

RF Test Report

Applicant Name: Xwireless LLC

Address: 11565 Old Georgetown Road, Rockville, MD, USA

EUT Name: Mobile Phone

Brand Name: Vortex Model Number: CG65 Pro

Issued By

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.

> F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen,

China

BTF231117R00104 Report Number: Test Standards: 47 CFR Part 15E

Test Conclusion: Pass

2ADLJ-CG65PRO FCC ID:

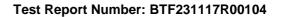
Test Date: 2023-11-5 to 2023-11-23

Date of Issue: 2023-11-27

Prepared By:

Address:

Chris Liu / Project Enginee

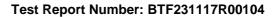

2023-11-27 Date:

Approved By:

Ryan.CJ / EMC Manager

Date: 2023-11-27

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.



Revision History			
Version	Issue Date	Revisions Content	
R_V0	2023-11-27	Original	
Note: Once the	revision has been made, then pre	vious versions reports are invalid.	

Table of Contents

1	INTF	SODUC.	TION	5
	1.1	Identi	ification of Testing Laboratory	5
	1.2		ification of the Responsible Testing Location	
	1.3	Anno	uncement	5
2	PRO	DUCT I	INFORMATION	6
	2.1	Appli	cation Information	6
	2.2	Manu	facturer Information	6
	2.3		ry Information	
	2.4		ral Description of Equipment under Test (EUT)	
	2.5		nical Information	
3			OF TEST RESULTS	
	3.1		Standards	
	3.2 3.3		rtainty of Testnary of Test Result	
4			FIGURATION	
4				
	4.1 4.2		Equipment List Auxiliary Equipment	
	4.3		Modes	
5	ΕVΑ		ON RESULTS (EVALUATION)	
	5.1		nna requirement	
6	•		CTRUM MATTER TEST RESULTS (RF)	
	6.1		ucted Emission at AC power line	
	0.1	6.1.1	E.U.T. Operation:	
		6.1.2	Test Setup Diagram:	
		6.1.3	Test Data:	
	6.2	Duty	Cycle	18
		6.2.1	E.U.T. Operation:	18
		6.2.2	Test Data:	18
	6.3	Maxin	num conducted output power	
		6.3.1	E.U.T. Operation:	
		6.3.2	Test Data:	
	6.4		r spectral density	
		6.4.1		
	C E			
	6.5		sion bandwidth and occupied bandwidth	
		6.5.1 6.5.2	E.U.T. Operation: Test Data:	
	6.6		edge emissions (Radiated)	
	0.0	6.6.1	E.U.T. Operation:	
		6.6.2	Test Setup Diagram:	
		6.6.3	Test Data:	
	6.7	Unde	sirable emission limits (below 1GHz)	
		6.7.1	E.U.T. Operation:	
		6.7.2	Test Setup Diagram:	
		6.7.3	Test Data:	
	6.8		sirable emission limits (above 1GHz)	
		6.8.1	E.U.T. Operation:	35

	6.8.2	Test Data:	36
7	TEST SETU	P PHOTOS	38
		RUCTIONAL DETAILS (EUT PHOTOS)	
APPE	NDIX	· · · · · · · · · · · · · · · · · · ·	41

1 Introduction

1.1 Identification of Testing Laboratory

С	ompany Name:	BTF Testing Lab (Shenzhen) Co., Ltd.
Λ	ddress:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou
^	Address.	Community, Songgang Street, Bao'an District, Shenzhen, China
Р	hone Number:	+86-0755-23146130
F	ax Number:	+86-0755-23146130

1.2 Identification of the Responsible Testing Location

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.	
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
Phone Number:	+86-0755-23146130
Fax Number:	+86-0755-23146130
FCC Registration Number:	518915
Designation Number:	CN1330

1.3 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2 Product Information

2.1 Application Information

Company Name:	Xwireless LLC	
Address:	11565 Old Georgetown Road, Rockville, MD, USA	

2.2 Manufacturer Information

Company Name:	Xwireless LLC
Address:	11565 Old Georgetown Road, Rockville, MD, USA

2.3 Factory Information

Company Name:	BOPEL MOBILE TECHNOLOGY CO., LTD.
Address:	RM603,6/F,HANG PONT COMM BLDG,31 TONKIN ST,CHEUNG SHA WAN,KOWLOON,HONG KONG

2.4 General Description of Equipment under Test (EUT)

EUT Name:	Mobile Phone	
Test Model Number:	CG65 Pro	
Hardware Version:	N/A	
Software Version:	N/A	4.00

2.5 Technical Information

Power Supply:	DC 3.85V form battery
Operation Frequency Range	U-NII Band 1: 5.18~5.24 GHz
Frequency Block	U-NII Band 1: 5.15~5.25 GHz
Channel Bandwidth	802.11a: 20 MHz 802.11n: 20 MHz, 40 MHz 802.11ac: 20 MHz, 40 MHz, 80 MHz
Antenna Type:	PIFA Antenna
Antenna Gain:	1.20 dBi
Mata	

Note

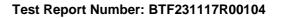
^{#:} The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

3 Summary of Test Results

3.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15E: Unlicensed National Information Infrastructure Devices

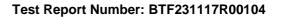

3.2 Uncertainty of Test

Item	Measurement Uncertainty
Conducted Emission (150 kHz-30 MHz)	±2.64dB

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.3 Summary of Test Result

Item	Standard	Requirement	Result
Antenna requirement	47 CFR Part 15E	Part 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15E	47 CFR Part 15.207(a)	Pass
Maximum conducted output power	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Power spectral density	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Emission bandwidth and occupied bandwidth	47 CFR Part 15E	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. 47 CFR Part 15.407(e)	Pass
Channel Availability Check Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(ii)	Pass
U-NII Detection Bandwidth	47 CFR Part 15E	47 CFR Part 15.407(h)(2)	Pass
Statistical Performance Check	47 CFR Part 15E	KDB 935210 D02, Clause 5.1 Table 2	Pass
Channel Move Time, Channel Closing Transmission Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iii)	Pass
Non-Occupancy Period Test	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iv)	Pass
DFS Detection Thresholds	47 CFR Part 15E	KDB 905462 D02, Clause 5.2 Table 3	Pass
Band edge emissions (Radiated)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass
Undesirable emission limits (below 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(9)	Pass
Undesirable emission limits (above 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass

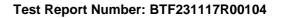

Test Configuration

Test Equipment List

Conducted Emission at AC power line								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	00953	2022-11-24	2023-11-23			
Coaxial Switcher	SCHWARZBECK	CX210	CX210	2022-11-24	2023-11-23			
V-LISN	SCHWARZBECK	NSLK 8127	01073	2022-11-24	2023-11-23			
LISN	AFJ	LS16/110VAC	16010020076	2023-02-23	2024-02-22			
EMI Receiver	ROHDE&SCHWA RZ	ESCI3	101422	2022-11-24	2023-11-23			

Duty Cycle							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	1	V1.00	1	/	/		
RF Control Unit	Techy	TR1029-1	1	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	1	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

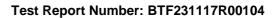
Maximum conducted output power							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		



Power spectral density								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	1	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23			

Emission bandwidth and occupied bandwidth								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23			

Channel Availability Check Time								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			

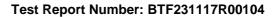


MXA Signal Analyzer KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23
------------------------------	--------	------------	------------	------------

U-NII Detection Bandwidth								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	1	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23			

Statistical Performance Check								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23			

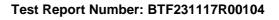
Channel Move Time, Channel Closing Transmission Time								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			



WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Non-Occupancy Period Test								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23			

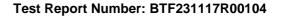
DFS Detection Thresholds							
Equipment	Manufacturer	Cal Date	Cal Due Date				
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		


Band edge emissions (Radiated)								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23			
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23			

RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	1
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	1
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

Undesirable emission	•	Model No	Inventory No	Cal Date	Cal Due Date
Equipment	Manufacturer	Wodel No	Inventory No	Cai Date	Cai Due Date
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	80000	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

Undesirable emission	limits (above 1GF	z)			
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	1	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27



4.2 Test Auxiliary Equipment

The EUT was tested as an independent device.

4.3 Test Modes

No.	Test Modes	Description
TM1	802.11a mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
TM2	802.11n mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
ТМЗ	802.11ac mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. Only the data of worst case is recorded in the report.
TM4	Normal Operating	Keep the EUT works in normal operating mode and connect to companion device

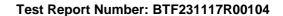
5 Evaluation Results (Evaluation)

5.1 Antenna requirement

Test Requirement:	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
-------------------	--

6 Radio Spectrum Matter Test Results (RF)

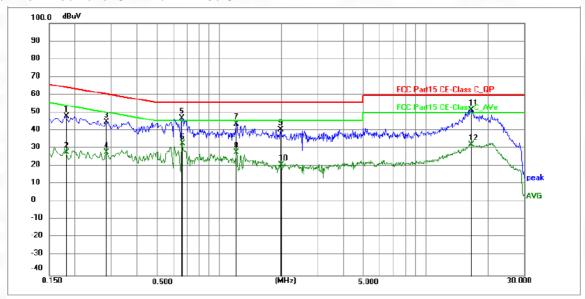
6.1 Conducted Emission at AC power line


Test Requirement:	47 CFR Part 15.207(a)						
Test Method:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices						
	Frequency of emission (MHz)	Conducted limit (dBµV)					
		Quasi-peak	Average				
Toot Limit:	0.15-0.5	66 to 56*	56 to 46*				
Test Limit:	0.5-5	56	46				
	5-30	60	50				
	*Decreases with the logarithm of the frequency.						

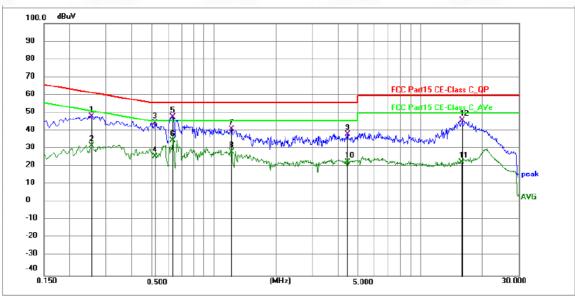
6.1.1 E.U.T. Operation:

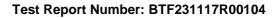
Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.1.2 Test Setup Diagram:



6.1.3 Test Data:

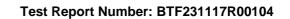

TM1 / Line: Line / Band: U-NII 1 / BW: 20 / CH: L


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1814	37.81	10.52	48.33	64.42	-16.09	peak	Р	
2	0.1814	17.92	10.52	28.44	54.42	-25.98	AVG	Р	
3	0.2847	34.41	10.83	45.24	60.68	-15.44	peak	Р	
4	0.2847	17.56	10.83	28.39	50.68	-22.29	AVG	Р	
5	0.6582	36.25	11.10	47.35	56.00	-8.65	peak	Р	
6	0.6630	22.15	11.09	33.24	46.00	-12.76	AVG	Р	
7	1.2120	33.52	10.66	44.18	56.00	-11.82	peak	Р	
8	1.2120	17.86	10.66	28.52	46.00	-17.48	AVG	Р	
9	1.9815	30.48	10.68	41.16	56.00	-14.84	peak	Р	
10	1.9950	10.70	10.68	21.38	46.00	-24.62	AVG	Р	
11 *	16.6511	40.87	10.98	51.85	60.00	-8.15	peak	Р	
12	16.6511	21.66	10.98	32.64	50.00	-17.36	AVG	Р	

TM1 / Line: Neutral / Band: U-NII 1 / BW: 20 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.2560	37.67	10.74	48.41	61.56	-13.15	QP	Р	
2	0.2560	21.56	10.74	32.30	51.56	-19.26	AVG	Р	
3	0.5190	33.78	11.21	44.99	56.00	-11.01	QP	Р	
4	0.5190	15.24	11.21	26.45	46.00	-19.55	AVG	Р	
5 *	0.6312	36.82	11.17	47.99	56.00	-8.01	QP	Р	
6	0.6312	23.99	11.17	35.16	46.00	-10.84	AVG	Р	
7	1.2210	30.71	10.66	41.37	56.00	-14.63	QP	Р	
8	1.2210	18.09	10.66	28.75	46.00	-17.25	AVG	Р	
9	4.4474	27.92	10.70	38.62	56.00	-17.38	QP	Р	
10	4.4474	12.45	10.70	23.15	46.00	-22.85	AVG	Р	
11	15.8145	12.31	10.87	23.18	50.00	-26.82	AVG	Р	
12	15.8864	35.24	10.88	46.12	60.00	-13.88	QP	Р	

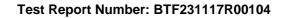
6.2 Duty Cycle


Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Method:	ANSI C63.10-2013 section 12.2 (b)
Test Limit:	No limits, only for report use.
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

6.2.1 E.U.T. Operation:

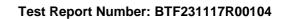
Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.2.2 Test Data:


Please Refer to Appendix for Details.

6.3 Maximum conducted output power

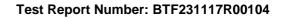
6.3 Maximum conducted output power				
	47 CFR Part 15.407(a)(1)(i)			
	47 CFR Part 15.407(a)(1)(ii)			
Total Day Survey	47 CFR Part 15.407(a)(1)(iii)			
Test Requirement:	47 CFR Part 15.407(a)(1)(iv)			
	47 CFR Part 15.407(a)(2)			
	47 CFR Part 15.407(a)(3)(i)			
Test Method:	ANSI C63.10-2013, section 12.3			
	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum			
	conducted output power over the frequency band of operation shall not exceed 1			
	W provided the maximum antenna gain does not exceed 6 dBi.			
	If transmitting antennas of directional gain greater than 6 dBi are used, the			
	maximum conducted output power shall be reduced by the amount in dB that the			
	directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any			
	elevation angle above 30 degrees as measured from the horizon must not exceed			
	125 mW (21 dBm).			
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum			
	conducted output power over the frequency band of operation shall not exceed 1			
	W provided the maximum antenna gain does not exceed 6 dBi.			
	If transmitting antennas of directional gain greater than 6 dBi are used, the			
	maximum conducted output power shall be reduced by the amount in dB that the			
	directional gain of the antenna exceeds 6 dBi.			
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the			
	maximum conducted output power over the frequency band of operation shall not			
	exceed 1 W.			
	Fixed point-to-point U-NII devices may employ antennas with directional gain up to			
	23 dBi without any corresponding reduction in the maximum conducted output			
	power.			
Test Limit:	For fixed point-to-point transmitters that employ a directional antenna gain greater			
rest Limit.	than 23 dBi, a 1 dB reduction in maximum conducted output power is required for			
	each 1 dB of antenna gain in excess of 23 dBi.			
	Fixed, point-to-point operations exclude the use of point-to-multipoint systems,			
	omnidirectional applications, and multiple collocated transmitters transmitting the			
	same information. The operator of the U-NII device, or if the equipment is			
	professionally installed, the installer, is responsible for ensuring that systems			
	employing high gain directional antennas are used exclusively for fixed,			
	point-to-point operations.			
	For client devices in the 5.15-5.25 GHz band, the maximum conducted output			
	power over the frequency band of operation shall not exceed 250 mW provided the			
	maximum antenna gain does not exceed 6 dBi.			
	If transmitting antennas of directional gain greater than 6 dBi are used, the			
	maximum conducted output power shall be reduced by the amount in dB that the			
	directional gain of the antenna exceeds 6 dBi.			
	Fauth a 5 05 5 05 011- and 5 47 5 705 011 last butter as less as a last butter as less as le			
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output			
	power over the frequency bands of operation shall not exceed the lesser of 250			
	mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.			
	If transmitting antennas of directional gain greater than 6 dBi are used, the			
	maximum conducted output power shall be reduced by the amount in dB that the			
	directional gain of the antenna exceeds 6 dBi.			


