

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 17159 Tel: +82-31-323-6008 Fax: +82-31-323-6010 http://www.ltalab.com

Dates of Tests: Aug 08, 2020 ~ Aug 13, 2020

Test Report S/N: LR500112009A Test Site: LTA CO., LTD.

CERTIFICATION OF COMPLIANCE

FCC ID.

2ADIYSM-300

APPLICANT

SMARTSOUND CORPORATION.

Equipment Class : Digital Transmission System (DTS)

Manufacturing Description : Smart stethoscope

Manufacturer : SMARTSOUND CORPORATION.

Model name : SM-300

Test Device Serial No.: : Identical prototype

Rule Part(s) : FCC Part 15.247 Subpart C ; ANSI C-63.10-2013

Frequency Range : 2402 ~ 2480 MHz

Max. Output Power : Max -3.01 dBm - Conducted

Date of issue : Aug 13, 2020

This test report is issued under the authority of:

JaBeom. Koo

The test was supervised by:

고경훈

Ja-Beom, Koo / Manager

Gyeong Hun Ko / Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
2. INFORMATION ABOUT TEST ITEM	4
3. TEST REPORT	5
3.1 SUMMARY OF TESTS	5
3.2 TECHNICAL CHARACTERISTICS TEST	6
3.2.1 6 dB BANDWIDTH	7
3.2.2 OUTPUT POWER	10
3.2.3 POWER SPECTRAL DENSITY	13
3.2.4 BAND EDGE	17
3.2.5 CONDUCTED SPURIOUS EMISSIONS	18
3.2.6 RADIATED SPURIOUS EMISSIONS	21
3.2.7 AC Conducted Emissions	41
APPENDIX	
APPENDIX TEST EQUIPMENT USED FOR TESTS	42

1. General information

1-1 Test Performed

Company name : LTA Co., Ltd.

Address : 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 17159

Web site : http://www.ltalab.com
E-mail : chahn@ltalab.com
Telephone : +82-31-323-6008
Facsimile +82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference
NVLAP	U.S.A	200723-0	2020-09-30	ECT accredited Lab.
RRA	KOREA	KR0049	-	EMC accredited Lab.
FCC	U.S.A	649054	2021-04-11	FCC CAB
VCCI	JAPAN	C-4948,	2020-09-10	VCCI registration
VCCI	JAPAN	T-2416,	2020-09-10	VCCI registration
VCCI	JAPAN	R-4483(10 m),	2020-10-15	VCCI registration
VCCI	JAPAN	G-847	2021-12-13	VCCI registration
IC	CANADA	5799A-1	2021-06-16	IC filing
KOLAS	KOREA	NO.551	2021-08-20	KOLAS accredited Lab.
NVLAP	U.S.A	200723-0	2021-08-20	ECT accredited Lab.

Ref. No.: LR500112009A

2. Information about test item

2-1 Client & Manufacturer

Company name : SMARTSOUND CORPORATION

Address : 4F, 171, Yangjecheaon-ro, Gangnam-gu, Seoul, South Korea

Tel / Fax : TEL No: +82-10-9270-2720 / FAX No: +82-2-575-2201

2-2 Equipment Under Test (EUT)

Trade name : SMARTSOUND CORPORATION

Model name : SM-300

Serial number : Identical prototype

Date of receipt : Aug 13, 2020

EUT condition : Pre-production, not damaged

Antenna type : Patten Antenna (Max Gain: -1.5 dBi)

Frequency Range : 2402 ~ 2480 MHz

RF output power : Max - 3.01 dBm - Conducted

Number of channels : 40

Type of Modulation : GFSK

Power Source : 3.0 Vdc

2-3 Tested frequency

	LOW	MID	HIGH
Frequency (MHz)	2402	2442	2480

2-4 Ancillary Equipment

Equipment	Model No.	Serial No.	Manufacturer
Notebook	CR720	MS-1736	MSI

3. Test Report

3.1 Summary of tests

FCC Part	Parameter	Limit	Test	Status
Section(s)	rarameter	Limit	Condition	(note 1)
15.247(a)	6 dB Bandwidth	> 500 kHz		С
15.247(b)	Transmitter Peak Output Power	< 1 Watt		С
15.247(e) Transmitter Power Spectral Densit		< 8 dBm @ 3 kHz	Conducted	С
15 247(1)	Band Edge	> 20 dBc		С
15.247(d)	Conducted Spurious Emissions	> 20 dBc		С
15.209(a)	Radiated Spurious Emissions	On page 22	Radiated	С
15.207	AC Conducted Emissions	Emissions	Conducted	NA
15.203	Antenna requirement	-	-	С
Note 1: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable				

Note 2: This product operates only with battery

The above equipment was tested by LTA Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10-2013 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2 and Part 15.247 The test results of this report relate only to the tested sample identified in this report.

