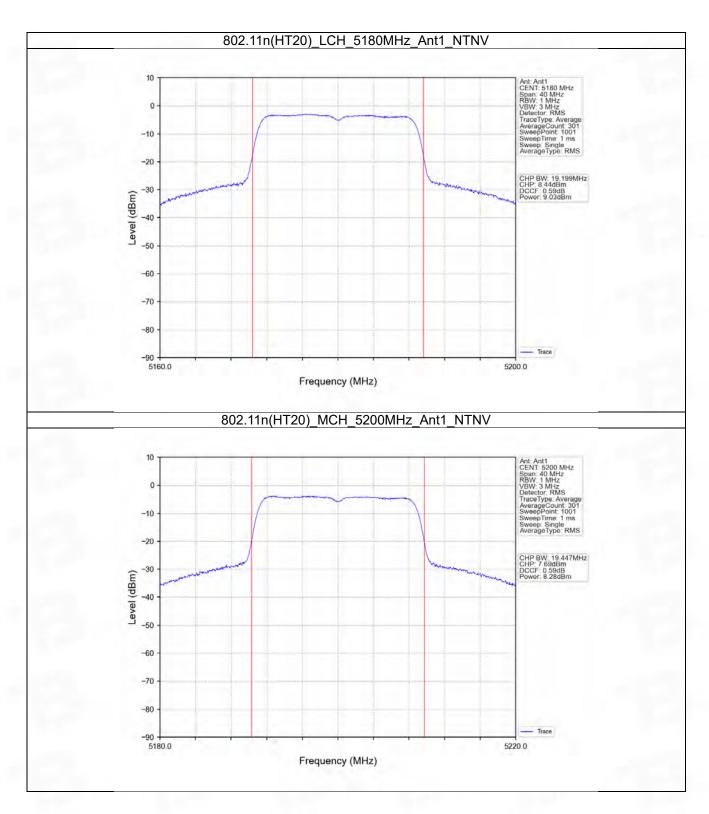
3.1 Power

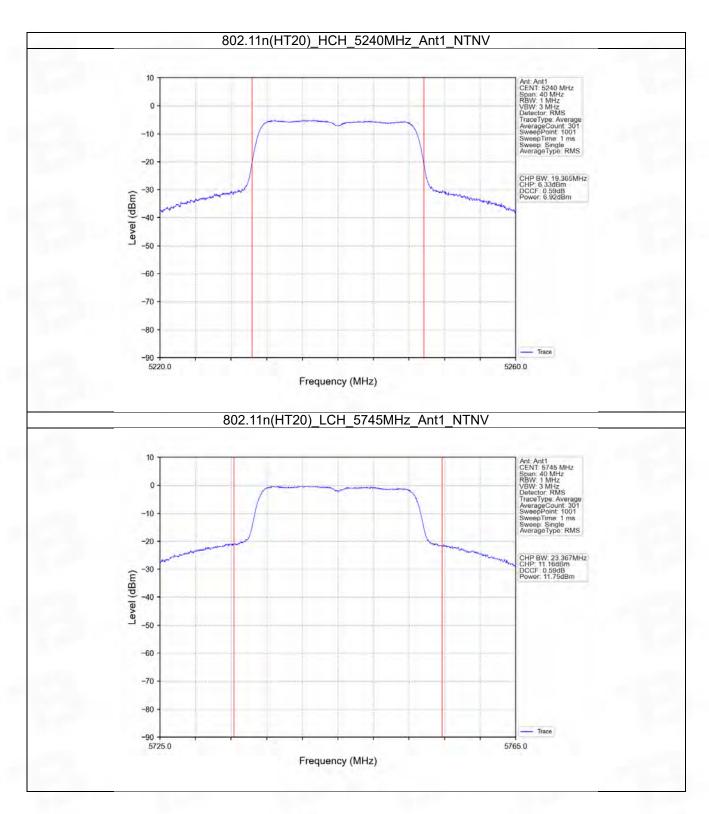

3.1.1 Test Result

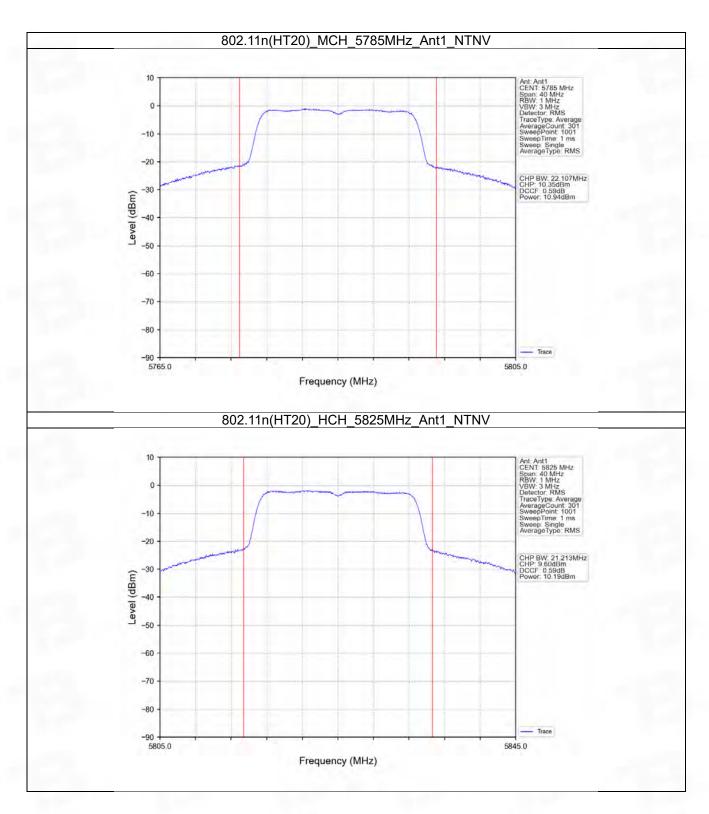
Mode	TX	Frequency	Maximum Average Condu	Vordist	
	Type	(MHz)	ANT1	Limit	Verdict
802.11a		5180	9.22	<=23.98	Pass
		5200	8.47	<=23.98	Pass
	CICO	5240	7.03	<=23.98	Pass
	SISO	5745	12.08	<=30	Pass
		5785	10.74	<=30	Pass
		5825	10.66	<=30	Pass
		5180	9.03	<=23.98	Pass
		5200	8.28	<=23.98	Pass
802.11n	CICO	5240	6.92	<=23.98	Pass
(HT20)	SISO	5745	11.75	<=30	Pass
		5785	10.94	<=30	Pass
		5825	10.19	<=30	Pass
802.11n (HT40)	SISO	5190	9.20	<=23.98	Pass
		5230	7.83	<=23.98	Pass
		5755	12.12	<=30	Pass
		5795	11.11	<=30	Pass
	SISO	5180	8.98	<=23.98	Pass
		5200	8.30	<=23.98	Pass
802.11ac (VHT20)		5240	6.74	<=23.98	Pass
		5745	12.23	<=30	Pass
		5785	10.84	<=30	Pass
		5825	9.96	<=30	Pass
802.11ac (VHT40)	SISO	5190	9.46	<=23.98	Pass
		5230	9.09	<=23.98	Pass
		5755	12.16	<=30	Pass
		5795	11.49	<=30	Pass
802.11ac	SISO	5210	9.97	<=23.98	Pass
(VHT80)		5775	11.88	<=30	Pass