	E d
	For the band 5.725-5.850 GHz, the maximum conducted output power over the
	frequency band of operation shall not exceed 1 W.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi.
	However, fixed point-to-point U-NII devices operating in this band may employ
	transmitting antennas with directional gain greater than 6 dBi without any
	corresponding reduction in transmitter conducted power. Fixed, point-to-point
	operations exclude the use of point-to-multipoint systems, omnidirectional
	applications, and multiple collocated transmitters transmitting the same
	information. The operator of the U-NII device, or if the equipment is professionally
	installed, the installer, is responsible for ensuring that systems employing high gain
	directional antennas are used exclusively for fixed, point-to-point operations.
	Method SA-1
	a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.
	b) Set RBW = 1 MHz.
	c) Set VBW >= 3 MHz.
	d) Number of points in sweep >= [2 x span / RBW]. (This gives bin-to-bin spacing
	<= RBW / 2, so
	that narrowband signals are not lost between frequency bins.)
	e) Sweep time = auto.
	f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample
	detector mode.
	g) If transmit duty cycle < 98%, use a video trigger with the trigger level set to
	enable triggering
	only on full power pulses. The transmitter shall operate at maximum power control level for the
Procedure:	
Procedure.	entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF intervals) or
	at duty cycle >= 98%, and if each transmission is entirely at the maximum power
	control level.
	then the trigger shall be set to "free run."
	h) Trace average at least 100 traces in power averaging (rms) mode.
	i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW
	of the signal
	using the instrument's band power measurement function, with band limits set
	equal to the
	EBW or OBW band edges. If the instrument does not have a band power function,
	then sum the
	spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB
	EBW or 99%
	OBW of the spectrum.
	ODIT OF the openium.

6.3.1 E.U.T. Operation:

Operating Environment:			
Temperature:	25.5 °C		
Humidity:	50.6 %		
Atmospheric Pressure:	1010 mbar		

6.3.2 Test Data:


Please Refer to Appendix for Details.

6.4 Power spectral density

6.4 Power spectral	density
	47 CFR Part 15.407(a)(1)(i)
	47 CFR Part 15.407(a)(1)(ii)
Test Requirement:	47 CFR Part 15.407(a)(1)(iii)
	47 CFR Part 15.407(a)(1)(iv)
	47 CFR Part 15.407(a)(2)
Test Method:	47 CFR Part 15.407(a)(3)(i) ANSI C63.10-2013, section 12.5
rest Method.	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum
	power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum
	power spectral density shall not exceed 17 dBm in any 1 megahertz band.
	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.
	Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum power spectral
	density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.
	Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is
Test Limit:	professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.
	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.
	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional
	gain greater than 6 dBi without any corresponding reduction in transmitter

	conducted power.
	Fixed, point-to-point operations exclude the use of point-to-multipoint systems,
	omnidirectional applications, and multiple collocated transmitters transmitting the
	same information. The operator of the U-NII device, or if the equipment is
	professionally installed, the installer, is responsible for ensuring that systems
	employing high gain directional antennas are used exclusively for fixed,
	point-to-point operations.
	a) Create an average power spectrum for the EUT operating mode being tested by
	following the
	instructions in 12.3.2 for measuring maximum conducted output power using a
	spectrum
	analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their
	respective alternatives) and apply it up to, but not including, the step labeled,
	"Compute
	power" (This procedure is required even if the maximum conducted output power
	measurement was performed using the power meter method PM.)
	b) Use the peak search function on the instrument to find the peak of the spectrum.
	c) Make the following adjustments to the peak value of the spectrum, if applicable:
	1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty
	cycle, to the peak of the spectrum.
	2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7,
	add
Due de divine	1 dB to the final result to compensate for the difference between linear averaging
Procedure:	and
	power averaging.
	d) The result is the PPSD.
	e) The procedure in item a) through item c) requires the use of 1 MHz resolution bandwidth to
	satisfy the 1 MHz measurement bandwidth specified by some regulatory
	authorities. This
	requirement also permits use of resolution bandwidths less than 1 MHz "provided
	that the
	measured power is integrated to show the total power over the measurement
	bandwidth" (i.e.,
	1 MHz). If measurements are performed using a reduced resolution bandwidth and
	integrated
	over 1 MHz bandwidth, the following adjustments to the procedures apply:
	1) Set RBW >= 1 / T, where T is defined in 12.2 a).
	2) Set VBW >= [3 x RBW].
	3) Care shall be taken such that the measurements are performed during a period
	of continuous transmission or are corrected upward for duty cycle.

6.4.1 E.U.T. Operation:

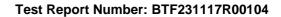
Operating Environment:		
Temperature:	25.5 °C	
Humidity:	50.6 %	
Atmospheric Pressure:	1010 mbar	

6.4.2 Test Data:

Please Refer to Appendix for Details.

6.5 Emission bandwidth and occupied bandwidth

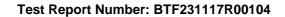
Test Requirement:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
Test Method:	ANSI C63.10-2013, section 6.9.3 & 12.4
	KDB 789033 D02, Clause C.2 U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Limit:	U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
	Emission bandwidth:
	a) Set RBW = approximately 1% of the emission bandwidth.b) Set the VBW > RBW.
	c) Detector = peak.
	d) Trace mode = max hold.
	e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission.
	Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement
	as needed until the RBW/EBW ratio is approximately 1%.
	Occupied bandwidth:
	a) The instrument center frequency is set to the nominal EUT channel center frequency. The
	frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
	b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW,
	and VBW shall be approximately three times the RBW, unless otherwise specified by the
	applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the
Procedure:	maximum input mixer level for linear operation. In general, the peak of the spectral envelope
	shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
	d) Step a) through step c) might require iteration to adjust within the specified range.
	e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode
	shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be
	used. f) Use the 99% power bandwidth function of the instrument (if available) and report
	the measured bandwidth.
	g) If the instrument does not have a 99% power bandwidth function, then the trace data points are
	recovered and directly summed in linear power terms. The recovered amplitude data points,
	beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached;
	that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the
	total is reached; that frequency is recorded as the upper frequency. The 99%


power bandwidth is
the difference between these two frequencies.
h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument
display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may
be reported in addition to the plot(s).
6 dB emission bandwidth:
a) Set RBW = 100 kHz.
b) Set the video bandwidth (VBW) ≥ 3 >= RBW.
c) Detector = Peak.
d) Trace mode = max hold.
e) Sweep = auto couple.
f) Allow the trace to stabilize.
g) Measure the maximum width of the emission that is constrained by the
frequencies associated with the two outermost amplitude points (upper and lower
frequencies) that are attenuated by 6 dB relative to the maximum level measured
in the fundamental emission.

6.5.1 E.U.T. Operation:

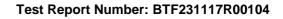
Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.5.2 Test Data:


Please Refer to Appendix for Details.

6.6 Band edge emissions (Radiated)

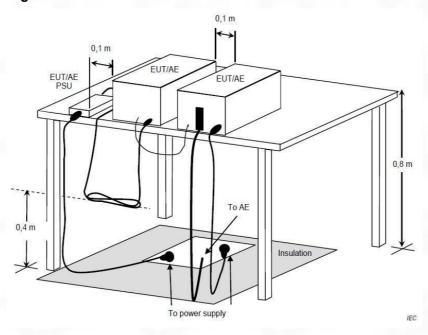
	47 CFR Part 15.407(b)	(1)			
Toot Dogwires and	47 CFR Part 15.407(b)				
Test Requirement:	47 CFR Part 15.407(b)				
	47 CFR Part 15.407(b)	` ,			
Test Method:		ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6			
Tool Woulde.	For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the				
	5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.				
	For transmitters operat 5.15-5.35 GHz band sh				
	For transmitters operat	ing solely in the 5.725-	5.850 GHz band	d:	
	All emissions shall be I	imited to a level of −27	dBm/MHz at 75	MHz or more above	
	or below the band edge				
	below the band edge, a				
	linearly to a level of 15				
	from 5 MHz above or b		creasing linearly	to a level of 27	
	dBm/MHz at the band	•			
	MHz	MHz	MHz	GHz	
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
	¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
	4.20725-4.20775	73-74.6	1645.5-1646.	9.3-9.5	
			5		
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
	6.26775-6.26825	108-121.94	1718.8-1722. 2	13.25-13.4	
Test Limit:	6.31175-6.31225	123-138	2200-2300	14.47-14.5	
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
	8.362-8.366	156.52475-156.525 25	2483.5-2500	17.7-21.4	
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
	12.57675-12.57725 13.36-13.41	322-335.4	3600-4400	(²)	
	¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ² Above 38.6				
The field strength of emissions appearing within these frequency bands shall exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 controls.				or less than 1000	
	MHz, compliance with measurement instrume 1000 MHz, compliance based on the average 15.35apply to these me	entation employing a CI with the emission limit value of the measured	SPR quasi-peak s in § 15.209sha	detector. Above all be demonstrated	
	Except as provided els	ewhere in this subpart,	the emissions fi	rom an intentional	



	radiator shall not exceed the	ne field strength levels specif	ied in the following table:
	Frequency (MHz)	Field strength	Measurement
	, , ,	(microvolts/meter)	distance
		,	(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	Above 1GHz:	300	3
Procedure:	above the ground at a 3 m degrees to determine the pb. The EUT was set 3 met was mounted on the top of c. The antenna height is vadetermine the maximum vipolarizations of the antenna d. For each suspected em the antenna was tuned to of below 30MHz, the anterwas turned from 0 degrees e. The test-receiver system Bandwidth with Maximum f. If the emission level of the specified, then testing coureported. Otherwise the erre-tested one by one using in a data sheet. g. Test the EUT in the lower h. The radiation measurem Transmitting mode, and for i. Repeat above procedures Remark: 1. Level= Read Level+ Ca 2. Scan from 18GHz to 40 points marked on above points marked on above points marked on above points marked on average limit not exceed the maximum procedure of the second are based on average limit not exceed the maximum procedure and the average limit, only 4. The disturbance above	eter fully-anechoic chamber. Cosition of the highest radiativers away from the interference of a variable-height antenna to caried from one meter to four leadue of the field strength. Bot a are set to make the measure in a set to make the measure in a set to make the measure in a set to Peak Detect Furthold Mode. The EUT in peak mode was 10 and be stopped and the peak was set to Peak Detect Furthold Mode. The EUT in peak mode was 10 and be stopped and the peak was set channel, the middle channels are performed in X, Y, Z, and the X axis positioning where in the interest is a set to highest emissions that did not have 10 appeak or average method as the set channel in the interest in the interes	The table was rotated 360 on. De-receiving antenna, which ower. Interest above the ground to the horizontal and vertical arement. It is to its worst case and then of the test frequency eter) and the rotatable table maximum reading. Inction and Specified Indeed lower than the limit values of the EUT would be a specified and then reported expecified and then reported expected was complete. The field strength limit expected expected and then expected exp

6.6.1 E.U.T. Operation:

Operating Environment:	Operating Environment:			
Temperature:	25.5 °C			
Humidity:	50.6 %			



Atmospheric Pressure:

1010 mbar

6.6.2 Test Setup Diagram:

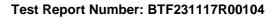
6.6.3 Test Data:

Note: All the mode have been tested, and only the worst mode 802.11a are in the report

UNII-1 20M 5180MHz Horizontal

No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
NO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F
1	5080.638	82.84	-31.70	51.14	68.20	-17.06	peak	Р
2	5150.000	83.44	-31.66	51.78	68.20	-16.42	peak	Р

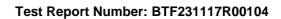
UNII-1 20M_5180MHz_Vertical


١	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
	1	5093.638	83.28	-31.70	51.58	68.20	-16.62	peak	Р
	2	5150.000	83.88	-31.66	52.22	68.20	-15.98	peak	Р

UNII-1 20M_5320MHz_Horizontal

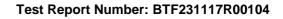
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F
1	5350.000	85.34	-31.79	53.55	68.20	-14.65	peak	Р
2	5435.325	83.71	-31.75	51.96	68.20	-16.24	peak	Р

UNII-1 20M_5320MHz_Vertical

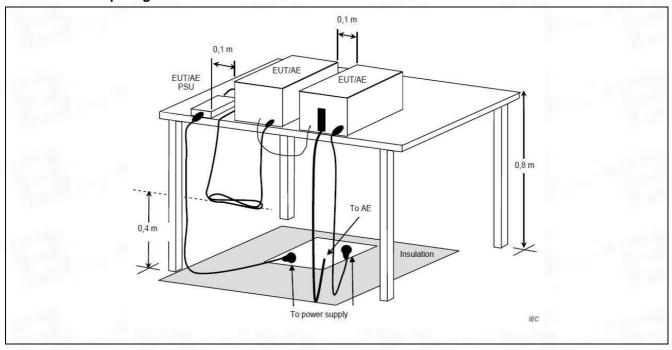

No.	Frequency	Reading	Factor	Level (dBuV/m)	Limit	Margin	Detector	P/F
	(MHz)	(dBuV)	(dB/m)	(dBuV/III)	(dBuV/m)	(dB)		
1	5350.000	85.00	-31.79	53.21	68.20	-14.99	peak	Р
2	5415.325	83.37	-31.75	51.62	68.20	-16.58	peak	Р

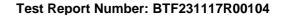
6.7 Undesirable emission limits (below 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(9)	
Test Method:	ANSI C63.10-2013, sec	etion 12.7.4, 12.7.5, 12.7.6	
	limits set forth in § 15.2 Except as provided else	elow 1 GHz must comply with the comply with the complex sewhere in this subpart, the emised the field strength levels speci	ssions from an intentional
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
Tool Limit.	0.009-0.490 0.490-1.705	2400/F(kHz) 24000/F(kHz)	300 30
	1.705-30.0 30-88 88-216 216-960 Above 960	30 100 ** 150 ** 200 ** 500	30 3 3 3 3
Procedure:	Below 1GHz: a. For below 1GHz, the above the ground at a 3 degrees to determine the b. The EUT was set 3 of which was mounted on c. The antenna height is determine the maximum polarizations of the antended. For each suspected of the antenna was turned of below 30MHz, the answas turned from 0 degree. The test-receiver system Bandwidth with Maximum for the emission level of specified, then testing of reported. Otherwise the re-tested one by one us data sheet. g. Test the EUT in the load to the readiation measure. Transmitting mode, and i. Repeat above proceed Remark: 1. Level= Read Level+ 2. Scan from 9kHz to 30 points marked on above testing, so only above pemissions from the radianeed not be reported. 3. The disturbance beloage.	EUT was placed on the top of a meter semi-anechoic chamber to position of the highest radiator 10 meters away from the intensity of a variable-height and a varied from one meter to four the value of the field strength. Both and are set to make the measurements are set to make the measurements are set to make the measurements are set to heights 1 meter to 4 meterna was tuned to heights 1 meter to 360 degrees to find the return was set to Peak Detect Furn Hold Mode. If the EUT in peak mode was 10 meters are performed in the peak the emissions that did not have 10 meters are performed in X, Y, I found the X axis positioning where until all frequencies measurements are the highest emission of the plots are the highest emission to points had been displayed. The ator which are attenuated more than 1 meters and the peak are the highest emission of the plots are the highest emission to the plots are the highest emission of the plots are the highest emission to the plots are the highest emission of the plots are the plots ar	r. The table was rotated 360 ion. rference-receiving antenna, renna tower. meters above the ground to th horizontal and vertical urement. de to its worst case and then eters (for the test frequency neter) and the rotatable table maximum reading. Inction and Specified OdB lower than the limit values of the EUT would be odB margin would be cified and then reported in a linel, the Highest channel. Z axis positioning for thich it is the worst case. Ured was complete. Preamp Factor OMHz was very low. The limit of spurious than 20dB below the limit tharmonics were the highest

