

APPLICATION CERTIFICATION FCC Part 15C On Behalf of Recordex USA, Inc.

Wireless Microphone Model No.: ST-MIC-RF-R

FCC ID: 2ADKE-ST-MIC-R

Prepared for	:	Recordex USA, Inc.
Address	:	10-50 46th Avenue, Long Island City, New York United States 11101
Prepared by Address	:	ACCURATE TECHNOLOGY CO., LTD F1, Bldg. A, Changyuan New Material Port, Keyuan Rd. Science & Industry Park, Nanshan, Shenzhen, Guangdong P.R. China
		Tel: +86-755-26503290 Fax: +86-755-26503396

Report No.	:	ATE20151826
Date of Test	:	Aug 19-29, 2015
Date of Report	:	Aug 31, 2015

TABLE OF CONTENTS

Description

Test Report Certification

1.	GI	ENERAL INFORMATION	5
	1.1.	Description of Device (EUT)	5
	1.2.	Accessory and Auxiliary Equipment	5
	1.3.	Description of Test Facility	
	1.4.	Measurement Uncertainty	6
2.	M	EASURING DEVICE AND TEST EQUIPMENT	7
3.	OI	PERATION OF EUT DURING TESTING	8
	3.1.	Operating Mode	8
	3.2.	Configuration and peripherals	
4.	TE	EST PROCEDURES AND RESULTS	9
5.	PC	WER LINE CONDUCTED MEASUREMENT	
	5.1.	Block Diagram of Test Setup	
	5.2.	Power Line Conducted Emission Measurement Limits	
	5.3.	Configuration of EUT on Measurement	
	5.4.	Operating Condition of EUT	
	5.5.	Test Procedure	
	5.6.	Power Line Conducted Emission Measurement Results	
6.	6D	B&20DB BANDWIDTH MEASUREMENT	
	6.1.	Block Diagram of Test Setup	
	6.2.	The Requirement For Section 15.247(a)(2)	
	6.3.	EUT Configuration on Measurement	
	6.4.	Operating Condition of EUT	
	6.5. 6.6.	Test Procedure Test Result	
7.		AXIMUM CONDUCTED (AVERAGE) OUTPUT POWER	
	7.1.	Block Diagram of Test Setup	
	7.2. 7.3.	The Requirement For Section 15.247(b)(3) EUT Configuration on Measurement	
	7.4.	Operating Condition of EUT	
	7.5.	Test Procedure	
	7.6.	Test Result	
8.	PC	WER SPECTRAL DENSITY MEASUREMENT	
	8.1.	Block Diagram of Test Setup	
	8.2.	The Requirement For Section 15.247(e)	
	8.3.	EUT Configuration on Measurement	
	8.4.	Operating Condition of EUT	
	8.5.	Test Procedure	
	8.6.	Test Result	
9.	BA	AND EDGE COMPLIANCE TEST	
	9.1.	Block Diagram of Test Setup	
	9.2.	The Requirement For Section 15.247(d)	
	9.3.	EUT Configuration on Measurement	

Ģ	9.4.	Operating Condition of EUT	
(9.5.	Test Procedure	
Ģ	9.6.	Test Result	
10.	RA	DIATED SPURIOUS EMISSION TEST	
	10.1.	Block Diagram of Test Setup	
	10.2.	The Limit For Section 15.247(d)	
	10.3.	Restricted bands of operation	
	10.4.	Configuration of EUT on Measurement	
	10.5.	Operating Condition of EUT	
	10.6.	Test Procedure	
	10.7.	The Field Strength of Radiation Emission Measurement Results	
11.	AN	TENNA REQUIREMENT	
	11.1.	The Requirement	
	11.2.	Antenna Construction	

Test Report Certification

Applicant : Recordex USA, Inc. Manufacturer : Recordex USA, Inc. EUT Description : Wireless Microphone (A) MODEL NO .: ST-MIC-RF-R (B) Trade Name .: RECORDEX (C) POWER SUPPLY: Model:BYX0900500(Adapter) INPUT: 100-240V~50/60Hz

OUTPUT: 9V/500mA

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013

The EUT was tested according to DTS test procedure of Jun 05, 2014 KDB558074 D01 DTS Meas Guidance v03r02 for compliance to FCC 47CFR 15.247 requirements

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test :	Aug 19-29, 2015
Date of Report :	Aug 31, 2015
Prepared by :	Mark cher
	(Mark Chen, Engineer)
Approved & Authorized Signer :	Lemit
	(Sean Liu, Manager)

(Sean Liu, Manager)

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT Model Number Frequency Range	: : :	Wireless Microphone ST-MIC-RF-R 2405-2480MHz
Number of Channels Antenna Gain Type of Antenna Adapter	•	16 2dBi Reverse Polarity Antenna Model:BYX-090500 INPUT:100-240V~50/60Hz OUTPUT:9V/500mA
Adapter information Data Rate Modulation Type Applicant Address	•••••••••••••••••••••••••••••••••••••••	/ 250Mbps OQPSK Recordex USA, Inc. 10-50 46th Avenue, Long Island City, New York United States 11101
Manufacturer Address	:	Recordex USA, Inc. 10-50 46th Avenue, Long Island City, New York United States 11101
Date of sample received Date of Test	:	Aug 19, 2015 Aug 19-29, 2015

1.2. Accessory and Auxiliary Equipment

Wireless Microphone Model: ST-MIC-RF-T

1.3.Description of Test Facility

EMC Lab	:	Accredited by TUV Rheinland Shenzhen
		Listed by FCC The Registration Number is 752051
		Listed by Industry Canada The Registration Number is 5077A-2
		Accredited by China National Accreditation Committee
		for Laboratories The Certificate Registration Number is L3193
Name of Firm	:	ACCURATE TECHNOLOGY CO. LTD
Site Location	:	F1, Bldg. A, Changyuan New Material Port, Keyuan Rd. Science & Industry Park, Nanshan, Shenzhen, Guangdong P.R. China

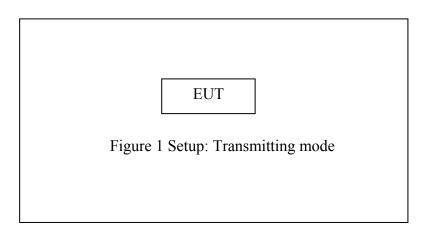
1.4.Measurement Uncertainty

Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty (9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty (30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty (Above 1GHz)	=	4.06dB, k=2

2. MEASURING DEVICE AND TEST EQUIPMENT

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 11, 2015	Jan. 10, 2016
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 11, 2015	Jan. 10, 2016
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 11, 2015	Jan. 10, 2016
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 11, 2015	Jan. 10, 2016
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 15, 2015	Jan. 14, 2016
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 15, 2015	Jan. 14, 2016
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 15, 2015	Jan. 14, 2016
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 15, 2015	Jan. 14, 2016
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 11, 2015	Jan. 10, 2016
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 11, 2015	Jan. 10, 2016
Highpass Filter	Wainwright Instruments	WHKX3.6/18 G-10SS	N/A	Jan. 11, 2015	Jan. 10, 2016
Band Reject Filter	Wainwright Instruments	WRCG2400/2 485-2375/2510 -60/11SS	N/A	Jan. 11, 2015	Jan. 10, 2016

Table 1: List of Test and Measurement Equipment

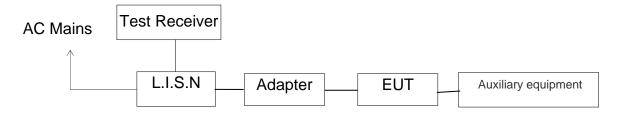


3. OPERATION OF EUT DURING TESTING

3.1.Operating Mode

The mode is used: **Transmitting mode** Low Channel: 2405MHz Middle Channel: 2440MHz High Channel: 2480MHz