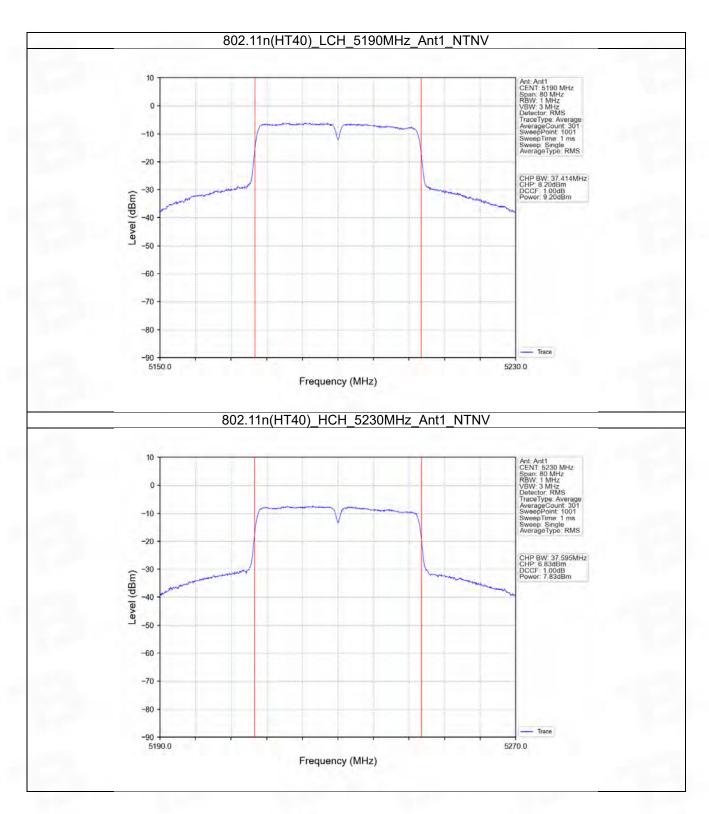


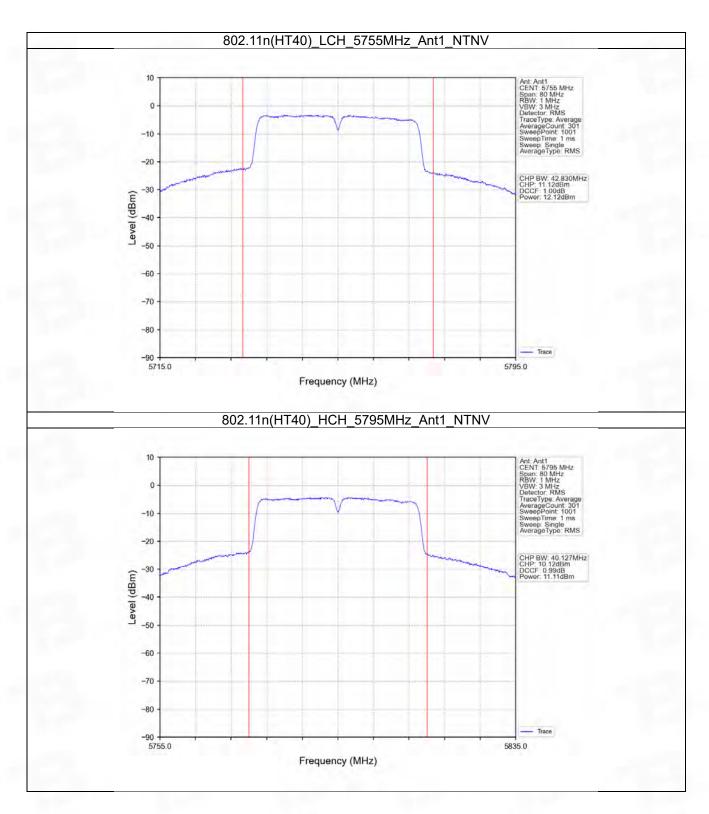

3.1.2 Test Graph

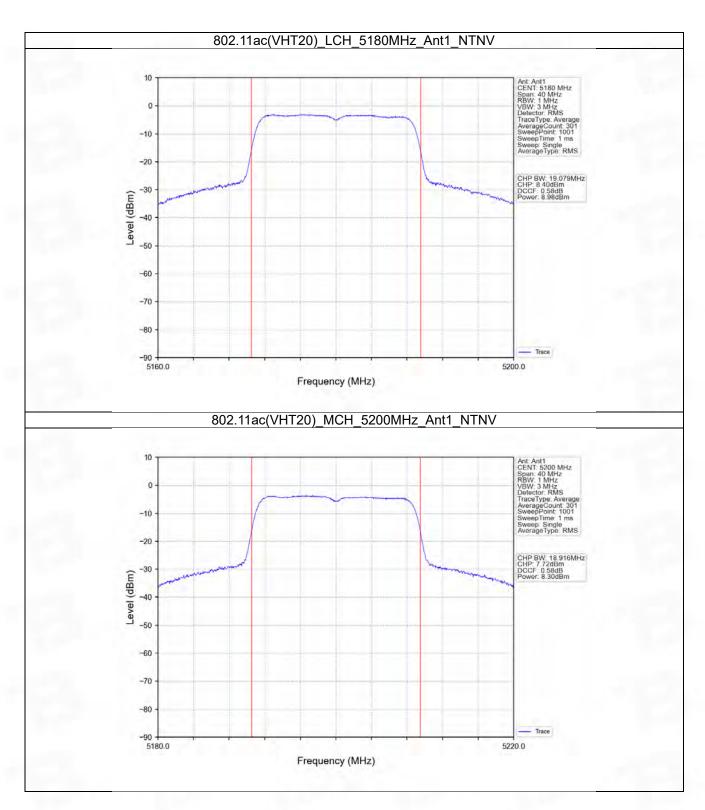


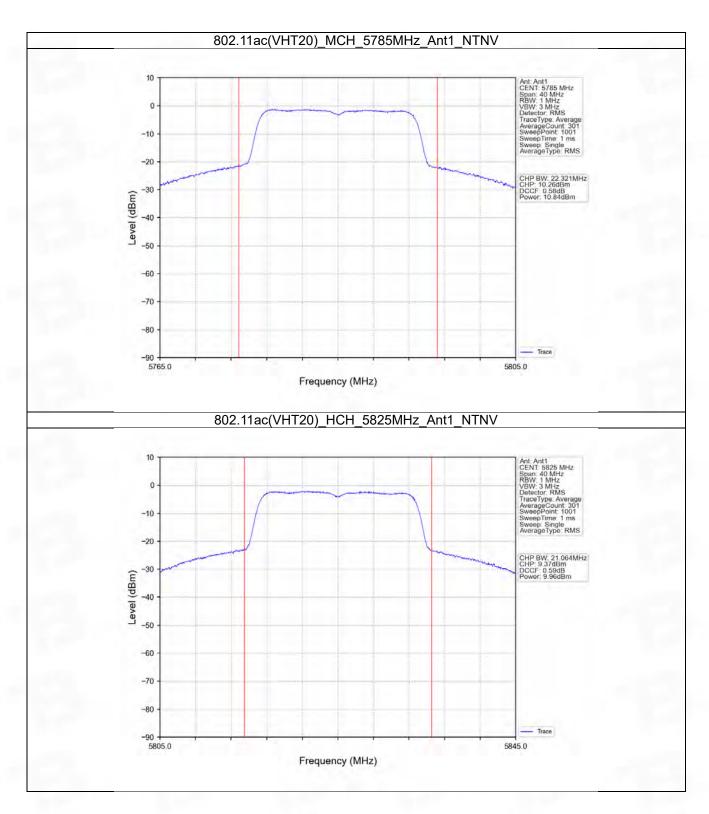


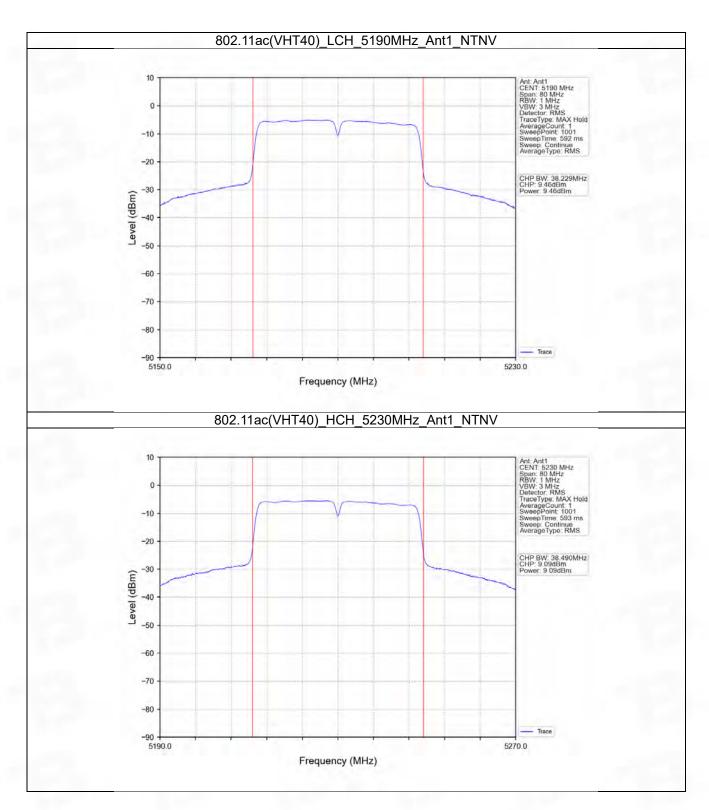


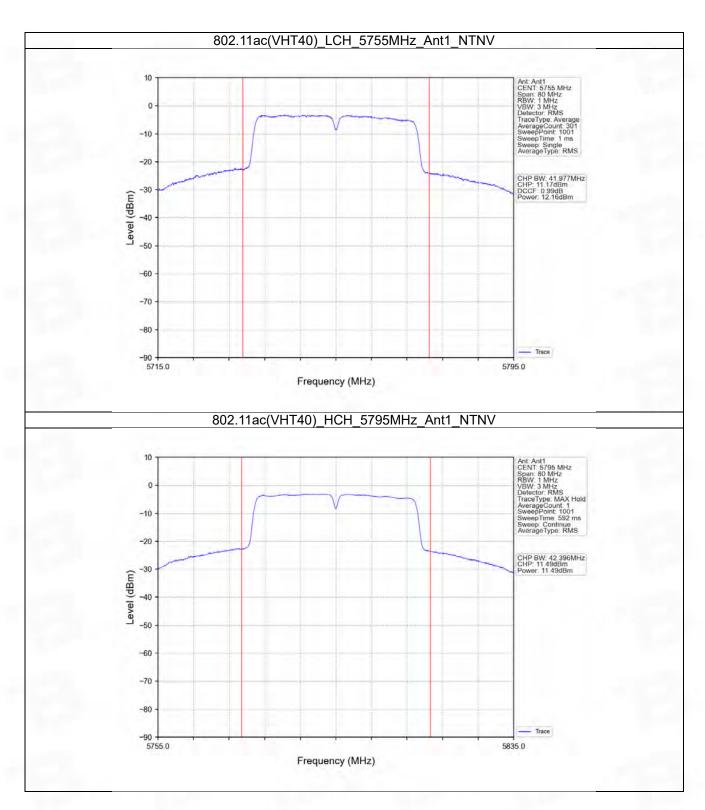


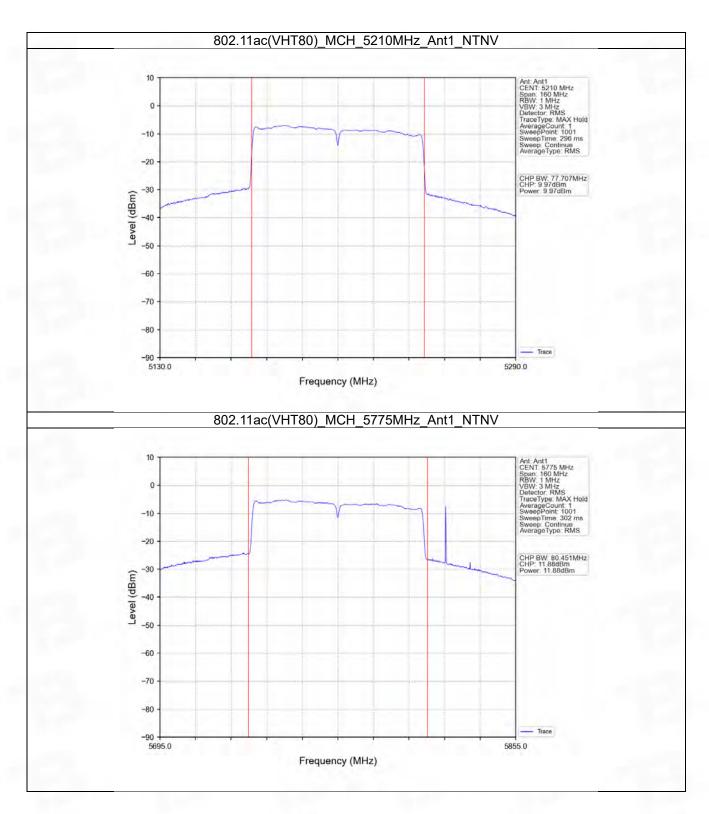


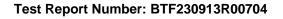






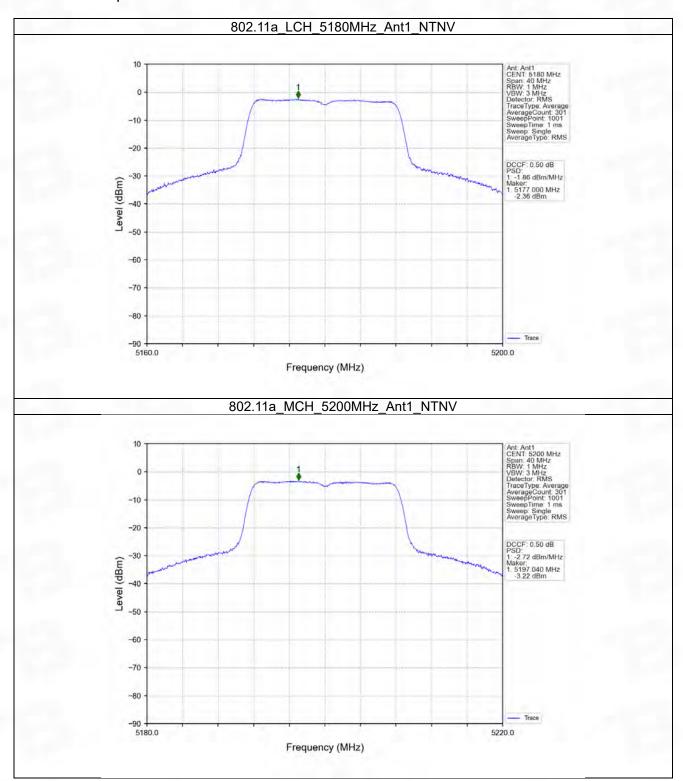