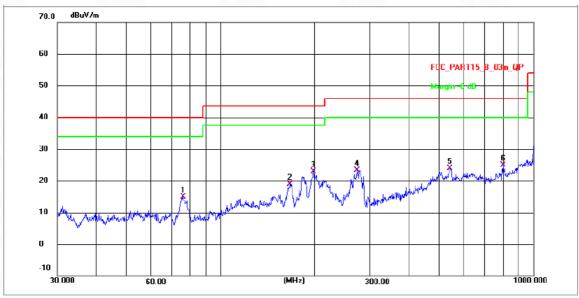


- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

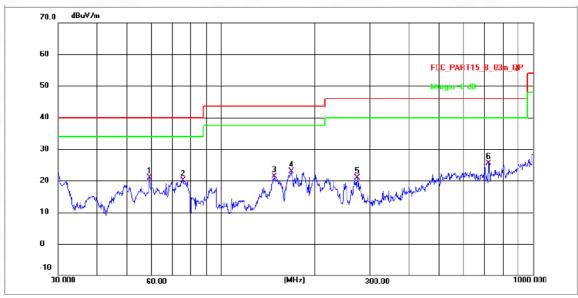

6.7.1 E.U.T. Operation:

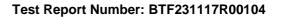

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

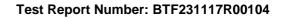
6.7.2 Test Setup Diagram:



6.7.3 Test Data:

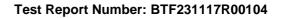

Note: All the mode have been tested, and only the worst mode are in the report TM1 / Polarization: Horizontal / Band: U-NII 1 / BW: 20 / CH: L


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	75.7112	32.90	-18.05	14.85	40.00	-25.15	QP	Р
2	166.6511	46.51	-27.63	18.88	43.50	-24.62	QP	Р
3 *	197.8925	50.29	-27.34	22.95	43.50	-20.55	QP	Р
4	273.2340	48.93	-25.66	23.27	46.00	-22.73	QP	Р
5	541.3721	45.57	-21.57	24.00	46.00	-22.00	QP	Р
6	798.9796	48.71	-23.72	24.99	46.00	-21.01	QP	Р


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	58.8185	41.07	-20.17	20.90	40.00	-19.10	QP	Р
2	75.4462	40.05	-19.90	20.15	40.00	-19.85	QP	Р
3	147.9214	49.12	-27.79	21.33	43.50	-22.17	QP	Р
4	167.8240	50.48	-27.62	22.86	43.50	-20.64	QP	Р
5	273.2340	46.66	-25.66	21.00	46.00	-25.00	QP	Р
6	719.1992	49.24	-23.65	25.59	46.00	-20.41	QP	Р

6.8 Undesirable emission limits (above 1GHz)

ole Gildesilable ol	111331011 11111113 (abov			
	47 CFR Part 15.407(b)			
Test Requirement:	47 CFR Part 15.407(b)			
•	47 CFR Part 15.407(b)			
	47 CFR Part 15.407(b)			
Test Method:		ction 12.7.4, 12.7.5, 12		
		ting in the 5.15-5.25 GH		
		nall not exceed an e.i.r.		
		ting in the 5.25-5.35 GH		
	5.15-5.35 GHz band sr	nall not exceed an e.i.r.	p. of -27 dBm/lV	IHZ.
	For transmitters on ever	ling calaby in the F 70F	E 050 CH= hone	
		ting solely in the 5.725-		
		imited to a level of −27		
		e increasing linearly to		
		and from 25 MHz above		
	linearly to a level of 15			
	from 5 MHz above or b		reasing inleany	to a level of 27
	MHz	euge. MHz	MHz	GHz
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
	10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
	4.20725-4.20775	73-74.6	1645.5-1646.	9.3-9.5
	1.20720 1.20770	70 7 1.0	5	0.0 0.0
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
	6.26775-6.26825	108-121.94	1718.8-1722.	13.25-13.4
			2	
T	6.31175-6.31225	123-138	2200-2300	14.47-14.5
Test Limit:	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
	8.362-8.366	156.52475-156.525	2483.5-2500	17.7-21.4
		25		
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
	12.57675-12.57725	322-335.4	3600-4400	(²)
	13.36-13.41			
	1 –			
	Until February 1, 1999), this restricted band s	hall be 0.490-0.5	510 MHz.
	² Above 38.6			
	The field strength of ou		in these frames	and hands shall not
		nissions appearing with		
	exceed the limits show MHz, compliance with			
	measurement instrume	entation employing a Ci with the emission limit		
	based on the average			
	15.35apply to these me		omiosions. THE	Provisions III 3
	10.00appiy to these file	casarements.		
	Except as provided els	ewhere in this subpart,	the emissions for	rom an intentional
		ed the field strength lev		
	Frequency (MHz)	Field strength		Measurement
		. ioid oliongin		5454151110111


		(microvolts/meter)	distance
		,	(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	Above 1GHz:		
		the EUT was placed on the top of	
	above the ground at	a 3 meter fully-anechoic chambe	r. The table was rotated 360
	degrees to determin	e the position of the highest radia	tion.
		3 meters away from the interferen	
		top of a variable-height antenna	
		ht is varied from one meter to four	
		num value of the field strength. Bo	
		antenna are set to make the meas	
		ed emission, the EUT was arrang	
		ed emission, the EOT was arrangled to heights from 1 meter to 4 m	
		e antenna was tuned to heights 1 i	
		egrees to 360 degrees to find the	
		system was set to Peak Detect Fo	unction and Specified
	Bandwidth with Max		
		el of the EUT in peak mode was 1	
		ng could be stopped and the peak	
		the emissions that did not have 1	
	re-tested one by one	e using peak or average method a	s specified and then reported
Procedure:	in a data sheet.		
	g. Test the EUT in th	e lowest channel, the middle cha	nnel, the Highest channel.
	h. The radiation mea	asurements are performed in X, Y	, Z axis positioning for
	Transmitting mode,	and found the X axis positioning v	which it is the worst case.
	i. Repeat above prod	cedures until all frequencies meas	sured was complete.
	Remark:		
		el+ Cable Loss+ Antenna Factor-	Preamp Factor
		to 40GHz, the disturbance above	
		pove plots are the highest emission	
		ve points had been displayed. The	
		radiator which are attenuated mor	
			e than 200b below the limit
	need not be reported		Hz the field strength limits
		section, for frequencies above 1G	
		ge limits. However, the peak field s	
		mum permitted average limits spe	
		ion of modulation. For the emission	• • • • • • • • • • • • • • • • • • •
		nit, only the peak measurement is	
	4. The disturbance a	above 18GHz were very low and t	he harmonics were the
	بالمان ومرافعة والمانيا	and the control of the analysis and the artificial	all according a second and be a second

6.8.1 E.U.T. Operation:

Operating Environment:				
Temperature:	25.5 °C			
Humidity:	50.6 %			
Atmospheric Pressure:	1010 mbar			

highest point could be found when testing, so only the above harmonics had been

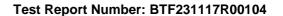
displayed.

6.8.2 Test Data:

Not:All of the mode had be tested, only the worse mode of 802.11a are show in the report: UNII-1_20M_5180MHz_Horizontal

No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
1	1385.950	76.37	-24.08	52.29	74.00	-21.71	peak	Р
2	3000.576	71.67	-20.73	50.94	74.00	-23.06	peak	Р
3	5896.606	70.03	-17.76	52.27	74.00	-21.73	peak	Р
4	7902.002	72.88	-24.60	48.28	74.00	-25.72	peak	Р
5	9797.539	75.50	-22.88	52.62	74.00	-21.38	peak	Р
6	13982.785	75.30	-21.61	53.69	74.00	-20.31	peak	Ρ

UNII-1 20M 5180MHz Vertical

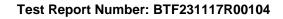

	01111 1_2011_0100111112_10111001							
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
1	1494.977	76.06	-23.98	52.08	74.00	-21.92	peak	Р
2	3109.603	71.36	-20.63	50.73	74.00	-23.27	peak	Р
3	6005.633	69.72	-17.66	52.06	74.00	-21.94	peak	Р
4	8011.029	72.57	-24.50	48.07	74.00	-25.93	peak	P
5	9906.566	75.19	-22.78	52.41	74.00	-21.59	peak	Р
6	14091.812	74.99	-21.51	53.48	74.00	-20.52	peak	Р

UNII-1_20M_5200MHz_Horizontal

No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
1	1784.950	77.20	-23.77	53.43	74.00	-20.57	peak	Р
2	3399.576	72.50	-20.42	52.08	74.00	-21.92	peak	Р
3	6295.606	70.86	-17.45	53.41	74.00	-20.59	peak	Р
4	8301.002	73.71	-24.29	49.42	74.00	-24.58	peak	Р
5	10196.539	76.33	-22.57	53.76	74.00	-20.24	peak	Р
6	14381.785	76.13	-21.30	54.83	74.00	-19.17	peak	Р

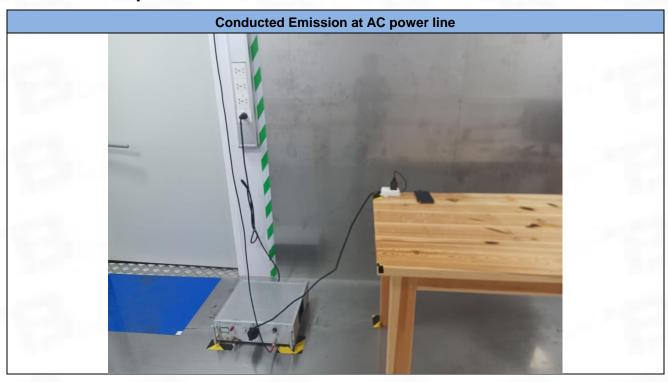
UNII-1 20M 5200MHz Vertical

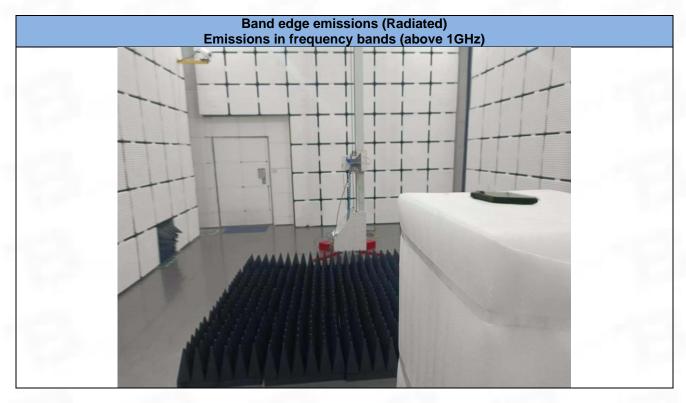
_								
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
1	1884.987	77.34	-23.81	53.53	74.00	-20.47	peak	Р
2	3499.613	72.64	-20.46	52.18	74.00	-21.82	peak	Р
3	6395.643	71.00	-17.49	53.51	74.00	-20.49	peak	Р
4	8401.039	73.85	-24.33	49.52	74.00	-24.48	peak	Р
5	10296.576	76.47	-22.61	53.86	74.00	-20.14	peak	Р
6	14481.822	76.27	-21.34	54.93	74.00	-19.07	peak	Р

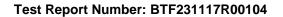


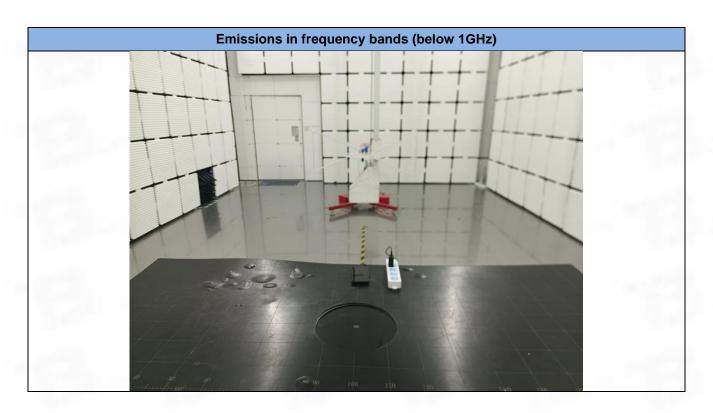
UNII-1_20M_5240MHz_Horizontal

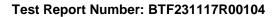
			_	_	_			
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	P/F
1	1984.987	78.00	-23.90	54.10	74.00	-19.90	peak	Р
2	3599.613	73.30	-20.55	52.75	74.00	-21.25	peak	Р
3	6495.643	71.66	-17.58	54.08	74.00	-19.92	peak	Р
4	8501.039	74.51	-24.42	50.09	74.00	-23.91	peak	Р
5	10396.576	77.13	-22.70	54.43	74.00	-19.57	peak	Р
6	14581.822	76.93	-21.43	55.50	74.00	-18.50	peak	Р

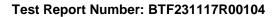

UNII-1 20M 5240MHz Vertical


			<u> </u>					
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	P/F
1	2117.987	78.21	-24.01	54.20	74.00	-19.80	peak	Р
2	3732.613	73.51	-20.66	52.85	74.00	-21.15	peak	Р
3	6628.643	71.87	-17.69	54.18	74.00	-19.82	peak	Р
4	8634.039	74.72	-24.53	50.19	74.00	-23.81	peak	Р
5	10529.576	77.34	-22.81	54.53	74.00	-19.47	peak	Р
6	14714.822	77.14	-21.54	55.60	74.00	-18.40	peak	Р




7 **Test Setup Photos**

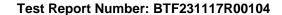




EUT Constructional Details (EUT Photos)

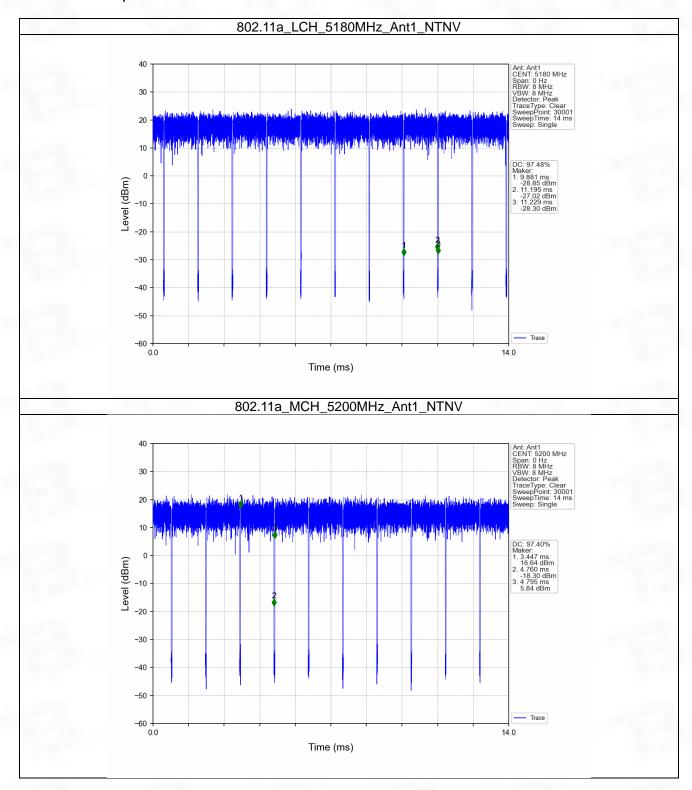
Please refer to the test report NO. BTF231117R00101

