

RF TEST REPORT

Product Name: Tablet

Model Name: Vortex BTAB10

FCC ID: 2ADLJ-BTAB10

Issued For : Xwireless LLC

11565 0ld Georgetown Road, Rockville, MD, USA

Issued By : Shenzhen LGT Test Service Co., Ltd.

Room 205, Building 13, Zone B, Zhenxiong Industrial Park, No.177, Renmin West Road, Jinsha, Kengzi Street, Pingshan District, Shenzhen, Guangdong, China

Report Number:	LGT23H049RF05
Sample Received Date:	Aug. 18, 2023
Date of Test:	Aug. 18, 2023 – Sep. 18, 2023
Date of Issue:	Sep. 18, 2023

The test report is effective only with both signature and specialized stamp. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report only apply to the tested sample.

TEST REPORT CERTIFICATION

Applicant:	Xwireless LLC
Address:	11565 0ld Georgetown Road, Rockville, MD, USA
Manufacturer:	Xwireless LLC
Address:	11565 0ld Georgetown Road, Rockville, MD, USA
Product Name:	Tablet
Trademark:	N/A
Model Name:	Vortex BTAB10
Sample Status:	Normal

APPLICABLE STANDARDS			
STANDARD	TEST RESULTS		
FCC Part 22H and 24E, 27	PASS		
KDB 971168 D01 v03r01, ANSI C63.26(2015)			

Prepared by:

Zane Shan

Zane Shan Engineer

ESTSE Approved by: tali 🔛 5 Vita Li

冠检

Technical Director

Table	of	Contents	
Table	UI.	Contenta	

1 SUMMARY OF TEST RESULTS	5
2 INTRODUCTION	6
2.1 TEST FACTORY	6
2.2 MEASUREMENT UNCERTAINTY	6
3 PRODUCT INFORMATION	7
4 TEST CONFIGURATION OF EQUIPMENT UNDER TEST	8
5 MEASUREMENT INSTRUMENTS	9
6 TEST ITEMS	10
6.1 CONDUCTED OUTPUT POWER	10
6.2 PEAK TO AVERAGE RATIO	11
6.3 TRANSMITTER RADIATED POWER (EIRP/ERP)	12
6.4 OCCUPIED BANDWIDTH	13
6.5 FREQUENCY STABILITY	14
6.6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS	15
6.7 BAND EDGE	16
6.8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT	17
APPENDIX I-TEST RESULT	19
2G	19
CONDUCTED OUTPUT POWER	19
FREQUENCY STABILITY	21
PEAK-TO-AVERAGE RATIO	23
OCCUPIED BANDWIDTH	28
BAND EDGE	33
OUT-OF-BAND EMISSIONS	37
RADIATED SPURIOUS EMISSION	42
3G	54
CONDUCTED OUTPUT POWER	54
FREQUENCY STABILITY	57
PEAK-TO-AVERAGE RATIO	59
OCCUPIED BANDWIDTH	63
BAND EDGE	67
OUT-OF-BAND EMISSIONS	70
RADIATED SPURIOUS EMISSION	74
APPENDIX II-PHOTOS OF TEST SETUP	92

Revision History

Rev.	Issue Date	Contents
00	Sep. 18, 2023	Initial Issue

1 SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

The radiated emission testing was performed according to the procedures of KDB 971168 D01 v03r01 and ANSI C63.26-2015

FCC Rules	Test Description	Test Limit	Test Result	Reference
2.1046	Conducted Output Power	Reporting Only	PASS	
22.913d 24.232d	Peak-to-Average Ratio	< 13 dB	PASS	
2.1046 22.913 24.232 27.50	Effective Radiated Power/Equivalent Isotropic Radiated Power	< 7 Watts max. ERP(Part 22) < 2 Watts max. EIRP(Part 24) <1 Watts max. EIRP(Part 27)	PASS	
2.1049 22.917 24.238 27.53	Occupied Bandwidth	Reporting Only	PASS	
2.1055 22.355 24.235 27.54	Frequency Stability	< 2.5 ppm (Part 22) Emission must remain in band (Part 24) Emission must remain in band (Part 27)	PASS	
2.1051 22.917 24.238 27.53	Spurious Emission at Antenna Terminals	< 43+10log10(P[Watts])	PASS	
2.1053 22.917 24.238 27.53	Field Strength of Spurious Radiation	< 43+10log10(P[Watts])	PASS	
2.1051 22.917 24.238 27.53	Band Edge	< 43+10log10(P[Watts])	PASS	

2 INTRODUCTION

2.1 TEST FACTORY

Company Name:	Shenzhen LGT Test Service Co., Ltd.
Address:Room 205, Building 13, Zone B, Zhenxiong Industrial Park, Ne Renmin West Road, Jinsha, Kengzi Street, Pingshan District, Shenzhen, Guangdong, China	
	A2LA Certificate No.: 6727.01
Accreditation Certificate	FCC Registration No.: 746540
	CAB ID: CN0136

2.2 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.26. All measurement uncertainty values are shown with a coverage factor of k = 2 toindicate a 95% level of confidence. The measurement data shown herein meets or exceeds the UCISPRmeasurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly tospecified limits to determine compliance.

No.	Item	Uncertainty
1	RF output power, conducted	±0.68dB
2	Unwanted Emissions, conducted	±2.988dB
3	All emissions, radiated 9K-30MHz	±2.84dB
4	All emissions, radiated 30M-1GHz	±4.39dB
5	All emissions, radiated 1G-6GHz	±5.10dB
6	All emissions, radiated>6G	±5.48dB
7	Conducted Emission (9KHz-150KHz)	±2.79dB
8	Conducted Emission (150KHz-30MHz)	±2.80dB

Note: The measurement uncertainty is not included in the test result.

3 PRODUCT INFORMATION

Product Name:	Tablet		
Trademark:	N/A		
Model Name:	Vortex BTAB10		
Series Model:	N/A		
Model Difference:	N/A		
Tx Frequency:	GPRS/EDGE: 850: 824 MHz ~ 849MHz 1900: 1850 MHz ~ 1910MHz WCDMA: Band V: 824 MHz ~ 849 MHz Band II: 1850 MHz ~ 1910 MHz Band IV: 1710 MHz ~ 1755 MHz		
Rx Frequency:	GPRS/EDGE: 850: 869 MHz ~ 894 MHz 1900: 1930 MHz ~ 1990MHz WCDMA: Band V: 869 MHz ~ 894 MHz Band II: 1930 MHz ~ 1990 MHz Band IV: 2110 MHz ~ 2155 MHz		
Modulation Characteristics:	GMSK for GPRS; GMSK and 8PSK for EDGE WCDMA: QPSK; HSDPA: QPSK/16QAM; HSUPA: BPSK		
SIM Card:	SIM 1 and SIM 2 is a chipset unit and tested as single chipset, SIM is used to tested.		
Antenna:	FPC		
Antenna gain:	GSM 850: -1.54dBi GSM 1900: 1.66dBi WCDMA B2: 1.66dBi WCDMA B4: 1.83dBi WCDMA B5: -1.54dBi		
Adapter:	Input: 100-240V, 50/60Hz 0.3A Output: 5V, 2.0A		
Battery:	Capacity: 5000mAh, 18.5Wh Rated Voltage: 3.7V		
GPRS Class:	Multi-Class12		
Extreme Vol. Limits:	3.3V to 4.2V (Nominal 3.7V)		
Extreme Temp. Tolerance:	-0°℃ to +40°℃		
Hardware version:	P612K_MB_V1		
	N/A		

** Note: The High Voltage 4.2V and Low Voltage 3.3V was declared by manufacturer, The EUT couldn't be operate normally with higher or lower voltage, the antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report.

4 TEST CONFIGURATION OF EQUIPMENT UNDER TEST

Antenna port conducted and radiated test items were performed according to KDB 971168 D01 and ANSI C63.26 2015 Power Meas. License Digital Systems with maximum output power.

Radiated measurements were performed with rotating EUT in different three orthogonal test planes to find the maximum emission.

Radiated emissions were investigated as following frequency range:

1. 30 MHz to 10th harmonic for GSM850/WCDMA Band V.

2. 30 MHz to 10th harmonic for GSM1900 and WCDMA Band I/ WCDMA IV.

All modes and data rates and positions were investigated.

Test modes are chosen to be reported as the worst-case configuration below:

	TEST MODES		
BAND	RADIATED TCS	CONDUCTED TCS	
GSM 850	GSM LINK GPRS/EDGE CLASS 12 LINK	GSM LINK GPRS/EDGE CLASS 12 LINK	
GSM 1900	GSM LINK GPRS/EDGE CLASS 12 LINK	GSM LINK GPRS/EDGE CLASS 12 LINK	
WCDMA BAND V	RMC 12.2KBPS LINK	RMC 12.2KBPS LINK	
WCDMA BAND IV	RMC 12.2KBPS LINK	RMC 12.2KBPS LINK	
WCDMA BAND II	RMC 12.2KBPS LINK	RMC 12.2KBPS LINK	

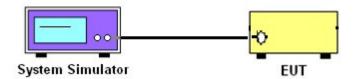
5 MEASUREMENT INSTRUMENTS

Radiated Test equipment					
Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Until
EMI Test Receiver	R&S	ESU8	100372	2023.04.13	2024.04.12
Active loop Antenna	ETS	6502	00049544	2022.06.02	2025.06.01
Spectrum Analyzer	Keysight	N9010B	MY60242508	2023.04.10	2024.04.09
Bilog Antenna(30M-1G)	SCHWARZBECK	VULB 9168	2705	2022.06.05	2025.06.04
Horn Antenna(1-18G)	SCHWARZBECK	3115	10SL0060	2022.06.02	2025.06.01
Horn Antenna(18-40G)	A-INFO	LB-180400-KF	J211060273	2022.06.08	2025.06.07
Pre-amplifier(30M-1G)	EMtrace	RP01A	02019	2023.04.07	2024.04.06
Pre-amplifier(1-26.5G)	Agilent	8449B	3008A4722	2023.04.07	2024.04.06
Pre-amplifier(18-40G)	com-mw	LNPA_18-40- 01	18050003	2023.04.07	2024.04.06
Wireless					
Communications Test	R&S	CMW 500	137737	2023.04.13	2024.04.12
Set					
Temperature & Humidity	KTJ	TA218B	N.A	2023.04.24	2024.04.23
Testing Software	EMC-I_V1.4.0.3_SKET				

Conducted Test equipment								
Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Until			
Signal Analyzer	Keysight	N9010B	MY60242508	2023.04.10	2024.04.09			
Wireless Communications Test Set	R&S	CMW 500	137737	2023.04.13	2024.04.12			
MXG Vector Signal Generator	Keysight	N5182B	MY59100717	2023.04.07	2024.04.06			
Power Sensor	MW	MW100-RFCB	MW220324LG -33	2023.04.13	2024.04.12			
Temperature & Humidity	KTJ	TA218B	N.A	2023.04.24	2024.04.23			
Temperature& Humidity test chamber	AISRY	LX-1000L	171200018	2023.05.10	2024.05.09			
Attenuator	eastsheep	90db	N.A	2023.04.10	2024.04.09			
Testing Software	MTS8200_V2.0.0.0_MW							

Equipment with a calibration date of "NCR" shown in this list was not used to make direct calibrated measurements.