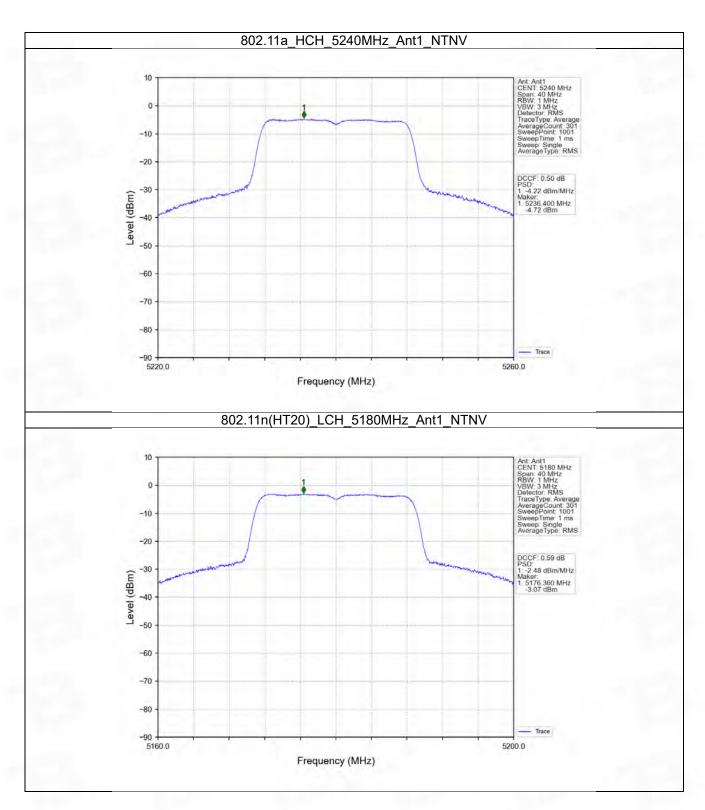


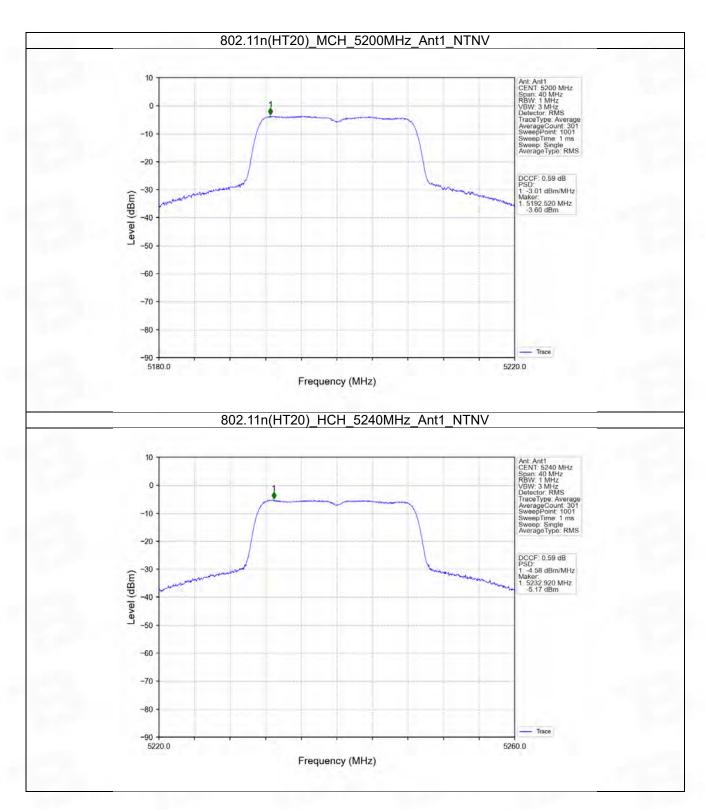
4. Maximum Power Spectral Density

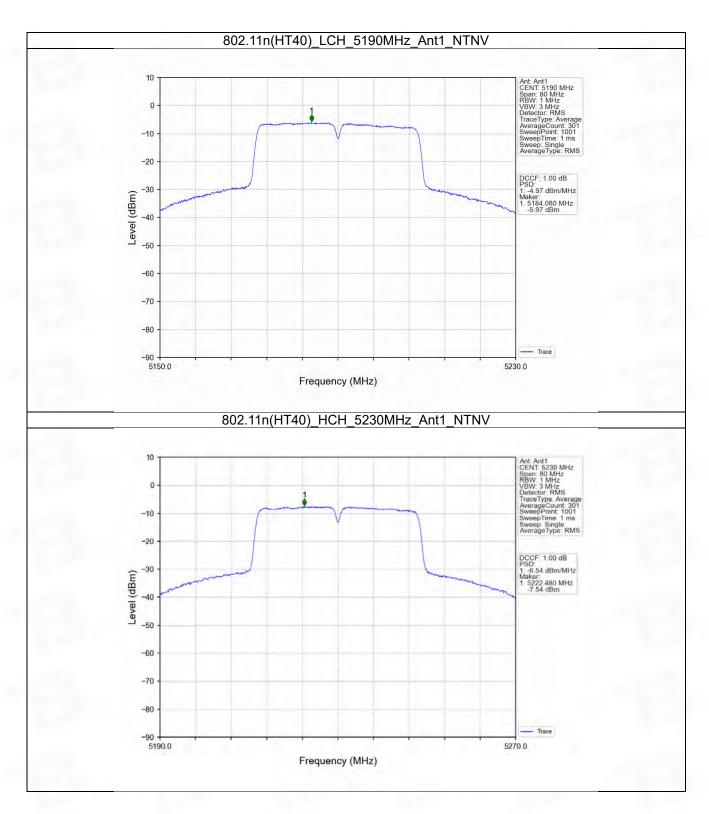
4.1 PSD

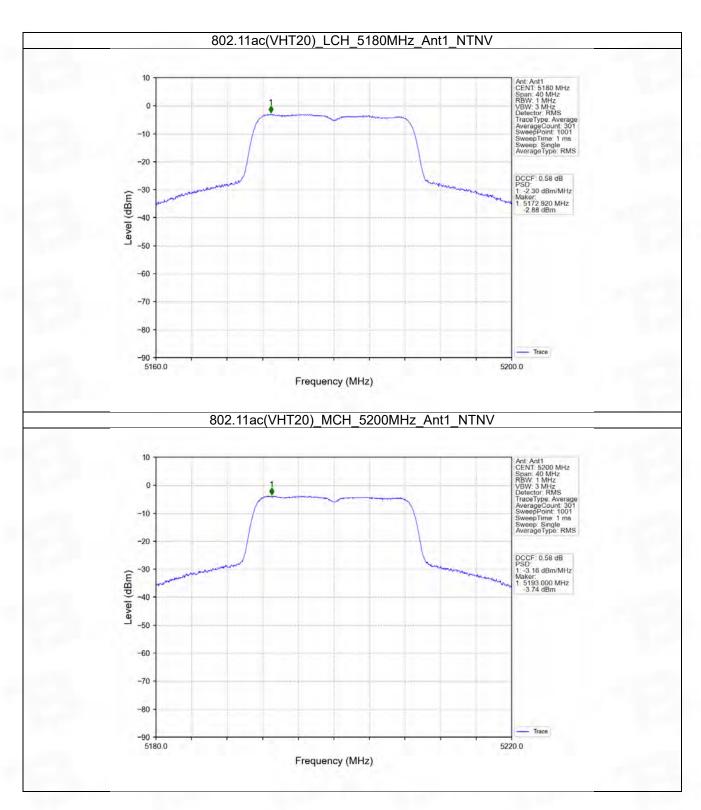

4.1.1 Test Result

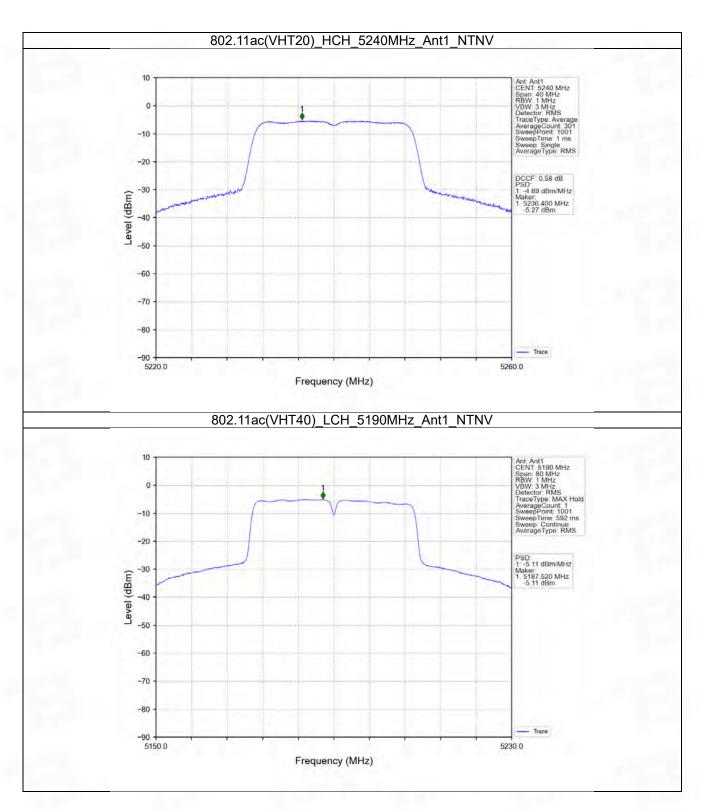
Mode	TX	Frequency	Maximum PS	Verdict	
	Type	(MHz)	ANT1	Limit	verdict
802.11a	SISO	5180	-1.86	<=11	Pass
		5200	-2.72	<=11	Pass
		5240	-4.22	<=11	Pass
000 11n	SISO	5180	-2.48	<=11	Pass
802.11n		5200	-3.01	<=11	Pass
(HT20)		5240	-4.58	<=11	Pass
802.11n	SISO	5190	-4.97	<=11	Pass
(HT40)		5230	-6.54	<=11	Pass
802.11ac	SISO	5180	-2.30	<=11	Pass
(VHT20)		5200	-3.16	<=11	Pass
(11120)		5240	-4.69	<=11	Pass
802.11ac (VHT40)	SISO	5190	-5.11	<=11	Pass
		5230	-5.46	<=11	Pass
802.11ac (VHT80)	SISO	5210	-7.08	<=11	Pass
Note1: Antenna (Gain: Ant1: 1.05	dBi;			