Appendix

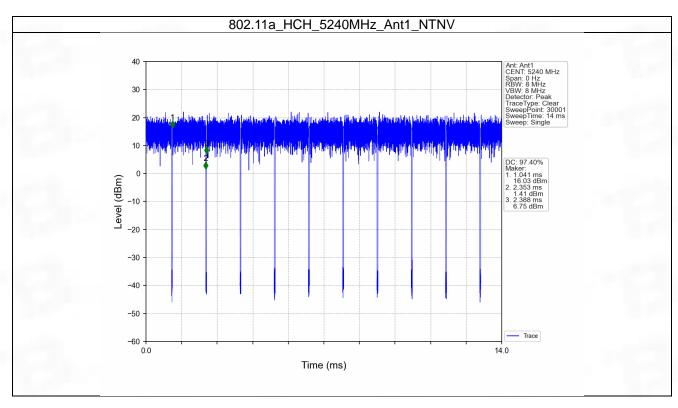


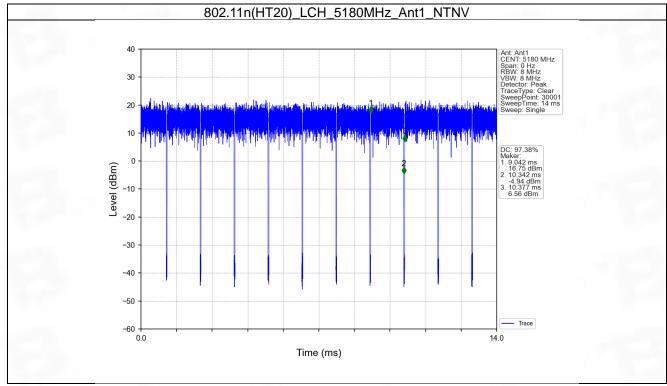
1. Duty Cycle

1.1 Ant1

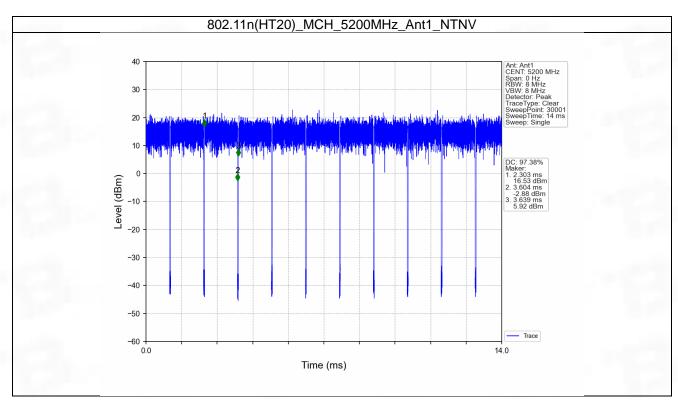

1.1.1 Test Result

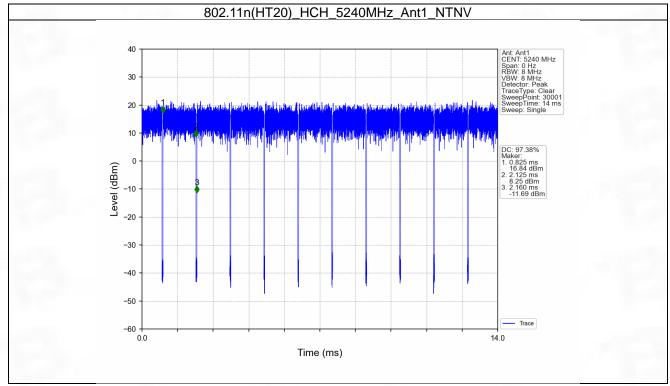
					Ant1			
Mode	TX	Frequency	T_on	Period	Duty Cycle	Duty Cycle	Max. DC	
Mode	Type	(MHz)	(ms)	(ms)	(%)	Correction Factor (dB)	Variation (%)	
		5180	1.314	1.348	97.48	0.11	0.07	
802.11a	SISO	5200	1.313	1.348	97.40	0.11	0.03	
		5240	1.312	1.347	97.40	0.11	0.03	
000 44.5		5180	1.300	1.335	97.38	0.12	0.04	
802.11n (HT20)	SISO	5200	1.301	1.336	97.38	0.12	0.03	
(1120)		5240	1.300	1.335	97.38	0.12	0.03	
802.11n	SISO	5190	0.649	0.683	95.02	0.22	0.03	
(HT40)	3130	5230	0.649	0.683	95.02	0.22	0.03	
000 1100	SISO	5180	1.312	1.347	97.40	0.11	0.07	
802.11ac (VHT20)		5200	1.312	1.348	97.33	0.12	0.03	
(11120)		5240	1.314	1.348	97.48	0.11	0.07	
802.11ac	SISO	1ac cico	5190	0.652	0.687	94.91	0.23	0.04
(VHT40)		5230	0.652	0.687	94.91	0.23	0.04	
802.11ac (VHT80)	SISO	5210	0.325	0.359	90.53	0.43	0.10	