3.2. Configuration and peripherals


4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.207	Power Line Conducted Emission	Compliant
Section 15.247(a)(2)	6DB&20DB Bandwidth Test	Compliant
Section 15.247(e)	Power Spectral Density Test	Compliant
Section 15.247(b)(3)	Maximum Peak Output Power Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.247(d) Section 15.209	Radiated Spurious Emission Test	Compliant
Section 15.203	Antenna Requirement	Compliant

5. POWER LINE CONDUCTED MEASUREMENT

5.1.Block Diagram of Test Setup

(EUT: ST-MIC-RF-R)

5.2. Power Line Conducted Emission Measurement Limits

Frequency	Limit d	B(μV)
(MHz)	Quasi-peak Level	Average Level
0.15 - 0.50	66.0 - 56.0 *	56.0 - 46.0 *
0.50 - 5.00	56.0	46.0
5.00 - 30.00	60.0	50.0
	all apply at the transition fre	
range 0.15MHz to	es linearly with the logarithm 0 0.50MHz.	n of the frequency in the

5.3.Configuration of EUT on Measurement

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

5.4. Operating Condition of EUT

5.4.1.Setup the EUT and simulator as shown as Section 5.1.

5.4.2.Turn on the power of all equipment.

5.4.3.Let the EUT work in test mode and measure it.

5.5.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4: 2014 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

5.6. Power Line Conducted Emission Measurement Results

PASS

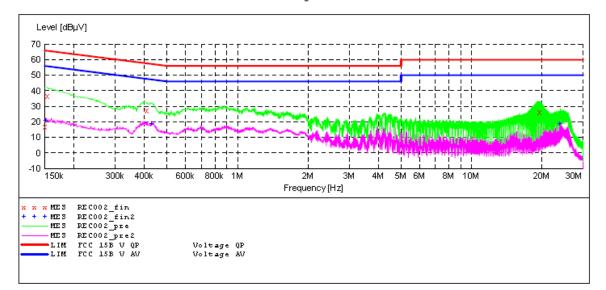
The frequency range from 150kHz to 30MHz is checked.

MEASUREMENT	RESULT:	"RECO	02_fin	1"			
2015-8-21 8:4							
Frequency MHz	Level dBµV			Margin dB	Detector	Line	PE
0.154000 0.408000 19.523000	36.50 27.10 26.40	10.4 11.3 11.9	66 58 60	29.3 30.6 33.6	QP QP QP	L1 L1 L1	GND GND GND
MEASUREMENT	RESULT:	"RECO	02_fin	12"			
2015-8-21 8:4 Frequency MHz					Detector	Line	PE
0.152000 0.430000 24.000500	21.10 19.00 18.90	10.4 11.4 12.0	56 47 50	34.8 28.3 31.1	AV AV AV	L1 L1 L1	GND GND GND
MEASUREMENT	RESULT	: "REC(01_fi	n″			
	>n						
2015-8-21 8:3							
2015-8-21 8:3 Frequency MHz	Level		Limit dBµV		Detector	Line	PE
Frequency	Level dBµV	dB	dBμV	dB		Line N N N	
Frequency MHz	Level dBµV 36.70 27.20 24.10	dB 10.4 11.3 11.9	dΒμV 66 58 60	dB 29.1 30.4 35.9			
Frequency MHz 0.154000 0.410000 19.095500	Level dBµV 36.70 27.20 24.10 RESULT 39 Level	dB 10.4 11.3 11.9 : "RECC	dBμV 66 58 60 201_fin Limit	dB 29.1 30.4 35.9 m2" Margin	QP QP QP	N N N	GND GND GND

MEASUREMENT	RESULT	: "WMIO	03_fir	L ''			
2015-8-26 17:	12		_				
Frequency MHz		Transd dB			Detector	Line	ΡE
0.434000 1.216000 20.981000	27.00 23.60 28.80	11.4 11.6 12.0	57 56 60	30.2 32.4 31.2	QP QP QP	L1	GND
MEASUREMENT	RESULT	: "WMIO	03_fir	12"			
2015-8-26 17:							
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	ΡE
0.736000 4.349000 20.882000	19.00 15.90 15.70	11.5 11.8 12.0	46 46 50	27.0 30.1 34.3	AV AV AV	L1 L1 L1	GND
MEASUREMENT		: "WMIO	04_fir	1"			
015-8-26 17: Frequency MHz	Level	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.424000 3.890000 21.039500	27.20 23.10 25.40	11.3 11.7 12.0	57 56 60	30.2 32.9 34.6	QP QP QP	N N N	GND GND GND
ÆASUREMENT	RESULT	: "WMIO	04_fir	12"			
015-8-26 17: Frequency MHz	Level	Transd dB			Detector	Line	PE
			48 46	31.3 33.1			

Emissions attenuated more than 20 dB below the permissible value are not reported.

The spectral diagrams are attached as below.



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:	Wireless Microphone	M/N:ST-MIC-RF-R
Manufacturer:	Recordex	
Operating Condition:	Charging&Zigbee TX	
Test Site:	2#Shielding Room	
Operator:	star	
Test Specification:	L 120V/60Hz	
Comment:	Report No.:ATE20151826	
Start of Test:	2015-8-21 / 8:40:12	

SCAN TABLE: "V 150K-30MHz fin"

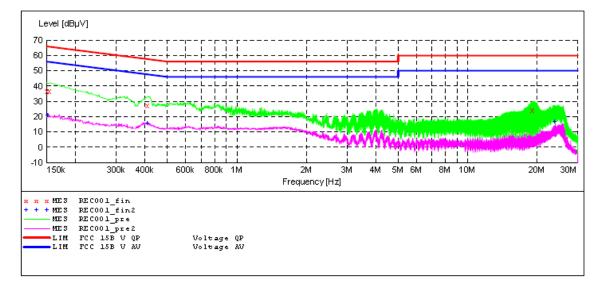
Short Desc			SUB_STD_VTE	RM2 1.70		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak	1.0 s	9 kHz	LISN(ESH3-Z5)
			Average			

MEASUREMENT RESULT: "RECOO2 fin"

2015-8-21 8:41 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.154000	36.50	10.4	66	29.3	_	L1	GND
0.408000	27.10	11.3	58	30.6		L1	GND
19.523000	26.40	11.9	60	33.6		L1	GND

MEASUREMENT RESULT: "REC002_fin2"

2015-8-21 8:41 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.152000	21.10	10.4	56		AV	L1	GND
0.430000	19.00	11.4	47		AV	L1	GND
24.000500	18.90	12.0	50		AV	L1	GND



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:Wireless MicrophoneM/N:ST-MIC-RF-RManufacturer:RecordexOperating Condition:Charging&Zigbee TXTest Site:2#Shielding RoomOperator:starTest Specification:N 120V/60HzComment:Report No.:ATE20151826Start of Test:2015-8-21 / 8:37:19

SCAN TABLE: "V 150K-30MHz fin"

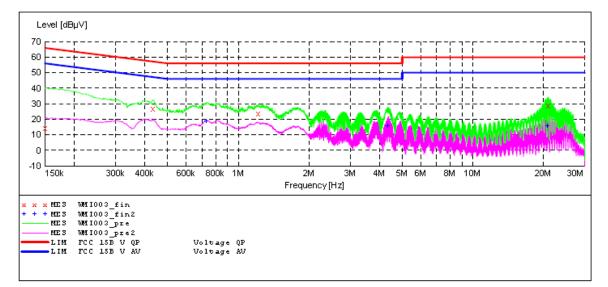
Short Desc			_SUB_STD_VTE	RM2 1.70		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak	1.0 s	9 kHz	LISN(ESH3-Z5)
			Average			