6 TEST ITEMS 6.1 CONDUCTED OUTPUT POWER


TEST OVERVIEW

A system simulator was used to establish communication with the EUT. Its parameters were set to enforce EUT transmitting at the maximum power. The measured power in the radio frequency on the transmitter output terminals shall be reported.

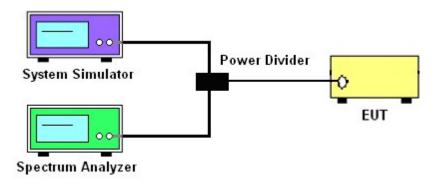
TEST PROCEDURES

- 1. The transmitter output port was connected to the system simulator.
- 2. Set eut at maximum power through the system simulator.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure and record the power level from the system simulator.

TEST SETUP

TEST RESULT

6.2 PEAK TO AVERAGE RATIO


TEST OVERVIEW

According to §24.232(d), power measurements for transmissions by stations authorized under this section may be made either in accordance with a commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of §24.51. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 db.

TEST PROCEDURES

- 1. The testing follows FCC KDB 971168 v03r01 section.
- 2. The eut was connected to the peak and av system simulator& spectrum analyzer.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Set the test probe and measure average power of the spectrum analysis,

TEST SETUP

TEST RESULT

6.3 TRANSMITTER RADIATED POWER (EIRP/ERP)

TEST OVERVIEW

Effective Radiated Power (ERP) and Equivalent Isotropic Radiated Power (EIRP) measurements are performed using the substitution method described in ANSI C63.26 2015 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically polarized broadband horn antennas. All measurements are performed as RMS average measurements while the EUT is operating at maximum power, and at the appropriate fragmencies.

frequencies.

TEST PROCEDURE

1. The testing follows FCC KDB 971168 Section 5.8 and ANSI C63.26-2015 Section 5.2.

2. The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

3. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

4. The frequency range up to tenth harmonic of the fundamental frequency was investigated.

5. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a nonradiating cable. The absolute levels of the spurious emissions were measured by the substitution.

6. Effective Isotropic Radiated Power (EIRP) was measured by substitution method according to ANSI C63.26-2015. The EUT was replaced by the substitution antenna at same location, and then a known power from S.G. was applied into the dipole antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna.

EIRP=S.G Level+ Gain-Cable loss; ERP=S.G Level+ Gain-Cable loss-2.15.

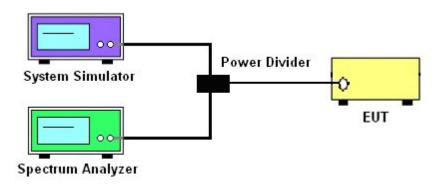
TEST RESULT

6.4 OCCUPIED BANDWIDTH

TEST OVERVIEW

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.

The 26 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 26 dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth.


All modes of operation were investigated and the worst-case configuration results are reported in this section.

TEST PROCEDURE

1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.

- 2. RBW = 1 5% of the expected OBW
- 3. VBW ≥ 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
- 1-5% of the 99% occupied bandwidth observed in Step 7

TEST SETUP

TEST RESULT

6.5 FREQUENCY STABILITY TEST OVERVIEW

Frequency stability testing is performed in accordance with the guidelines of ANSI C63.26 2015. The frequency stability of the transmitter is measured by:

a.) Temperature: The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.

b.) Primary Supply Voltage: The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

For Part 22, the frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency. For Part 24 the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

TEST PROCEDURE

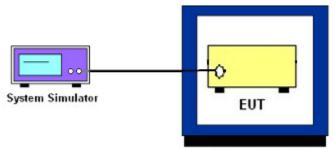
Temperature Variation

1. The testing follows FCC KDB 971168 D01 section 9.0

2. The EUT was set up in the thermal chamber and connected with the system simulator.

With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute.
 With power OFF, the temperature was raised in 10°C steps up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

Voltage Variation


1. The testing follows FCC KDB 971168 D01 Section 9.0.

2. The EUT was placed in a temperature chamber at 25±5° C and connected with the system simulator.

3. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.

4. The variation in frequency was measured for the worst case.

TEST SETUP

Thermal Chamber

TEST RESULT Note: Test data See APPENDIX I.

6.6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS TEST OVERVIEW

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least $43 + 10 \log (P) dB$.

It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

TEST PROCEDURE

1. The testing FCC KDB 971168 D01 v03r01 Section 6.0. and ANSI C63.26-2015-Section 5.7.

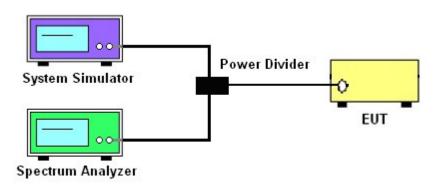
2. The EUT was connected to the spectrum analyzer and system simulator via a power divider.

3. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator. The path loss was compensated to the results for each measurement.

4. The middle channel for the highest RF power within the transmitting frequency was measured.

5. The conducted spurious emission for the whole frequency range was taken.

6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.


7. The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts)

= P(W) - [43 + 10log(P)] (dB)

= [30 + 10log(P)] (dBm) - [43 + 10log(P)] (dB)

= -13dBm.

TEST SETUP

TEST RESULT

6.7 BAND EDGE

TEST OVERVIEW

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst-case configuration. All modes of operation were investigated and the worst-case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is 43 + log10(P[Watts]), where P is the transmitter power in Watts.

TEST PROCEDURE

1. The testing FCC KDB 971168 D01 v03r01 Section 6.0 and ANSI C63.26-2015-Section 5.7

2. Start and stop frequency were set such that the band edge would be placed in the center of the Plot.

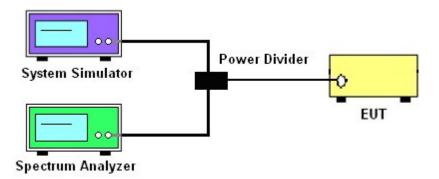
3. The EUT was connected to the spectrum analyzer and system simulator via a power divider.

4. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator.

The path loss was compensated to the results for each measurement.

5. The band edges of low and high channels for the highest RF powers were measured.

6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.


7.The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts)

= P(W) - [43 + 10log(P)] (dB)

 $= [30 + 10\log(P)] (dBm) - [43 + 10\log(P)] (dB)$

= -13dBm.

TEST SETUP

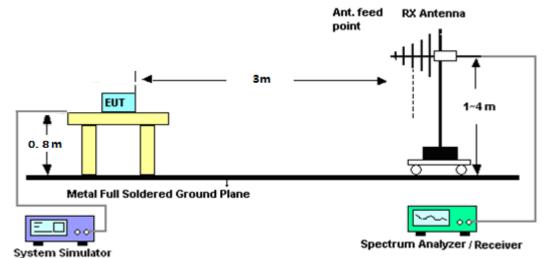
TEST RESULT

6.8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT TEST OVERVIEW

Radiated spurious emissions measurements are performed using the substitution method described in ANSI C63.26-2015 with the EUT transmitting into an integral antenna. Measurements on signalsoperating below 1GHz are performed using horizontally and vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarizedhorn antennas. All measurements are performed as peak measurements while the EUT isoperating at maximum power and at the appropriate frequencies.

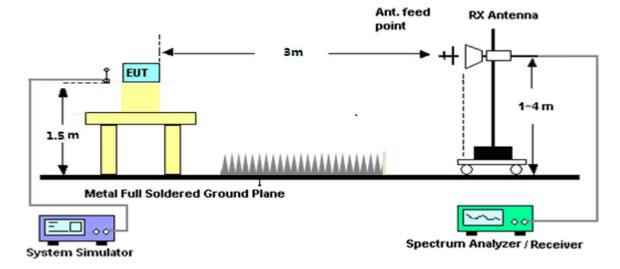
It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

TEST PROCEDURE


- 1. The testing FCC KDB 971168 D01 Section 5.8 and ANSI C63.26-2015-Section 5.5.
- 2. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 3. VBW ≥ 3 x RBW
- 4. Span = 1.5 times the OBW
- 5.No. of sweep points > 2 x span/RBW
- 6. Detector = Peak
- 7. Trace mode = max hold
- 8. The trace was allowed to stabilize
- 9. Effective Isotropic Spurious Radiation was measured by substitution method according to TIA/EIA-603-

D. The EUT was replaced by the substitution antenna at same location, and then a known power from S.G. was applied into the dipole antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna.

PMea=S.G Level+ Ant-Cable loss; Margin=PMea-Limit.