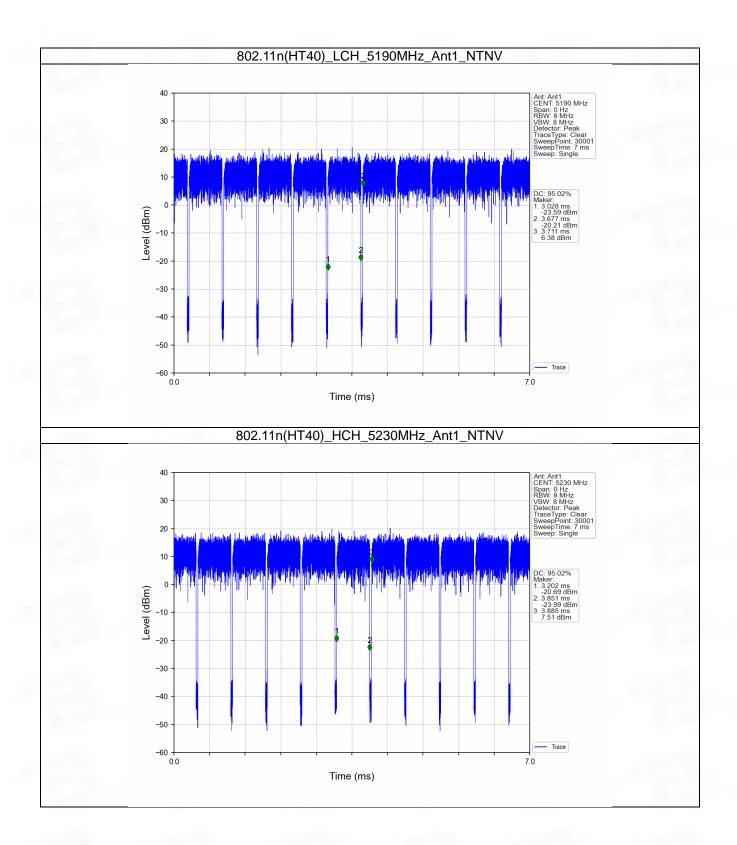


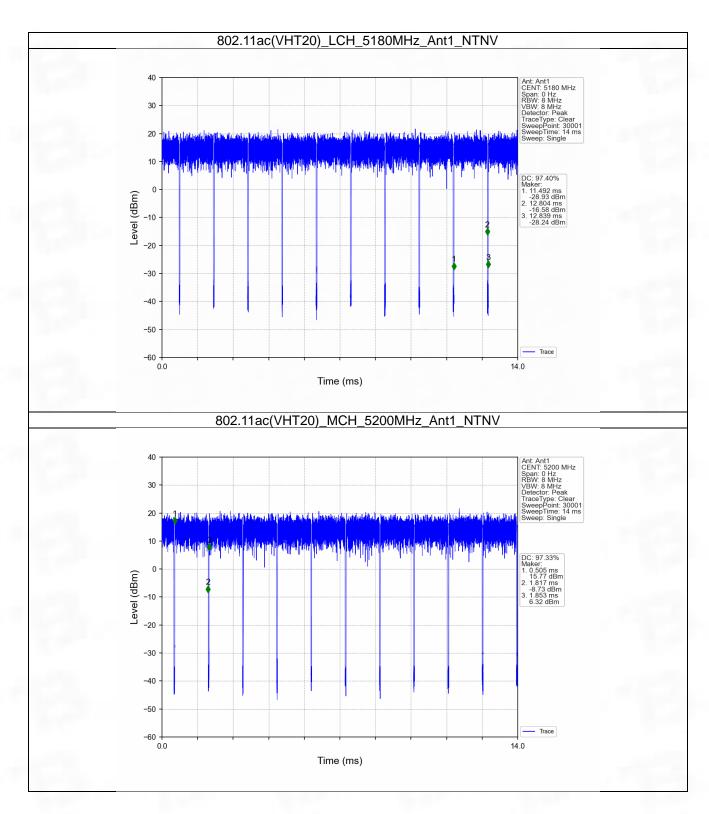


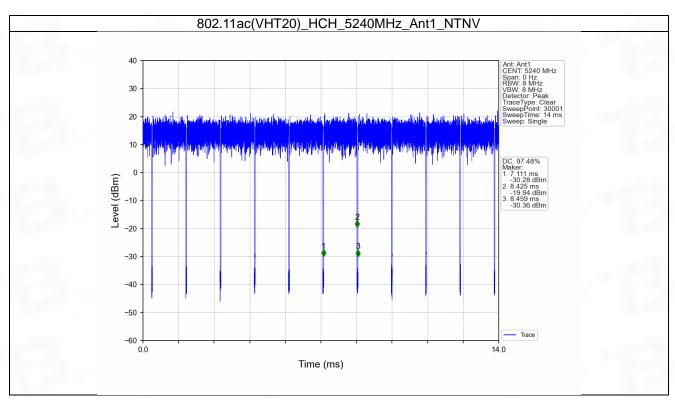
1.1.2 Test Graph

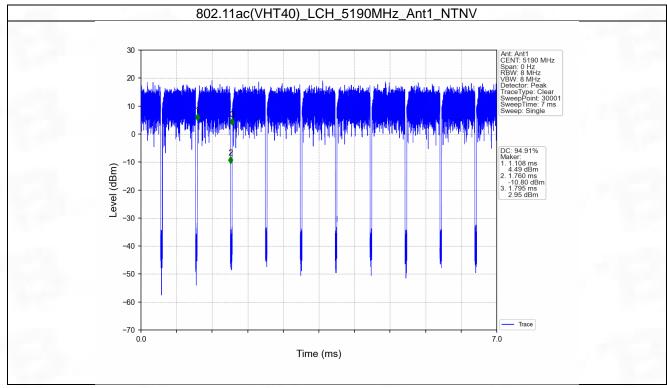


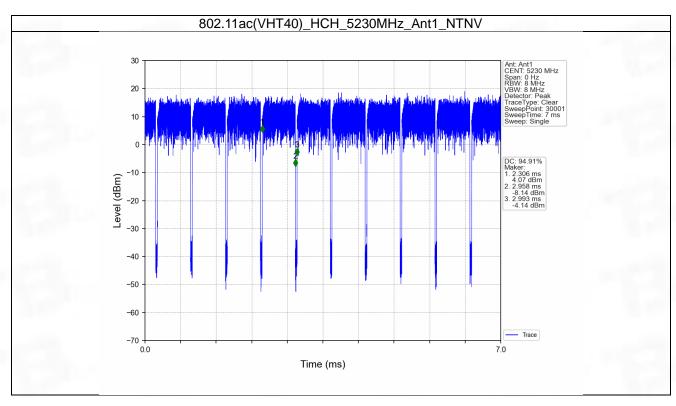


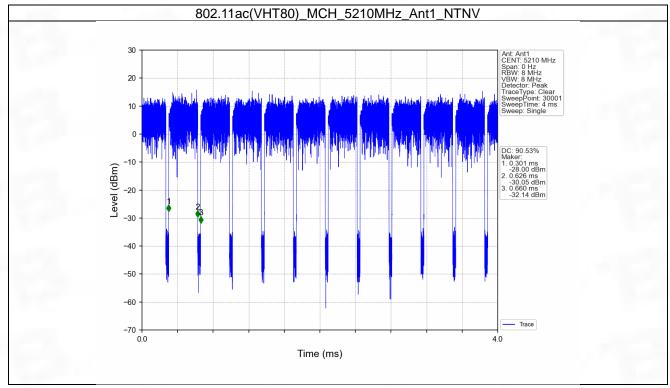


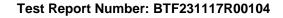






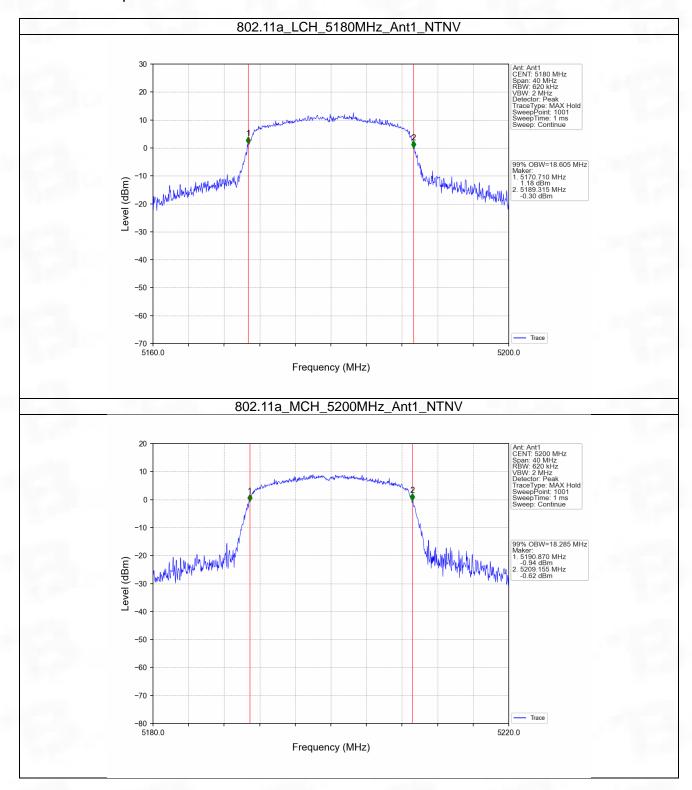




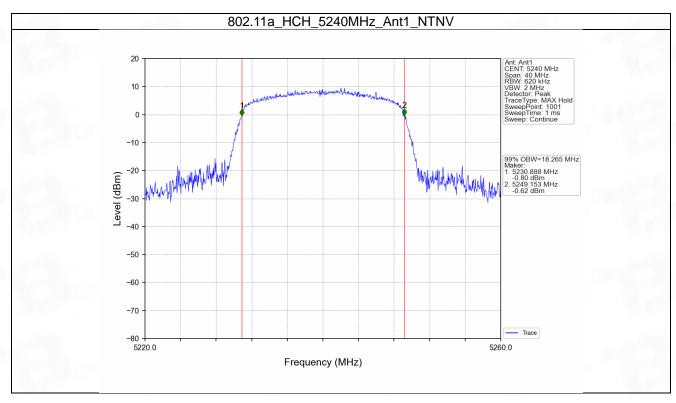


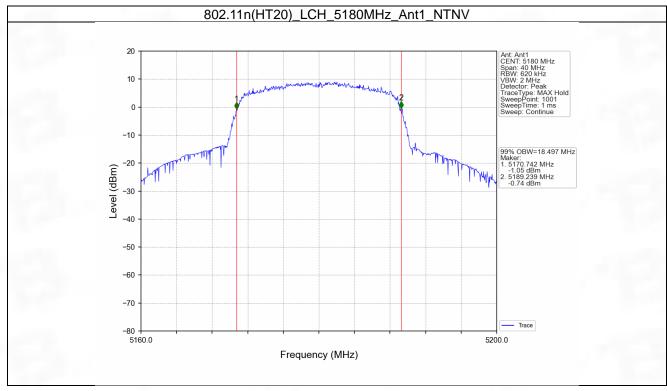
2. Bandwidth

2.1 OBW

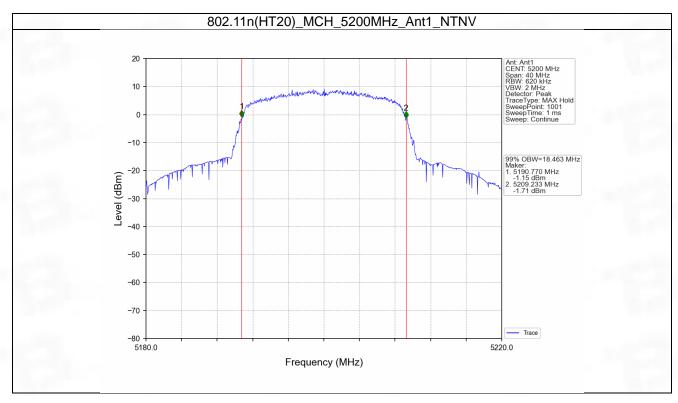

2.1.1 Test Result

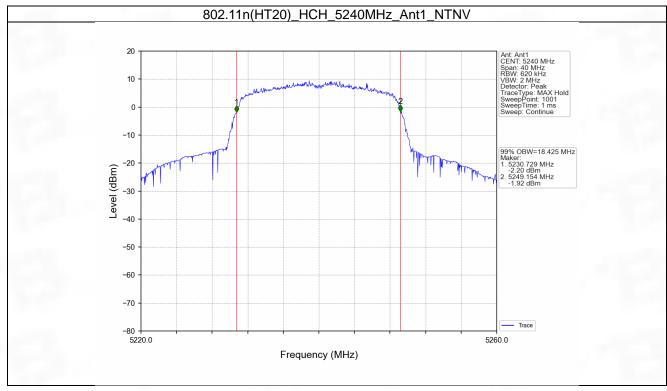
Mode	TX	Frequency	ANT	99% Occupied Bandwidth (MHz)	Verdict
Mode	Type	(MHz)		Result	verdict
		5180	1	18.605	Pass
802.11a	SISO	5200	1	18.285	Pass
		5240	1	18.265	Pass
000 44 =		5180	1	18.497	Pass
802.11n (HT20)	SISO	5200	1	18.463	Pass
(1120)		5240	1	18.425	Pass
802.11n	SISO	5190	1	36.822	Pass
(HT40)		5230	1	36.830	Pass
202 1100	SISO	5180	1	18.274	Pass
802.11ac (VHT20)		5200	1	18.252	Pass
(11120)		5240	1	18.284	Pass
802.11ac	SISO	5190	1	36.469	Pass
(VHT40)		5230	1	36.486	Pass
802.11ac (VHT80)	SISO	5210	1	75.664	Pass