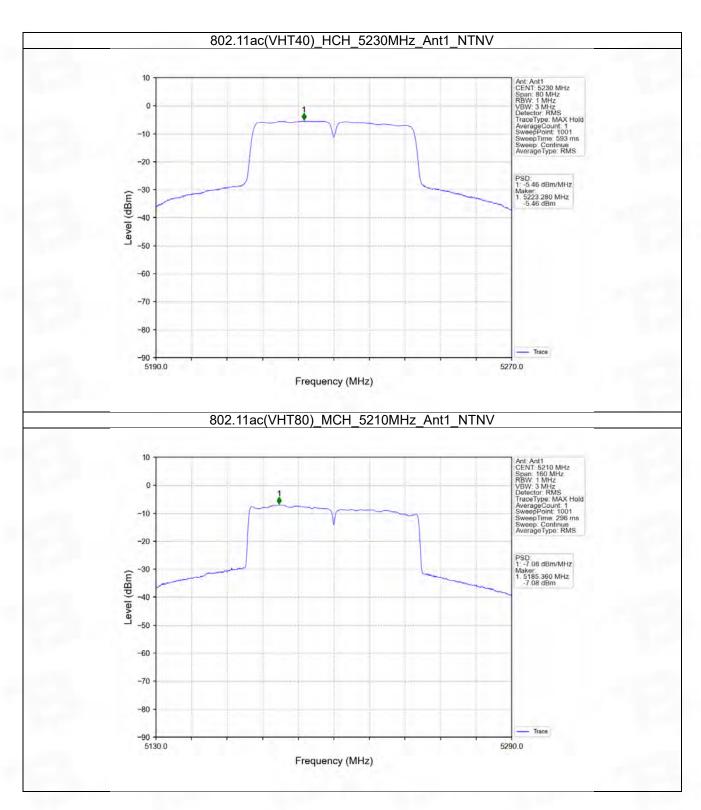


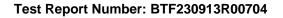

4.1.2 Test Graph

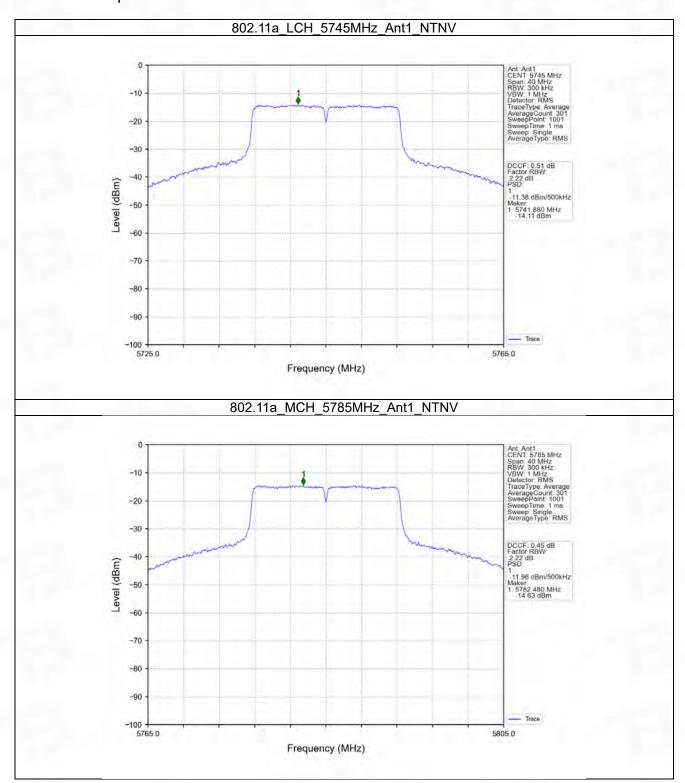






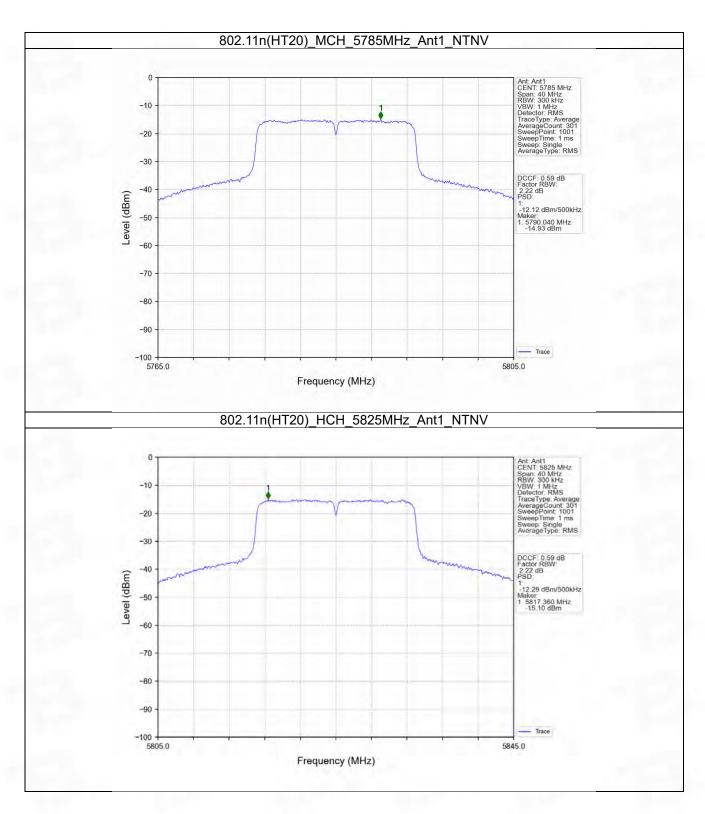


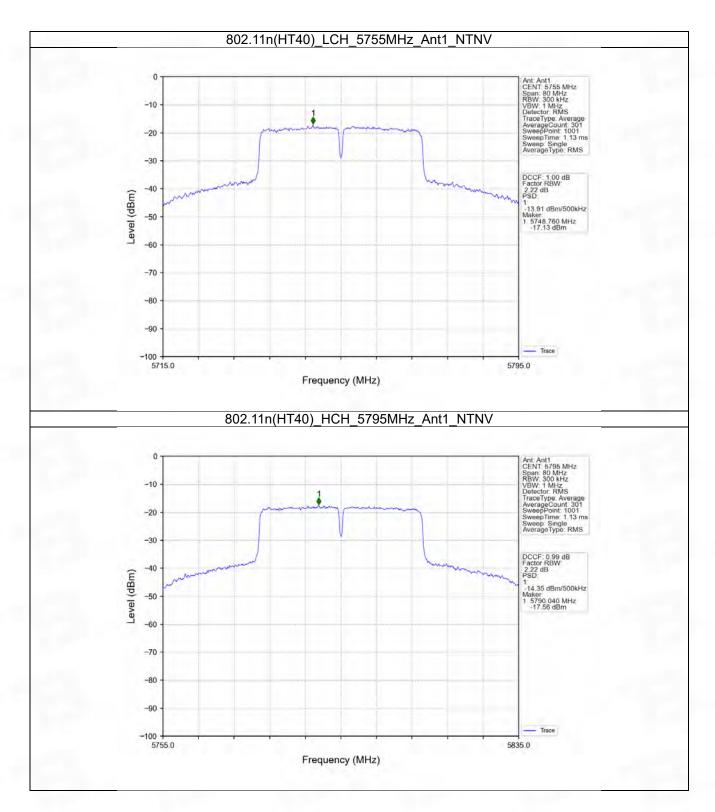


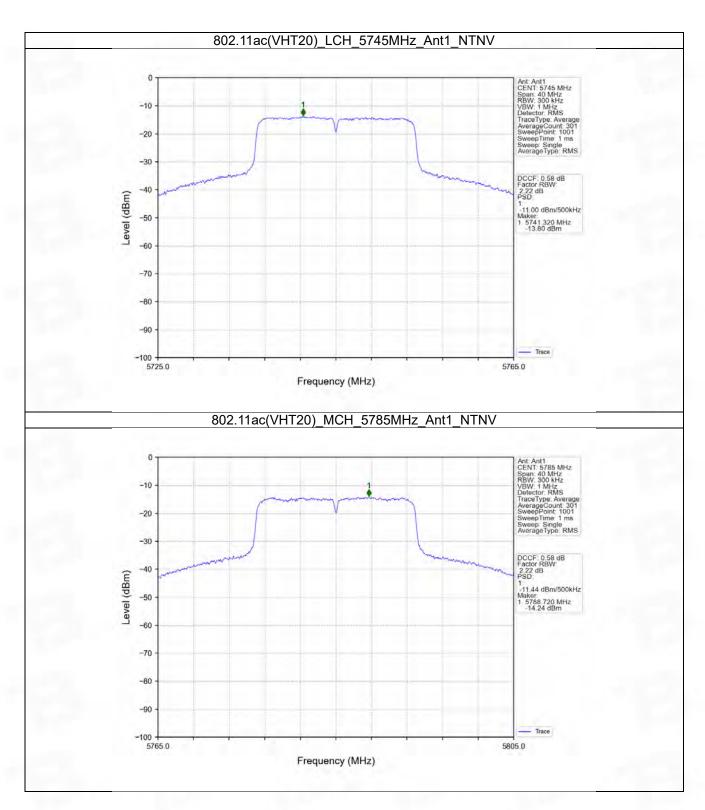

4.2 PSD-Band3

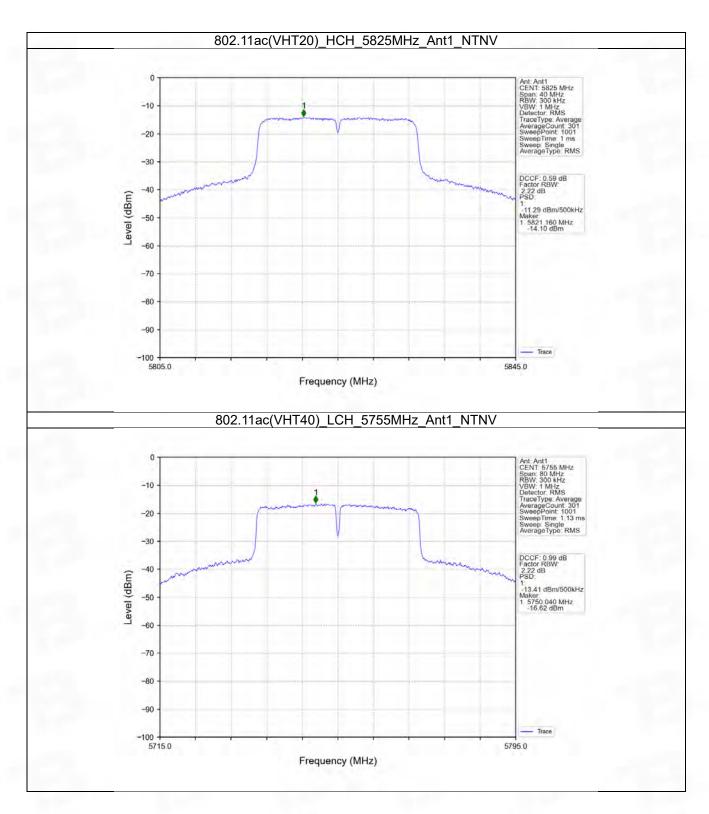
4.2.1 Test Result

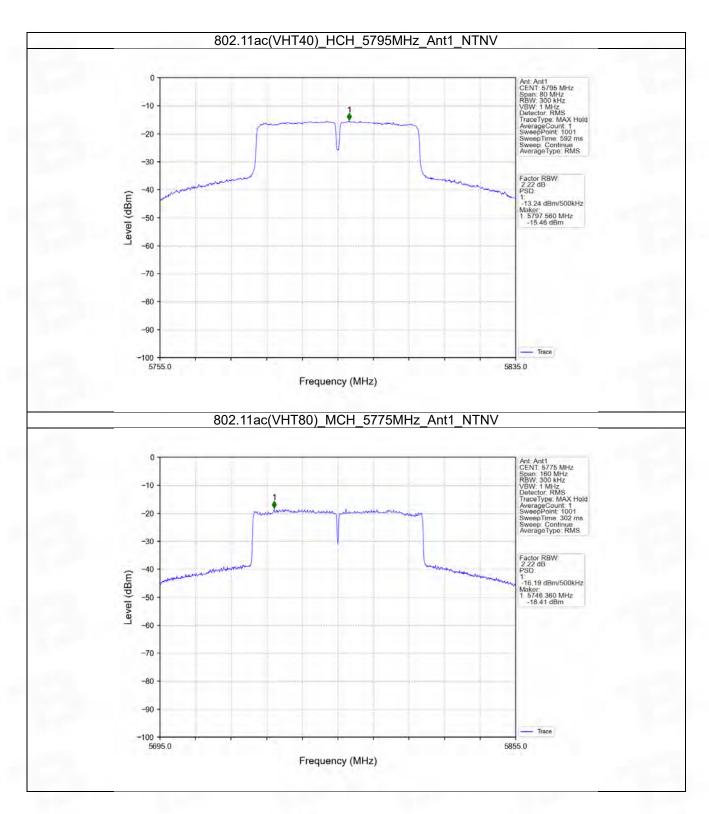
Mode	TX	Frequency	Maximum PSD	(dBm/500kHz)	Verdict
Mode	Type	(MHz)	ANT1	Limit	verdict
		5745	-11.38	<=30	Pass
802.11a	SISO	5785	-11.96	<=30	Pass
		5825	-11.34	<=30	Pass
802.11n		5745	-11.96	<=30	Pass
(HT20)	SISO	5785	-12.12	<=30	Pass
(11120)		5825	-12.29	<=30	Pass
802.11n	SISO	5755	-13.91	<=30	Pass
(HT40)	3130	5795	-14.35	<=30	Pass
802.11ac		5745	-11.00	<=30	Pass
(VHT20)	SISO	5785	-11.44	<=30	Pass
(VIII20)		5825	-11.29	<=30	Pass
802.11ac	SISO	5755	-13.41	<=30	Pass
(VHT40)	3130	5795	-13.24	<=30	Pass
802.11ac (VHT80)	SISO	5775	-16.19	<=30	Pass
ote1: Antenna	Gain: Ant1: 1.0	5dBi;			

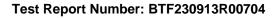

4.2.2 Test Graph

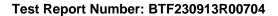










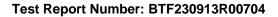

5. Frequency Stability

5.1 Ant1

5.1.1 Test Result

				Ant1			
Mode	TX Type	Frequency (MHz)	Temperature (°C)	Voltage (VAC)	Measured Frequency (MHz)	Limit (MHz)	Verdict
	1,700	(1711 12)	(0)	102	5180.000	5150 to 5250	Pass
			20	120	5180.020	5150 to 5250	Pass
			20	138	5180.000	5150 to 5250	Pass