TEST SETUP

For radiated test from 30MHz to 1GHz

system sindator

For radiated test from above 1GHz

TEST RESULT

APPENDIX I-TEST RESULT

2G

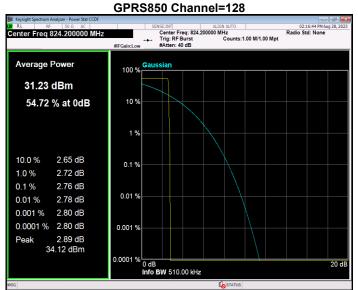
Conducted output power

Band	Channel	Frequency	Power	Gain	ERP	ERP Limit	Verdict
		(MHz)	(dBm)	(dB)	(dBm)	(dBm)	DAGO
GPRS850 1 Slot	128	824.2	32.12	-1.54	28.43	38.45	PASS
GPRS850 1 Slot	190	836.6	31.86	-1.54	28.17	38.45	PASS
GPRS850 1 Slot	251	848.8	31.99	-1.54	28.3	38.45	PASS
GPRS850 2 Slot	128	824.2	30.96	-1.54	27.27	38.45	PASS
GPRS850 2 Slot	190	836.6	30.62	-1.54	26.93	38.45	PASS
GPRS850 2 Slot	251	848.8	30.68	-1.54	26.99	38.45	PASS
GPRS850 3 Slot	128	824.2	28.33	-1.54	24.64	38.45	PASS
GPRS850 3 Slot	190	836.6	26.85	-1.54	23.16	38.45	PASS
GPRS850 3 Slot	251	848.8	27.83	-1.54	24.14	38.45	PASS
GPRS850 4 Slot	128	824.2	27.12	-1.54	23.43	38.45	PASS
GPRS850 4 Slot	190	836.6	26.59	-1.54	22.9	38.45	PASS
GPRS850 4 Slot	251	848.8	26.59	-1.54	22.9	38.45	PASS
EGPRS850 1 Slot	128	824.2	31.08	-1.54	27.39	38.45	PASS
EGPRS850 1 Slot	190	836.6	30.93	-1.54	27.24	38.45	PASS
EGPRS850 1 Slot	251	848.8	31.00	-1.54	27.31	38.45	PASS
EGPRS850 2 Slot	128	824.2	31.15	-1.54	27.46	38.45	PASS
EGPRS850 2 Slot	190	836.6	30.77	-1.54	27.08	38.45	PASS
EGPRS850 2 Slot	251	848.8	30.88	-1.54	27.19	38.45	PASS
EGPRS850 3 Slot	128	824.2	30.91	-1.54	27.22	38.45	PASS
EGPRS850 3 Slot	190	836.6	30.60	-1.54	26.91	38.45	PASS
EGPRS850 3 Slot	251	848.8	30.56	-1.54	26.87	38.45	PASS
EGPRS850 4 Slot	128	824.2	30.73	-1.54	27.04	38.45	PASS
EGPRS850 4 Slot	190	836.6	30.43	-1.54	26.74	38.45	PASS
EGPRS850 4 Slot	251	848.8	30.63	-1.54	26.94	38.45	PASS

Band	Channel	Frequency (MHz)	Power (dBm)	Gain (dB)	EIRP (dBm)	EIRP Limit (dBm)	Verdict
GPRS1900 1 Slot	512	1850.2	28.60	1.66	30.26	33.01	PASS
GPRS1900 1 Slot	661	1880	28.85	1.66	30.51	33.01	PASS
GPRS1900 1 Slot	810	1909.8	29.15	1.66	30.81	33.01	PASS
GPRS1900 2 Slot	512	1850.2	27.45	1.66	29.11	33.01	PASS
GPRS1900 2 Slot	661	1880	27.71	1.66	29.37	33.01	PASS
GPRS1900 2 Slot	810	1909.8	28.03	1.66	29.69	33.01	PASS
GPRS1900 3 Slot	512	1850.2	25.12	1.66	26.78	33.01	PASS
GPRS1900 3 Slot	661	1880	25.39	1.66	27.05	33.01	PASS
GPRS1900 3 Slot	810	1909.8	25.81	1.66	27.47	33.01	PASS
GPRS1900 4 Slot	512	1850.2	24.01	1.66	25.67	33.01	PASS
GPRS1900 4 Slot	661	1880	24.28	1.66	25.94	33.01	PASS
GPRS1900 4 Slot	810	1909.8	24.64	1.66	26.30	33.01	PASS
EGPRS1900 1 Slot	512	1850.2	30.18	1.66	31.84	33.01	PASS
EGPRS1900 1 Slot	661	1880	30.06	1.66	31.72	33.01	PASS
EGPRS1900 1 Slot	810	1909.8	29.86	1.66	31.52	33.01	PASS
EGPRS1900 2 Slot	512	1850.2	29.97	1.66	31.63	33.01	PASS
EGPRS1900 2 Slot	661	1880	29.96	1.66	31.62	33.01	PASS
EGPRS1900 2 Slot	810	1909.8	29.7	1.66	31.36	33.01	PASS
EGPRS1900 3 Slot	512	1850.2	29.6	1.66	31.26	33.01	PASS
EGPRS1900 3 Slot	661	1880	29.51	1.66	31.17	33.01	PASS
EGPRS1900 3 Slot	810	1909.8	29.47	1.66	31.13	33.01	PASS
EGPRS1900 4 Slot	512	1850.2	29.38	1.66	31.04	33.01	PASS
EGPRS1900 4 Slot	661	1880	29.2	1.66	30.86	33.01	PASS
EGPRS1900 4 Slot	810	1909.8	29.07	1.66	30.73	33.01	PASS

Frequency stability

	GPRS 850 /836.6MHz									
Temperature (°C)	Voltage	Freq. Dev.	Freq. Dev.	Limit	Result					
Temperature (C)	(Volt)	(Hz)	(ppm)	Linin	Result					
50		-1.48	-0.002							
40		-1.36	-0.002							
30		5.56	0.007							
20		5.68	0.007							
10	Normal Voltage	6.08	0.007	2.5ppm						
0	Vollago	-1.37	-0.002		PASS					
-10		-1.50	-0.002							
-20		5.54	0.007							
-30		5.39	0.006							
20	Maximum Voltage	-1.53	-0.002							
20	BEP	-1.55	-0.002							

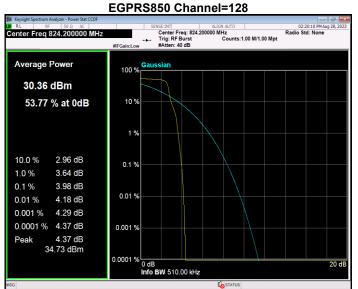

	EGPRS 850 /836.6MHz									
Temperature (°C)	Voltage	Freq. Dev.	Freq. Dev.	Limit	Result					
Temperature (C)	(Volt)	(Hz)	(ppm)	Linin	Result					
50		0.78	0.001							
40		-0.74	-0.001							
30		-0.96	-0.001							
20		-0.23	0.000							
10	Normal Voltage	-0.74	-0.001							
0	Voltage	-0.79	-0.001	2.5ppm	PASS					
-10		0.63	0.001							
-20		-0.58	-0.001							
-30		-0.59	-0.001							
20	Maximum Voltage	-0.96	-0.001							
20	BEP	0.95	0.001							

	GPRS 1900 / 1880MHz									
	Voltage	Freq. Dev.	Freq. Dev.	Limit	Result					
Temperature (°C)	(Volt)	(Hz)	(ppm)	Liinit	Result					
50		-2168.08	-1.153							
40		542.14	0.288							
30		-2167.91	-1.153							
20		-2712.04	-1.443							
10	Normal Voltage	-2168.69	-1.154	Within Authorized						
0	voltage	-2167.95	-1.153		PASS					
-10		541.99	0.288	Band						
-20		-2168.71	-1.154							
-30		542.19	0.288							
20	Maximum Voltage	542.05	0.288							
20	BEP	-2168.50	-1.153							

	EGPRS 1900 / 1880MHz									
Temperature (°C)	Voltage	Freq. Dev.	Freq. Dev.	Limit	Result					
Temperature (C)	(Volt)	(Hz)	(ppm)	Linit	Result					
50		102.46	0.055							
40		-409.88	-0.218							
30		-410.01	-0.218							
20		-513.83	-0.273							
10	Normal Voltage	-409.29	-0.218	Within Authorized						
0	Voltago	102.49	0.055		PASS					
-10		-409.91	-0.218	Band						
-20		102.51	0.055							
-30		-409.87	-0.218							
20	Maximum Voltage	102.42	0.054]						
20	BEP	102.50	0.055							

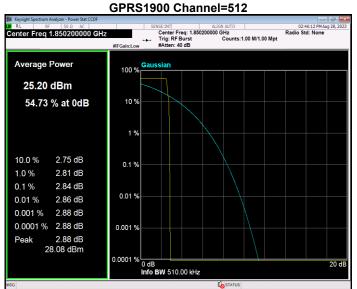
Peak-to-Average Ratio

Band	Channel	Frequency (MHz)	Result (dB)	high Limit (dB)	Verdict
GPRS850	128	824.2	2.76	13	PASS
GPRS850	190	836.6	2.70	13	PASS
GPRS850	251	848.8	2.81	13	PASS
EGPRS850	128	824.2	3.98	13	PASS
EGPRS850	190	836.6	4.81	13	PASS
EGPRS850	251	848.8	4.10	13	PASS
GPRS1900	512	1850.2	2.84	13	PASS
GPRS1900	661	1880	2.83	13	PASS
GPRS1900	810	1909.8	2.83	13	PASS
EGPRS1900	512	1850.2	3.74	13	PASS
EGPRS1900	661	1880	3.73	13	PASS
EGPRS1900	810	1909.8	3.74	13	PASS



