

Report No.: HKEM220400040401 Page: 1 of 47

TEST REPORT

Application No.:	HKEM2204000404AT
Applicant:	RFDesign Pty Ltd
Address of Applicant:	FCC: 1/373 Bradman Street, Acacia Ridge, QLD 4110, AUSTRALIA
	IC: U7, 1 Stockwell Pace Archerfield 4108 Australia
Equipment Under Test (EUT):
EUT Name:	RFD900ux2
Model No.:	900ux-US
Trademark:	RFDesign
FCC ID:	2ADLE-900UX2
IC:	24610-900UX2
HVIN:	RFD900ux-US
Standard(s) :	47 CFR Part 15 Subpart C
	RSS-247 Issue 2
	RSS-Gen: Issue 5
Date of Receipt:	2022-05-05
Date of Test:	2022-05-06 to 2022-05-13
Date of Issue:	2022-05-16
Test Result:	The submitted sample was found to comply with the test requirement.

Law Man Kit EMC Manager

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request and accessible at http://www.sgs.com/en/Terms-and-conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-conditions.aspx Attention is drawn to the limitation of liability, indemnification in and urisdiction issues defined therein. Any holder of this document is advised that information contained hereen reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction document. The document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

SGS Hong Kong Limited Diffice: Unit 2 and 3, G/F, Block A, Po Lung Centre, 11 Wang Chiu Road, Kowloon Bay, Kowloon, Hong Kong www.sdscroup.com.hk Office: Units 303 & 305, 3/F, Building 22E, Phase 3, HK Science Park, New Territories, Hong Kong t (852) 2334 4481 f (852) 2764 3126 e mkg hk@sgs.com

	Revision Record						
Version	Remark						
01		2022-05-16		Original			

Authorized for issue by:		
	Panny	
	Panny Leung /Project Engineer	Date: 2022-05-16
	Lais	
	Law Man Kit	
	/Reviewer	Date: 2022-05-16

2 Test Summary

Radio Spectrum Technical Requirement						
Item	Standard	Method	Requirement	Result		
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(b)(4)	Pass		
Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.247(a)(1),(g),(h)	Pass		

Radio Spectrum Matter Part						
Item	Standard	Method	Requirement	Result		
Conducted Peak	47 CFR Part 15,	ANSI C63.10 (2013)	47 CFR Part 15,	Pass		
Output Power	Subpart C 15.247	Section 7.8.5	Subpart C 15.247(b)(2)	1 455		
20dB Bandwidth	47 CFR Part 15,	ANSI C63.10 (2013)	47 CFR Part 15,	Pass		
200B Bandwidth	Subpart C 15.247	Section 7.8.7	Subpart C 15.247(a)(1)	r ass		
Carrier Frequencies	47 CFR Part 15,	ANSI C63.10 (2013)	47 CFR Part 15,	Pass		
Separation	Subpart C 15.247	Section 7.8.2	Subpart C 15.247a(1)	F 455		
Hopping Channel	47 CFR Part 15,	ANSI C63.10 (2013)	47 CFR Part 15,	Pass		
Number	Subpart C 15.247	Section 7.8.3	Subpart C 15.247a(1)(iii)	F d 5 5		
Dwell Time	47 CFR Part 15,	ANSI C63.10 (2013)	47 CFR Part 15,	Pass		
Dweii Time	Subpart C 15.247	Section 7.8.4	Subpart C 15.247a(1)(iii)			
Conducted Band	47 CFR Part 15,	ANSI C63.10 (2013)	47 CFR Part 15,	Page		
Edges Measurement	Subpart C 15.247	Section 7.8.6	Subpart C 15.247(d)	Pass		
Conducted Spurious	47 CFR Part 15,	ANSI C63.10 (2013)	47 CFR Part 15,	Pass		
Emissions	Subpart C 15.247	Section 7.8.8	Subpart C 15.247(d)	F 455		
Radiated Emissions	47 CFR Part 15,	ANSI C63.10 (2013)	47 CFR Part 15,	_		
which fall in the restricted bands	Subpart C 15.247	Section 6.10.5	Subpart C 15.205 & 15.209	Pass		
Radiated Spurious	47 CFR Part 15,	ANSI C63.10 (2013)	47 CFR Part 15,	Pass		
Emissions	Subpart C 15.247	Section 6.4,6.5,6.6	Subpart C 15.205 & 15.209	1 455		

Radio Spectrum Technical Requirement						
Item	Standard	Method	Requirement	Result		
Antenna Requirement	RSS-247 Issue 2, February 2017	N/A	RSS-Gen Section 6.8	Pass		
Pseudorandom Frequency Hopping Sequence	RSS-247 Issue 2, February 2017	N/A	RSS-247 Section 5.1(a)	Pass		

Radio Spectrum Matter Part						
Item Standard		Method	Requirement	Result		
99% Bandwidth	RSS-Gen Issue 5, Amdt 2021	ANSI C63.10 (2013) Section 6.9.3	RSS-Gen Section 6.7	Pass		
Conducted Peak Output Power	RSS-247 Issue 2, February 2017	ANSI C63.10 (2013) Section 7.8.5	RSS-247 Section 5.4(b)	Pass		
20dB Bandwidth	RSS-247 Issue 2, February 2017	ANSI C63.10 (2013) Section 6.9.2	RSS-247 Section 5.1(a)	Pass		
Carrier Frequencies Separation	RSS-247 Issue 2, February 2017	ANSI C63.10 (2013) Section 7.8.2	RSS-247 Section 5.1(b)	Pass		
Hopping Channel Number	RSS-247 Issue 2, February 2017	ANSI C63.10 (2013) Section 7.8.3	RSS-247 Section 5.1(d)	Pass		
Dwell Time	RSS-247 Issue 2, February 2017	ANSI C63.10 (2013) Section 7.8.4	RSS-247 Section 5.1(d)	Pass		
Conducted Band Edges Measurement	RSS-247 Issue 2, February 2017	ANSI C63.10 (2013) Section7.8.6	RSS-247 Section 5.5	Pass		
Conducted Spurious Emissions	RSS-247 Issue 2, February 2017	ANSI C63.10 (2013) Section 7.8.8	RSS-247 Section 5.5	Pass		
Radiated Emissions which fall in the restricted bands	RSS-247 Issue 2, February 2017	ANSI C63.10 (2013) Section 6.10.5	Section 3.3 & RSS-Gen Section 8.10	Pass		
Radiated Spurious Emissions	RSS-247 Issue 2, February 2017	ANSI C63.10 (2013) Section 6.4&6.5&6.6	Section 3.3 & RSS-Gen Section 8.9	Pass		
Frequency stability	RSS-Gen Issue 5, Amdt 2021	RSS-Gen Section 6.11	RSS-Gen Section 8.11	Pass		

Note: Frequency stability requested in RSS GEN Section 8.1.1 has been complied since the result of band edge can demonstrate.

Declaration of EUT Family Grouping:

None.