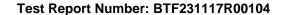


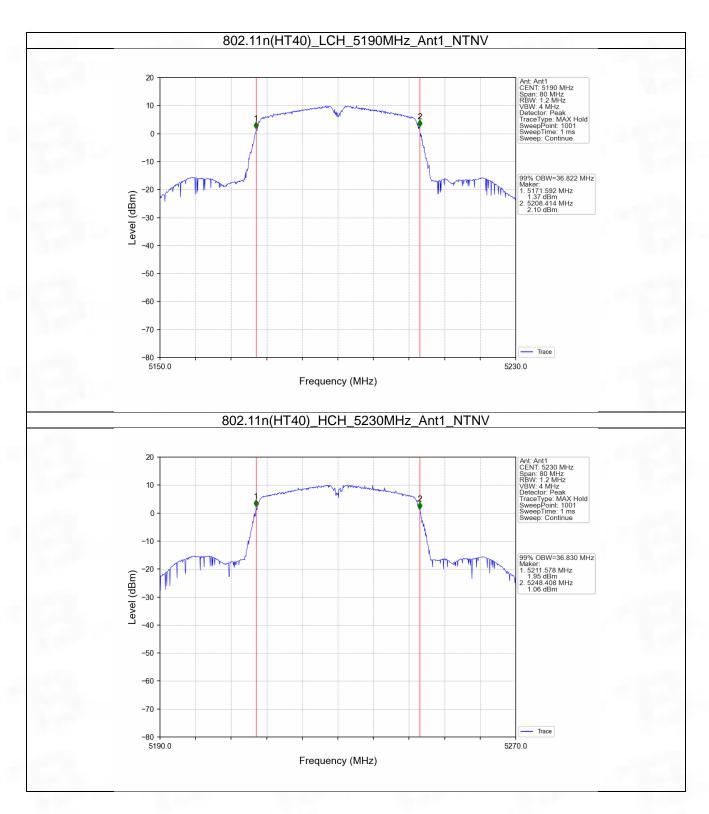


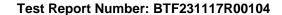
2.1.2 Test Graph

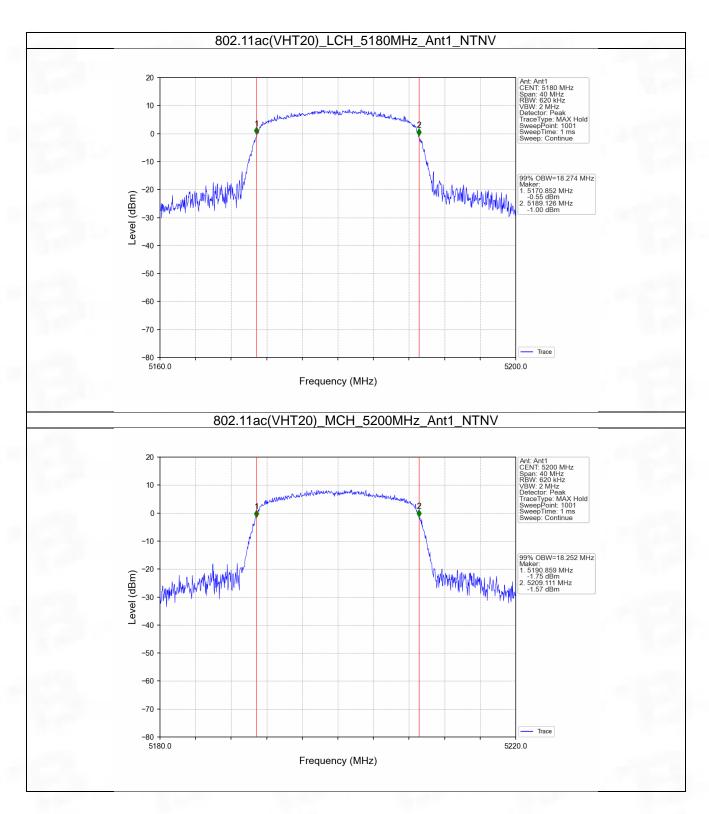


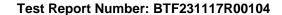


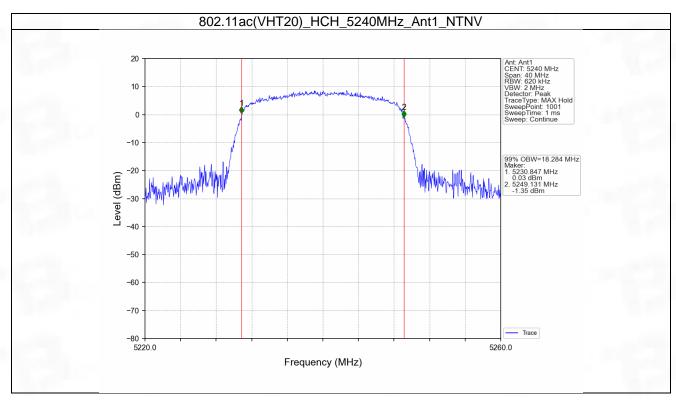


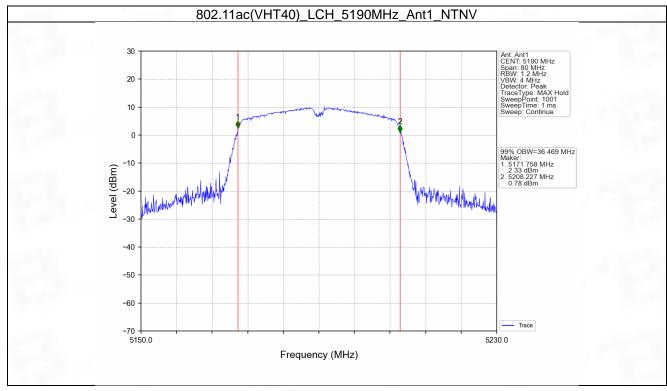


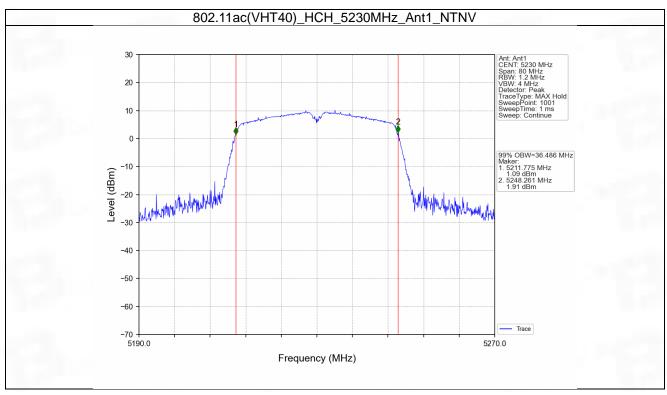


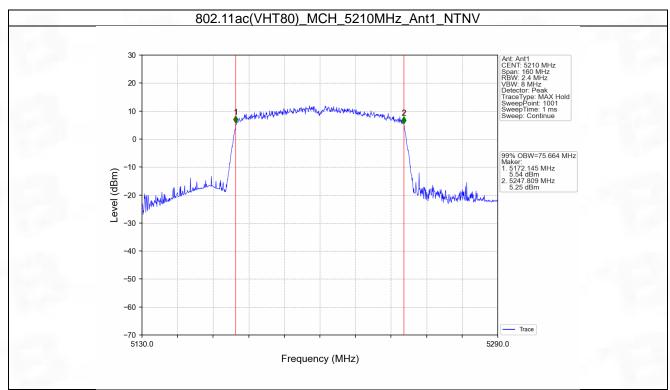


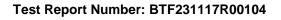


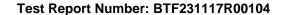




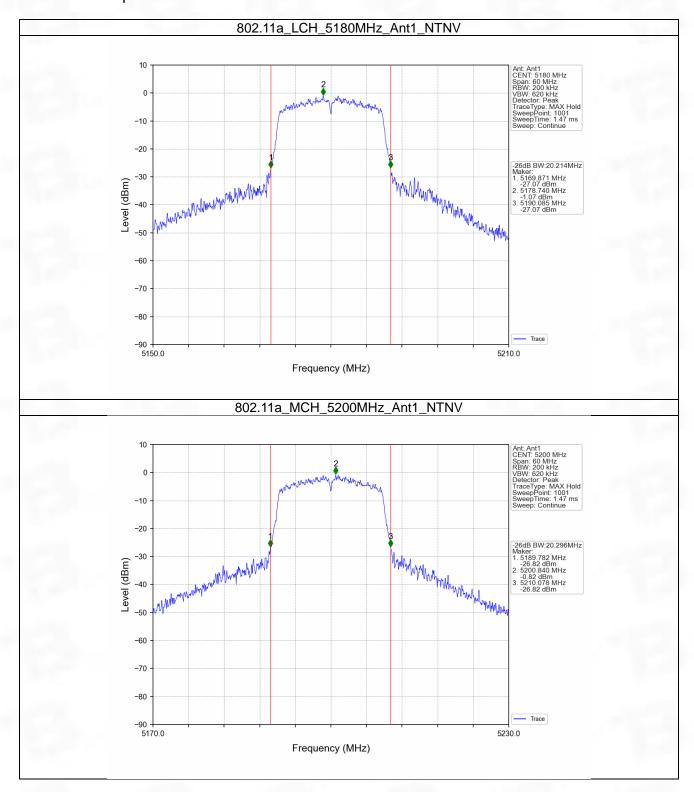


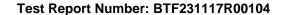


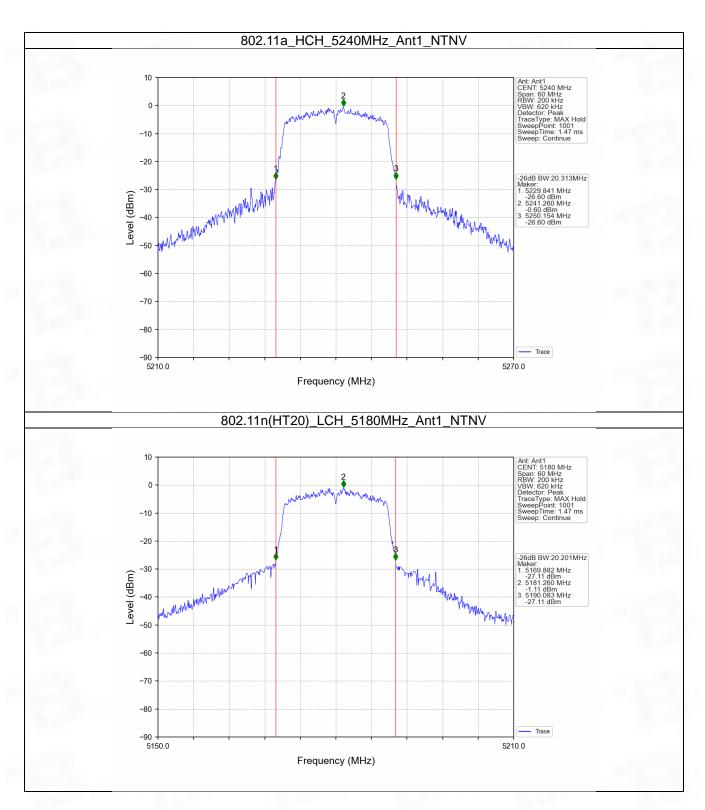


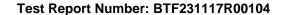


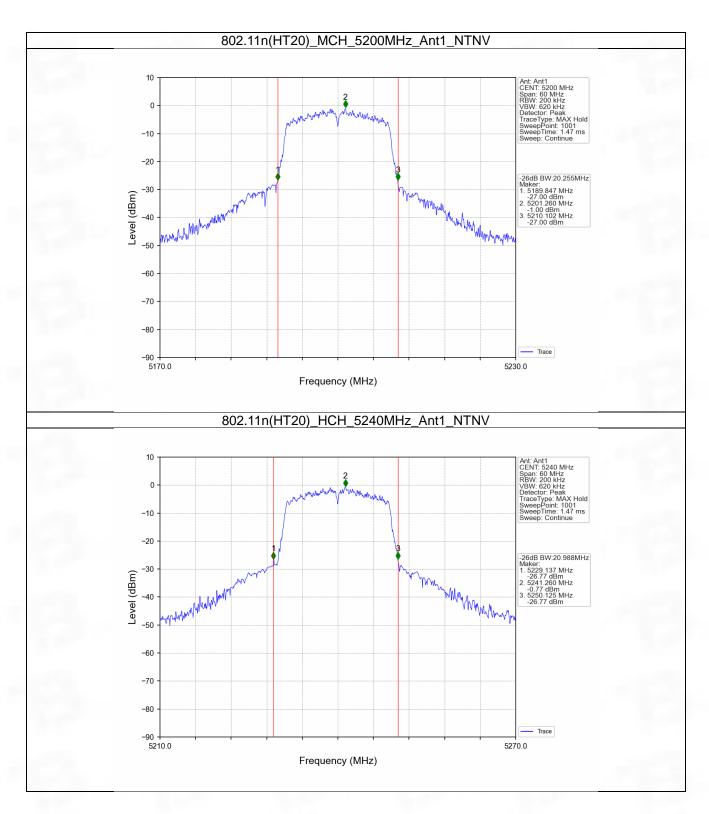
2.2 26dB BW

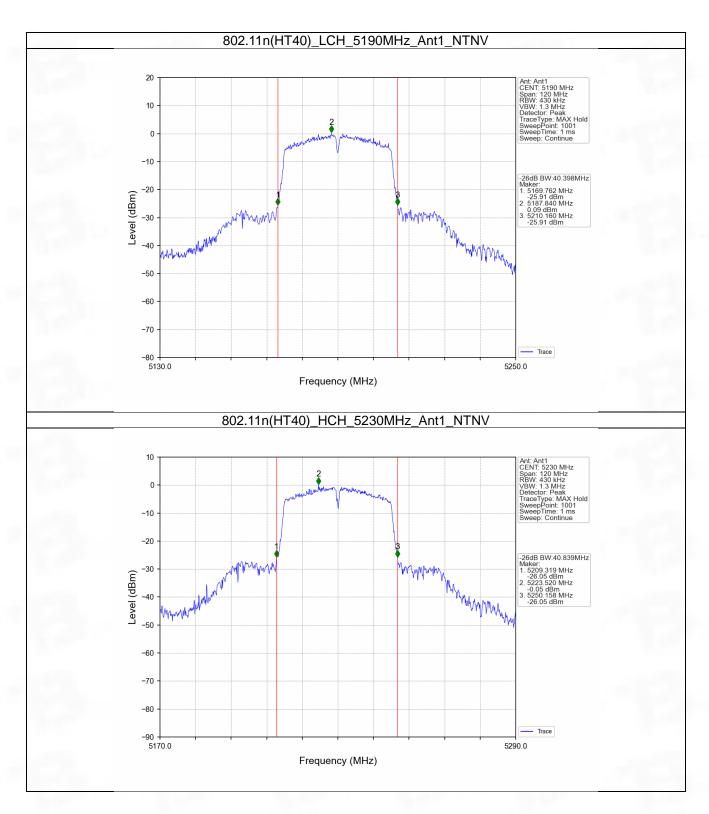

2.2.1 Test Result

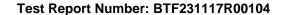

Mode	TX	Frequency	ANT	26dB Bandwidth (MHz)	Verdict	
Mode	Type	(MHz)	ANI	Result	verdict	
		5180	1	20.214	Pass	
802.11a	SISO	5200	1	20.296	Pass	
		5240	1	20.313	Pass	
000 44 =		5180	1	20.201	Pass	
802.11n	MIMO	5200	1	20.255	Pass	
(HT20)		5240	1	20.988	Pass	
802.11n	MIMO	5190	1	40.398	Pass	
(HT40)		5230	1	40.839	Pass	
000 1100		5180	1	20.215	Pass	
802.11ac	MIMO	5200	1	20.295	Pass	
(VHT20)		5240	1	20.329	Pass	
802.11ac	141140	5190	1	40.702	Pass	
(VHT40)	MIMO	5230	1	40.479	Pass	
802.11ac (VHT80)	MIMO	5210	1	103.909	Pass	

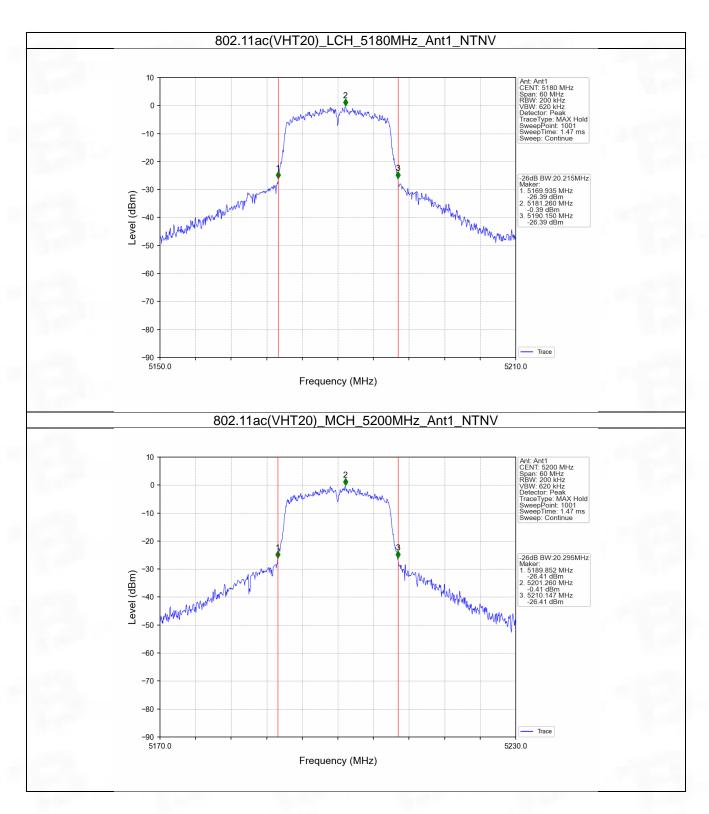


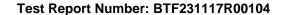

2.2.2 Test Graph

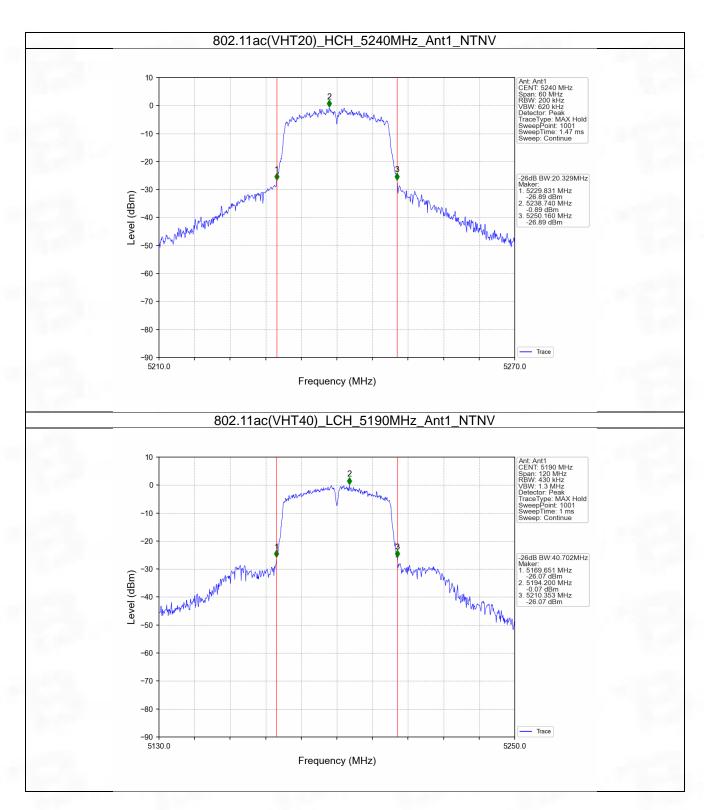


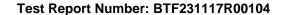


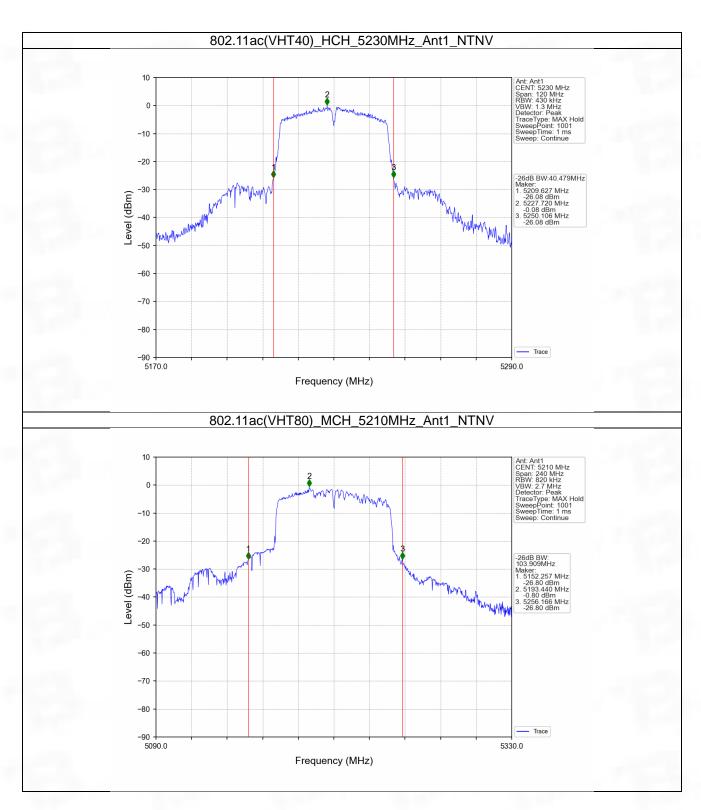


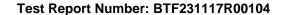






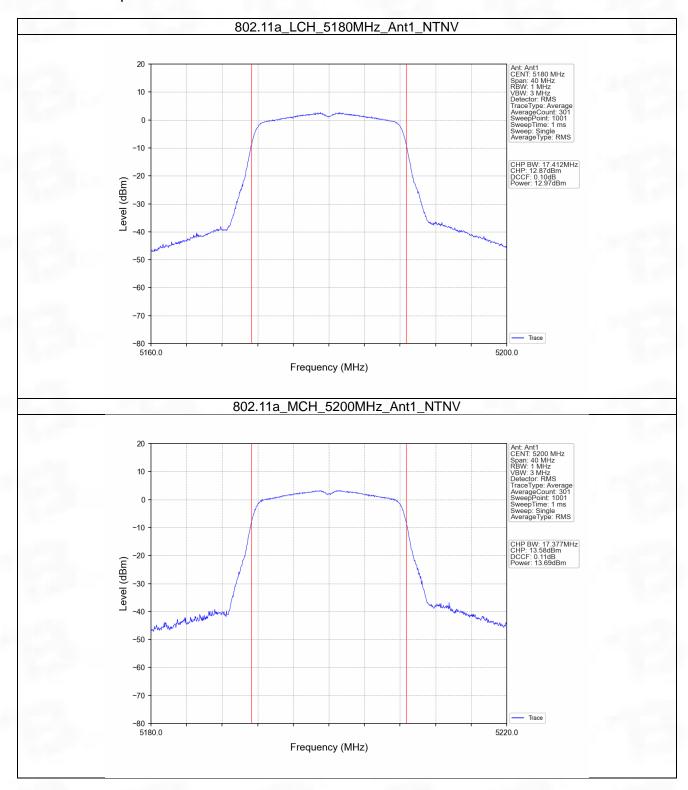


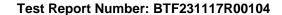


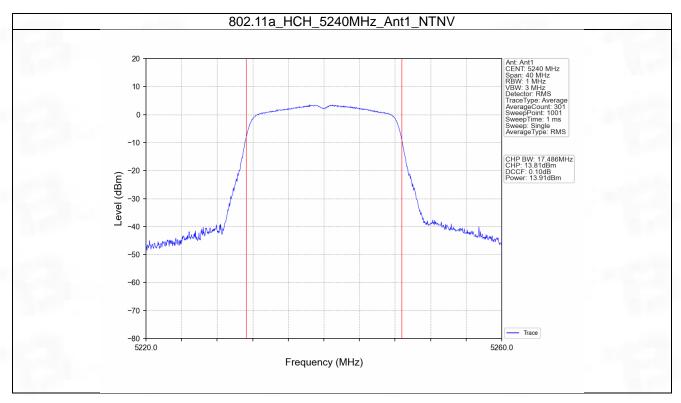


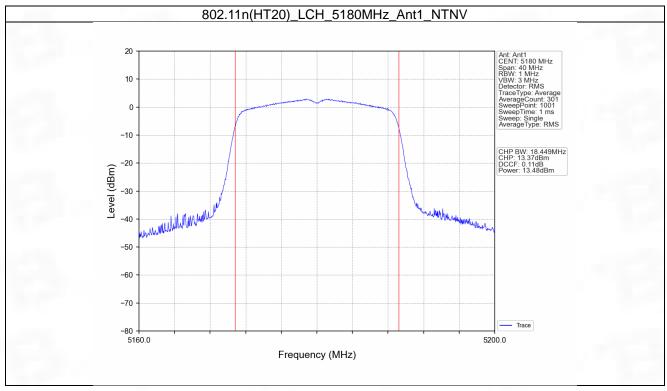
3. Maximum Conducted Output Power

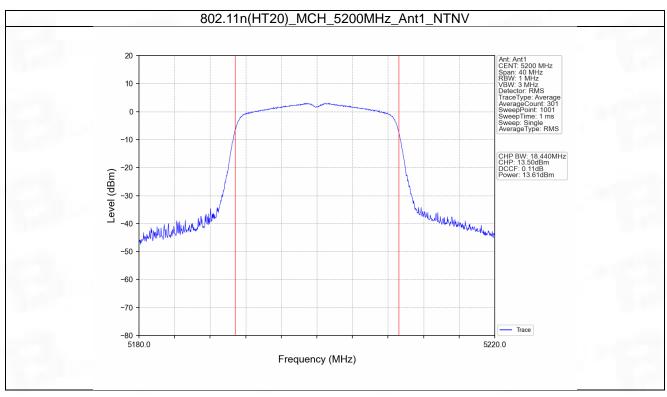
3.1 Power

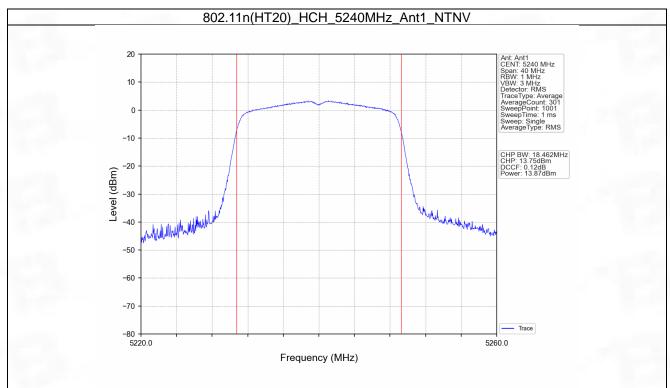

3.1.1 Test Result

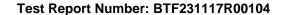

Mode	TX	Frequency	Maximum Average Cond	verage Conducted Output Power (dBm)		
Mode	Type	(MHz)	ANT1	Limit	Verdict	
		5180	12.97	<=23.98	Pass	
802.11a	SISO	5200	13.69	<=23.98	Pass	
		5240	13.91	<=23.98	Pass	
000 44.5		5180	13.48	<=23.98	Pass	
802.11n	SISO	5200	13.61	<=23.98	Pass	
(HT20)		5240	13.87	<=23.98	Pass	
802.11n	SISO	5190	13.72	<=23.98	Pass	
(HT40)		5230	13.91	<=23.98	Pass	
000 1100	SISO	5180	13.48	<=23.98	Pass	
802.11ac		5200	13.14	<=23.98	Pass	
(VHT20)		5240	13.30	<=23.98	Pass	
802.11ac	SISO	5190	13.83	<=23.98	Pass	
(VHT40)		5230	13.44	<=23.98	Pass	
802.11ac (VHT80)	SISO	5210	13.95	<=23.98	Pass	
ote1: Antenn	a Gain: Ant1	: 1.20dBi;				