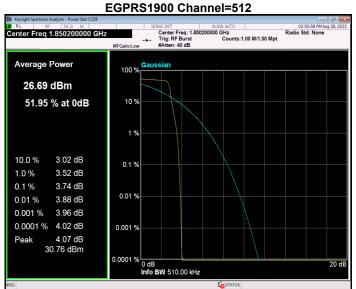
GPRS850 Channel=190

GPRS850 Channel=251



EGPRS850 Channel=190

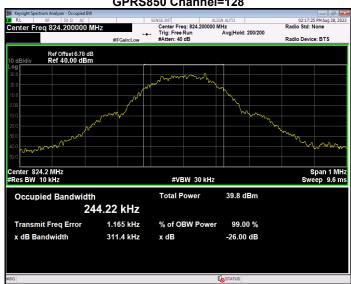
EGPRS850 Channel=251

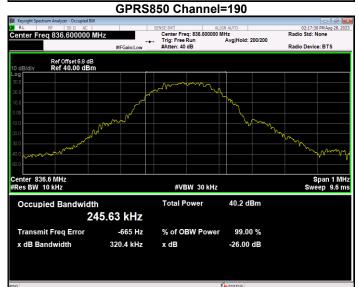


GPRS1900 Channel=661

GPRS1900 Channel=810

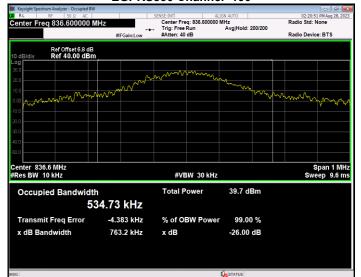
EGPRS1900 Channel=661




EGPRS1900 Channel=810

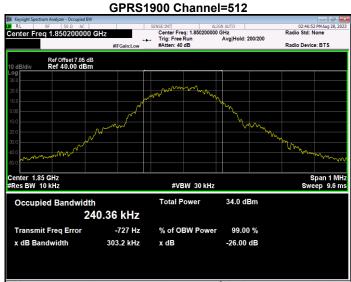
Occupied bandwidth

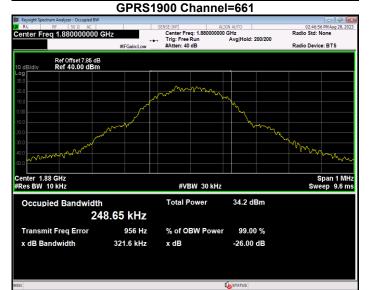
Band	Channel	Frequency (MHz)	99% OBW (kHz)	-26dB EBW (kHz)	Verdict
GPRS850	128	824.2	244.219	311.367	PASS
GPRS850	190	836.6	245.630	320.393	PASS
GPRS850	251	848.8	247.086	320.636	PASS
EGPRS850	128	824.2	525.567	861.332	PASS
EGPRS850	190	836.6	534.734	763.227	PASS
EGPRS850	251	848.8	505.687	772.003	PASS
GPRS1900	512	1850.2	240.359	303.246	PASS
GPRS1900	661	1880	248.645	321.581	PASS
GPRS1900	810	1909.8	241.938	314.620	PASS
EGPRS1900	512	1850.2	411.124	654.449	PASS
EGPRS1900	661	1880	404.872	583.425	PASS
EGPRS1900	810	1909.8	408.928	605.300	PASS


GPRS850 Channel=251

Keysight Spectrum Analyzer - Occupied BW				- 4 -
X RL RF 50 Ω AC		SENSE:INT ALL	GN AUTO	02:17:34 PM Aug 28, 2023
Center Freq 848.800000 M	Hz	Center Freq: 848.800000 M	/Hz	Radio Std: None
		- Trig: Free Run	Avg Hold: 200/200	
	#IFGain:Low	#Atten: 40 dB		Radio Device: BTS
Ref Offset 6.81 dB				
10 dB/div Ref 40.00 dBm				
Log				
30.0		mon		
20.0				
10.0	N`			
0.00	\sim		N.	
	- man		L.M.	
10.0			- mh	
20.0	v		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1
30.0				V~m
-300				monton
-50.0				Y
-30.0				
Center 848.8 MHz				Span 1 MHz
#Res BW 10 kHz		#VBW 30 kHz		Sweep 9.6 ms
Occupied Bandwidth	1	Total Power	40.8 dBm	
24	7.09 kHz			
2-				
Transmit Freq Error	62 Hz	% of OBW Power	99.00 %	
x dB Bandwidth	320.6 kHz	x dB	-26.00 dB	
X ub Banuwidth	520:0 KHZ	X UB	-20.00 dB	
156			STATUS	

	Sobu Cham		
			- 0
	SENSE:INT	ALIGN AUTO	02:20:47 PM Aug 28, 2
z			Radio Std: None
#IFGain:Low	#Atten: 40 dB	Avginola. 200/200	Radio Device: BTS
	- Mar making	γ_{n}	
m		mm	
and the state of t		and me	1. M. M. M. M.
			and a second de la
			Span 1 №
	#VBW 30 k	(Hz	Sweep 9.6
	Total Power	39.0 dBm	
5 57 247			
0.07 KHZ			
1.509 kHz	% of OBW Pov	wer 99.00 %	
861.3 kHz	x dB	-26.00 dB	
	fz #FGainLow 5.57 kHz	tz Genter Freg: 824.200 Trig: Free Run #FGeint.ow #Atten: 40 dB #VEW 30 k Total Power 5.57 kHz 1.509 kHz % of OBW Potential % Content of the second secon	Iz Center Freq: 324.20000 MHz "#FGainLow" #Atten: 40 dB #VBW 30 kHz Total Power 39.0 dBm 5.57 kHz 1.509 kHz % of OBW Power 99.00 %


EGPRS850 Channel=128


EGPRS850 Channel=190

EGPRS850 Channel=251

Keysight Spectrum Analyzer - Occupied BW		SENSE:INT ALL	GN AUTO	02:20:55 PM Aug 28, 202
Center Freq 848.800000 M	Hz	Center Freq: 848.800000 M		Radio Std: None
	#IFGain:Low	#Atten: 40 dB	Avg Hold: 200/200	Radio Device: BTS
Ref Offset 6.81 dB				
og Ref 40.00 dBm				
0.0		m		
0.0		· · ·	mm m	
	mar and a second		a www	mmmmmmm
0.0				
0.0				
0.0				
0.0				
enter 848.8 MHz				Span 1 MH
Res BW 10 kHz		#VBW 30 kHz		Sweep 9.6 m
Occupied Bandwidth	1	Total Power	40.1 dBm	
50)5.69 kHz			
Transmit Freq Error	7.167 kHz	% of OBW Power	99.00 %	
x dB Bandwidth	772.0 kHz	x dB	-26.00 dB	
			4	
iG			🕼 STATUS	

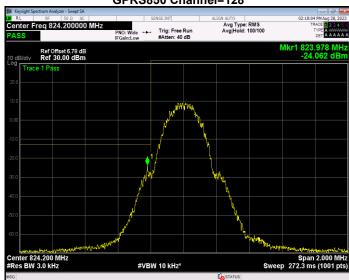
GPRS1900 Channel=810

	LOFINO	1900 Cham					
📕 Keysight Spectrum Analyzer - Occupied BW							
RL RF 50Ω AC		SENSE:INT	ALIGN AUTO	02:50:47 PM Aug 28, 2			
enter Freq 1.850200000	GHz	Center Freq: 1.850200 Trig: Free Run	Radio Std: None				
	#IFGain:Low	#Atten: 40 dB	Avg Hold: 200/200	Radio Device: BTS			
Ref Offset 7.85 dB							
0 dB/div Ref 40.00 dBm							
og							
0.0		m					
	~^~	Nue a contra	MA				
0.0	and and and		M. M. Marrison Marris				
00 Mm A./MAN	New York		- VV	mm montered			
00 0.0 mg/mm/ma/ma/a/				- was working			
0.0							
0.0							
1.0							
10							
enter 1.85 GHz				Span 1 N			
Res BW 10 kHz		#VBW 30 kH	lz	Sweep 9.6			
Occupied Bandwidth	1	Total Power	35.3 dBm				
	1.12 kHz						
Transmit Freq Error	4.054 kHz	% of OBW Pow	ver 99.00 %				
x dB Bandwidth	654.4 kHz	x dB	-26.00 dB				
			1				
G							

EGPRS1900 Channel=512

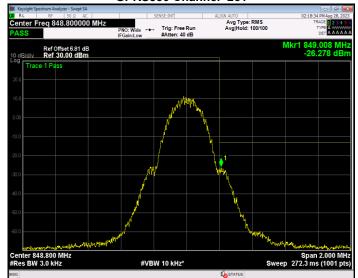
02:50:51 PM Aug 28, 2023 Radio Std: None enter Freq 1.880000000 GHz Radio Device: BTS #IFGain:Lov Ref Offset 7.85 dB Ref 40.00 dBm Span 1 MHz Sweep 9.6 ms Center 1.88 GHz #Res BW 10 kHz #VBW 30 kHz Occupied Bandwidth Total Power 36.0 dBm 404.87 kHz -886 Hz % of OBW Power 99.00 % Transmit Freq Error x dB Bandwidth 583.4 kHz -26.00 dB x dB

EGPRS1900 Channel=661


EGPRS1900 Channel=810

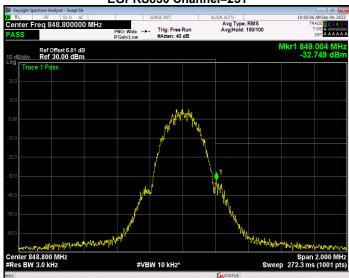
5

Keysight Spectrum Analyzer - Occupied BW								
RL RF 50 Ω AC Center Freq 1.909800000	GHz	SENSE:INT ALIGN AUTO Center Freq: 1.909800000 GHz		02:50:55 PM Aug 28, 202: Radio Std: None				
	#IFGain:Low	 Trig: Free Run #Atten: 40 dB 	Avg Hold: 200/200	Radio Device: BTS				
Ref Offset 7.74 dE								
0 dB/div Ref 40.00 dBm								
30.0		mmm						
	- M	March of Ar Mark	and the second s					
			www.					
100 00 mphaharman	A.C.		- And	howwwww				
0.0				the way				
0.0								
0.0								
0.0								
enter 1.91 GHz				Span 1 MH:				
Res BW 10 kHz		#VBW 30 kHz		Sweep 9.6 m				
Occupied Bandwidt	h	Total Power	35.6 dBm					
408.93 kHz								
Transmit Freq Error	-1.871 kHz	% of OBW Powe	r 99.00 %					
x dB Bandwidth	605.3 kHz	x dB	-26.00 dB					
			A.)					
G								

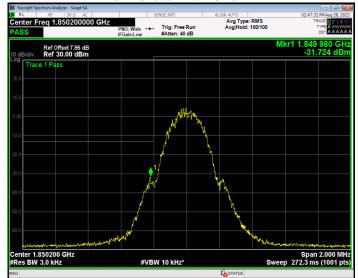

Band edge

Band	Channel	Frequency (MHz)	Spur Freq (MHz)	Spur Level (dBm)	Limit (dBm)	Verdict
GPRS850	128	824.2	823.98	-24.06	-13	PASS
GPRS850	251	848.8	849.01	-26.27	-13	PASS
EGPRS850	128	824.2	823.98	-37.34	-13	PASS
EGPRS850	251	848.8	849.00	-32.74	-13	PASS
GPRS1900	512	1850.2	1849.98	-31.72	-13	PASS
GPRS1900	810	1909.8	1910.02	-31.81	-13	PASS
EGPRS1900	512	1850.2	1849.99	-15.10	-13	PASS
EGPRS1900	810	1909.8	1910.01	-16.55	-13	PASS