MEASUREMENT RESULT: "RECOO1 fin"

2015-8-21 8:39 Frequency Level Transd Limit Margin Detector Line \mathbf{PE} MHz dBµV dBdBµV dB 36.70 29.1 QP 0.154000 10.4 66 GND N 0.410000 27.20 11.3 58 30.4 QP GND N 19.095500 24.10 11.9 60 35.9 QP Ν GND

MEASUREMENT RESULT: "RECOO1 fin2"

2015-8-21 8:39 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.152000	20.80	10.4	56	35.1		N	GND
0.410000	15.70	11.3	48	31.9		N	GND
24.000500	17.10	12.0	50	32.9		N	GND



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:	Wireless Microphone	M/N:ST-MIC-R
Manufacturer:	Recordex	
Operating Condition:	Charging&Zigbee TX	
Test Site:	2#Shielding Room	
Operator:	Star	
Test Specification:	L 240V/60Hz	
Comment:	Report No.:ATE20151826	
Start of Test:	2015-8-26 / 17:10:31	

SCAN TABLE: "V 150K-30MHz fin"

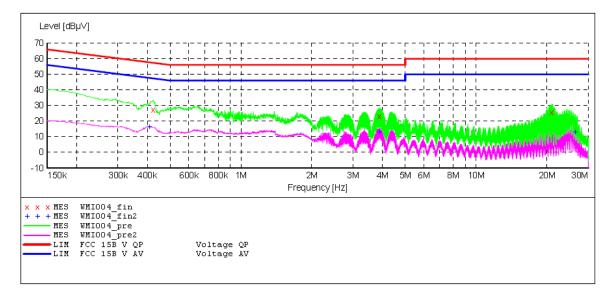
Short Desc			SUB_STD_VTE	RM2 1.70		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak	1.0 s	9 kHz	LISN(ESH3-Z5)
			Average			

MEASUREMENT RESULT: "WMI003_fin"

2015-8-26 17:: Frequency MHz	12 Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.434000	27.00	11.4	57	30.2	QP	L1	GND
1.216000	23.60	11.6	56	32.4	QP	L1	GND
20.981000	28.80	12.0	60	31.2	QP	L1	GND

MEASUREMENT RESULT: "WMI003_fin2"

2015-8-26	17:12						
Frequen	y Level	Transd	Limit	Margin	Detector	Line	PE
MI	Iz dBµV	dB	dBµV	dB			
0.73600	0 19.00	11.5	46	27.0	AV	ь1	GND
4.34900	0 15.90	11.8	46	30.1	AV	г1	GND
20.88200	15.70	12.0	50	34.3	AV	г1	GND



CONDUCTED EMISSION STANDARD FCC PART 15B

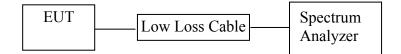
EUT:	Wireless Microphone	M/N:ST-MIC-R
Manufacturer:	Recordex	
Operating Condition:	Charging&Zigbee TX	
Test Site:	2#Shielding Room	
Operator:	Star	
Test Specification:	N 240V/60Hz	
Comment:	Report No.:ATE20151826	
Start of Test:	2015-8-26 / 17:12:29	

SCAN TABLE: "V 150K-30MHz fin"

	* TOAT	C COLUZE -				
Short Descr	iption:		SUB STD VTER	RM2 1.70		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak	1.0 s	9 kHz	LISN(ESH3-Z5)
			Average			

MEASUREMENT RESULT: "WMI004 fin"

201	.5-8-26 17:1	.4						
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
	MHz	dBµV	dB	dBµV	dB			
	0.424000	27.20	11.3	57	30.2	QP	N	GND
	3.890000	23.10	11.7	56	32.9	QP	Ν	GND
	21.039500	25.40	12.0	60	34.6	QP	Ν	GND


MEASUREMENT RESULT: "WMI004 fin2"

2015-8-26 17	:14						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dBμV	dB	dΒμV	dB			
0.408000	16.40	11.3	48	31.3	AV	N	GND
3.872000	12.90	11.7	46	33.1	AV	Ν	GND
26.363000	13.20	12.0	50	36.8	AV	Ν	GND

6. 6DB&20DB BANDWIDTH MEASUREMENT

6.1.Block Diagram of Test Setup

6.2. The Requirement For Section 15.247(a)(2)

Section 15.247(a) (2): Systems using digital modulation techniques may operate in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

6.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

6.4.1.Setup the EUT and simulator as shown as Section 5.1.

- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2405-2480. We select 2405MHz, 2440MHz, 2480MHz TX frequency to transmit.

6.5.Test Procedure

- 1. Set resolution bandwidth (RBW) = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

20dB bandwidth

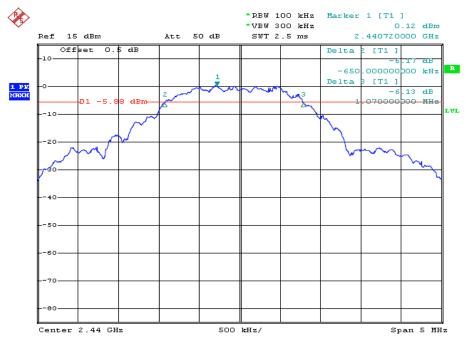
- 1. Set resolution bandwidth (RBW) = 1%-5% OBW.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.

- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

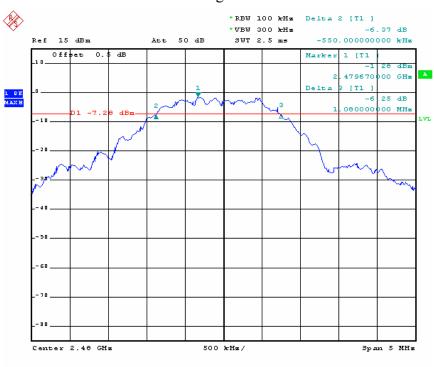
7. Once the reference level is established, the equipment is conditioned with typical modulating signals to produce the worst-case (i.e., the widest) bandwidth. Unless otherwise specified for an unlicensed wireless device, measure the bandwidth at the -20 dB levels with respect to the reference level

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	20dB Bandwidth (MHz)	Limit (MHz)
Low	2405	1.72	2.97	> 0.5MHz
Middle	2440	1.72	2.70	> 0.5MHz
High	2480	1.63	2.74	> 0.5MHz

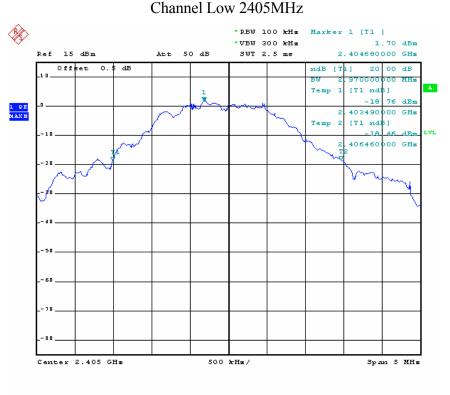
6.6.Test Result



The spectrum analyzer plots are attached as below.