			-30	120	5180.020	5150 to 5250	Pass
			-20	120	5179.980	5150 to 5250	Pass
		5180	-10	120	5180.000	5150 to 5250	Pass
		0.00	0	120	5180.000	5150 to 5250	Pass
			10	120	5179.980	5150 to 5250	Pass
			30	120	5180.000	5150 to 5250	Pass
			40	120	5179.960	5150 to 5250	Pass
			50	120	5180.020	5150 to 5250	Pass
				102	5199.980	5150 to 5250	Pass
			20	120	5199.960	5150 to 5250	Pass
			20	138	5199.980	5150 to 5250	Pass
			-30	120	5200.000	5150 to 5250	Pass
			-20	120	5200.040	5150 to 5250	Pass
		5200	-10	120	5199.980	5150 to 5250	Pass
		3233	0	120	5200.000	5150 to 5250	Pass
			10	120	5200.000	5150 to 5250	Pass
			30	120	5199.940	5150 to 5250	Pass
802.11a	SISO		40	120	5200.020	5150 to 5250	Pass
002	0.00		50	120	5200.020	5150 to 5250	Pass
			20	102	5240.000	5150 to 5250	Pass
				120	5239.940	5150 to 5250	Pass
				138	5240.020	5150 to 5250	Pass
			-30	120	5239.960	5150 to 5250	Pass
			-20	120	5240.020	5150 to 5250	Pass
		5240	-10	120	5239.980	5150 to 5250	Pass
			0	120	5240.020	5150 to 5250	Pass
			10	120	5240.040	5150 to 5250	Pass
			30	120	5240.020	5150 to 5250	Pass
			40	120	5239.980	5150 to 5250	Pass
			50	120	5240.000	5150 to 5250	Pass
				102	5745.080	5725 to 5850	Pass
			20	120	5745.000	5725 to 5850	Pass
				138	5745.040	5725 to 5850	Pass
			-30	120	5745.040	5725 to 5850	Pass
		5745	-20	120	5745.000	5725 to 5850	Pass
			-10	120	5745.000	5725 to 5850	Pass
			0	120	5744.980	5725 to 5850	Pass
			10	120	5745.020	5725 to 5850	Pass