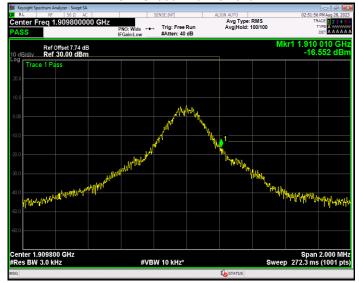

GPRS850 Channel=128

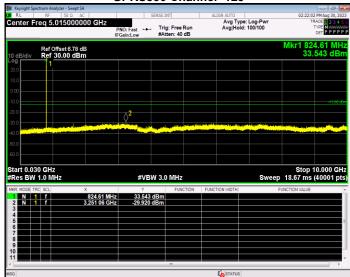
GPRS850 Channel=251


EGPRS850 Channel=128

EGPRS850 Channel=251

GPRS1900 Channel=512

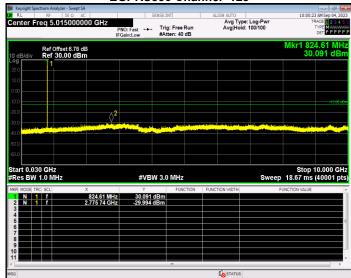

GPRS1900 Channel=810


EGPRS1900 Channel=512

EGPRS1900 Channel=810

Out-of-band emissions

Band	Channel	Frequency (MHz)	Spur Freq (MHz)	Spur Level (dBm)	Limit (dBm)	Verdict
GPRS850	128	824.2	3251.06	-29.91	-13	PASS
GPRS850	190	836.6	7422.76	-29.10	-13	PASS
GPRS850	251	848.8	3172.54	-29.49	-13	PASS
EGPRS850	128	824.2	2775.74	-29.99	-13	PASS
EGPRS850	190	836.6	2768.76	-29.37	-13	PASS
EGPRS850	251	848.8	2660.58	-29.14	-13	PASS
GPRS1900	512	1850.2	19317.03	-22.17	-13	PASS
GPRS1900	661	1880	19163.26	-22.68	-13	PASS
GPRS1900	810	1909.8	16558.67	-21.93	-13	PASS
EGPRS1900	512	1850.2	19296.56	-22.23	-13	PASS
EGPRS1900	661	1880	19966.05	-22.41	-13	PASS
EGPRS1900	810	1909.8	19475.29	-22.41	-13	PASS


GPRS850 Channel=128

GPRS850 Channel=190

		nalyzer - Swept									- 0
RL enter F	RF rea 5		AC 000 GHz		SENSE:IN		AL		: Log-Pwr	Т	8 PM Aug 30, 2 RACE 1 2 3 4
GHEOT T				PNO: Fast + FGain:Low		: Free Run en: 40 dB		Avg Hold	100/100		DET P P P
0 dB/div	Ref (Ref	Offset 6.8 d 30.00 dE	iB Sm							Mkr1 83 33	7.07 M .481 dE
og	1										
0.0											
0.0											-13.00
											-13.00
1.0											
				a di kata da ka							e e printe
1.0											
1.0											
tart 0.03 Res BW				#V	'BW 3.0	MHz			Sweep	Stop 18.67 ms	10.000 G (40001 p
(R MODE TR			х	Y		FUNCTION	FUNCT	TION WIDTH	F	UNCTION VALUE	
1 N 1 2 N 1	f		837.07 MHz 7.422 76 GHz	33.4	81 dBm 01 dBm						
3					UT GOM						
5											
6	+						+				
8											
0											
9						m					

GPRS850 Channel=251

					- 0
SENSE:1	NT		Lon-Pwr		PM Aug 30, 20
				1	
				Mkr1 849 34.0	9.53 MH 648 dBi
					-13.00 d
\Diamond^2					
#VBW 3.0	MHz		Sweep	Stop 1 18.67 ms (0.000 GH
Y	FUNCTION	FUNCTION WIDTH		JNCTION VALUE	
Y Hz 34.648 dBm Hz -29.494 dBm	FUNCTION	FUNCTION WIDTH			
Y Hz 34.648 dBm Hz -29.494 dBm	FUNCTION	FUNCTION WIDTH			
Y Hz 34.648 dBm Hz -29.494 dBm	FUNCTION	FUNCTION WIDTH			
Y Hz 34.648 dBm Hz -29.494 dBm	FUNCTION	FUNCTION WDTH			
Y Hz 34,648 dBm Hz -29.494 dBm	FUNCTION	FUNCTION WDTH			
Hz 34.648 dBm Hz -29.494 dBm	FUNCTION	FUNCTION WIDTH			
Y Hz 34.648 dBm Hz -29.494 dBm	FUNCTION	FUNCTION WIDTH			
	PNC Fast Triff IFGainLow #At	IFGaintLow #Atten: 40 dB	PND: fuel	PNC: Fast Trig: Free Run IFGain:Low #Atten: 40 dB Avg Hold: 100/100	PND: Fast Trig: Free Run Avg Type: Log-Pwr Trig: Free Run JFGain: Low #Atten: 40 dB Mkr1 845 34.0 34.0

EGPRS850 Channel=128

EGPRS850 Channel=190

		lyzer - Swept S									- 0
RL	RF				SENSE:IN	Т	A	LIGN AUTO	e: Log-Pwr	10:00:3	38 AM Sep 04, 2 TRACE 1 2 3 4
Center F	req 5.0	J150000		PNO: Fast + FGain:Low		: Free Run en: 40 dB		Avg Hold	: 100/100	,	
10 dB/div		fset 6.8 di 10.00 dB								Mkr1 83 28	7.07 Mi .023 dB
.og 20.0	1										
10.0											
1.00											
0.0											
0.0	-		(2								
0.0	e a la l	and the state			den selat	Marine			Anise de la companya		
0.0		,									
0.0											
tart 0.03										01	10.000 G
Res BW		z		#\	/BW 3.0	MHz			Swee	ыор р 18.67 ms	(40001 p
KR MODE TR			х	Y		FUNCTION	I FUNC	TION WIDTH		FUNCTION VALUE	
2 N 1	f f		837.07 MHz 2.768 76 GHz		23 dBm 78 dBm						
3 4											
5 6											
8											
9											
1											

EGPRS850 Channel=251

		nalyzer - Swep											- 0
enter F	_R ⊧ req 5	50 Ω .015000		PNO: Fast IFGain:Low		g: Free l tten: 40				: Log-Pwr : 100/100		Т	AM Sep 04, 2 RACE 123 TYPE MUTTO DET P P P
) dB/div		Offset 6.81 30.00 dl										Mkr1 84 31	9.28 M .917 dE
0.0													
.00													
0.0			×2										-13.00
	- 1 Martin					فالعن							
3.0													
0.0													
tart 0.03 Res BW				#	VBW 3.0	0 MHz				Sw	eep	Stop 18.67 ms	10.000 G (40001 p
KR MODE TF	RC SCL		× 849.28 MHz 2.660 58 GHz		7 917 dBm 44 dBm		CTION	FUNCTION	WIDTH		FL	INCTION VALUE	
3			2.000 00 011										
6													
9													

	-	-K21900	Chan	nei=512			_
Keysight Spectrum An	alyzer - Swept SA 50 Ω AC	SENSE:INT		ALIGN AUTO		02:30:21 PM Au	0
	0.015000000 GHz	l0:Fast → Trig:	Free Run n: 40 dB	Aug Type: L Avg Hold: 10		U2:30:21 PMAL TRACE TYPE DET	1227
	Offset 7.85 dB 30.00 dBm					Mkr1 1.850 8 28.312	G d
20.0							
10.0							
1.00							
10.0							
20.0							0
						a distance of the	Le ci
	and the state of the		A Children in c				
40.0							
50.0							
60.0							
Start 0.030 GHz						Stop 20.00	00 G
Res BW 1.0 M	Hz	#VBW 3.0 N	∕IHz		Sweep	50.67 ms (400	
IKR MODE TRC SCL	Х	Y	FUNCTION	FUNCTION WIDTH	FL	UNCTION VALUE	
1 N 1 f	1.850 8 GHz 19.317 0 GHz	28.312 dBm -22.171 dBm					
3		-22.17 - 60					
4 5							
6							
7							
9							
10							
e 📄							
SG				STATUS			

GPRS1900 Channel=512

GPRS1900 Channel=661

RL	RE	zer - Swept SA 50 Ω AC			SENSE:			ALTO	N AUTO			02.2	0:43 PM Aug 30
		0150000	P	NO: Fast Gain:Low		g: Free R tten: 40 d			Avg Typ	be: Log-Pv d: 100/100		02.5	TRACE 1 2 3 TYPE MUSE DET P P P
0 dB/div		set 7.85 dB).00 dBm											.880 2 G 9.116 d
20.0	1												
10.0													
1.00													
0.0													-434
20.0											ما مامد .		A Designed
1.000		and the second			and the second second	an di seta				Princip			
0.0													
i0.0	00.011-												- 00 000
0.0 tart 0.03	30 GHz (1.0 MH;	2		#	VBW 3.0) MHz				s	weep		p 20.000 ns (40001
tart 0.0 Res BW	V 1.0 MH)			Y	FUNC	TION	FUNCTIO	N WDTH	S			ns (40001
tart 0.0: Res BW	/ 1.0 MH)	(1.880 2 GHz 9.163 3 GHz	29.		FUNC	TION	FUNCTIC	N WIDTH	S		50.67 m	ns (40001
tart 0.0 Res BW	V 1.0 MH)	1.880 2 GHz	29.	⊻ 116 dBm	FUNC	TION	FUNCTIO	N WDTH	S		50.67 m	ns (40001
tart 0.0: Res BW Res BW R MODE T 1 N 2 N 3 4 5 5 6	V 1.0 MH)	1.880 2 GHz	29.	⊻ 116 dBm	FUNC	TION	FUNCTIO	N WDTH	Ś		50.67 m	ns (40001
tart 0.0: Res BW KR MODE T 1 N 2 N 3 4 5 6 7 7 8	V 1.0 MH)	1.880 2 GHz	29.	⊻ 116 dBm	FUNC	TION	FUNCTIO	N WDTH	s		50.67 m	ns (40001
tart 0.03 Res BW KR MODE T 1 N 2 N 3 4 4 5 5 6 6 7 7 8 8 9 9	V 1.0 MH)	1.880 2 GHz	29.	⊻ 116 dBm	FUNC	TION	FUNCTIO	N WDTH	S		50.67 m	ns (40001
KR MODE T 1 N 2 N 3 4 5 6 7 8	V 1.0 MH)	1.880 2 GHz	29.	⊻ 116 dBm	FUNC	TION	FUNCTIO	N WDTH	s		50.67 m	ns (40001