→ Antenna Requirement

The **SMARTSOUND CORPORATION.** FCC ID: **2ADIYSM-300** unit complies with the requirement of §15.203. The antenna type is Patten Antenna.

3.2 MEASUREMENT METHODS

Parameter	METHODS
6 dB Bandwidth	KDB 558074 D01 v05r02, Section 8.2
Transmitter Peak Output Power	KDB 558074 D01 v05r02, Section 8.3.1.1
Transmitter Power Spectral Density	KDB 558074 D01 v05r02, Section 8.4.
Band Edge	KDB 558074 D01 v05r02, Section 8.7
Conducted Spurious Emissions	KDB 558074 D01 v05r02, Section 8.5
Radiated Spurious Emissions	KDB 558074 D01 v05r02, Section 8.6
AC Conducted Emissions	ANSI C63.10-2013, Section 6.2.

3.2 Technical Characteristics Test

3.2.1 6 dB Bandwidth

Procedure:

The bandwidth at 6 dB below the highest in-band spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate frequencies.

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 6 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 6 dB bandwidth of the emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 100 kHz Span = 5 MHz

 $VBW = 300 \text{ kHz} (VBW \ge 3*RBW)$ Sweep = auto

Trace = max hold Detector function = peak

Measurement Data: Complies

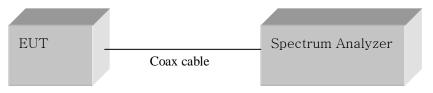
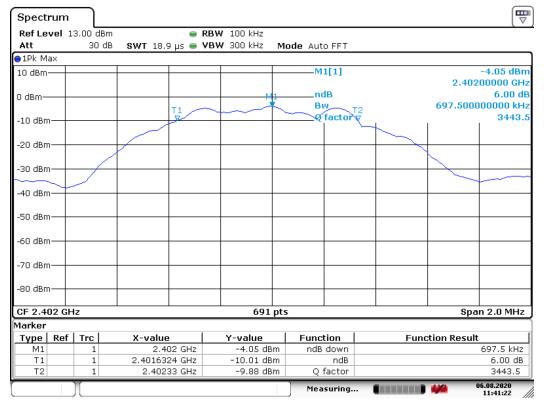
Frequency (MHz)	Test Res	sults
	Measured Bandwidth (MHz)	Result
2402	0.697	Complies
2442	0.694	Complies
2480	0.688	Complies

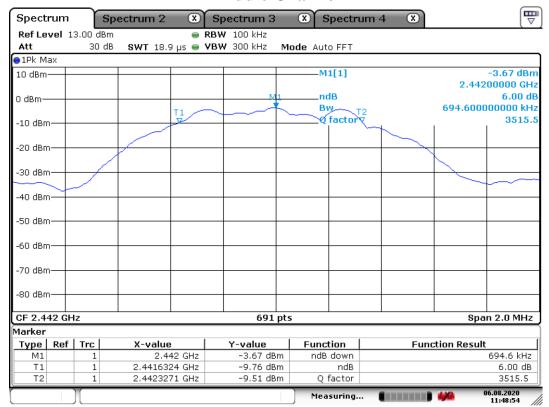
⁻ See next pages for actual measured spectrum plots.

Minimum Standard:

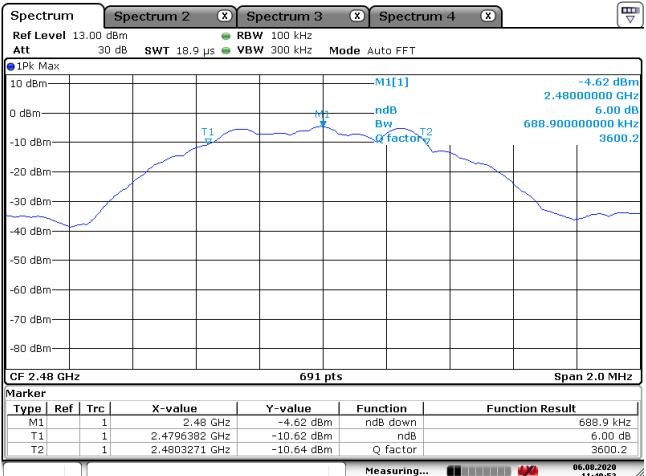
6 dB Bandwidth > 500 kHz

Measurement Setup


Figure 1: Measurement setup for the carrier frequency separation

Low Channel


Date: 6.AUG.2020 11:41:22

Middle Channel

Date: 6.AUG.2020 11:48:54

High Channel Spectrum 3 Spectrum 4

Date: 6.AUG.2020 11:49:54

3.2.2 Output Power Measurement

Procedure:

The maximum peak output power was measured with the spectrum analyzer connected to the antenna output of the EUT. The spectrum analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 99 % bandwidth. The EUT was operating in transmit mode at the appropriate center frequency.