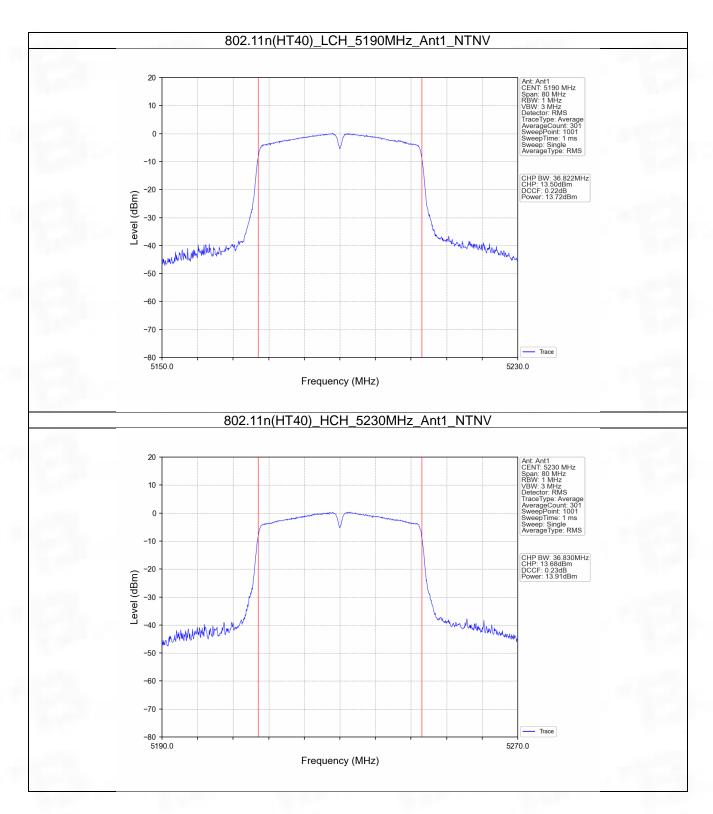


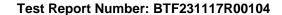

3.1.2 Test Graph

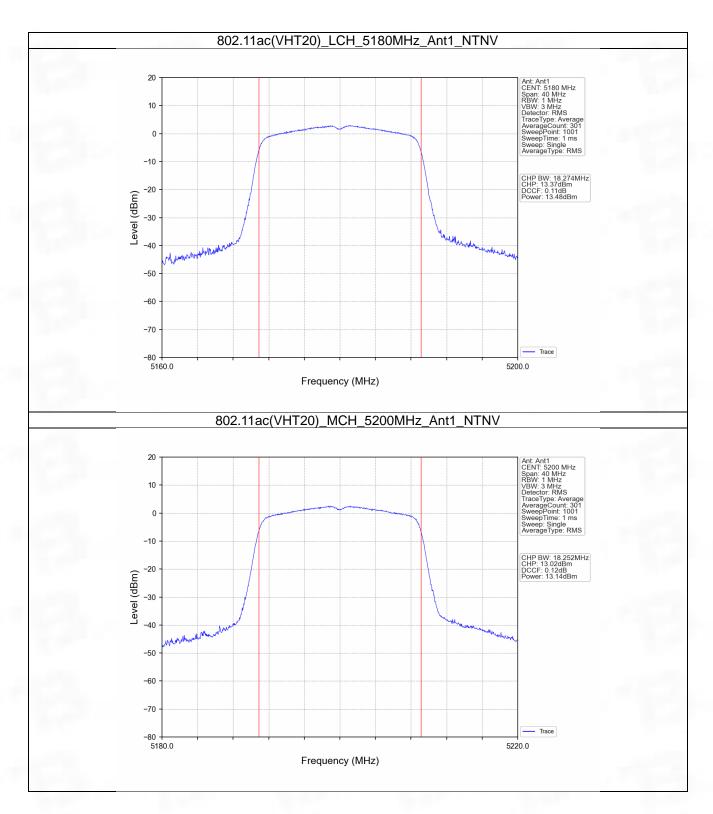


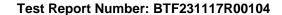




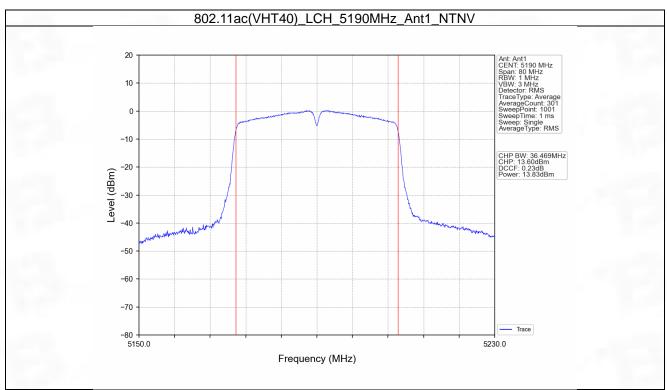


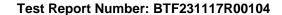


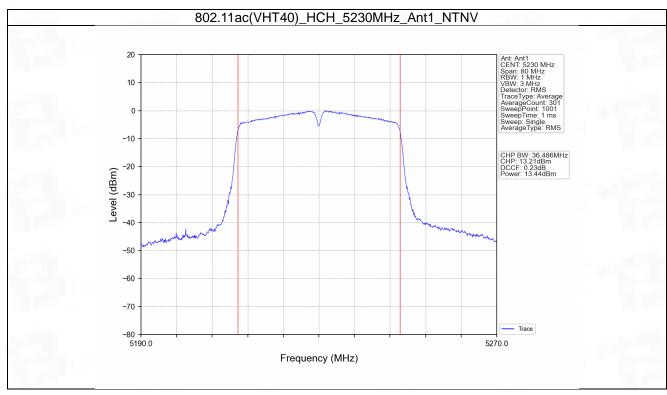


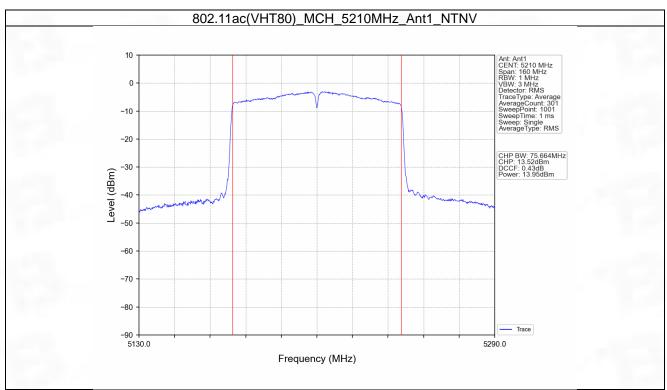


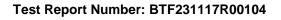


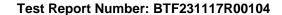






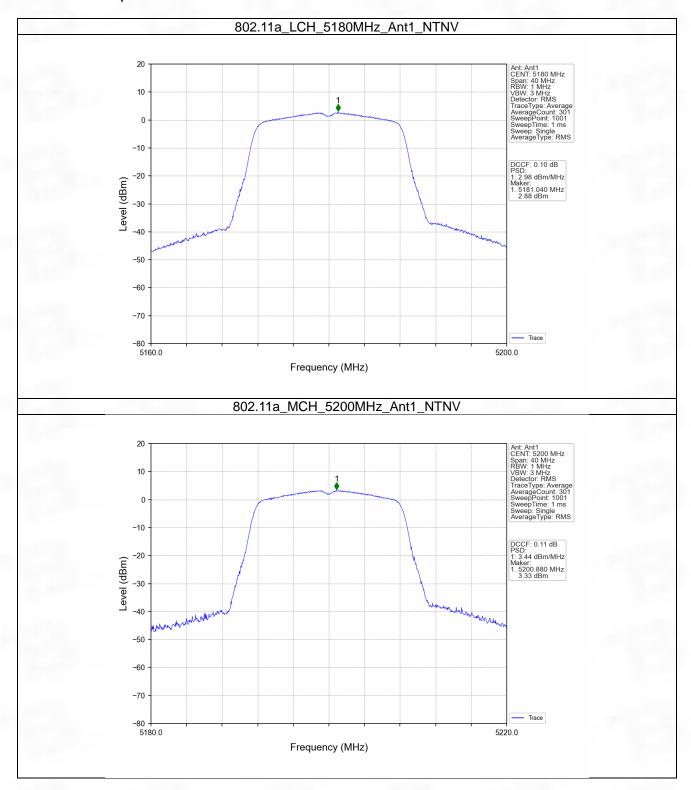


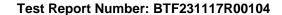


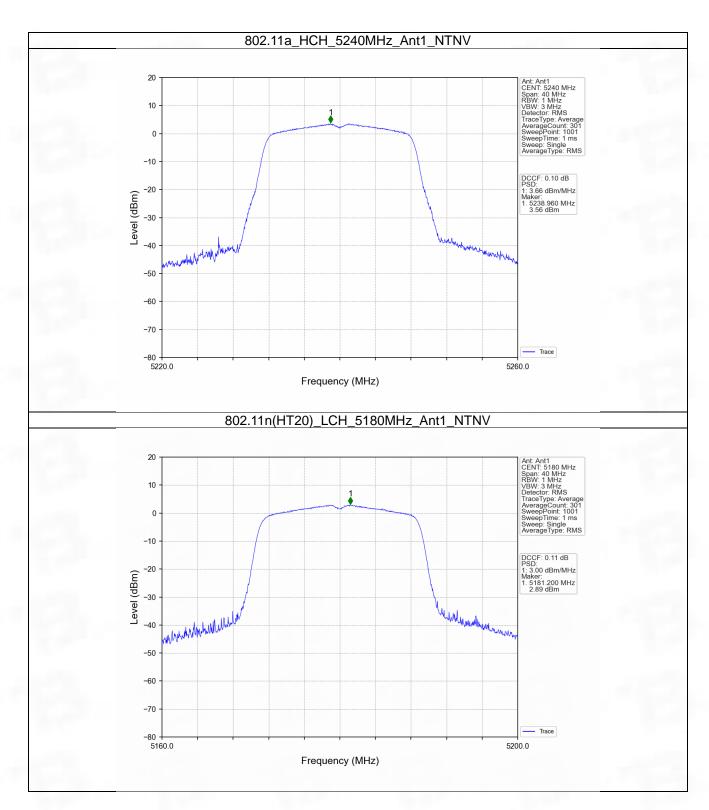


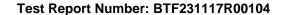
4. Maximum Power Spectral Density

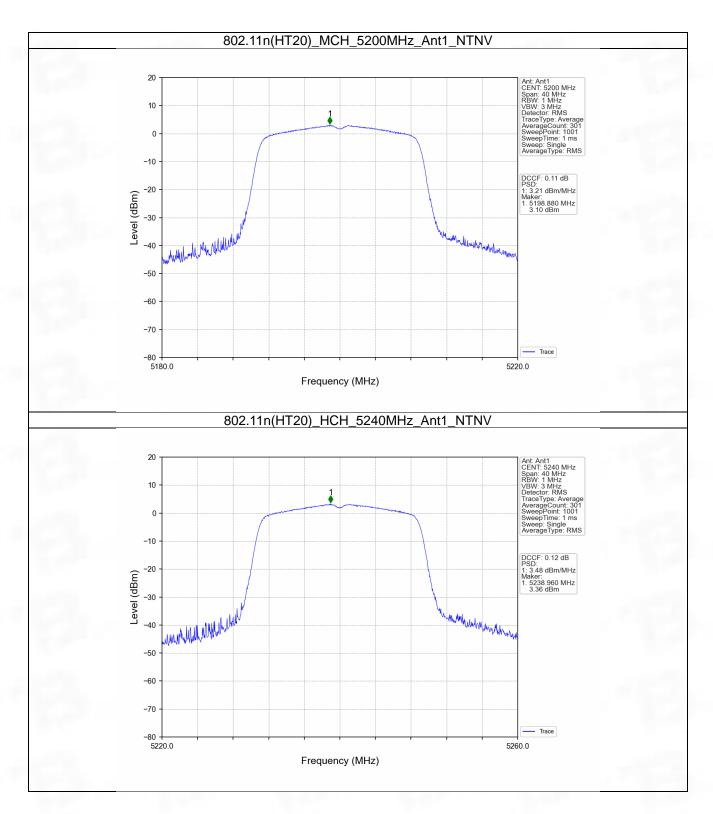
4.1 PSD

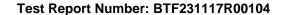

4.1.1 Test Result

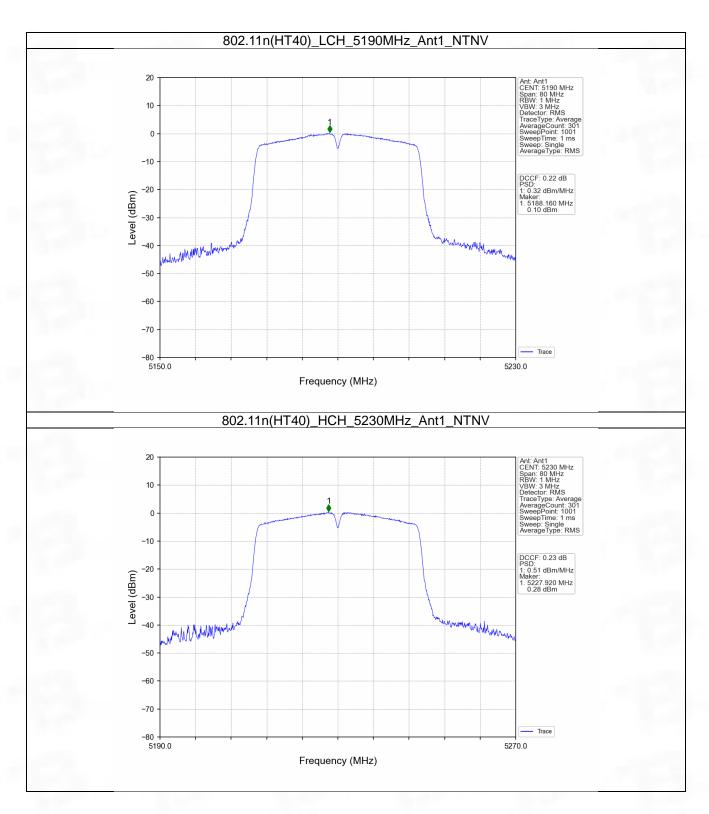

	TX	Frequency	Maximum PS	D (dBm/MHz)	
Mode			Maximum PSD (dBm/MHz)		Verdict
	Type	(MHz)	ANT1	Limit	Voraiot
		5180	2.98	<=11	Pass
802.11a	SISO	5200	3.44	<=11	Pass
		5240	3.66	<=11	Pass
000 115		5180	3.00	<=11	Pass
802.11n	SISO	5200	3.21	<=11	Pass
(HT20)		5240	3.48	<=11	Pass
802.11n	CICO	5190	0.32	<=11	Pass
(HT40)	SISO	5230	0.51	<=11	Pass
000 1100		5180	3.05	<=11	Pass
802.11ac (VHT20)	SISO	5200	2.67	<=11	Pass
		5240	2.95	<=11	Pass
802.11ac	SISO	5190	0.52	<=11	Pass
(VHT40)	3130	5230	-0.01	<=11	Pass
802.11ac (VHT80)	SISO	5210	-2.55	<=11	Pass
ote1: Antenna (Gain: Ant1: 1.20	dBi;			