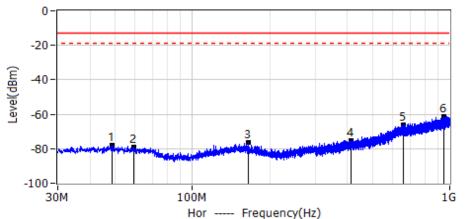
GPRS1900 Channel=810

	ectrum Analyzer - S							Ø
RL	RF 50	Ω AC 000000 GHz	SENSE:1	NT	ALIGN AUTO	e: Log-Pwr	02:31:07 PM Au TRACE	
enter F	req 10.015	P		g:FreeRun ten:40dB	Avg Hold		TYPE M	PPP
			Gain:Low WA	ten. 40 dB			Mkr1 1.910 2	G
) dB/div	Ref Offset 7 Ref 30.00						28.839	dE
	1							
0.0								
0.0							<u>2</u>	
0.0								, and
1.0 	and the second sec	No.		and a distant		telesco de la constante		
0.0								
tart 0.03	30 GHz 1.0 MHz		#VBW 3.0) MHz		Sweep	Stop 20.00 50.67 ms (400	0 G 01 p
tart 0.03 Res BW	1.0 MHz	x	Y	MHz FUNCTION	FUNCTION WIDTH		Stop 20.00 50.67 ms (4000	0 G 01 p
tart 0.03 Res BW	1.0 MHz RC SCL	1.910 2 GHz	Y 28.839 dBm		FUNCTION WIDTH		50.67 ms (400	0 G 01 p
tart 0.03 Res BW R MODE TR 1 N 1 2 N 1 3	1.0 MHz		Y		FUNCTION WIDTH		50.67 ms (400	0 G 01 p
R MODE TH	1.0 MHz	1.910 2 GHz	Y 28.839 dBm		FUNCTION WIDTH		50.67 ms (400	0 G 01 p
tart 0.03 Res BW RR MODE TR N 1 2 N 1 3 4 5 6	1.0 MHz	1.910 2 GHz	Y 28.839 dBm		FUNCTION WIDTH		50.67 ms (400	0 G 01 p
KR MODE TF 1 N 1 2 N 1 3 4 5 6 6 7 8	1.0 MHz	1.910 2 GHz	Y 28.839 dBm		FUNCTION WIDTH		50.67 ms (400	0 G 01 p
tart 0.03 Res BW RR MODE TR 1 N 1 2 N 1 3 4 5 5 6 6 7 7 8 9	1.0 MHz	1.910 2 GHz	Y 28.839 dBm		FUNCTION WIDTH		50.67 ms (400	0 G 01 p
tart 0.03 Res BW KR MODE TF 1 N 1 2 N 1 3 4 5 5 6 6	1.0 MHz	1.910 2 GHz	Y 28.839 dBm	FUNCTION	FUNCTION WIDTH		50.67 ms (400	0 G 01 p
Tart 0.03 Res BW R MODE TH N 1 2 N 1 3 4 4 5 5 6 6 6 7 7 8 8	1.0 MHz	1.910 2 GHz	Y 28.839 dBm		FUNCTION WIDTH		50.67 ms (400	0 GI 01 p

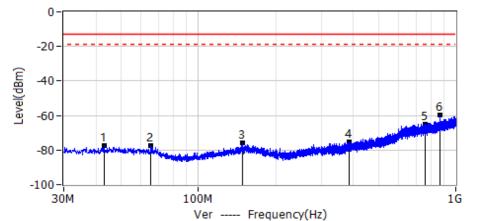
RL	ctrum Analyzer - S RF 50	Ω AC		SENSE:INT	-	ALI	IGN AUTO		11:09:	12 AM Sep 05.
enter Fr	eq 10.015		NO: Fast 🔸 Gain:Low	. Trig: F #Atten:	ree Run 40 dB		Avg Type Avg Hold:	: Log-Pwr 100/100		TYPE M
0 dB/div	Ref Offset Ref 30.00								Mkr1 1.3 30	350 8 G .460 dE
.og 20.0	1									
10.0										
0.00										
10.0										-13.00
20.0										\diamond
30.0								and the second	al the second	A service of the
40.0						-	Alter and a			
50.0										
60.0										
Start 0.03 Res BW			#VE	W 3.0 M	Hz			Sweep	Stop 50.67 ms	20.000 G (40001 p
KR MODE TR		х	Y		FUNCTION	FUNCT	ION WIDTH	F	UNCTION VALUE	
1 N 1 2 N 1		1.850 8 GHz 19.296 6 GHz	30.460							
3		10.2000 0112								
5										
6										
8										
10										

EGPRS1900 Channel=512

EGPRS1900 Channel=661

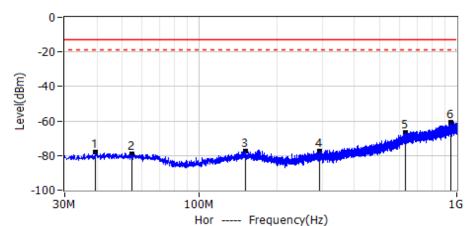

enter F	RF 50	Ω AC 5000000 GHz	SENSE:		ALIGN AUTO Avg Type	: Log-Pwr		34 AM Sep 05, 2 RACE 1 2 3 4
		PI		g: Free Run tten: 40 dB	Avg Hold	: 100/100		DET P P P
) dB/div	Ref Offset Ref 30.00						Mkr1 1.8	80 7 GI .716 dB
	Rei 30.00	ивш						
0.0								
0.0								
0.0								-13.00
0.0								
0.0			Para and a Para and a second			and the second second	and the second data	
0.0								
n n 🖌 🚽 🗸								
0.0 0.0 tart 0.03							Stop	20.000 G
 tart 0.03	30 GHz 1.0 MHz		#VBW 3.0	0 MHz		Swee	Stop 50.67 ms	20.000 G (40001 p
tart 0.03 Res BW	RC SCL	X 4 000 7 011-1	Y	FUNCTION	FUNCTION WDTH		Stop p 50.67 ms	20.000 G (40001 p
tart 0.03 Res BW	1.0 MHz	× 1.880 7 GHz 19.966 1 GHz		FUNCTION	FUNCTION WIDTH		p 50.67 ms	20.000 G (40001 p
tart 0.03 Res BW R MODE TI 1 N 1 2 N 1	RC SCL	1.880 7 GHz	۲ 29.716 dBm	FUNCTION	FUNCTION WIDTH		p 50.67 ms	20.000 G (40001 p
tart 0.03 Res BW	RC SCL	1.880 7 GHz	۲ 29.716 dBm	FUNCTION	FUNCTION WIDTH		p 50.67 ms	20.000 G (40001 p
tart 0.03 Res BW RR MODE TH 2 N 1 3 4 5 6 6	RC SCL	1.880 7 GHz	۲ 29.716 dBm	FUNCTION	FUNCTION WIDTH		p 50.67 ms	20.000 G (40001 p
tart 0.03 Res BW KR MODE TH 1 N 2 2 N 1 3 4 5 5 6 6 7 7 8	RC SCL	1.880 7 GHz	۲ 29.716 dBm	FUNCTION	FUNCTION WIDTH		p 50.67 ms	20.000 G (40001 p
tart 0.03 Res BW R MODE TI 1 N 2 2 N 2 3 4 4 5 5 6 6 7 7 8 8 9 9	RC SCL	1.880 7 GHz	۲ 29.716 dBm	FUNCTION	FUNCTION WIDTH		p 50.67 ms	20.000 G (40001 p
tart 0.03 Res BW	RC SCL	1.880 7 GHz	۲ 29.716 dBm	FUNCTION	FUNCTION WIDTH		p 50.67 ms	20.000 G (40001 p