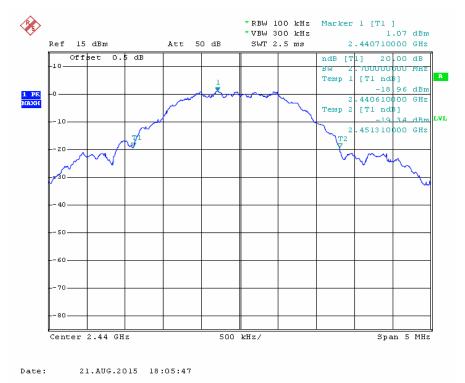

6dB Bandwidth Channel Low 2405MHz

Channel Middle 2440MHz


Date: 21.AUG.2015 17:47:57

Channel High 2480MHz

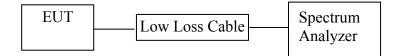
Date: 21.AUG.2015 17:52:52




20dB Bandwidth

Date: 21.AUG.2015 10:11:52

Channel Middle 2440MHz


Channel High 2480MHz

Date: 21.AUG.2015 10:01:40

7. MAXIMUM CONDUCTED (PEAK) OUTPUT POWER

7.1.Block Diagram of Test Setup

7.2. The Requirement For Section 15.247(b)(3)

Section 15.247(b)(3): For systems using digital modulation in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands: 1 Watt.

7.3.EUT Configuration on Measurement

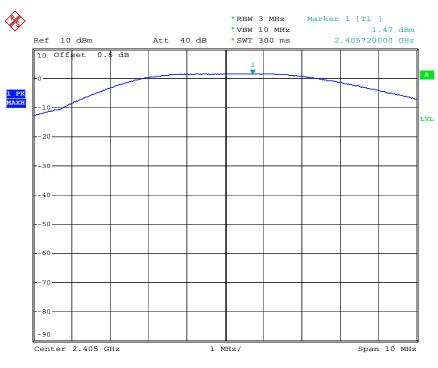
The equipment is installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

- 7.4.1.Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2. Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2405-2480MHzMHz. We select 2405MHz, 2440MHz, 2480MHz TX frequency to transmit.

7.5.Test Procedure

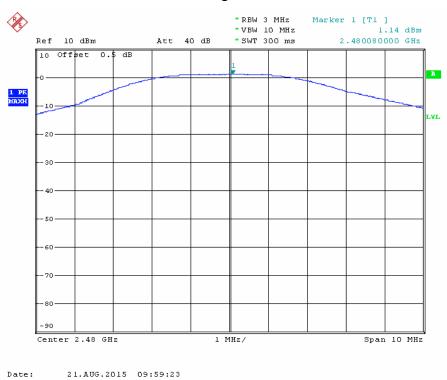
- 7.5.1.The EUT was tested according to DTS test procedure of Jun 05, 2014 KDB558074 D01 DTS Meas Guidance v03r02 for compliance to FCC 47CFR 15.247 requirements.
- 7.5.2. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.3.Set the RBW \geq *DTS bandwidth*, Set VBW \geq 3 × RBW. Set span \geq 3 x RBW, Sweep time = auto, Detector = peak, Trace mode = max hold, Allow trace to fully stabilize, Use peak marker function to determine the peak amplitude level.
- 7.5.4. Measurement the Maximum conducted (Peak) output power.



7.6.Test Result

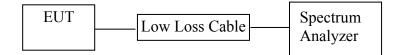
Channel	Frequency (MHz)	Peak output power (dBm)	Peak output power (mW)	Limits dBm / W
Low	2405	1.47	1.40	30 dBm / 1 W
Middle	2440	3.55	2.26	30 dBm / 1 W
High	2480	1.14	1.30	30 dBm / 1 W


The spectrum analyzer plots are attached as below.


Channel Low 2405MHz

Date: 11.SEP.2015 09:57:26

Channel Middle 2440MHz



Channel High 2480MHz

8. POWER SPECTRAL DENSITY MEASUREMENT

8.1.Block Diagram of Test Setup

8.2. The Requirement For Section 15.247(e)

Section 15.247(e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

8.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

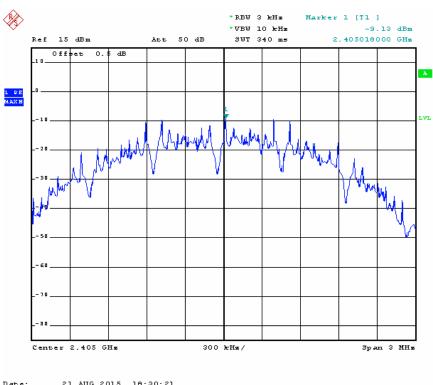
- 8.4.1.Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2. Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2405-2480MHz. We select 2405MHz, 2440MHz, 2480MHz TX frequency to transmit.

8.5.Test Procedure

- 8.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.2. Measurement Procedure PKPSD:

This procedure must be used if maximum peak conducted output power was used to demonstrate compliance to the fundamental output power limit, and is optional if the maximum (average) conducted output power was used to demonstrate compliance.

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.

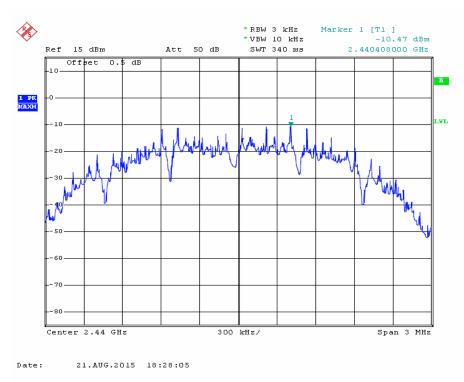


- 3. Set the RBW 3 kHz \leq RBW \leq 100 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 8.5.3.Measurement the maximum power spectral density.

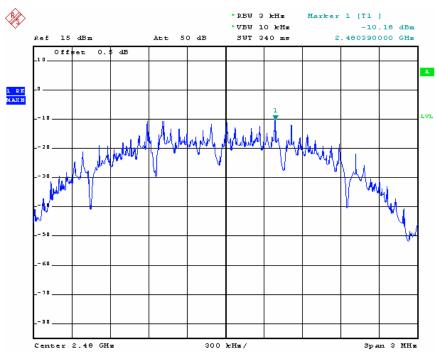
8.0	6.'	Test	Result
-----	-----	------	--------

Channel	Frequency (MHz)	Power Spectral Density (dBm)	Limits (dBm)
Low	2405	-9.13	8 dBm
Middle	2440	-10.47	8 dBm
High	2480	-10.18	8 dBm

The spectrum analyzer plots are attached as below.

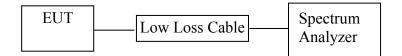


Channel Low 2405MHz


FCC ID: 2ADKE-ST-MIC-R

Daties

Channel Middle 2440MHz


Channel High 2480MHz

Date: 21.AUG.2015 10:26:25

9. BAND EDGE COMPLIANCE TEST

9.1.Block Diagram of Test Setup

9.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

9.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.4. Operating Condition of EUT

- 9.4.1.Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2. Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2405-2480MHz MHz. We select 2405MHz, 2480MHz, TX frequency to transmit.

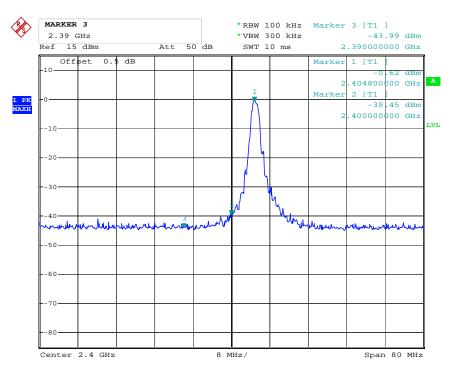
9.5.Test Procedure

Conducted Band Edge:

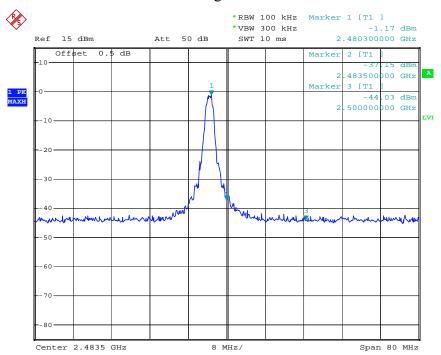
- 9.5.1.The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 9.5.2.Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz.