The spectrum analyzer is set to(Peak):

Center frequency = the highest, middle and the lowest channels

RBW = 2 MHz Span = auto

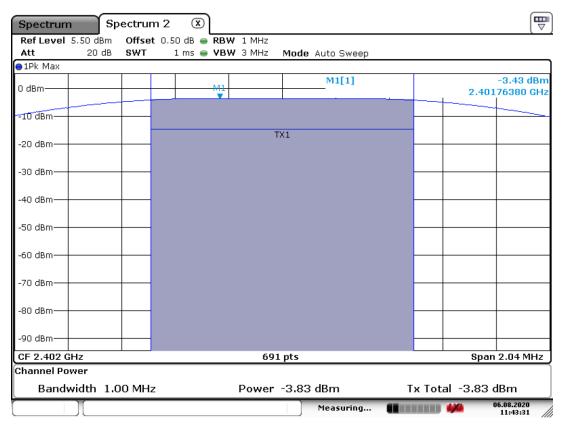
 $VBW = 5 \text{ MHz} (VBW \ge 3 * RBW)$ Sweep = auto

Detector function = peak

Measurement Data: Complies

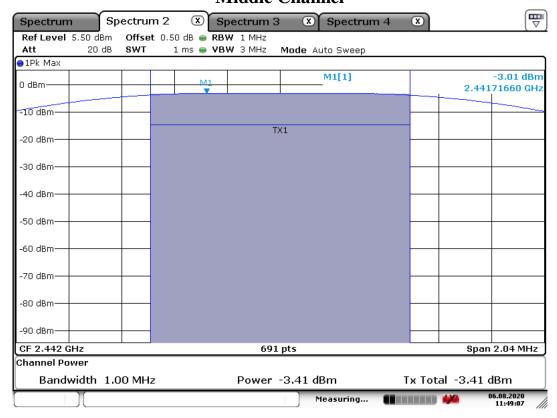
Frequency (MHz)		Test Results	
	dBm	mW	Result
2402	-3.43	0.45	Complies
2442	-3.01	0.50	Complies
2480	-4.17	0.38	Complies

⁻ See next pages for actual measured spectrum plots.

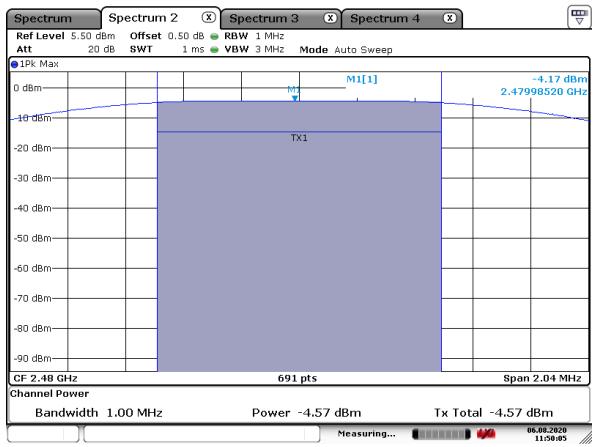

Minimum Standard:

Peak output power	< 1 W
-------------------	-------

Measurement Setup


Same as the Chapter 3.2.1 (Figure 1)

Low Channel


Date: 6.AUG.2020 11:43:31

Middle Channel

Date: 6.AUG.2020 11:49:07

High Channel(Peak)

Date: 6.AUG.2020 11:50:06

3.2.3 Power Spectral Density

Procedure:

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

The spectrum analyzer is set to:

RBW = $3 \text{ kHz} (3 \text{kHz} \le \text{RBW} \le 100 \text{kHz})$ Span = 1.5 times the DTS bandwidth