Report No.: HKEM220400040401 Page: 5 of 47

3 Contents

		Pa	ige
1	COVE	ER PAGE	1
2	TEST	SUMMARY	3
3	CONT	rents	5
-			-
4		ERAL INFORMATION	
		DETAILS OF E.U.T	
		DESCRIPTION OF SUPPORT UNITS	
		Measurement Uncertainty	
		TEST LOCATION	
		TEST FACILITY	
		DEVIATION FROM STANDARDS	
	4.7	Abnormalities from Standard Conditions	.10
5	EQUI	PMENT LIST	.11
6		O SPECTRUM TECHNICAL REQUIREMENT	
	6.1	ANTENNA REQUIREMENT	
	6.1.1	Test Requirement:	. 13
	6.1.2		. 13
	6.2 I	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	6.2.1	Test Requirement:	
	6.2.2	1 0	
	6.2.3	Conclusion	.14
7	RADI	O SPECTRUM MATTER TEST RESULTS	.15
	7.1 9	99% Bandwidth	
	7.1.1	E.U.T. Operation	. 15
	7.1.2	Test Setup Diagram	
	7.1.3	Measurement Procedure and Data	
		Conducted Peak Output Power	
	7.2.1	E.U.T. Operation	
	7.2.2		
	7.2.3	Measurement Procedure and Data	
		20DB BANDWIDTH	
	7.3.1	E.U.T. Operation	
	7.3.2	Test Setup Diagram	
	7.3.3	Measurement Procedure and Data	
		CARRIER FREQUENCIES SEPARATION	
	7.4.1 7.4.2	E.U.T. Operation Test Setup Diagram	
	7.4.2	Measurement Procedure and Data	
		HOPPING CHANNEL NUMBER	
	7.5		
	7.5.2		2n
		E.U.T. Operation	
	753	E.U.T. Operation Test Setup Diagram	.26
	7.5.3 7.6	E.U.T. Operation Test Setup Diagram Measurement Procedure and Data	26 27
		E.U.T. Operation Test Setup Diagram Measurement Procedure and Data DwELL TIME	. <i>26</i> . <i>27</i> 28
	7.6 I	E.U.T. Operation Test Setup Diagram Measurement Procedure and Data DWELL TIME E.U.T. Operation	26 27 28 28
	7.6 l <i>7.6.1</i>	E.U.T. Operation Test Setup Diagram Measurement Procedure and Data DwELL TIME	26 27 28 28 28

Report No.: HKEM220400040401 Page: 6 of 47

7.7 CONDUCTED BAND EDGES MEASUREMENT	31
7.7.1 E.U.T. Operation	
7.7.2 Test Setup Diagram	
7.7.3 Measurement Procedure and Data	34
7.8 CONDUCTED SPURIOUS EMISSIONS	
7.8.1 E.U.T. Operation	
7.8.2 Test Setup Diagram	
7.8.3 Measurement Procedure and Data	
7.9 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	
7.9.1 E.U.T. Operation	37
7.9.2 Test Setup Diagram	37
7.9.3 Measurement Procedure and Data	
7.10 RADIATED SPURIOUS EMISSIONS	
7.10.1 E.U.T. Operation	40
7.10.2 Test Setup Diagram	
7.10.3 Measurement Procedure and Data	41
8 PHOTOGRAPHS	47

4 General Information

4.1 Details of E.U.T.

Power supply:	USB DC 5V VIA USB cable
Test voltage:	DC 5.0V
Antenna Gain:	3dBi
Antenna Type:	Dipole RPSMA
Modulation Type:	GFSK
Number of Channels:	102 (Maximum active channels number is 51)
Operation Frequency:	902.250 - 927.750MHz
Spectrum Spread Technology:	Frequency Hopping Spread Spectrum (FHSS)
Series number:	A1
Hardware Version:	V2.0
Software Version:	3.57
Remark:	

- 1. Power level setting was not adjustable and is fixed for the SW Version.
- 2. Either channel 1-51 or channel 52-102 would be used once the power turns on.

EUT channels and frequencies list:

Band 1:

Channel	Frequency	Channel	Frequency	Channel	Frequency
	(MHz)		(MHz)		(MHz)
<u>1</u>	<u>902.25</u>	18	906.50	35	910.75
2	902.50	19	906.75	36	911.00
3	902.75	20	907.00	37	911.25
4	903.00	21	907.25	38	911.50
5	903.25	22	907.50	39	911.75
6	903.50	23	907.75	40	912.00
7	903.75	24	908.00	41	912.25
8	904.00	25	908.25	42	912.50
9	904.25	26	908.50	43	912.75
10	904.50	27	908.75	44	913.00
11	904.75	28	909.00	45	913.25
12	905.00	29	909.25	46	913.50
13	905.25	30	909.50	47	913.75
14	905.50	31	909.75	48	914.00
15	905.75	32	910.00	49	914.25
16	906.00	33	910.25	50	914.50
17	906.25	34	910.50	51	914.75

Channel	Frequency	Channel	Frequency	Channel	Frequency
	(MHz)		(MHz)		(MHz)
<u>52</u>	<u>915.25</u>	69	919.50	86	923.75
53	915.50	70	919.75	87	924.00
54	915.75	71	920.00	88	924.25
55	916.00	72	920.25	89	924.50
56	916.25	73	920.50	90	924.75
57	916.50	74	920.75	91	925.00
58	916.75	75	921.00	92	925.25
59	917.00	76	921.25	93	925.50
60	917.25	77	921.50	94	925.75
61	917.50	78	921.75	95	926.00
62	917.75	79	922.00	96	926.25
63	918.00	80	922.25	97	926.50
64	918.25	81	922.50	98	926.75
65	918.50	82	922.75	99	927.00
66	918.75	83	923.00	100	927.25
67	919.00	84	923.25	101	927.50
68	919.25	85	923.50	<u>102</u>	<u>927.75</u>

Band 2:

Remark:

1. Test frequencies are the lowest channel: 902.25MHz, middle channel: 915.25MHz and highest channel: 927.75MHz

2. Either channel 1-51 or channel 52-102 would be used once the power turns on.

4.2 Description of Support Units

The EUT has been tested with corresponding accessories as below:

Supplied by client

Description	Manufacturer	Model No.	SN/Certificate NO
RFD900 Tools	RF Design	V2.11	N/A

Supplied by SGS:

Description	Manufacturer	Model No.	SN/Certificate NO
NoteBook (EMC4)	Dell	P75F	N/A

4.3 Measurement Uncertainty

RF

No.	Item	Measurement Uncertainty
		2.8dB (9kHz to 150kHz)
I	Conduction emission	2.8dB (150kHz to 30MHz)
2	Radio Frequency	± 7.25 x 10 ⁻⁸
3	Duty cycle	± 0.37%
4	Occupied Bandwidth	± 3%
5	RF conducted power (30MHz-40GHz)	1.5dB
6	RF power density	1.5dB
7	Conducted Spurious emissions	1.5dB
		4.5dB (30MHz-1GHz)
8	RF Radiated power &	4.7dB (1GHz-6GHz)
8	Radiated Spurious emission test	4.7dB (6GHz-18GHz)
		5.7dB (18GHz-40GHz)
9	Temperature test	± 1 ℃
10	Humidity test	± 3%
11	Supply voltages	± 1.5%
12	Time	± 3%

Remark:

The U_{lab} (lab Uncertainty) is less than U_{cispr} (CISPR Uncertainty), so the test results

- compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;

- non-compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit.

According to decision rule based on Clause 4.2 of CISPR 16-4-2, the EUT complied with the standards specified above.

4.4 Test Location

All tests were performed at:

SGS Hong Kong Limited

Unit 2 and 3, G/F, Block A, Po Lung Centre,

11 Wang Chiu Road, Kowloon Bay, Kowloon, Hong Kong

Tel: +852 2305 2570 Fax: +852 2756 4480

No tests were sub-contracted.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

IAS Accreditation (Lab Code: TL-817)

SGS Hong Kong Limited has met the requirements of AC89, IAS Accreditation Criteria for Testing Laboratories, and has demonstrated compliance with ISO/IEC Standard 17025:2017, General requirements for the competence of testing and calibration laboratories. This organization is accredited to provide the services specified in the scope of accreditation maintained on the IAS website (www.iasonline.org).