EGPRS1900 Channel=810

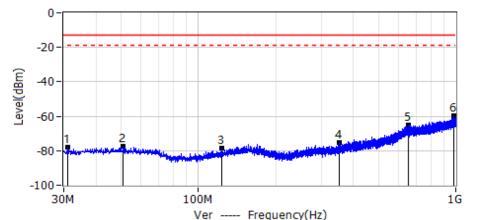

RL	ectrum Ar RF	nalyzer - Swept S	SA AC					
			0000 GHz		rig: Free Run Atten: 40 dB	ALIGN AUTO Avg Type Avg Hold	: Log-Pwr : 100/100	11:09:57 AM Sep 05, 2 TRACE 1 2 3 4 TYPE MY
0 dB/div		Offset 7.74 30.00 dB						Mkr1 1.910 2 GI 29.793 dB
og 20.0		1						
10.0								
0.0								-13.00
20.0								a de la companya de la
0.0			-		and of the line			
0.0								
ia.o								
~~~								
tart 0.03				#VBW 3	.0 MHz		Sweep	Stop 20.000 G 50.67 ms (40001 p
tart 0.03 Res BW	1.0 I¥ RC  SCL		X	Y	FUNCTION	FUNCTION WIDTH		Stop 20.000 G 50.67 ms (40001 p
tart 0.03 Res BW	1.0 Ⅳ RC  SCL		x 1.910 2 GHz 19.475 3 GHz		FUNCTION	FUNCTION WIDTH		50.67 ms (40001 p
tart 0.03 Res BW KR MODE TF 1 N 1 2 N 1 3 4 5 5 6 6	1.0 Ⅳ RC  SCL		1.910 2 GHz	۲ 29.793 dBn	FUNCTION	FUNCTION WIDTH		50.67 ms (40001 p
tart 0.03 Res BW IN 1 1 2 N 1 3 4 5 6 6 7 8 8 9 9	1.0 Ⅳ RC  SCL		1.910 2 GHz	۲ 29.793 dBn	FUNCTION	FUNCTION WIDTH		50.67 ms (40001 p
tart 0.03 Res BW KR MODE TF 1 N 1 2 N 1 3 4 4 5 6 6 7 8 9	1.0 Ⅳ RC  SCL		1.910 2 GHz	۲ 29.793 dBn	FUNCTION			Stop 20.000 G 50.67 ms (40001 p UNCTION VALUE

### RADIATED SPURIOUS EMISSION

Project: LGT23H049	Test Engineer: Xiangdong Ma
EUT: Tablet	Temperature: 28°C
M/N: VORTEX BTAB10	Humidity: 44%RH
Test Voltage: Battery	Test Data: 2023-08-30
Test Mode: GSM 850 Lower	- ·
Note:	




No.	Frequency	Level	Limit	Margin	Detector	Polar
140.	Пециенсу	dBm	dBm	dB	Detector	i olai
1*	48.5513MHz	-78.00	-13.00	-65.00	PK	Hor
2*	59.3425MHz	-79.25	-13.00	-66.25	PK	Hor
3*	165.3150MHz	-76.35	-13.00	-63.35	PK	Hor
4*	412.5438MHz	-75.05	-13.00	-62.05	PK	Hor
5*	659.5300MHz	-65.95	-13.00	-52.95	PK	Hor
6*	946.4075MHz	-61.15	-13.00	-48.15	PK	Hor

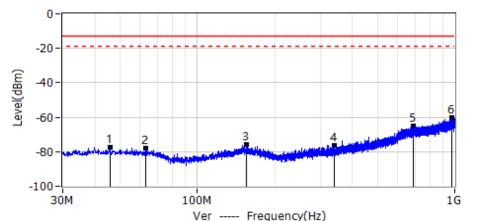



No.	Frequency	Level	Limit	Margin	Detector	Polar
INO.	Frequency	dBm	dBm	dB	Delector	FUIdi
1*	42.9738MHz	-77.67	-13.00	-64.67	PK	Ver
2*	65.5263MHz	-77.66	-13.00	-64.66	PK	Ver
3*	148.3400MHz	-75.80	-13.00	-62.80	PK	Ver
4*	386.2325MHz	-75.21	-13.00	-62.21	PK	Ver
5*	762.8350MHz	-64.91	-13.00	-51.91	PK	Ver
6*	870.0200MHz	-59.57	-13.00	-46.57	PK	Ver

Project: LGT23H049	Test Engineer: Xiangdong Ma
EUT: Tablet	Temperature: 28°C
M/N: VORTEX BTAB10	Humidity: 44%RH
Test Voltage: Battery	Test Data: 2023-08-30
Test Mode: GSM 850 Middle	
Note:	

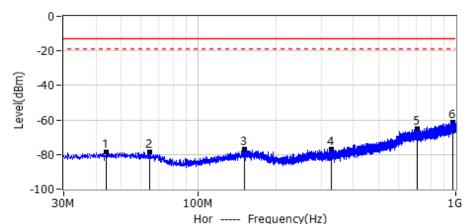



		1101	ricquein	-)(112)		
No.	Frequency	Level dBm	Limit dBm	Margin dB	Detector	Polar
1*	39.3363MHz	-78.13	-13.00	-65.13	PK	Hor
2*	54.6138MHz	-79.23	-13.00	-66.23	PK	Hor
3*	150.6438MHz	-77.47	-13.00	-64.47	PK	Hor
4*	293.1125MHz	-77.45	-13.00	-64.45	PK	Hor
5*	632.6125MHz	-66.93	-13.00	-53.93	PK	Hor
6*	950.5300MHz	-60.99	-13.00	-47.99	PK	Hor

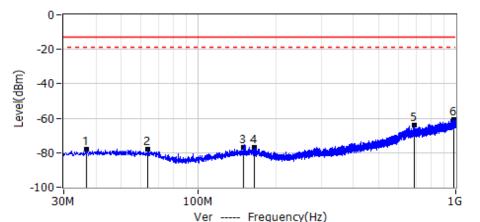



		* G1	ricquein	2)(112)		
No.	Frequency	Level dBm	Limit dBm	Margin dB	Detector	Polar
1*	31.2125MHz	-78.19	-13.00	-65.19	PK	Ver
2*	51.0975MHz	-77.18	-13.00	-64.18	PK	Ver
3*	122.8775MHz	-78.51	-13.00	-65.51	PK	Ver
4*	353.8588MHz	-75.53	-13.00	-62.53	PK	Ver
5*	653.3463MHz	-65.22	-13.00	-52.22	PK	Ver
6*	984.7225MHz	-59.90	-13.00	-46.90	PK	Ver

Project: LGT23H049	Test Engineer: Xiangdong Ma
EUT: Tablet	Temperature: 28°C
M/N: VORTEX BTAB10	Humidity: 44%RH
Test Voltage: Battery	Test Data: 2023-08-30
Test Mode: GSM 850 Upper	
Note:	

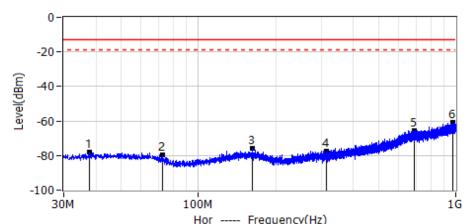



		1101	Flequein	- (112)		
No.	Frequency	Level dBm	Limit dBm	Margin dB	Detector	Polar
1*	33.1525MHz	-78.97	-13.00	-65.97	PK	Hor
2*	40.1850MHz	-77.85	-13.00	-64.85	PK	Hor
3*	156.4638MHz	-77.28	-13.00	-64.28	PK	Hor
4*	296.9925MHz	-76.84	-13.00	-63.84	PK	Hor
5*	618.6688MHz	-67.43	-13.00	-54.43	PK	Hor
6*	994.7863MHz	-59.88	-13.00	-46.88	PK	Hor

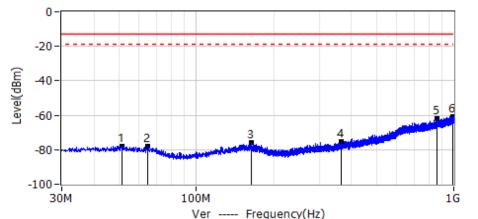



			ricquein	-)()		
No.	Frequency	Level dBm	Limit dBm	Margin dB	Detector	Polar
1*	45.6413MHz	-77.16	-13.00	-64.16	PK	Ver
2*	62.8588MHz	-78.21	-13.00	-65.21	PK	Ver
3*	155.7363MHz	-76.07	-13.00	-63.07	PK	Ver
4*	341.2488MHz	-76.10	-13.00	-63.10	PK	Ver
5*	688.7513MHz	-65.22	-13.00	-52.22	PK	Ver
6*	969.6875MHz	-60.26	-13.00	-47.26	PK	Ver

Project: LGT23H049	Test Engineer: Xiangdong Ma
EUT: Tablet	Temperature: 28°C
M/N: VORTEX BTAB10	Humidity: 44%RH
Test Voltage: Battery	Test Data: 2023-08-30
Test Mode: GSM 1900 Lower	
Note:	

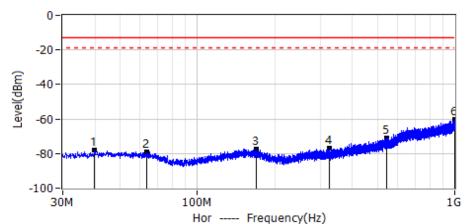



		1101	Hequein	- (112)		
No.	Frequency	Level dBm	Limit dBm	Margin dB	Detector	Polar
1*	43.9438MHz	-78.66	-13.00	-65.66	PK	Hor
2*	64.9200MHz	-78.60	-13.00	-65.60	PK	Hor
3*	151.0075MHz	-76.62	-13.00	-63.62	PK	Hor
4*	327.6688MHz	-76.78	-13.00	-63.78	PK	Hor
5*	709.6063MHz	-65.27	-13.00	-52.27	PK	Hor
6*	970.0513MHz	-61.27	-13.00	-48.27	PK	Hor

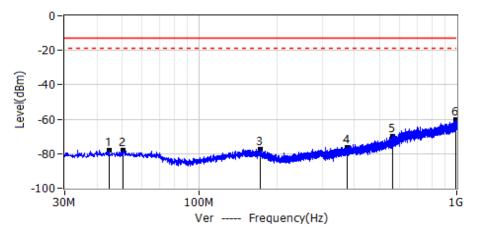



			riequein	-)()		
No.	Frequency	Level dBm	Limit dBm	Margin dB	Detector	Polar
1*	36.7900MHz	-77.75	-13.00	-64.75	PK	Ver
2*	63.4650MHz	-78.10	-13.00	-65.10	PK	Ver
3*	150.2800MHz	-77.12	-13.00	-64.12	PK	Ver
4*	165.0725MHz	-76.69	-13.00	-63.69	PK	Ver
5*	689.2363MHz	-64.17	-13.00	-51.17	PK	Ver
6*	982.6613MHz	-60.55	-13.00	-47.55	PK	Ver

Project: LGT23H049	Test Engineer: Xiangdong Ma
EUT: Tablet	Temperature: 28°C
M/N: VORTEX BTAB10	Humidity: 44%RH
Test Voltage: Battery	Test Data: 2023-08-30
Test Mode: GSM 1900 Middle	
Note:	

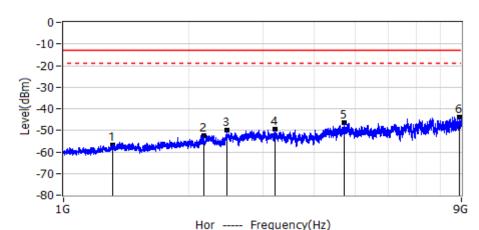



		HUI	Frequent	Ly(HZ)		