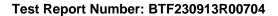
Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 124 of 13 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



			30	120	5745.000	5725 to 5850	Pass
			40	120	5745.040	5725 to 5850	Pass
			50	120	5744.960	5725 to 5850	Pass
	-		30	102	5784.980	5725 to 5850	Pass
			20	120		5725 to 5850	
			20		5784.960		Pass
		-	20	138	5785.000	5725 to 5850	Pass
			-30	120	5785.020	5725 to 5850	Pass
		5785	-20	120	5784.960	5725 to 5850	Pass
			-10	120	5785.020	5725 to 5850	Pass
			0	120	5785.020	5725 to 5850	Pass
			10	120	5785.060	5725 to 5850	Pass
			30	120	5785.020	5725 to 5850	Pass
			40	120	5785.040	5725 to 5850	Pass
			50	120	5785.020	5725 to 5850	Pass
			00	102	5825.080	5725 to 5850	Pass
			20	120	5825.020	5725 to 5850	Pass
				138	5825.020	5725 to 5850	Pass
			-30	120	5825.040	5725 to 5850	Pass
			-20	120	5825.020	5725 to 5850	Pass
		5825	-10	120	5824.980	5725 to 5850	Pass
			0	120	5825.020	5725 to 5850	Pass
			10	120	5825.000	5725 to 5850	Pass
			30	120	5824.920	5725 to 5850	Pass
			40	120	5825.020	5725 to 5850	Pass
			50	120	5825.020	5725 to 5850	Pass
				102	5179.960	5150 to 5250	Pass
		5180	20	120	5180.000	5150 to 5250	Pass
				138	5179.960	5150 to 5250	Pass
			-30	120	5179.960	5150 to 5250	Pass
			-20	120	5179.940	5150 to 5250	Pass
			-10	120	5179.980	5150 to 5250	Pass
			0	120	5180.020	5150 to 5250	Pass
			10	120	5180.040	5150 to 5250	Pass
			30	120	5180.040	5150 to 5250	Pass
			40	120	5179.960	5150 to 5250	Pass
			50	120	5180.000	5150 to 5250	Pass
				102	5199.980	5150 to 5250	Pass
			20	120	5199.940	5150 to 5250	Pass
802.11n	SISO			138	5199.960	5150 to 5250	Pass
(HT20)	3130		-30	120	5199.940	5150 to 5250	Pass
			-20	120	5199.920	5150 to 5250	Pass
		5200	-10	120	5199.960	5150 to 5250	Pass
			0	120	5199.980	5150 to 5250	Pass
			10	120	5199.960	5150 to 5250	Pass
			30	120	5199.940	5150 to 5250	Pass
			40	120	5200.000	5150 to 5250	Pass
			50	120	5199.980	5150 to 5250	Pass
				102	5240.000	5150 to 5250	Pass
			20	120	5239.940	5150 to 5250	Pass
		5040		138	5239.980	5150 to 5250	Pass
		5240	-30	120	5239.940	5150 to 5250	Pass
			-20	120	5239.980	5150 to 5250	Pass
			-10	120	5240.020	5150 to 5250	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 125 of 13 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

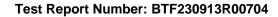
Page 125 of 131



	T		0	120	5240.020	5150 to 5250	Pass				
			10	120	5239.920	5150 to 5250	Pass				
			30	120	5240.000	5150 to 5250	Pass				
			40	120	5239.980	5150 to 5250	Pass				
			50	120	5239.980	5150 to 5250					
			50	102	5744.940	5725 to 5850	Pass				
			20	120			Pass				
			20		5744.960	5725 to 5850	Pass				
			20	138	5745.000	5725 to 5850	Pass				
			-30	120	5745.020	5725 to 5850	Pass				
		E74E	-20	120	5745.020	5725 to 5850	Pass				
		5745	-10	120	5745.020	5725 to 5850	Pass				
			0	120	5744.960	5725 to 5850	Pass				
			10	120	5745.020	5725 to 5850	Pass				
			30	120	5745.000	5725 to 5850	Pass				
			40	120	5745.000	5725 to 5850	Pass				
	-		50	120	5745.020	5725 to 5850	Pass				
			00	102	5784.980	5725 to 5850	Pass				
			20	120	5785.000	5725 to 5850	Pass				
			0.0	138	5785.040	5725 to 5850	Pass				
			-30	120	5785.000	5725 to 5850	Pass				
			-20	120	5785.020	5725 to 5850	Pass				
		5785	-10	120	5785.040	5725 to 5850	Pass				
			0	120	5785.000	5725 to 5850	Pass				
			10	120	5785.000	5725 to 5850	Pass				
			30	120	5785.020	5725 to 5850	Pass				
			40	120	5785.020	5725 to 5850	Pass				
			50	120	5785.000	5725 to 5850	Pass				
				102	5825.000	5725 to 5850	Pass				
							20	120	5825.020	5725 to 5850	Pass
				138	5824.980	5725 to 5850	Pass				
			-30	120	5824.980	5725 to 5850	Pass				
			-20	120	5825.000	5725 to 5850	Pass				
		5825	-10	120	5825.020	5725 to 5850	Pass				
			0	120	5824.980	5725 to 5850	Pass				
			10	120	5824.980	5725 to 5850	Pass				
			30	120	5825.040	5725 to 5850	Pass				
			40	120	5825.020	5725 to 5850	Pass				
			50	120	5824.920	5725 to 5850	Pass				
				102	5190.000	5150 to 5250	Pass				
			20	120	5190.000	5150 to 5250	Pass				
				138	5190.040	5150 to 5250	Pass				
			-30	120	5190.000	5150 to 5250	Pass				
			-20	120	5189.960	5150 to 5250	Pass				
		5190	-10	120	5190.000	5150 to 5250	Pass				
802.11n			0	120	5189.960	5150 to 5250	Pass				
(HT40)	SISO		10	120	5190.040	5150 to 5250	Pass				
(,			30	120	5189.960	5150 to 5250	Pass				
			40	120	5190.000	5150 to 5250	Pass				
	<u> </u>		50	120	5190.000	5150 to 5250	Pass				
				102	5229.960	5150 to 5250	Pass				
		5230	20	120	5229.960	5150 to 5250	Pass				
		3230		138	5230.000	5150 to 5250	Pass				
			-30	120	5230.000	5150 to 5250	Pass				

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 126 of 13 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

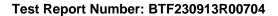
Page 126 of 131



			-20	120	5230.000	5150 to 5250	Pass
		-	-10	120	5230.000	5150 to 5250	Pass
		-	0	120	5230.000	5150 to 5250	Pass
			10	120	5230.000	5150 to 5250	Pass
			30	120	5230.000	5150 to 5250	
			40	120	5229.960	5150 to 5250	Pass
		-	50	120			Pass
			50		5229.960	5150 to 5250	Pass
			20	102	5755.040	5725 to 5850	Pass
			20	120	5755.000	5725 to 5850	Pass
			20	138	5755.040	5725 to 5850	Pass
		-	-30	120	5755.000	5725 to 5850	Pass
		E755	-20	120	5754.960	5725 to 5850	Pass
		5755	-10	120	5755.040	5725 to 5850	Pass
			0	120	5755.040	5725 to 5850	Pass
		-	10	120	5755.000	5725 to 5850	Pass
			30	120	5755.120	5725 to 5850	Pass
			40	120	5755.000	5725 to 5850	Pass
			50	120	5754.960	5725 to 5850	Pass
				102	5795.080	5725 to 5850	Pass
			20	120	5795.000	5725 to 5850	Pass
				138	5795.000	5725 to 5850	Pass
			-30	120	5795.040	5725 to 5850	Pass
			-20	120	5795.040	5725 to 5850	Pass
		5795	-10	120	5795.000	5725 to 5850	Pass
		-	0	120	5795.000	5725 to 5850	Pass
			10	120	5794.960	5725 to 5850	Pass
			30	120	5794.960	5725 to 5850	Pass
			40	120	5795.000	5725 to 5850	Pass
			50	120	5795.000	5725 to 5850	Pass
				102	5180.040	5150 to 5250	Pass
			20	120	5180.020	5150 to 5250	Pass
				138	5179.980	5150 to 5250	Pass
			-30	120	5179.980	5150 to 5250	Pass
			-20	120	5180.020	5150 to 5250	Pass
		5180	-10	120	5179.940	5150 to 5250	Pass
			0	120	5179.980	5150 to 5250	Pass
			10	120	5180.000	5150 to 5250	Pass
			30	120	5180.000	5150 to 5250	Pass
			40	120	5179.960	5150 to 5250	Pass
			50	120	5179.960	5150 to 5250	Pass
802.11ac	SISO			102	5200.000	5150 to 5250	Pass
(VHT20)	0.00		20	120	5199.980	5150 to 5250	Pass
				138	5199.940	5150 to 5250	Pass
			-30	120	5200.000	5150 to 5250	Pass
			-20	120	5200.020	5150 to 5250	Pass
		5200	-10	120	5199.960	5150 to 5250	Pass
			0	120	5199.940	5150 to 5250	Pass
			10	120	5200.000	5150 to 5250	Pass
			30	120	5199.980	5150 to 5250	Pass
			40	120	5200.020	5150 to 5250	Pass
			50	120	5199.980	5150 to 5250	Pass
		5240	20	102	5239.980	5150 to 5250	Pass
		3240	20	120	5239.960	5150 to 5250	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 127 of 13 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