Radiate Band Edge:

- 9.5.3.The EUT is placed on a turntable, which is 0.8m above the ground plane and worked at highest radiated power.
- 9.5.4. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 9.5.5.EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 9.5.6.Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:


9.5.7.RBW=1MHz, VBW=1MHz

9.5.8. The band edges was measured and recorded.


9.6.Test Result

Frequency (MHz)	Result of Band Edge (dBc)	Limit of Band Edge (dBc)
2405	38.83	> 20dBc
2480	35.98	> 20dBc

Channel High 2480MHz

Radiated Band Edge Result

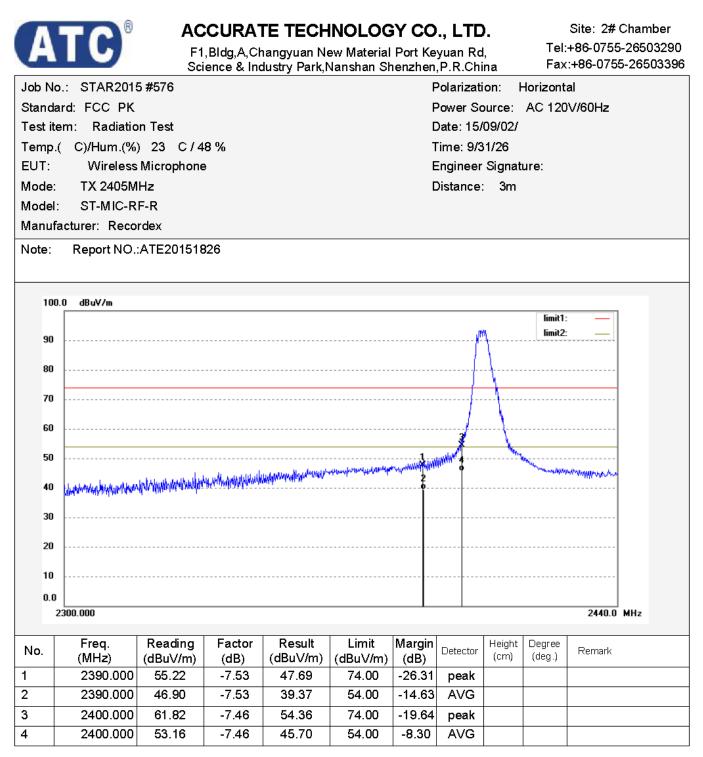
Note: FCC ID: 2ADKE-ST-MIC-R

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:
 - Result = Reading + Corrected Factor
- 3. Display the measurement of peak values.

Test Procedure:

The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

Let the EUT work in TX modes then measure it. We select 2405MHz, 2480MHz TX frequency to transmit


During the radiated emission test, the spectrum analyzer was set with the following configurations:

1. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz.

2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.

3.All modes of operation were investigated and the worst-case emissions are reported.

Note: Average measurement with peak detection at No.2&4

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

	506	ence a mu	lustry Park,r	varistiati Si	lenzhen	<u>, п</u>	lia	T QA	. +00-0700-200033
Job No.: STAR201						Polarizati		/ertical	
Standard: FCC PK					F	^p ower Sc	ource:	AC 120	V/60Hz
Test item: Radiatio	on Test				C	Date: 15/	09/02/		
Temp.(C)/Hum.(%) 23 C/48	3%			Т	Time: 9/3	0/00		
EUT: Wireless	Microphone				E	Engineer	Signat	ure:	
Mode: TX 2405M	Hz				C	Distance:	3m		
Model: ST-MIC-R	?F-R								
Manufacturer: Reco	rdex								
Note: Report NO.	:ATE201518	26							
100.0 dBuV/m									
						ſ	1	limit1: limit2:	
90							1		
80							{		
						<u> </u>	<u> </u>		
70									
60							<u></u>		
					1	1	<u> </u>		
50	have man a second and a second and	www.weigergerrapherale	undergedly descent of the	a hard a stand and the stand of	Wille Property	~~~~		and the second s	and the second and a
40		····							
30									
20									
10									
0.0									
2300.000									2440.0 MHz
No. Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1 2390.000	56.29	-7.53	48.76	74.00	-25.24	peak		. 27	
2 2390.000	46.97	-7.53	39.44	54.00	-14.56	AVG			
3 2400.000	65.28	-7.46	57.82	74.00	-16.18	peak			
4 2400.000	57.61	-7.46	50.15	54.00	-3.85	AVG			
2700.000		01.10	00.10	00.40	-0.00	A10			

Note: Average measurement with peak detection at No.2&4

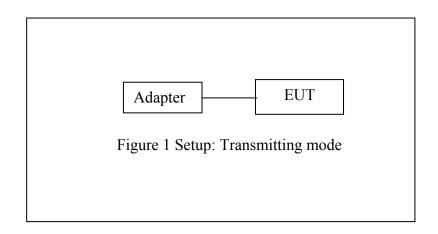
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

		50	ence & Inc	lustry Park,ľ	Nanshan Sh	enzhen	P.R.Chi	na	гах	:+86-0755-26503	1390
Job No	D.: STAR2015	5 #578				F	Polarizati	on: H	lorizont	al	
Standa	ard: FCC PK					F	Power So	urce:	AC 120	V/60Hz	
Test ite	em: Radiatio	in Test				C	Date: 15/	09/02/			
Temp.i	(C)/Hum.(%)) 23 C/4	8%			Т	"ime: 9/3	8/49			
EUT:	Wireless	Microphone				E	Engineer	Signat	ure:		
Mode:	TX 2480M	Hz				C	Distance:	3m			
Model:	ST-MIC-R	F-R									
Manuf	acturer: Reco	rdex									
Note:	Report NO.:	ATE201518	26								
100	.0 dBuV/m										
									limit1:	_	
90		f	9						limit2:		
80			-								
70											
60			}								
50		- Contraction									
	www.delater.org/weekspolars	ni i	and the second	MARCHAN MANY		New Markey Mapping	mannahadital	NWWWWW	mathe hauter and	ghang work	
40											
30											
20											
10											
0.0											
2	2440.000									2600.0 MHz	
No.	Freq.	Reading	Factor	Result (dBuV/m)		Margin	Detector	Height (cm)	Degree (deg.)	Remark	
	(MHz) 2483.500	(dBuV/m) 63.36	(dB) -7.37	55.99	(dBuV/m) 74.00	(dB) -18.01	peak	(ony	(dog.)		
2	2483.500	55.36	-7.37	47.99	54.00	-6.01	AVG				
3	2483.500	53.74	-7.40	46.34	74.00	-27.66	peak				
2 1	2500.000	45.00	-7.40	37.60	74.00 54.00	-16.40	AVG				
†	2000.000	40.00	-7.40	37.00	04.00	-10.40	AVG				

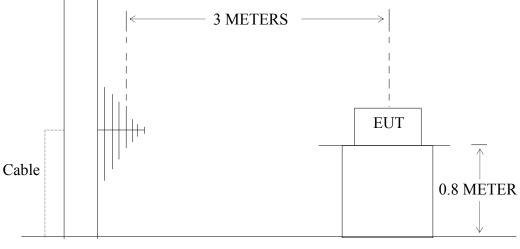
Note: Average measurement with peak detection at No.2&4