No.	Frequency	Level dBm	Limit dBm	Margin dB	Detector	Polar
1*	37.8813MHz	-78.22	-13.00	-65.22	PK	Hor
2*	72.4375MHz	-79.50	-13.00	-66.50	PK	Hor
3*	162.0413MHz	-75.65	-13.00	-62.65	PK	Hor
4*	313.9675MHz	-77.19	-13.00	-64.19	PK	Hor
5*	690.2063MHz	-65.37	-13.00	-52.37	PK	Hor
6*	974.7800MHz	-61.01	-13.00	-48.01	PK	Hor

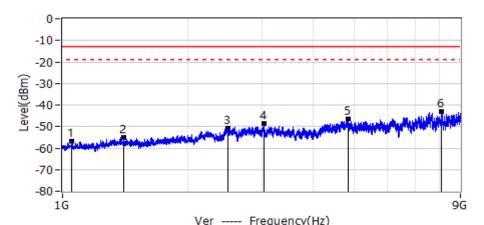



			riequein	-)()		
No.	Frequency	Level dBm	Limit dBm	Margin dB	Detector	Polar
1*	51.3400MHz	-77.98	-13.00	-64.98	PK	Ver
2*	64.9200MHz	-77.77	-13.00	-64.77	PK	Ver
3*	164.2238MHz	-75.98	-13.00	-62.98	PK	Ver
4*	364.2863MHz	-75.50	-13.00	-62.50	PK	Ver
5*	861.1688MHz	-61.70	-13.00	-48.70	PK	Ver
6*	991.2700MHz	-60.51	-13.00	-47.51	PK	Ver

Project: LGT23H049	Test Engineer: Xiangdong Ma	
EUT: Tablet	Temperature: 28°C	
M/N: VORTEX BTAB10	Humidity: 44%RH	
Test Voltage: Battery	Test Data: 2023-08-30	
Test Mode: GSM 1900 Upper		
Note:		

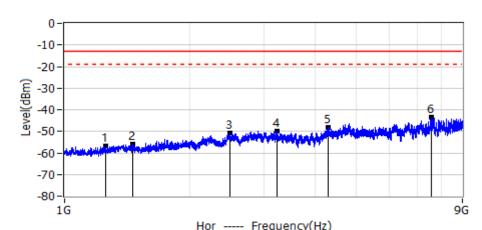



		1101	ricquein	2)(112)		
No.	Frequency	Level dBm	Limit dBm	Margin dB	Detector	Polar
1*	39.9425MHz	-78.12	-13.00	-65.12	PK	Hor
2*	63.3438MHz	-79.14	-13.00	-66.14	PK	Hor
3*	168.8313MHz	-77.55	-13.00	-64.55	PK	Hor
4*	324.8800MHz	-76.81	-13.00	-63.81	PK	Hor
5*	543.8575MHz	-70.95	-13.00	-57.95	PK	Hor
6*	998.1813MHz	-60.28	-13.00	-47.28	PK	Hor

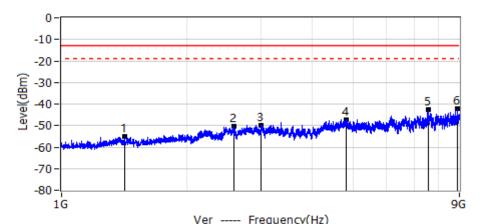



			quein			
No.	Frequency	Level dBm	Limit dBm	Margin dB	Detector	Polar
1*	44.6713MHz	-77.78	-13.00	-64.78	PK	Ver
2*	50.3700MHz	-78.21	-13.00	-65.21	PK	Ver
3*	173.0750MHz	-77.27	-13.00	-64.27	PK	Ver
4*	374.2288MHz	-76.18	-13.00	-63.18	PK	Ver
5*	563.9850MHz	-70.10	-13.00	-57.10	PK	Ver
6*	994.3013MHz	-60.20	-13.00	-47.20	PK	Ver

Project: LGT23H049	Test Engineer: Xiangdong Ma
EUT: Tablet	Temperature: 28°C
M/N: VORTEX BTAB10	Humidity: 44%RH
Test Voltage: Battery	Test Data: 2023-08-28
Test Mode: GSM 850 Lower	
Note:	

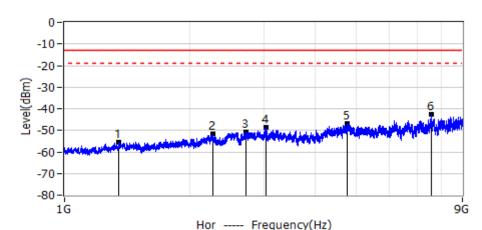



		1101	riequenc	7(112)		
No.	Frequency	Level dBm	Limit dBm	Margin dB	Detector	Polar
1*	1.3100GHz	-56.69	-13.00	-43.69	PK	Hor
2*	2.1670GHz	-52.41	-13.00	-39.41	PK	Hor
3*	2.4680GHz	-50.03	-13.00	-37.03	PK	Hor
4*	3.2230GHz	-49.29	-13.00	-36.29	PK	Hor
5*	4.7090GHz	-46.26	-13.00	-33.26	PK	Hor
6*	8.9080GHz	-43.66	-13.00	-30.66	PK	Hor

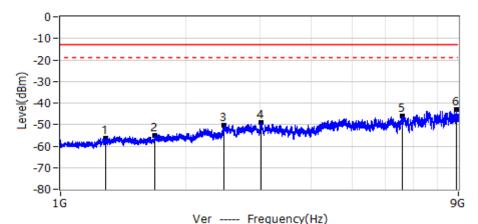



		V CI -	Frequenc	y(112)		
No.	Frequency	Level dBm	Limit dBm	Margin dB	Detector	Polar
1*	1.0510GHz	-56.84	-13.00	-43.84	PK	Ver
2*	1.4030GHz	-55.18	-13.00	-42.18	PK	Ver
3*	2.4970GHz	-50.59	-13.00	-37.59	PK	Ver
4*	3.0370GHz	-48.48	-13.00	-35.48	PK	Ver
5*	4.8360GHz	-46.50	-13.00	-33.50	PK	Ver
6*	8.1220GHz	-43.21	-13.00	-30.21	PK	Ver

Project: LGT23H049	Test Engineer: Xiangdong Ma
EUT: Tablet	Temperature: 28°C
M/N: VORTEX BTAB10	Humidity: 44%RH
Test Voltage: Battery	Test Data: 2023-08-28
Test Mode: GSM 850 Middle	
Note:	

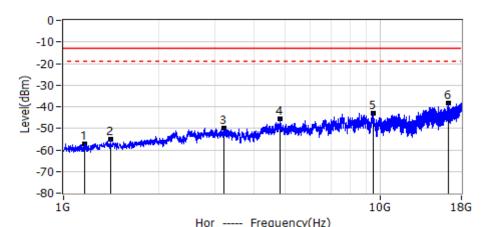



		HUI -	Flequello	y(nz)		
No.	Frequency	Level dBm	Limit dBm	Margin dB	Detector	Polar
1*	1.2560GHz	-56.69	-13.00	-43.69	PK	Hor
2*	1.4580GHz	-55.91	-13.00	-42.91	PK	Hor
3*	2.4930GHz	-50.73	-13.00	-37.73	PK	Hor
4*	3.2250GHz	-50.00	-13.00	-37.00	PK	Hor
5*	4.2940GHz	-48.05	-13.00	-35.05	PK	Hor
6*	7.5790GHz	-43.48	-13.00	-30.48	PK	Hor

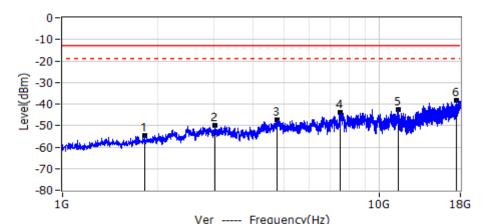



		VCI	riequenc	y(112)		
No.	Frequency	Level dBm	Limit dBm	Margin dB	Detector	Polar
1*	1.4200GHz	-55.08	-13.00	-42.08	PK	Ver
2*	2.5960GHz	-50.34	-13.00	-37.34	PK	Ver
3*	3.0100GHz	-49.73	-13.00	-36.73	PK	Ver
4*	4.8040GHz	-47.21	-13.00	-34.21	PK	Ver
5*	7.5680GHz	-42.74	-13.00	-29.74	PK	Ver
6*	8.9120GHz	-42.09	-13.00	-29.09	PK	Ver

Project: LGT23H049	Test Engineer: Xiangdong Ma
EUT: Tablet	Temperature: 28°C
M/N: VORTEX BTAB10	Humidity: 44%RH
Test Voltage: Battery	Test Data: 2023-08-28
Test Mode: GSM 850 Upper	
Note:	




Hol Flequency(Hz)							
No.	Frequency	Level dBm	Limit dBm	Margin dB	Detector	Polar	
1*	1.3520GHz	-55.31	-13.00	-42.31	PK	Hor	
2*	2.2630GHz	-51.64	-13.00	-38.64	PK	Hor	
3*	2.7240GHz	-50.78	-13.00	-37.78	PK	Hor	
4*	3.0340GHz	-48.81	-13.00	-35.81	PK	Hor	
5*	4.7530GHz	-46.80	-13.00	-33.80	PK	Hor	
6*	7.5690GHz	-42.39	-13.00	-29.39	PK	Hor	




Ver Frequency(nz)							
No.	Frequency	Level dBm	Limit dBm	Margin dB	Detector	Polar	
1*	1.2810GHz	-56.28	-13.00	-43.28	PK	Ver	
2*	1.6830GHz	-55.14	-13.00	-42.14	PK	Ver	
3*	2.4600GHz	-50.24	-13.00	-37.24	PK	Ver	
4*	3.0330GHz	-48.91	-13.00	-35.91	PK	Ver	
5*	6.6100GHz	-46.12	-13.00	-33.12	PK	Ver	
6*	8.8960GHz	-42.92	-13.00	-29.92	PK	Ver	

Project: LGT23H049	Test Engineer: Xiangdong Ma
EUT: Tablet	Temperature: 28°C
M/N: VORTEX BTAB10	Humidity: 44%RH
Test Voltage: Battery	Test Data: 2023-08-28
Test Mode: GSM 1900 Lower	
Note:	



Hor Frequency(Hz)							
No.	Frequency	Level dBm	Limit dBm	Margin dB	Detector	Polar	
1*	1.1615GHz	-57.23	-13.00	-44.23	PK	Hor	
2*	1.4101GHz	-54.86	-13.00	-41.86	PK	Hor	
3*	3.2121GHz	-49.68	-13.00	-36.68	PK	Hor	
4*	4.8356GHz	-45.56	-13.00	-32.56	PK	Hor	
5*	9.4660GHz	-42.80	-13.00	-29.80	PK	Hor	
6*	16.4062GHz	-38.34	-13.00	-25.34	PK	Hor	



Ver frequency(fiz)							
No.	Frequency	Level dBm	Limit dBm	Margin dB	Detector	Polar	
1*	1.8224GHz	-54.47	-13.00	-41.47	PK	Ver	
2*	3.0315GHz	-50.07	-13.00	-37.07	PK	Ver	
3*	4.7506GHz	-47.40	-13.00	-34.40	PK	Ver	
4*	7.5386GHz	-43.87	-13.00	-30.87	PK	Ver	
5*	11.4635GHz	-42.62	-13.00	-29.62	PK	Ver	
6*	17.5176GHz	-38.22	-13.00	-25.22	PK	Ver	