The report must not be used by the client to claim product certification, approval, or endorsement by IAS, NIST, or any agency of the Federal Government.

• FCC Recognized Accredited Test Firm(CAB Registration No.: 514599)

SGS Hong Kong Limited has been accredited and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Designation Number: HK0015, Test Firm Registration Number: 514599.

Industry Canada (Site Registration No.: 26103; CAB Identifier No.: HK0015)

SGS Hong Kong Limited has been recognized by Department of Innovation, Science and Economic Development (ISED) Canada as a wireless testing laboratory. The acceptance letter from the ISED is maintained in our files. CAB Identifier No: HK0015, Site Registration Number: 26103.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

5 Equipment List

20dB Bandwidth, Conducted Peak Output Power, Hopping Channel Number, Carrier Frequencies Separation, Dwell Time, Conducted Band Edges Measurement, Conducted Spurious Emissions					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
SMBV100A VECTOR SIGNAL GENERATOR	Rohde & Schwarz	SMBV100A	E234	2021/08/17	2022/08/16
FSV40 SIGNAL ANALYZER 40GHz	Rohde & Schwarz	FSV40	E235	2021/08/17	2022/08/16
SMB100A SIGNAL GENERATOR	Rohde & Schwarz	SMB100A	E236	2021/08/17	2022/08/16
Wireless Conn. Tester (CMW)	Rohde & Schwarz	CMW270	E240	2021/08/20	2022/08/19
OSP	Rohde & Schwarz	OSP-B157W8	E242	2022/04/20	2023/04/19
Cable	Rohde & Schwarz	J12J103539- 00-2	E239	2021/09/17	2022/09/16
WMS32 Test software	Rohde & Schwarz	N/A	Version 11	N/A	N/A

Radiated Spurious Emissions (30MHz-1GHz)

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
3m Semi-Anechoic Chamber	ChamPro	N/A	E229	2021/08/09	2022/08/08
Coaxial Cable	SGS	N/A	E167	2021/07/15	2022/07/14
EMI Test Receiver 9kHz to 7GHz	Rohde & Schwarz	ESR7 / 102298	E314	2022/04/26	2023/04/25
TRILOG Super Broadb. Test Antenna, (25) 30-1000 MHz	Schwarzbeck	VULB 9168	E264	2021/10/18	2023/10/17
EMC32 Test software	Rohde & Schwarz	Version 10	N/A	N/A	N/A
Boresight Mast Controller	ChamPro	AM-BS-4500-E	E237	N/A	N/A
Turntable with Controller	ChamPro	EM1000	E238	N/A	N/A

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
3m Semi-Anechoic Chamber	ChamPro	N/A	E229	2021/08/09	2022/08/08
Coaxial Cable	SGS	N/A	E167	2021/07/15	2022/07/14
EMI Test Receiver 9kHz to 7GHz	Rohde & Schwarz	ESR7 / 102298	E314	2022/04/26	2023/04/25
TRILOG Super Broadb. Test Antenna, (25) 30-1000 MHz	Schwarzbeck	9168-1110	E264	2021/10/18	2023/10/17
Signal and Spectrum Analyzer 2Hz - 26.5GHz	Rohde & Schwarz	FSW26	E296	2021/09/17	2022/09/16
Spectrum Analyzer 9kHz - 30GHz	Rohde & Schwarz	FSP30	E204	2020/03/11	2022/03/10
Horn Antenna 1 - 18GHz	Schwarzbeck	BBHA9120D	E211	2022/03/03	2024/03/02
Horn Antenna 15 - 40GHz	Schwarzbeck	BBHA9170	E212	2022/03/16	2024/03/15
Preamplifier 33dB, 1 - 18GHz	Schwarzbeck	BBV9718	E214	2022/01/20	2023/01/19
Preamplifier 33dB, 18 - 26.5GHz	Schwarzbeck	BBV9719	E215	2020/09/21	2022/09/20
Broadband Coaxial Preamplifier typ. 30 dB, 18-40GHz	Schwarzbeck	BBV 9721	E266	2021/09/17	2022/09/16
Band Reject Filter 2.4 -2.5GHz	MICRO-TRONICS	BRM50702	E324	2021/09/17	2022/09/16
RF cable SMA to SMA 10000mm	HUBER+SUHNER	SF104- 26.5/2*11SMA 45	E207-1	2021/09/17	2022/09/16
Boresight Mast Controller	ChamPro	AM-BS-4500-E	E237	N/A	N/A
Turntable with Controller	ChamPro	EM1000	E238	N/A	N/A

General used equipmen	t				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Digital temperature & humidity data logger	SATO	SK-L200TH II	E232	2021/08/16	2022/08/15
Electronic Digital Thermometer with Hygrometer	nil	2074/2075	E159	2021/08/16	2022/08/15
Barometer with digital thermometer	SATO	7612-00	E218	2022/03/29	2023/03/28
Conditional Chamber	Zhong Zhi Testing Instruments	CZ-E-608D	E216	2021/08/17	2022/08/16

Report No.: HKEM220400040401 Page: 13 of 47

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203 & 15.247(b)(4) RSS-Gen Section 6.8

6.1.2 Conclusion

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is dedicated antenna with Female RP-SMA unique connector. The maximum gain of the antenna is 3dBi.

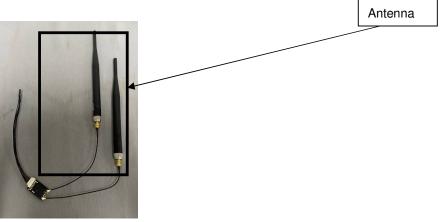
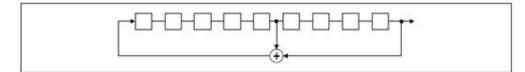


Photo of antenna refer to Appendix – Internal photo.



6.2 Pseudorandom Frequency Hopping Sequence

6.2.1 Test Requirement:

FCC Part 15 Subpart C Section 15.247(a)(1) RSS-247 Section 5.1(a)

6.2.2 Test Setup Diagram

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

20 62 46 77	7 64	8 73	16 75 1
	l_l		L

6.2.3 Conclusion

Standard Requirement:

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

According to Technical Specification, the receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any transmitters and shift frequencies in synchronization with the transmitted signals.