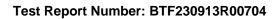
Page 127 of 131



		I		120	E020 000	51E0 to 50E0	Door
			20	138	5239.920	5150 to 5250	Pass
			-30	120	5239.960	5150 to 5250	Pass
			-20	120	5240.000	5150 to 5250	Pass
			-10	120	5239.960	5150 to 5250	Pass
			0	120	5240.000	5150 to 5250	Pass
			10	120	5240.000	5150 to 5250	Pass
			30	120	5239.980	5150 to 5250	Pass
			40	120	5239.980	5150 to 5250	Pass
			50	120	5240.000	5150 to 5250	Pass
				102	5745.000	5725 to 5850	Pass
			20	120	5745.020	5725 to 5850	Pass
				138	5745.000	5725 to 5850	Pass
			-30	120	5744.940	5725 to 5850	Pass
			-20	120	5745.020	5725 to 5850	Pass
		5745	-10	120	5744.980	5725 to 5850	Pass
			0	120	5744.980	5725 to 5850	Pass
			10	120	5744.960	5725 to 5850	Pass
			30	120	5745.020	5725 to 5850	Pass
			40	120	5744.940	5725 to 5850	Pass
		-	50	120	5745.000	5725 to 5850	Pass
				102	5785.020	5725 to 5850	Pass
			20	120	5785.000	5725 to 5850	Pass
				138	5784.980	5725 to 5850	Pass
			-30	120	5785.060	5725 to 5850	Pass
		-	-20	120	5784.940	5725 to 5850	Pass
		5785	-10	120	5784.980	5725 to 5850	Pass
		0.00	0	120	5785.000	5725 to 5850	Pass
			10	120	5784.940	5725 to 5850	Pass
			30	120	5785.000	5725 to 5850	Pass
			40	120	5785.020	5725 to 5850	Pass
			50	120	5784.960	5725 to 5850	Pass
	-		30	102	5824.960	5725 to 5850	Pass
			20	120	5825.000	5725 to 5850	Pass
			20	138	5825.020	5725 to 5850	Pass
			-30	120	5825.020	5725 to 5850	Pass
				120	5824.940	5725 to 5850	Pass
		5005	-20				
		5825	-10	120	5825.020	5725 to 5850	Pass
			0	120	5825.000	5725 to 5850	Pass
			10	120	5825.040	5725 to 5850	Pass
			30	120	5825.020	5725 to 5850	Pass
			40	120	5824.940	5725 to 5850	Pass
			50	120	5824.980	5725 to 5850	Pass
			60	102	5189.960	5150 to 5250	Pass
			20	120	5190.000	5150 to 5250	Pass
				138	5190.040	5150 to 5250	Pass
			-30	120	5189.960	5150 to 5250	Pass
802.11ac			-20	120	5190.000	5150 to 5250	Pass
(VHT40)	SISO	5190	-10	120	5190.000	5150 to 5250	Pass
(0,11,70)			0	120	5190.000	5150 to 5250	Pass
			10	120	5190.000	5150 to 5250	Pass
			30	120	5189.960	5150 to 5250	Pass
			40	120	5190.000	5150 to 5250	Pass
			50	120	5189.960	5150 to 5250	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 128 of 13 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

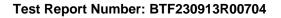
Page 128 of 131



	Г			100	F000 000	E4E0 + 50E0	D
		5000	20	102	5230.000	5150 to 5250	Pass
			20	120	5230.000	5150 to 5250	Pass
			20	138	5230.000	5150 to 5250	Pass
			-30	120	5230.040	5150 to 5250	Pass
			-20	120	5229.960	5150 to 5250	Pass
		5230	-10	120	5230.000	5150 to 5250	Pass
			0	120	5230.040	5150 to 5250	Pass
			10	120	5230.040	5150 to 5250	Pass
			30	120	5230.000	5150 to 5250	Pass
			40	120	5230.000	5150 to 5250	Pass
	_		50	120	5229.960	5150 to 5250	Pass
				102	5755.000	5725 to 5850	Pass
			20	120	5755.040	5725 to 5850	Pass
				138	5755.080	5725 to 5850	Pass
			-30	120	5755.000	5725 to 5850	Pass
			-20	120	5755.000	5725 to 5850	Pass
		5755	-10	120	5755.000	5725 to 5850	Pass
			0	120	5755.040	5725 to 5850	Pass
			10	120	5754.960	5725 to 5850	Pass
			30	120	5754.960	5725 to 5850	Pass
			40	120	5755.080	5725 to 5850	Pass
			50	120	5755.080	5725 to 5850	Pass
				102	5795.040	5725 to 5850	Pass
			20	120	5795.080	5725 to 5850	Pass
				138	5795.040	5725 to 5850	Pass
			-30	120	5795.040	5725 to 5850	Pass
			-20	120	5795.040	5725 to 5850	Pass
		5795	-10	120	5795.000	5725 to 5850	Pass
			0	120	5795.000	5725 to 5850	Pass
			10	120	5795.000	5725 to 5850	Pass
			30	120	5795.040	5725 to 5850	Pass
			40	120	5795.040	5725 to 5850	Pass
			50	120	5795.040	5725 to 5850	Pass
				102	5210.000	5150 to 5250	Pass
			20	120	5209.925	5150 to 5250	Pass
				138	5209.850	5150 to 5250	Pass
			-30	120	5209.850	5150 to 5250	Pass
			-20	120	5209.925	5150 to 5250	Pass
		5210	-10	120	5210.000	5150 to 5250	Pass
			0	120	5209.925	5150 to 5250	Pass
			10	120	5210.000	5150 to 5250	Pass
			30	120	5210.000	5150 to 5250	Pass
802.11ac	SISO		40	120	5209.925	5150 to 5250	Pass
(VHT80)	0100		50	120	5210.000	5150 to 5250	Pass
				102	5775.075	5725 to 5850	Pass
			20	120	5775.000	5725 to 5850	Pass
				138	5775.000	5725 to 5850	Pass
			-30	120	5775.075	5725 to 5850	Pass
		5775	-20	120	5775.000	5725 to 5850	Pass
			-10	120	5775.075	5725 to 5850	Pass
			0	120	5775.075	5725 to 5850	Pass
			10	120	5775.075	5725 to 5850	Pass
			30	120	5775.000	5725 to 5850	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 129 of 13 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 129 of 131


40	120	5775.000	5725 to 5850	Pass
50	120	5775.000	5725 to 5850	Pass

6. Form731

6.1 Form731

6.1.1 Test Result

Lower Freq (MHz)	High Freq (MHz)	MAX Power (W)	MAX Power (dBm)
5180	5240	0.0084	9.22
5745	5825	0.0167	12.23
5190	5230	0.0088	9.46
5755	5795	0.0164	12.16
5210	5210	0.0099	9.97

BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

www.btf-lab.com

-- END OF REPORT --