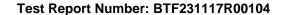


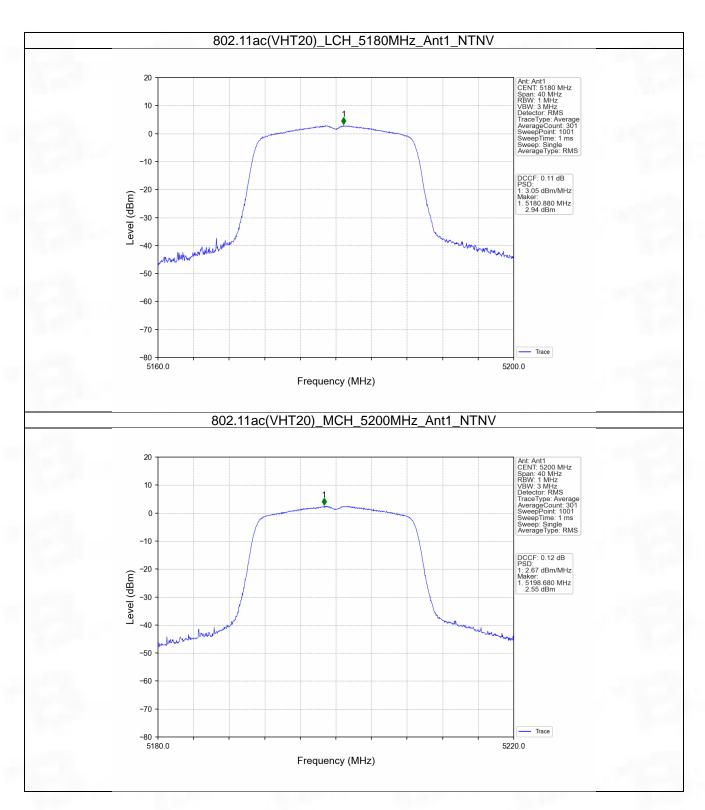

4.1.2 Test Graph

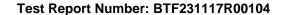


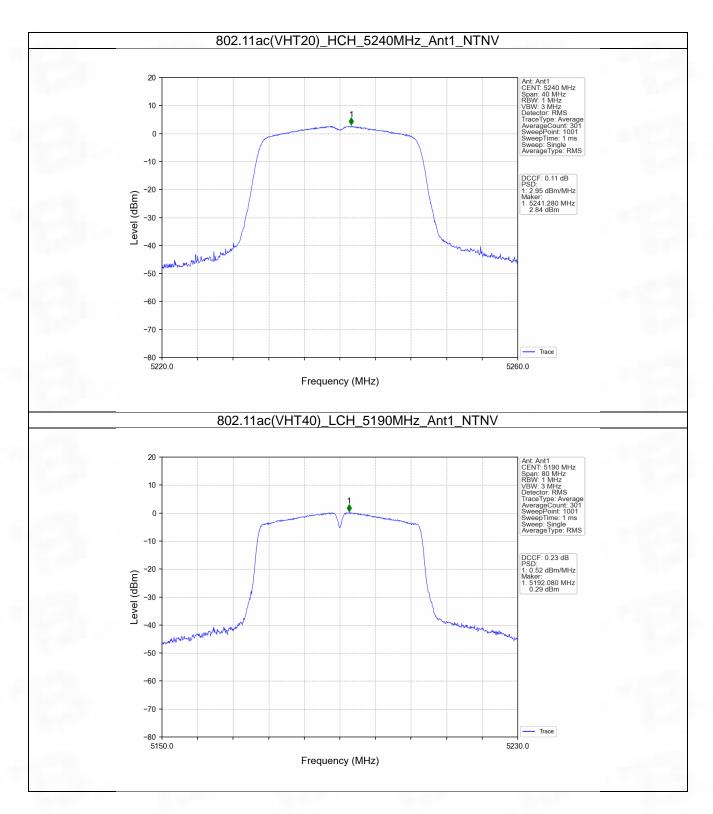


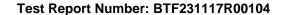


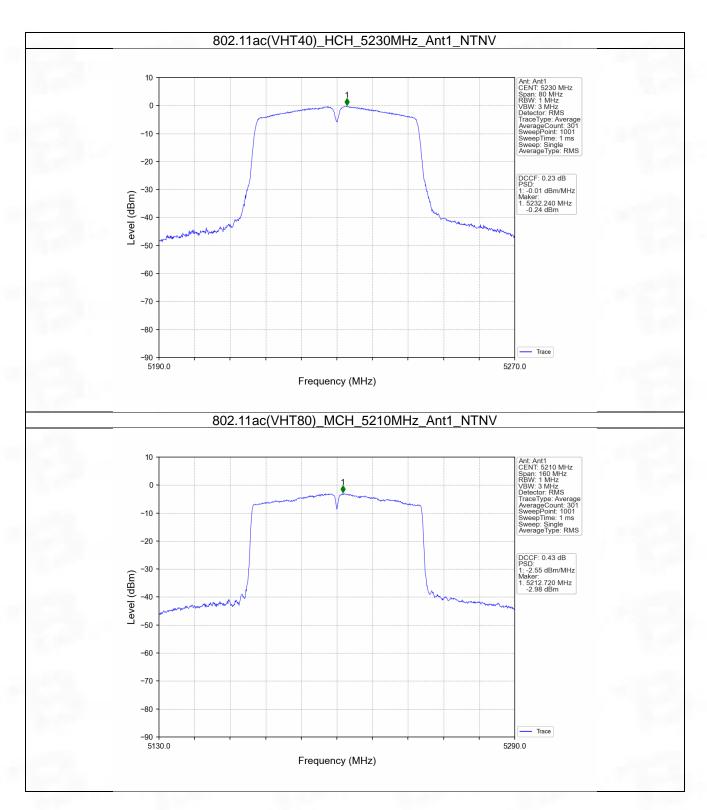


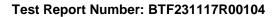


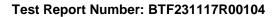










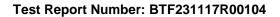

5. Frequency Stability

5.1 Ant1

5.1.1 Test Result

	ı			Ant1			
Mode	TX Type	Frequency (MHz)	Temperature (°C)	Voltage (VAC)	Measured Frequency (MHz)	Limit (MHz)	Verdict
	71			102	5179.980	5150 to 5250	Pass
			20	120	5180.020	5150 to 5250	Pass
				138	5179.960	5150 to 5250	Pass
			-30	120	5180.060	5150 to 5250	Pass
			-20	120	5179.980	5150 to 5250	Pass
		5180	-10	120	5179.980	5150 to 5250	Pass
			0	120	5180.060	5150 to 5250	Pass
			10	120	5179.980	5150 to 5250	Pass
			30	120	5180.020	5150 to 5250	Pass
			40	120	5180.040	5150 to 5250	Pass
			50	120	5180.060	5150 to 5250	Pass
				102	5199.980	5150 to 5250	Pass
			20	120	5200.020	5150 to 5250	Pass
				138	5199.980	5150 to 5250	Pass
			-30	120	5200.020	5150 to 5250	Pass
			-20	120	5199.940	5150 to 5250	Pass
802.11a	SISO	5240	-10	120	5199.960	5150 to 5250	Pass
			0	120	5200.060	5150 to 5250	Pass
			10	120	5200.040	5150 to 5250	Pass
			30	120	5199.960	5150 to 5250	Pass
			40	120	5199.920	5150 to 5250	Pass
			50	120	5199.980	5150 to 5250	Pass
			20	102	5240.020	5150 to 5250	Pass
				120	5240.020	5150 to 5250	Pass
				138	5239.960	5150 to 5250	Pass
			-30	120	5239.980	5150 to 5250	Pass
			-20	120	5239.980	5150 to 5250	Pass
			-10	120	5239.980	5150 to 5250	Pass
			0	120	5240.000	5150 to 5250	Pass
			10	120	5240.020	5150 to 5250	Pass
			30	120	5239.900	5150 to 5250	Pass
			40	120	5240.060	5150 to 5250	Pass
			50	120	5239.940	5150 to 5250	Pass
		5180	20	102	5179.940	5150 to 5250	Pass
	SISO			120	5180.000	5150 to 5250	Pass
902 11n				138	5180.040	5150 to 5250	Pass
802.11n (HT20)			-30	120	5179.940	5150 to 5250	Pass
(17120)			-20	120	5179.980	5150 to 5250	Pass
			-10	120	5179.920	5150 to 5250	Pass
			0	120	5179.980	5150 to 5250	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 82 of 8 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

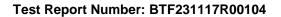


			10	120	5180.000	5150 to 5250	Pass
			30	120	5180.000	5150 to 5250	Pass
			40	120	5179.960	5150 to 5250	Pass
			50	120	5179.960	5150 to 5250	Pass
				102	5199.940	5150 to 5250	Pass
			20	120	5200.020	5150 to 5250	Pass
			20	138	5200.000	5150 to 5250	Pass
			-30	120	5199.940	5150 to 5250	Pass
			-20	120	5200.000	5150 to 5250	Pass
		5200	-10	120	5200.020	5150 to 5250	Pass
		0200	0	120	5199.920	5150 to 5250	Pass
			10	120	5199.980	5150 to 5250	Pass
			30	120	5199.940	5150 to 5250	Pass
			40	120	5200.060	5150 to 5250	Pass
			50	120	5199.940	5150 to 5250	Pass
			30	102	5240.000	5150 to 5250	Pass
			20	120	5239.920	5150 to 5250	Pass
			20	138	5240.040	5150 to 5250	Pass
			-30	120	5239.980	5150 to 5250	Pass
			-20	120	5240.040	5150 to 5250	Pass
		5240	-20 -10	120	5240.040	5150 to 5250 5150 to 5250	Pass
		3240	0	120	5240.000	5150 to 5250	Pass
			10	120	5239.940	5150 to 5250	Pass
			30	120	5239.940		Pass
			40	120		5150 to 5250	
			50		5240.020	5150 to 5250	Pass
			50	120	5240.040	5150 to 5250	Pass
		5190	20	102	5190.000	5150 to 5250	Pass
			20	120	5189.920	5150 to 5250	Pass
			20	138	5190.000	5150 to 5250	Pass
	-		-30	120	5189.960	5150 to 5250	Pass
			-20	120	5190.000	5150 to 5250	Pass
			-10	120	5190.000	5150 to 5250	Pass
			0	120	5190.000	5150 to 5250	Pass
			10	120	5189.960	5150 to 5250	Pass
			30	120	5190.000	5150 to 5250	Pass
000.44	SISO -		40	120	5190.000	5150 to 5250	Pass
802.11n		5230	50	120	5190.000	5150 to 5250	Pass
(HT40)			20	102	5229.960	5150 to 5250	Pass
			20	120	5230.000	5150 to 5250	Pass
			20	138	5230.000	5150 to 5250	Pass
			-30	120	5230.000	5150 to 5250	Pass
			-20	120	5230.000	5150 to 5250	Pass
			-10	120	5230.000	5150 to 5250	Pass
			0	120	5230.000	5150 to 5250	Pass
			10	120	5230.080	5150 to 5250	Pass
			30	120	5229.960	5150 to 5250	Pass
			40	120	5230.000	5150 to 5250	Pass
			50	120	5230.000	5150 to 5250	Pass
	SISO			102	5179.960	5150 to 5250	Pass
802.11ac			20	120	5180.060	5150 to 5250	Pass
(VHT20)				138	5180.020	5150 to 5250	Pass
(٧١١٧٥)			-30	120	5180.000	5150 to 5250	Pass
			-20	120	5180.040	5150 to 5250	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 83 of 8 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 83 of 86

			-10	120	5179.980	5150 to 5250	Pass
			0	120	5179.960	5150 to 5250	Pass
			10	120	5179.960	5150 to 5250	Pass
			30	120	5180.000	5150 to 5250	Pass
			40	120	5180.000	5150 to 5250	Pass
			50	120	5179.980	5150 to 5250	Pass
				102	5199.980	5150 to 5250	Pass
			20	120	5199.980	5150 to 5250	Pass
				138	5200.020	5150 to 5250	Pass
			-30	120	5199.960	5150 to 5250	Pass
			-20	120	5199.980	5150 to 5250	Pass
		5200	-10	120	5199.960	5150 to 5250	Pass
		0200	0	120	5199.960	5150 to 5250	Pass
			10	120	5200.020	5150 to 5250	Pass
			30	120	5200.060	5150 to 5250	Pass
			40	120	5199.980	5150 to 5250	Pass
			50	120	5200.040	5150 to 5250	Pass
				102	5240.020	5150 to 5250	Pass
			20	120	5239.980	5150 to 5250	Pass
			_0	138	5240.060	5150 to 5250	Pass
			-30	120	5240.020	5150 to 5250	Pass
			-20	120	5239.980	5150 to 5250	Pass
		5240	-10	120	5239.980	5150 to 5250	Pass
		02.0	0	120	5240.000	5150 to 5250	Pass
			10	120	5239.980	5150 to 5250	Pass
			30	120	5240.040	5150 to 5250	Pass
			40	120	5239.980	5150 to 5250	Pass
			50	120	5240.020	5150 to 5250	Pass
			20	102	5189.960	5150 to 5250	Pass
				120	5190.000	5150 to 5250	Pass
		5190		138	5190.000	5150 to 5250	Pass
			-30	120	5190.000	5150 to 5250	Pass
			-20	120	5190.000	5150 to 5250	Pass
			-10	120	5190.000	5150 to 5250	Pass
			0	120	5190.000	5150 to 5250	Pass
			10	120	5190.000	5150 to 5250	Pass
	SISO -		30	120	5189.960	5150 to 5250	Pass
			40	120	5190.000	5150 to 5250	Pass
802.11ac			50	120	5190.000	5150 to 5250	Pass
(VHT40)		5230		102	5230.000	5150 to 5250	Pass
			20	120	5230.000	5150 to 5250	Pass
				138	5229.960	5150 to 5250	Pass
			-30	120	5230.000	5150 to 5250	Pass
			-20	120	5230.000	5150 to 5250	Pass
			-10	120	5230.000	5150 to 5250	Pass
			0	120	5230.000	5150 to 5250	Pass
			10	120	5230.000	5150 to 5250	Pass
			30	120	5230.000	5150 to 5250	Pass
			40	120	5229.960	5150 to 5250	Pass
			50	120	5230.000	5150 to 5250	Pass



6. Form731

6.1 Form731

6.1.1 Test Result

Lower Freq (MHz)	High Freq (MHz)	MAX Power (W)	MAX Power (dBm)
5180	5240	0.0246	13.91
5190	5230	0.0246	13.91
5210	5210	0.0248	13.95

BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

www.btf-lab.com

-- END OF REPORT --