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China


		50	ence & Inc	lustry Park,ľ	vansnan Sr	ienznen	,P.R.Chi	na	1 0.4	.+80-0700	-200000000			
Job N	o.: STAR2015	5 #577				F	Polarizati	on: N	/ertical					
Stand	ard: FCC PK					F	Power Source: AC 120V/60Hz							
Test if	tem: Radiatio	n Test					Date: 15/09/02/							
Temp	.(C)/Hum.(%)) 23 C/4	8%			Т	- ime: 9/3	6/43						
EUT:	Wireless	Microphone				E	Engineer	Signat	ure:					
Mode	TX 2480M	Hz				C	Distance:	3m						
Model	I: ST-MIC-R	F-R												
Manut	facturer: Reco	rdex												
Note:	Report NO.:	ATE201518	326											
10	0.0 dBuV/m													
		ſ	1						limit1: limit2:					
90														
80														
70		/												
60		J												
			<u> </u>											
50	- Approximation and a second	AND DANK	- Marine	3				d tatla						
40						Alon Antonia Alia	yllind many for the	physics of the	- Manager And	wild work of the sport				
				ĺ										
30														
20														
10														
0.0														
	2440.000									2600.0	MHZ			
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark				
1	2483.500	65.82	-7.37	58.45	74.00	-15.55	peak							
2	2483.500	57.98	-7.37	50.61	54.00	-3.39	AVG							
3	2500.000	52.66	-7.40	45.26	74.00	-28.74	peak							
4	2500.000	44.32	-7.40	36.92	54.00	-17.08	AVG							

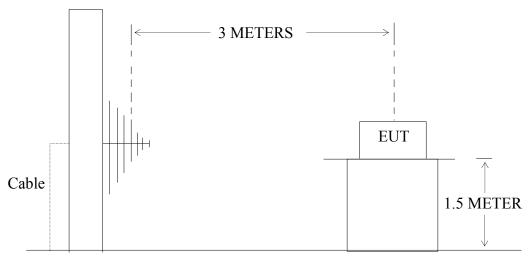
10.RADIATED SPURIOUS EMISSION TEST

10.1.Block Diagram of Test Setup


10.1.1.Block diagram of connection between the EUT and peripherals

10.1.2. Semi-Anechoic Chamber Test Setup Diagram

Below 1GHz


ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS

GROUND PLANE

Above 1GHz

ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS

GROUND PLANE

10.2. The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

10.3.Restricted bands of operation

10.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

pem	inded in any of the neque	ney builds listed below.	
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	$(^{2})$
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

²Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

10.4.Configuration of EUT on Measurement

The equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

10.5. Operating Condition of EUT

10.5.1.Setup the EUT and simulator as shown as Section 10.1.

- 10.5.2. Turn on the power of all equipment.
- 10.5.3.Let the EUT work in TX modes measure it. The transmit frequency are 2405-2480MHz. We select 2405MHz, 2440MHz, 2480MHz TX frequency to transmit.

10.6.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground(Below 1GHz). The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

The frequency range from 30MHz to 25000MHz is checked.

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

During the radiated emission test, the spectrum analyzer was set with the following configurations:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

10.7. The Field Strength of Radiation Emission Measurement Results

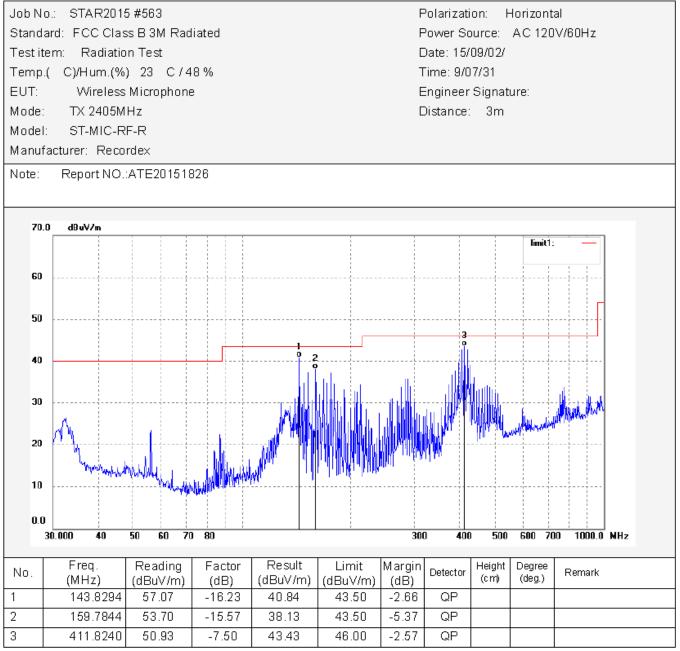
Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. *: Denotes restricted band of operation.

3. The fundamental radiated emissions were reduced by Band Reject Filter in the attached plots.

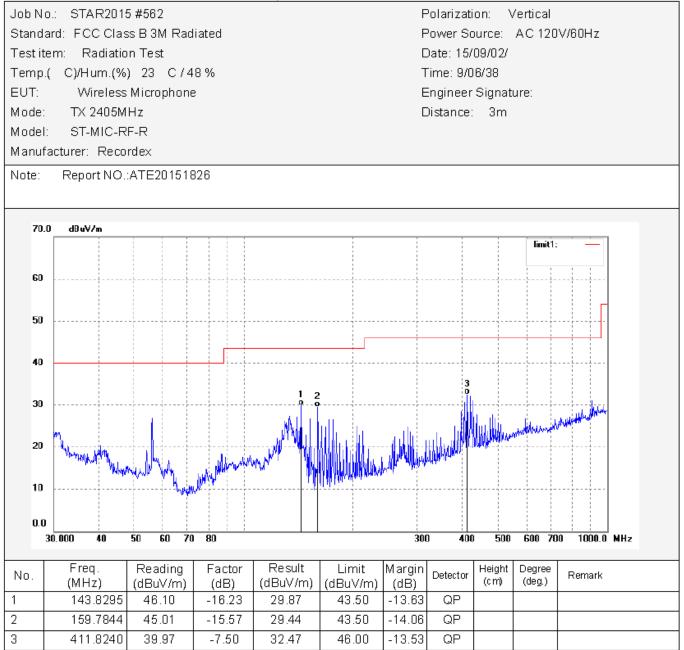
4. The EUT is tested radiation emission at each test mode (TX) in three axes. The worst emissions are reported in all test mode and channels.

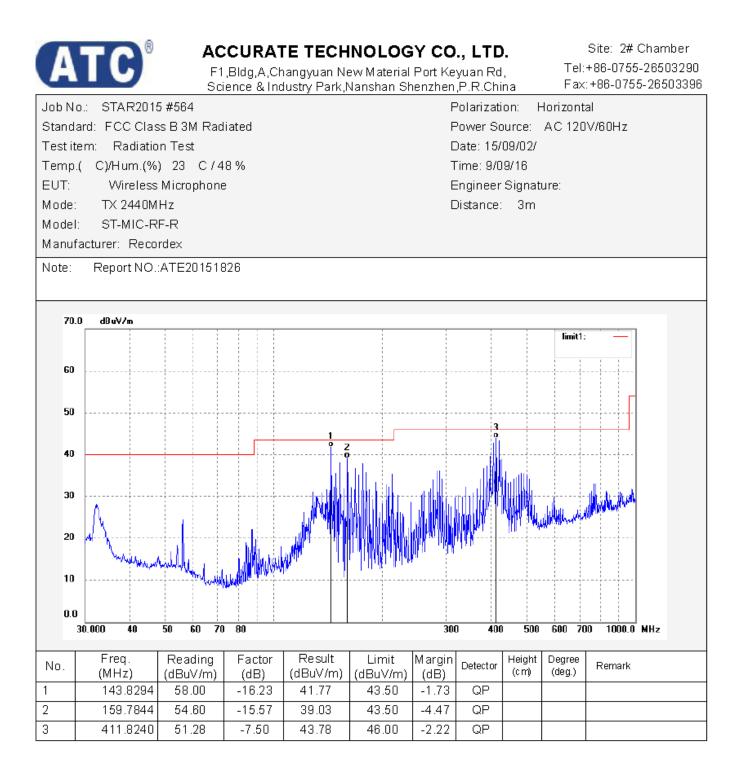
5. The radiation emissions from 18-25GHz are not reported, because the test values lower than the limits of 20dB.