According to Technical specification, the system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

The system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

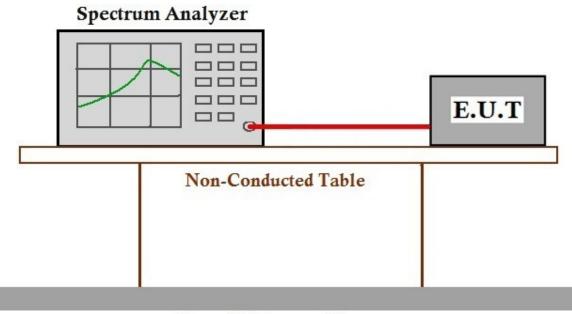
Report No.: HKEM220400040401 Page: 15 of 47

7 Radio Spectrum Matter Test Results

7.1 99% Bandwidth

Test Requirement	RSS-Gen Section 6.7
Test Method:	ANSI C63.10 (2013) Section 6.9.3

7.1.1 E.U.T. Operation

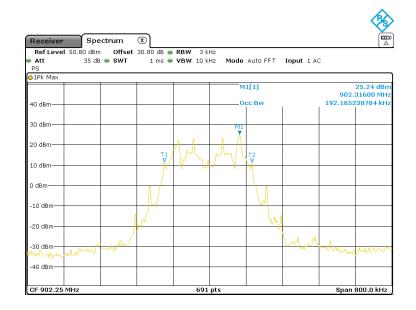

Operating Environment:

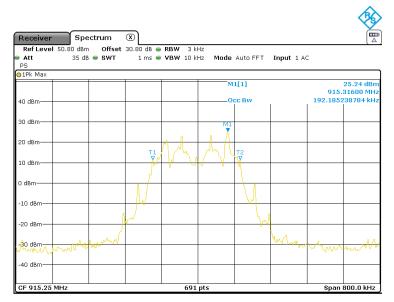
Temperature: 20.0 °C Humidity: 48.0 % RH

Test mode b: TX_non-Hop mode_Keep the EUT in continuously transmitting mode with modulation. All modes have been tested and only the data of worst case is recorded in the report.

:

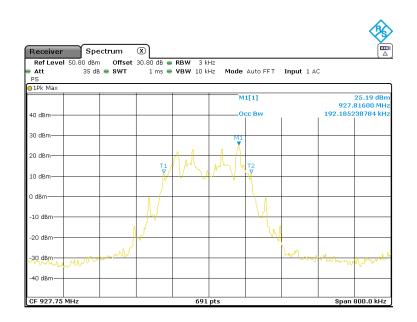
7.1.2 Test Setup Diagram


Ground Reference Plane



7.1.3 Measurement Procedure and Data

DUT Frequency (MHz)	Bandwidth (kHz)	Limit (MHz)	Result
902.25	192.2		PASS
915.25	192.2		PASS
927.75	192.2		PASS


Test plots:

Report No.: HKEM220400040401 Page: 17 of 47

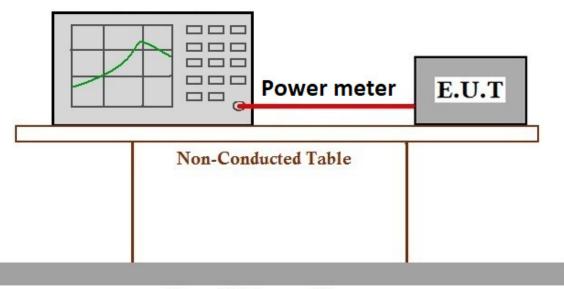
Report No.: HKEM220400040401 Page: 18 of 47

7.2 Conducted Peak Output Power

Test Requirement 47 CFR Part 15 Subpart C 15.247(b)(2) & 15.247(b)(3), RSS-247 Section 5.4(a)

Test Method: ANSI C63.10 (2013) Section 7.8.5

7.2.1 E.U.T. Operation


Operating Environment:

Temperature: 20.0 °C Humidity: 48.0 % RH

Test mode a: TX_Hop mode_Keep the EUT in frequency hopping mode with modulation. All modes have been tested and only the data of worst case is recorded in the report.

:

7.2.2 Test Setup Diagram

Ground Reference Plane

7.2.3 Measurement Procedure and Data

DUT Frequency (MHz)	Peak Power (dBm)	Limit Max (dBm)	Result
902.25	28.6	30.0	PASS
915.25	28.5	30.0	PASS
927.75	28.4	30.0	PASS

Test plots:

Receiver Ref Level 50	Spectrum	× set 30.80 dB =	new pool ku-			
Att PS	35 dB 🖷 SW				FT Input 1 AC	
)1Pk Max				M1[1]		28.62 dBi 902.23990 MH
40 dBm						
30 dBm			M1			
20 dBm		-				_
10 dBm					_	
0 dBm						
-10 dBm						
-20 dBm						
-30 dBm						
-40 dBm						

					<i>k</i>			
Receiver Spectrum (3)								
Ref Level 50.80 Att 3 PS 1Pk Max		dB 👄 RBW 300 ms 👄 VBW 11		to FFT Input 1	AC			
O 1PK Max			M1[1]	1	28.49 dBm 915.31220 MHz			
40 dBm								
30 dBm			M1					
20 dBm								
10 dBm-								
0 dBm								
-10 dBm								
-20 dBm								
-30 dBm								
-40 dBm								
CF 915.25 MHz		691	pts	I	Span 1.0 MHz			

Report No.: HKEM220400040401 Page: 20 of 47

Receiver			×						
RefLevel 50 Att PS		Offset SWT	30.80 dB 🖷 1 ms 🖷	RBW 300 VBW 11		e Auto FFT	Input 1 A	с	
1Pk Max					м	1[1]			28.37 dBn
									58200 MH
40 dBm									
30 dBm				M1					
00 0011									
20 dBm	_							<u> </u>	
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-20 UBIII-									
-30 dBm									
-40 dBm									

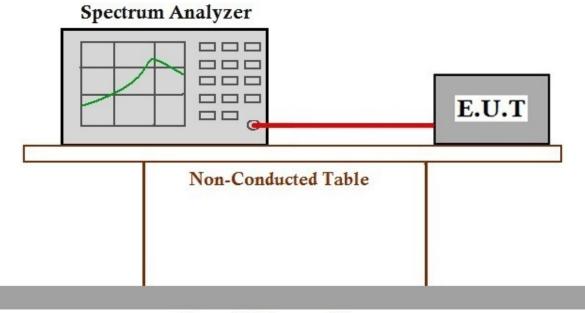
Report No.: HKEM220400040401 Page: 21 of 47

7.3 20dB Bandwidth

Test Requirement	47 CFR Part 15 Subpart C 15.215, RSS-247 Section 5.1(a)
Test Method:	ANSI C63.10 (2013) Section 6.9.2

7.3.1 E.U.T. Operation

Test mode


Operating Environment:

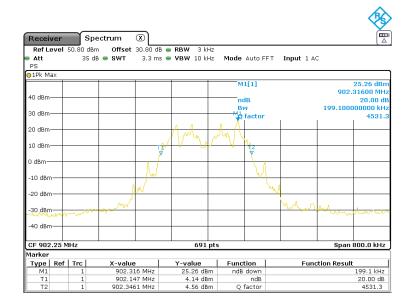
Temperature: 20.0 °C Humidity: 48.0 % RH

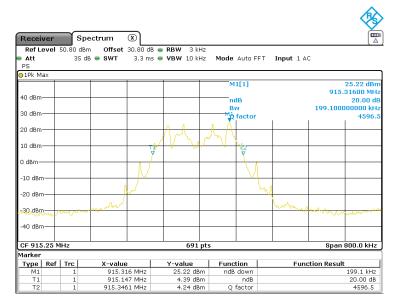
b: TX_non-Hop mode_Keep the EUT in continuously transmitting mode with modulation. All modes have been tested and only the data of worst case is recorded in the report.