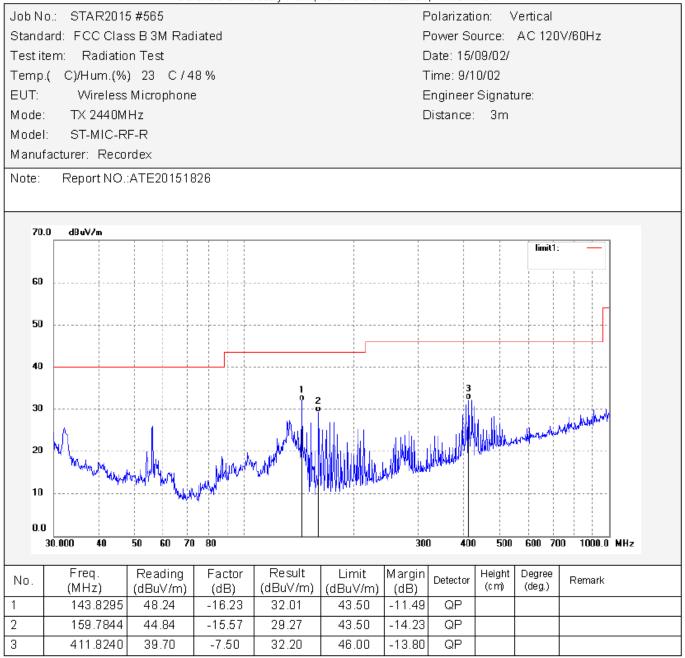
Below 1G

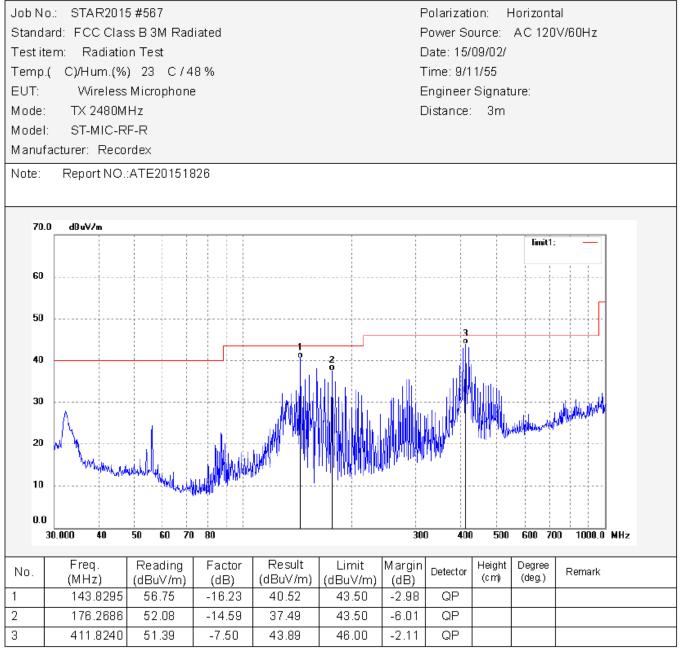
ACCURATE TECHNOLOGY CO., LTD.

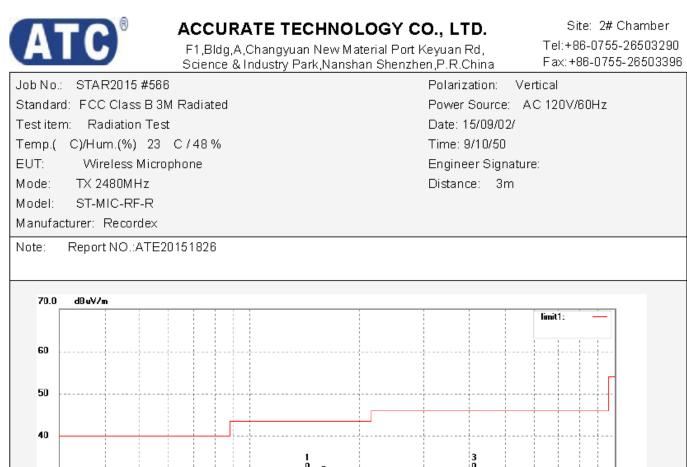

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China



F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China




F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China



F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	143.8295	48.48	-16.23	32.25	43.50	-11.25	QP			
2	159.7844	44.87	-15.57	29.30	43.50	-14.20	QP			
3	411.8240	39.70	-7.50	32.20	46.00	-13.80	QP			

300

400

500

600 700

1000.0 MHz

30

20

10

0.0

60 70 80

50

40

Above 1G

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Job No	D.: STAR2015	5 #573			-			F	Polariza	tion: H	Horizont	al		
Standa	ard: FCC Clas	s B 3M Rad	diated					F	Power Source: AC 120V/60Hz					
Fest ite	em: Radiatio	n Test		C	Date: 15	/09/02/								
Гетр.	(C)/Hum.(%)) 23 C/4	48 %					Т	"ime: 9/	25/03				
EUT:	Wireless	Microphon	е					E	Enginee	r Signat	ure:			
/lode:	TX 2405M	Hz						C	Distance	e: 3m				
lodel:	ST-MIC-R	F-R												
lanuf	acturer: Reco	rdex												
lote:	Report NO.:	ATE20151	826											
100	.0 dBuV/m	;						; ;		; ;	limit1:			
90														
30			0											
80														
70														
10														
60														
50														
		wythown		և		manut	w/ww	monorm	weber have	musin	montener	www.com		
40		ىلىمىرىق	MUM	Migano	www.	ο - γ • 4 ο γ								
30	& Marturdation	why have												
20														
10														
0.0														
0.0	000.000	2	000		3000	Ę	5000	6000 7	000 8000	9000		18000.0 MHz		
	000.000													
1		Reading	E av	ctor 1	Result	Linci	+ 1	Margin		Height	Degree			
1	Freq.	Reading (dBuV/m)		ctor B)	Result (dBuV/m)	Limi (dBuV/	t ′m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark		
		Reading (dBuV/m) 100.97	(d			Limi (dBuV/ 54.0	'm)	Margin (dB) 39.51	Detector peak			Remark		

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

ob No.	STAR2015					vansnan e		Polarizat		/ertical		
Standar	d: FCC Clas	s B 3M Rad	liated					Power So	ource:	AC 120	IV/60Hz	
est iter	m: Radiatio	n Test					I	Date: 15/	09/02/			
emp.(C)/Hum.(%)) 23 C/4	18 %					Time: 9/2	26/32			
EUT:	Wireless	Microphone	е				1	Engineer	Signat	ure:		
Aode:	TX 2405M	Hz						Distance	: 3m			
Aodel:	ST-MIC-R	F-R										
lanufa	cturer: Reco	rdex										
lote:	Report NO.:	ATE20151	826									
100.0	dBu∀∕m											
			, i	í l						limit1:		
90			6									
80												
70												
60												
50				ł		<u>.</u>	an shout	Huden when Ma	in march	Anoranana	www.domen	
40				- Hautoto	mannin	mannalling	We Versee.					
	h N. Annow Mark	at where all the second	entra :	1 Acres to	v.							
30	AA											
20												
10												
0.0												
10	00.000	20)00		3000	500	5 6000	7000 8000	9000		18000.0	MHz
VO.	Freq.	Reading		ctor	Result	Limit	Margin	Detector	Height	Degree	Remark	
	(MHz)	(dBuV/m)	(d		(dBuV/m)	(dBuV/m)	(dB)	Detector	(cm)	(deg.)	r cilldik	
	2400.753	103.41		.46	95.95	54.00	41.95	· ·				
	2400.753	96.37	-7	.46	88.91	54.00	34.91	AVG				