:

7.3.2 Test Setup Diagram

Ground Reference Plane




Report No.: HKEM220400040401 Page: 22 of 47

7.3.3 Measurement Procedure and Data

DUT Frequency (MHz)	Bandwidth (kHz)	Limit (MHz)	Result
902.25	199.1		PASS
915.25	199.1		PASS
927.75	199.1		PASS

Test plots:

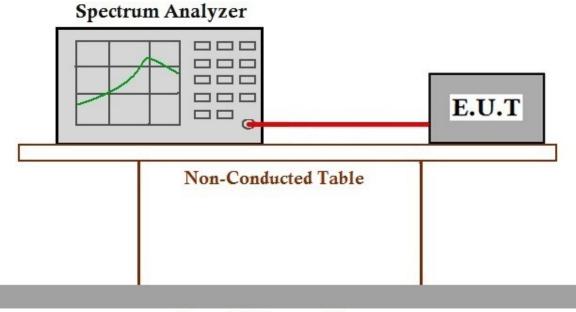
Report No.: HKEM220400040401 Page: 23 of 47

Receiver	Spe	ectrum 🗵	ภ						
Ref Level Att PS				RBW 3 kHz VBW 10 kHz		Auto FF	⊺ Input 1 Å	.C	(2
⊖1Pk Max		<u> </u>			M	1[1]			25.24 dBn
						1[1]			81600 MH
40 dBm					no	1B			20.00 di
30 dBm					B			199.1000	300000 kH
30 dBm						factor			4659.3
20 dBm				Ant	M				
10 dBm				L V	V	n 112			
			ý			Ť			
0 dBm			M			Ň			
-10 dBm			15			$-\gamma$			
-20 dBm		l l	(<u>`````````````````````````````````````</u>	w		
-30 dBm		nound					When		-
· · · · · · · · ·							1		
-40 dBm									
CF 927.75 M	4Hz			691 p	ts		1	Span	 800.0 kHz
Marker									
	Trc	X-value		Y-value	Func		Fun	ction Result	
M1 T1	1	927.816 927.647		25.24 dBm 4.28 dBm		down ndB			199.1 kHz 20.00 dB
T2	1	927.8461		4.28 dBm 4.11 dBm		factor			4659.3

Report No.: HKEM220400040401 Page: 24 of 47

7.4 Carrier Frequencies Separation

Test Requirement	47 CFR Part 15 Subpart C 15.247: (a)(1), RSS-247 Section 5.1(b)
Test Method:	ANSI C63.10 (2013) Section 7.8.2
Limit:	25 kHz or the 20 dB bandwidth, whichever is greater.


7.4.1 E.U.T. Operation

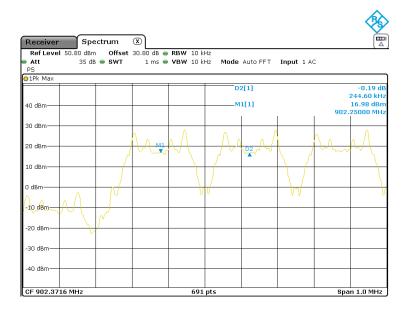
Operating Environment:

Temperature: 20.0 °C Humidity: 48.0 % RH :

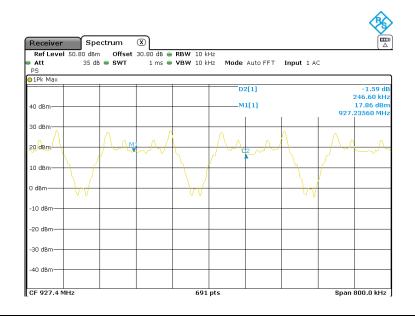
Test mode a: TX_Hop mode_Keep the EUT in frequency hopping mode with modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.4.2 Test Setup Diagram

Ground Reference Plane



7.4.3 Measurement Procedure and Data


DUT Frequency (MHz)	Frequency Separation (kHz)	Limit (kHz)	Result
902.25	244.6	199.1	PASS
927.75	246.6	199.1	PASS

*Remark: the channel shown is the worst case

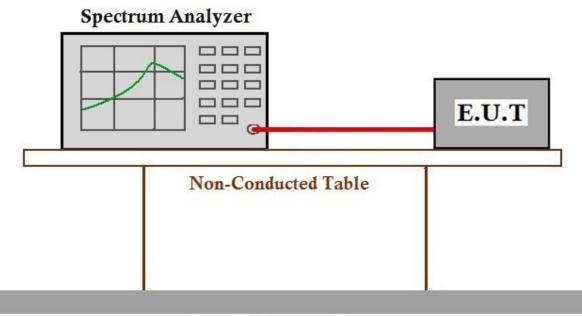
Band1:

Band2:

7.5 Hopping Channel Number

Test Requirement47 CFR Part 15 Subpart C 15.247 a(1)(i), RSS-247 Section 5.1(c)Test Method:ANSI C63.10 (2013) Section 7.8.3Limit:Limit:

Frequency range(MHz)	Number of hopping channels (minimum)
902-928	50 for 20dB bandwidth <250kHz
	25 for 20dB bandwidth ≥250kHz
2400-2483.5	15
5725-5850	75

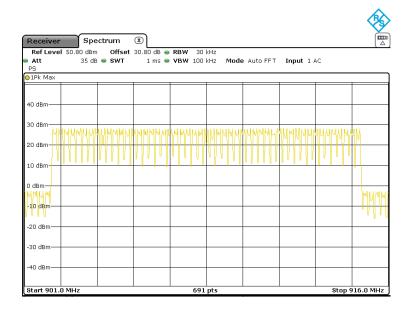

7.5.1 E.U.T. Operation

Operating Environment:

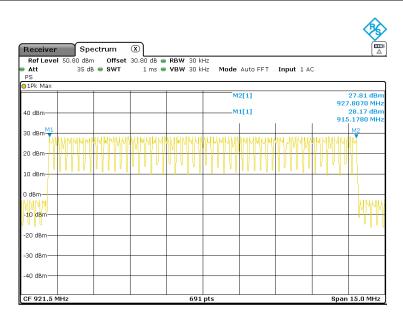
Temperature: 20.0 °C Humidity: 48.0 % RH :

Test mode a: TX_Hop mode_Keep the EUT in frequency hopping mode with modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.5.2 Test Setup Diagram


Ground Reference Plane

7.5.3 Measurement Procedure and Data


902.25-914.75MHz

_							
	Channels	Limit Min	Result				
	51	50	PASS				

915.25-927.75MHz:

Channels	Limit Min	Result	
51	50	PASS	

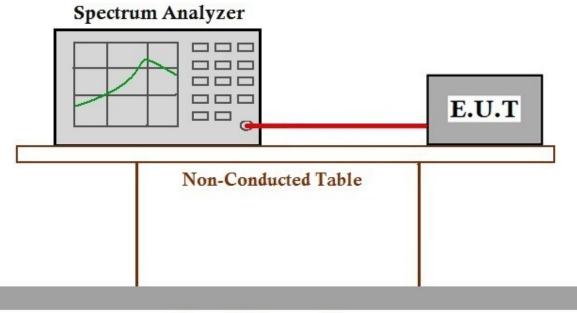
7.6 Dwell Time

Test Requirement47 CFR Part 15 Subpart C 15.247 a(1)(i), RSS-247 Section 5.1(c)Test Method:ANSI C63.10 (2013) Section 7.8.4Limit:Limit:

Frequency(MHz)	Limit		
902-928	0.4S within a 20S period(20dB bandwidth<250kHz)		
902-928	0.4S within a 10S period(20dB bandwidth≥250kHz)		
2400-2483.5	0.4S within a period of 0.4S multiplied by the number		
2400-2483.5	of hopping channels		
5725-5850	0.4S within a 30S period		

7.6.1 E.U.T. Operation

Test mode

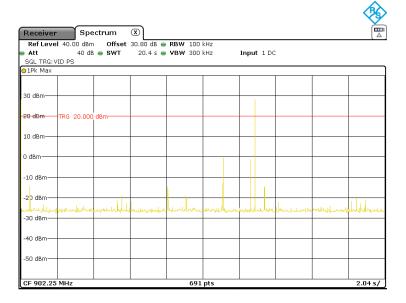

Operating Environment:

Temperature: 20.0 °C Humidity: 48.0 % RH

a: TX_Hop mode_Keep the EUT in frequency hopping mode with modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

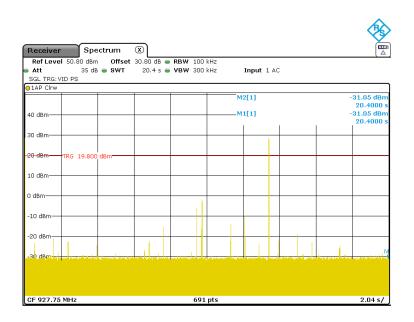
:

7.6.2 Test Setup Diagram


Ground Reference Plane

7.6.3 Measurement Procedure and Data

Channel (MHz)	Width of Burst (ms)	Number of Burst (s)	Measurement Time (s)	Dwell Time (ms)	Limit (ms)	Result
902.25	6.812	2	20.4	13.624	≤400	Pass
927.75	7.399	2	20.4	14.798	≤400	Pass


*Remark: the channel shown is the worst case.

				\$
Receiver Spectrum 🧩	(X)			
Ref Level 40.00 dBm Offset Att 40 dB SWT SGL TRG: VID PS			;	
O1Pk Max		D2[1]		9.87 dB
		02[1]		6.812 ms
30 dBmp-2		M1[1]	1 1	17.44 dBm -210 μs
20 dBr TRG 20.000 dBm				
10 dBr				
0 dBm				
-10 dBm				
-20 dBm				
-30 d <mark>9</mark> minihiddaddadadadaadaa	ĸſ₩ĸŧĸĸĸĸĸĸĸ ĿŀĸſŔĊŀŀĸ <u></u> ĺŀŀ	eren Amperiali al-Anter	Whith and a start of the start	nogthyullund
-40 dBm				
-50 dBm				
CF 902.25 MHz	691	pts		10.0 ms/

Report No.: HKEM220400040401 Page: 30 of 47

		_						Ŷ
Receiver Ref Level 50.8 Att SGL TRG: VID PS	Spectrum 0 dBm Offset 35 dB • SWT	30.80 dB 👄 R 50 ms 👄 V			Input 1 AG	0		
40 dBm					2[1] 1[1]			-1.19 dE 7.3986 m 28.57 dBn -72.5 µ
	19.800 dBm							
10 dBm								
+10 dBm								
-30 dBm	W/Warapawas	lapapilaja y liyajin	dipertation	A later	dille de la com	ppendedajl	ilinen konten	Magaallag
CF 927.75 MHz			691	pts				5.0 ms/

7.7 Conducted Band Edges Measurement

Test Requirement	47 CFR Part 15 Subpart C 15.247 (d), RSS-247 Section 5.5
Test Method:	ANSI C63.10 (2013) Section7.8.6
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)

FCC Part15 C Section 15.205 Restricted bands of operation.

(a) Except as shown in paragraph (d) of this section. only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	
13.36 - 13.41			

RSS-Gen Section 8.10 Restricted bands of operation.

Restricted frequency bands, identified in table 7, are designated primarily for safety-of-life services (distress calling and certain aeronautical activities), certain satellite downlinks, radio astronomy and some government uses. Except where otherwise indicated, the following conditions related to the restricted frequency bands apply:

(a) The transmit frequency, including fundamental components of modulation, of licence-exempt radio

apparatus shall not fall within the restricted frequency bands listed in table 7 except for apparatus compliant with RSS-287, *Emergency Position Indicating Radio Beacons (EPIRB), Emergency Locator Transmitters (ELT), Personal Locator Beacons (PLB), and Maritime Survivor Locator Devices (MSLD).* (b) Unwanted emissions that fall into restricted frequency bands listed in table 7 shall comply with the limits specified in table 5 and table 6.

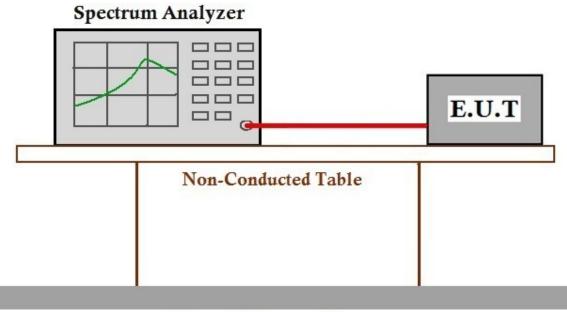
(c) Unwanted emissions that do not fall within the restricted frequency bands listed in table 7 shall comply either with the limits specified in the applicable RSS or with those specified in table 5 and table 6.

Table 7 – Restricted frequency	MHz	GHz
bands* MHz		
0.090 - 0.110	149.9 - 150.05	9.0 - 9.2
0.495 - 0.505	156.52475 - 156.52525	9.3 - 9.5
2.1735 - 2.1905	156.7 - 156.9	10.6 - 12.7
3.020 - 3.026	162.0125 - 167.17	13.25 - 13.4
4.125 - 4.128	167.72 - 173.2	14.47 - 14.5
4.17725 - 4.17775	240 - 285	15.35 - 16.2
4.20725 - 4.20775	322 - 335.4	17.7 - 21.4
5.677 - 5.683	399.9 - 410	22.01 - 23.12
6.215 - 6.218	608 - 614	23.6 - 24.0
6.26775 - 6.26825	960 - 1427	31.2 - 31.8
6.31175 - 6.31225	1435 - 1626.5	36.43 - 36.5
8.291 - 8.294	1645.5 - 1646.5	Above 38.6
8.362 - 8.366	1660 - 1710	* Certain frequency bands
8.37625 - 8.38675	1718.8 - 1722.2	listed in table 7 and in bands
8.41425 - 8.41475	2200 - 2300	 designated for licence-exempt
12.29 - 12.293	2310 - 2390	applications. These frequency
12.51975 - 12.52025	2483.5 - 2500	 bands and the requirements
12.57675 - 12.57725	2655 - 2900	that apply to related devices
13.36 - 13.41	3260 - 3267	are set out in the 200 and 300
16.42 - 16.423	3332 - 3339	series of RSSs.
16.69475 - 16.69525	3345.8 - 3358	
16.80425 - 16.80475	3500 - 4400	7
25.5 - 25.67	4500 - 5150	7
37.5 - 38.25	5350 - 5460	
73 - 74.6	7250 - 7750	
74.8 - 75.2	8025 - 8500	
108 - 138		

7.7.1 E.U.T. Operation

Temperature:

Test mode


Operating Environment:

20.0 °C Humidity: 48.0 % RH

a: TX_Hop mode_Keep the EUT in frequency hopping mode with modulation. All modes have been tested and only the data of worst case is recorded in the report.
b: TX_non-Hop mode_Keep the EUT in continuously transmitting mode with modulation. All modes have been tested and only the data of worst case is recorded in the report.

:

7.7.2 Test Setup Diagram

Ground Reference Plane

Report No.: HKEM220400040401 Page: 34 of 47

7.7.3 Measurement Procedure and Data Non-hopping mode

Inband Peak

Frequency (MHz)	Level (dBm)
902.25	27.45
927.75	27.25

Remark: Limit = Inband peak - 20dB

Att	40.00 dBm 30 dB			RBW 100 k VBW 300 k		Auto FFT			
1Pk Max	00 40	0	0110 ps 🖕	1011 000 K	ne moue	Autorn			
					M	2[1]			-0.93 dBn
								903	2.0000 MH
30 dBm		<u>/1</u>			M	1[1]			27.45 dBn
		\cap				i i	i i	90:	2.1920 MH
20 dBm									
10 dBm									
	01 7.450 dBr	m –							
0 dBm	MP								
o ubiii	I								
-10 dBm	/								
		1							
-20 dBm		1							-
11.07		~	5						
-30.dBon			Johnor	mon	mon	m	mon		m
-40 dBm									
-50 dBm									
								1	1

Spectrur	m								
Ref Leve	el 40.00 dBm	Offset	30.00 dB 😑	RBW 100 k	Hz				
Att 🛛	30 dB	SWT	37.9 µs 👄	VBW 300 k	Hz Mode	Auto FFT			
⊖1Pk Max									
					M	2[1]			-20.09 dBn
								92	7.9960 MH
30 dBm					M	1[1]	M1	0.0	27.25 dBn 7.5470 MH
						1	$ \rangle$	92	/.3470 MH
20 dBm									
10 dBm							+ + +		
	D1 7.250 dB	m							
0 dBm									
o abiii									
-10 dBm									
-10 uBm—								0	
								M2	
-20 dBm—								X.	
						1		5	
-60.dBm-	mon	man	Awar	mony	mon	mound			
				· · · · · · · · · · · · · · · · · · ·	1				
-40 dBm—									
-50 dBm									
oo abiii									
Start 920	.0 MHz			691	pts			Stop	930.0 MHz

Hopping mode

Inband Peak

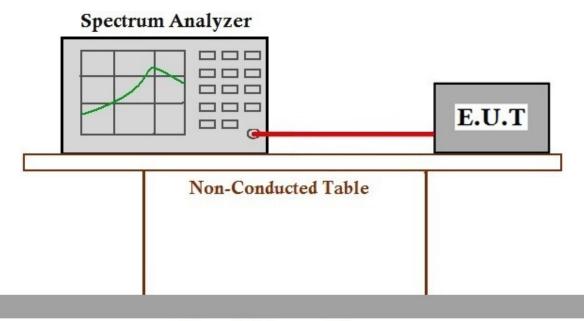
Frequency (MHz)	Level (dBm)
903.755	27.37
922.945	27.46

Remark: Limit = Inband peak - 20dB

Att	30 dB	SWT	37.9 µs 👄	VBW 300 k	Hz Mode	Auto FFT			
1Pk Max									
					M	2[1]			-1.77 dBr
30 dBm					M	1[1]		90:	2.0040 MH 27.37 dBi
30 aBm		mmmr	hmmm	m	hmmm	anna	nmmm	nnn	
		LA A A	N N N N	AAAA	A A A A	8 Y Y Y	1 4 4 4 4	V V V V	18 0 0 1
20 dBm									
10 dBm	1 7.370 de	3m							
	м	6							
0 dBm		-							
-10 dBm									
	1								
-20 dBm									
	/								
-aadem	mod								
-40 dBm									
-50 dBm									
						1			

Spectrun	n								
Ref Leve Att	l 40.00 dBm 30 dB		30.00 dB 👄 37.9 µs 👄			Auto FFT			
⊖1Pk Max									
					М	2[1]			-5.56 dBm
30 dBm					M	M41]			.0100 MHz 27.46 dBm
vvvv	mm	rvyv	m	mm	m	m	mm		.0710 MHz
20 dBm									
10 dBm									
TO UBIII	D1 7.460 dB	3m							
0 dBm									
o dom							N	2	
-10 dBm									
								1	
-20 dBm									
-30 dBm								Josepherec	mm
-40 dBm									
-50 dBm									
-50 aBm									
Start 920.	0 MHz			691	pts			Stop 9	30.0 MHz

7.8 Conducted Spurious Emissions


Test Requirement	47 CFR Part 15 Subpart C 15.247 (d), RSS-247 Section 5.5
Test Method:	ANSI C63.10 (2013) Section 7.8.8
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

7.8.1 E.U.T. Operation

Operating	Environment:
-----------	--------------

Temperature:	20.0 °C	Humidity:	48.0 % RH	:
Test mode	modes have be	een tested ar	nd only the data o	by hopping mode with modulation. All of worst case is recorded in the report. tinuously transmitting mode with
		modes have		d only the data of worst case is

7.8.2 Test Setup Diagram

Ground Reference Plane

7.8.3 Measurement Procedure and Data

The detailed test data see section 9: Appendix

Report No.: HKEM220400040401 Page: 37 of 47

7.9 Radiated Emissions which fall in the restricted bands

Test Requirement	47 CFR Part 15 Subpart C 15.209 & 15.247(d), RSS-247 Section 3.3
	& RSS-Gen Section 8.10
Test Method:	ANSI C63.10 (2013) Section 6.10.5
Limit:	

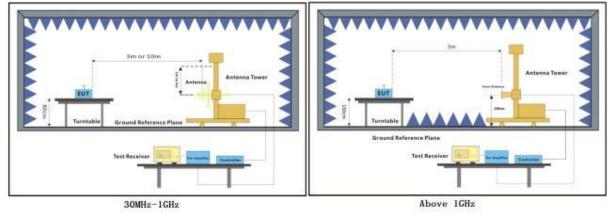
Table 5 – General field strength limits at frequencies above 30 MHz

Frequency (MHz)	Field strength (μV/m at 3 m)
30 – 88	100
88 - 216	150
216 – 960	200
Above 960	500

Frequency	Magnetic field strength (H- Field) (μΑ/m)	Measurement distance (m)					
9 - 490 kHz 1	6.37/F (F in kHz)	300					
490 - 1705 kHz	63.7/F (F in kHz)	30					
1.705 - 30 MHz	0.08	30					

Table 6 – General field strength limits at frequencies below 30 MHz

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.


7.9.1 E.U.T. Operation

Operating Environment:

Temperature: 20.0 °C Humidity: 48.0 % RH :

Test mode b: TX_non-Hop mode_Keep the EUT in continuously transmitting mode with modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.9.2 Test Setup Diagram

7.9.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Frequency	Antenna	Emission Le	vel (dBµV/m)	Limit (d	lBμV/m)	Result
(MHz)	Polarization	Peak	Average	Peak	Average	nesuit
902.000	Н	66.1	47.6	74.0	54.0	Pass
928.000	Н	64.1	46.2	74.0	54.0	Pass
902.000	V	70.5	52.2	74.0	54.0	Pass
928.000	V	69.9	52.5	74.0	54.0	Pass

7.10 Radiated Spurious Emissions

Test Requirement	47 CFR Part 15 Subpart C 15.205 & 15.209, RSS-247 Section 3.3
	& RSS-Gen Section 8.9
Test Method:	ANSI C63.10 (2013) Section 6.4&6.5&6.6
Limit:	

Table 5 – General field strength limits at frequencies above 30 MHz

Frequency (MHz)	Field strength (μV/m at 3 m)
30 - 88	100
88 - 216	150
216 – 960	200
Above 960	500