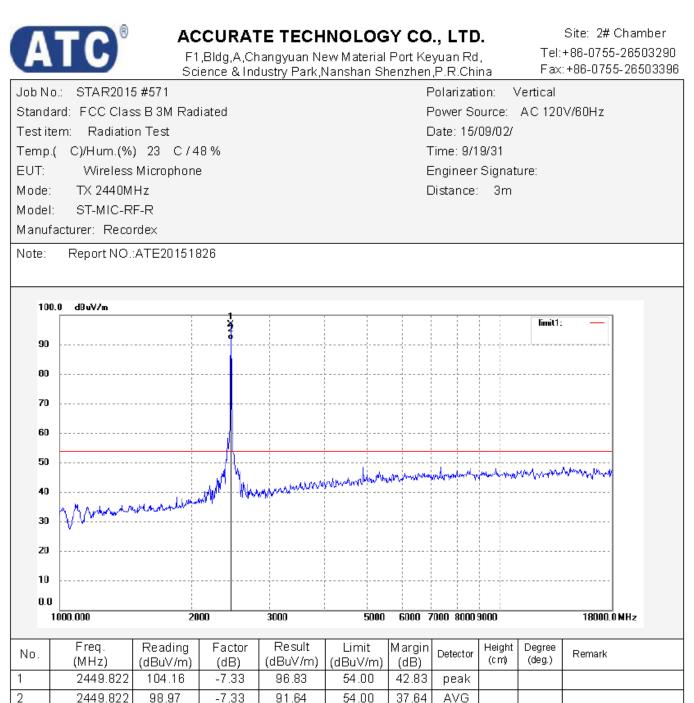
A	TC	F1	,Bldg,A,C	TE TECH hangyuan N dustry Park,l	ew Material	Port Ke	yuan Ro	Ι.		Site: 2# Chamber +86-0755-2650329(:+86-0755-2650339
ob No	.: STAR2016	5 #572				F	Polarizat	ion: H	Horizont	al
tanda	ard: FCC Clas	s B 3M Rac	liated			F	Power Si	ource:	AC 120	IV/60Hz
est ite	em: Radiatio	n Test					Date: 15/			
	(C)/Hum.(%)		8%				Fime: 9/2			
UT:		, Microphone					Engineer		ure:	
1ode:	TX 2440M		-				Distance	-		
lodel:						L	Diotanico	. 0		
	acturer: Reco									
100.	.0 dBuV/m									
			1						limit1:	-
90			1 X 2		·					
			I							
80			• • • • • • • • • • • • • • • • • • • •							
70										
60			• • • • • • • • • • • • • • • • • • • •							
50								 		
			- AL		manuplum	wayman	where	wardin 19	www.what	mannam wh
40		. A. un materia	where the	1000pmpstraw						
30	M Annahanna M	And Market Law Market Market					· · · · · · · · · · · · · · · · · · ·			
	V									
20										
10										
0.0	000.000	20	100	3000	5000	6000 C		9000		18000.0 MHz
										a server serve
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
	2449.822	101.85	-7.33	94.52	54.00	40.52	peak			

33.81

AVG

54.00

2


2449.822

95.14

-7.33

87.81

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Job No.: 🤤	STAR2015	5 #569						F	Polarizati	ion: H	lorizont	al		
Standard:	FCC Clas	s B 3M Ra	diated					F	Power Source: AC 120V/60Hz					
Test item:	Radiatio	n Test						[Date: 15/	09/02/				
Temp.(C)/Hum.(%)) 23 C/-	48 %					٦	Time: 9/1	6/14				
EUT:	Wireless	Microphon	e					E	Engineer	Signat	ure:			
Mode: -	TX 2480M	Hz						[Distance:	3m				
Model: :	ST-MIC-RI	F-R												
Manufactu	rer: Recoi	rdex												
Note: R	eport NO.:	ATE20151	826											
100.0 d	Bu¥/m				:	: :					limit1:			
			1 X 2								nini():			
90			• • • • •											
80					, , , , , ,					· · · · · · · · · · · · · · · · · · ·				
70										· · · · · · · · · · · · · · · · · · ·				
60										 				
50		Maynak						Million	whent	MANA	and work	www.www.www.www		
40				throw	mannum	ylan www.								
KA	Munnund	Marymonth	64llman ^{a 1}											
30	.ψ.:													
20														
10														
10										· · · · · · · · · · · · · · · · · · ·				
0.0			000		2000		000	C000 -	7000 0000	0000		10000 (
1000.0	00	2	000		3000	5	000	6000	7000 8000	3000		18000.0	MHZ	
	Freq.	Reading	Fact		Result	Limit		Margin	Detector	Height	Degree	Remark		
(MHz)	(dBuV/m)		-	(dBuV/m)	(dBuV/i	m)	(dB)	Detector	(cm)	(deg.)	rtemant		
	2478.310	102.17	-7.3		94.80	54.01		40.80	_ ·					
2 2	2478.310	96.00	-7.3	37	88.63	54.01	0	34.63	AVG					

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

lob No	STAR2016			uusuyi aik,i			Polarizati		/ertical	
Standa	rd: FCC Clas	s B 3M Rad	liated			F	^p ower So	ource:	AC 120	V/60Hz
Fest ite	em: Radiatio	n Test				C	Date: 15/	09/02/		
Гетр.(C)/Hum.(%)) 23 C/4	18 %			Т	Fime: 9/1	7/25		
EUT:	Wireless	Microphone	е			E	Engineer	Signat	ure:	
/lode:	TX 2480M	Hz					Distance:	3m		
Aodel:	ST-MIC-R	F-R								
/anufa	acturer: Reco	rdex								
lote:	Report NO.:	ATE201518	826							
	·									
100.	.0 dBuV/m		1		;				limit1:	
90			2							
90										
80										
70										
70										
60										
50			<u> </u>							
50			//\	Actions	and the May	nhimuhan	manhow	and a state of the	man	Anno Martin Martin
40			Jul M	Anthenowerthant	A MANA A MARKANA					
30	3 Marshan	Vinnet material	****							
50										
20										
10										
0.0										
	000.000	20	000	3000	: : 5000	6000 7	: : 7000 8000 :	<u>: :</u> 9000		18000.0 MHz
				-						
No.	Freq. (MHz)	Reading	Factor	Result (dBuV/m)		Margin	Detector	Height (cm)	Degree (deg.)	Remark
	(WE1Z)	(dBuV/m)	(dB)	1 /	· · · · · · · · · · · · · · · · · · ·	(dB)		1,0119	(009.7	
	2478 310	105 24	-7.37	1 97 87	1 54 00	1 43 87	l neak			
	2478.310 2478.310	105.24 98.61	-7.37 -7.37	97.87 91.24	54.00 54.00	43.87 37.24	peak AVG			

11.ANTENNA REQUIREMENT

11.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

11.2.Antenna Construction

Device is equipped with Reverse Polarity (RP-SMA) connectors antenna, it is considered to meet antenna requirement of FCC. The Antenna gain of EUT is 2.0dBi. Therefore, the equipment complies with the antenna requirement of Section 15.203.

Antenna