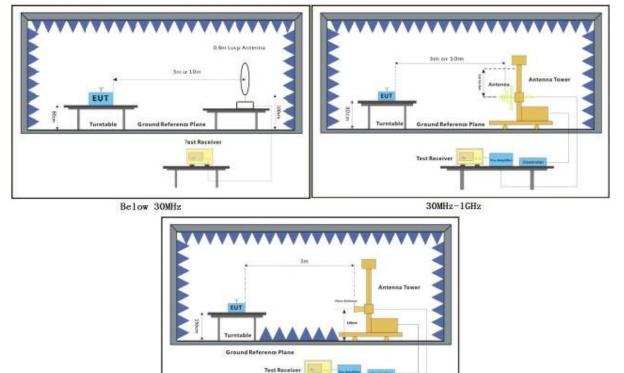
Table 6 – General field strength limits at frequencies below 30 MHz

Frequency	Magnetic field strength (H- Field) (µA/m)	Measurement distance (m)	
9 - 490 kHz 1	6.37/F (F in kHz)	300	
490 - 1705 kHz	63.7/F (F in kHz)	30	
1.705 - 30 MHz	0.08	30	

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

7.10.1 E.U.T. Operation

Operating Environment:


Temperature: 22.2 °C Humidity: 48.6 % RH

Test mode

:

b: TX_non-Hop mode_Keep the EUT in continuously transmitting mode with modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.10.2 Test Setup Diagram

Above 1GHz

7.10.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

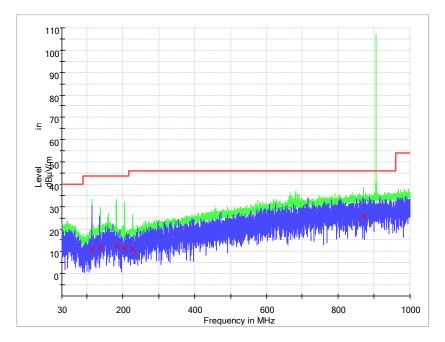
Remark:

1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

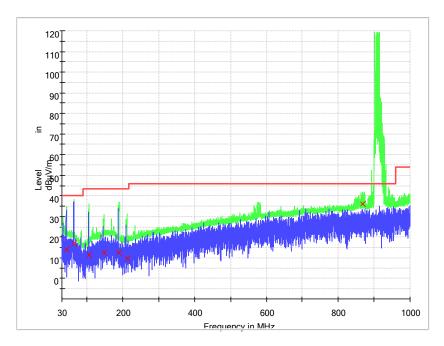
3) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.


4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Report No.: HKEM220400040401 Page: 42 of 47

Radiated emission below 1GHz

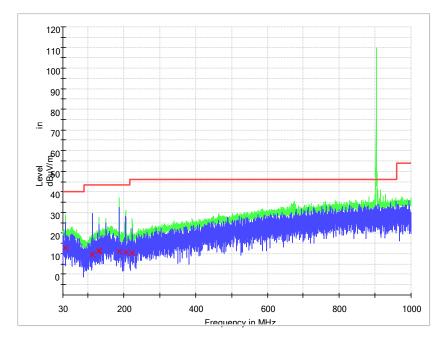
Channel: Low Mode: b; Polarization: Horizontal Quasi-peak measurement:



Frequency	QuasiPeak	Pol.	Corr.	Margin	Limit	Desult
(MHz)	(dBµV/m)	P0I.	(dB/m)	(dB)	(dBµV/m)	Result
113.627500	10.8	Н	11.6	32.7	43.5	Pass
136.052500	11.6	Н	13.3	31.9	43.5	Pass
181.585000	12.4	Н	12.7	31.1	43.5	Pass
204.302500	11.6	H	10.7	31.9	43.5	Pass
227.117500	10.6	Н	11.4	35.4	46.0	Pass
870.617500	25.5	Н	25.5	20.5	46.0	Pass

Report No.: HKEM220400040401 Page: 43 of 47

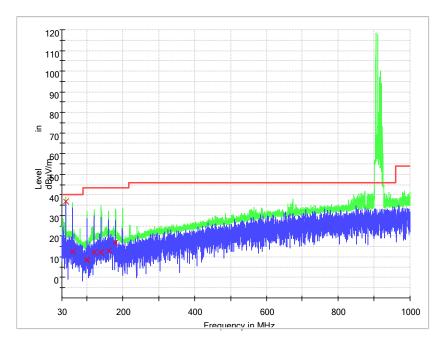
Mode: b; Polarization: Vertical Quasi-peak measurement:



Frequency (MHz)	QuasiPeak (dBµV/m)	Pol.	Corr. (dB/m)	Margin (dB)	Limit (dBµV/m)	Result
. ,	V P 7			· · · /	1. F. 7	
63.220000	17.0	v	13.3	23.0	40.0	Pass
105.340000	11.5	v	10.3	32.0	43.5	Pass
147.655000	12.6	v	14.2	30.9	43.5	Pass
189.872500	12.4	v	11.4	31.1	43.5	Pass
210.932500	9.8	v	11.0	33.7	43.5	Pass
868.180000	36.2	V	25.4	9.8	46.0	Pass

Report No.: HKEM220400040401 Page: 44 of 47

Channel: High Mode: b; Polarization: Horizontal Quasi-peak measurement:



Frequency	QuasiPeak		Corr.	Margin	Limit	Desult
(MHz)	(dBµV/m)	Pol.	(dB/m)	(dB)	(dBµV/m)	Result
37.187500	12.8	Н	13.4	27.2	40.0	Pass
111.482500	9.7	Н	11.3	33.8	43.5	Pass
130.105000	11.4	Н	13.0	32.1	43.5	Pass
185.972500	10.9	Н	12.0	32.6	43.5	Pass
204.595000	10.6	Н	10.7	32.9	43.5	Pass
223.315000	10.4	Н	11.5	35.6	46.0	Pass

Report No.: HKEM220400040401 Page: 45 of 47

Mode: b; Polarization: Vertical Quasi-peak measurement:

Frequency (MHz)	QuasiPeak (dBµV/m)	Pol.	Corr. (dB/m)	Margin (dB)	Limit (dBµV/m)	Result
39.625000	37.0	v	13.7	3.0	40.0	Pass
59.417500	12.4	V	13.8	27.6	40.0	Pass
119.575000	12.2	v	12.2	31.3	43.5	Pass
139.172500	12.1	v	13.5	31.5	43.5	Pass
159.550000	13.0	v	14.6	30.5	43.5	Pass
179.342500	16.7	V	13.0	26.8	43.5	Pass

Above 1GHz

Channel: Low

Frequency	Antenna Polarization	Emission Level (dBµV/m)		Limit (dBµV/m)		Popult
(MHz)		Peak	Average	Peak	Average	Result
1053.333	Н	46.6	/	74.0	54.0	Pass
1804.555	V	58.4	31.2	74.0	54.0	Pass
2707.000	Н	47.4	/	74.0	54.0	Pass
2706.833	V	55.2	28.7	74.0	54.0	Pass
3993.167	V	50.9	/	74.0	54.0	Pass
4511.556	V	49.0	/	74.0	54.0	Pass

Channel: High

Frequency	Antenna	Emission Level (dBµV/m)		Limit (dBµV/m)		Popult
(MHz) Pola	Polarization	Peak	Average	Peak	Average	Result
1006.833	Н	48.3	/	74.0	54.0	Pass
1666.500	V	47.4	/	74.0	54.0	Pass
1855.333	V	54.1	27.9	74.0	54.0	Pass
1855.333	Н	47.3	/	74.0	54.0	Pass
1996.833	V	49.9	/	74.0	54.0	Pass
3996.167	V	50.4	/	74.0	54.0	Pass

Report No.: HKEM220400040401 Page: 47 of 47

8 Photographs

Remark: Photos refer to Appendix: External Photo, Internal Photo and setup Photo.

- End of the Report -