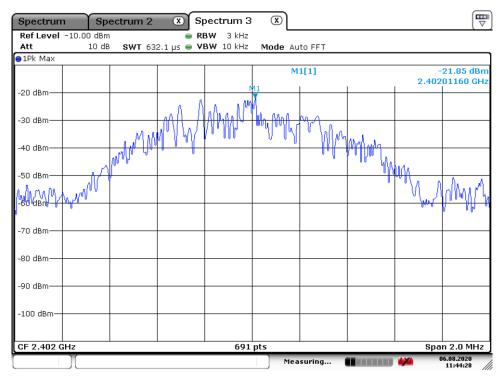
VBW = 10 kHz (3 * RBW) Sweep = auto

Detector function = peak Trace = max hold

Measurement Data: Complies

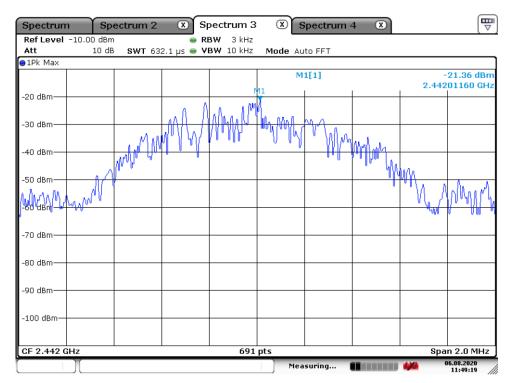
Frequency (MHz)	Test Res	sults
	dBm	Result
2402	-21.85	Complies
2442	-21.36	Complies
2480	-22.50	Complies

⁻ See next pages for actual measured spectrum plots.

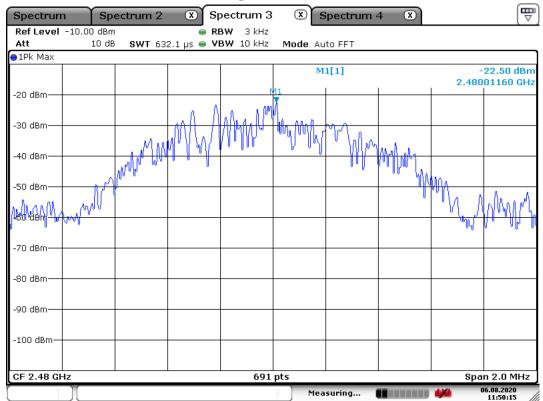

Minimum Standard:

Power Spectral Density	< 8 dBm @ 3 kHz BW
------------------------	--------------------

Measurement Setup


Same as the Chapter 3.2.1 (Figure 1)

Power Density Measurement Low Channel


Date: 6.AUG.2020 11:44:28

Middle Channel

Date: 6.AUG.2020 11:49:19

High Channel

Date: 6.AUG.2020 11:50:16

Ref. No.: LR500112009A

3.2.4 Band Edge

Procedure:

The Unwnated emission form the EUT were measured according to the dictates PKPSD measurement procedure in section 11.11 of ANSI C63.10-2013.

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating the RF power that is produced shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or radiated measurement,

Provided that the transmitter demonstrates compliance with the peak conducted power limits.

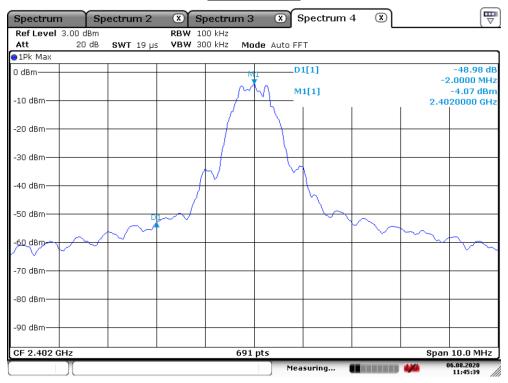
If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under 5.4(4), the attenuation required shall be 30dB instead of 20dB

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

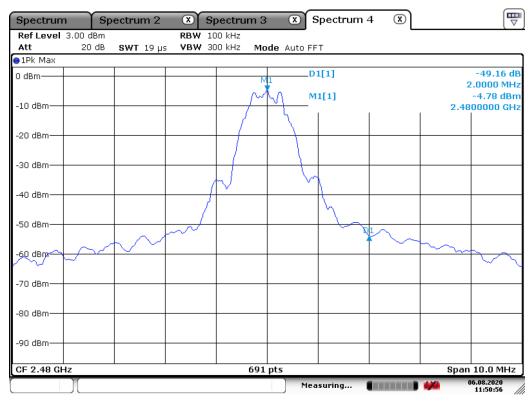
RBW = 100 kHz $VBW \ge 3 \text{ X RBW}$

Span = 40 MHz, 100 MHz Detector function = peak


Trace = $\max \text{ hold}$ Sweep = auto

Measurement Data: Complies

- All conducted emission in any 100 kHz bandwidth outside of the spread spectrum band was at least 20 dB lower than the highest inband spectral density. Therefore the applying equipment meets the require ment.
- See next pages for actual measured spectrum plots.


Minimum Standard:	$\leq 20 \mathrm{dBc}$
-------------------	-------------------------

Lower edge

Date: 6.AUG.2020 11:45:39

Upper edge

Date: 6.AUG.2020 11:50:57

3.2.5 Conducted Spurious Emissions

Procedure:

The test follows KDB558074. The conducted spurious emissions were measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels..

After the trace being stable, set the marker on the peak of any spurious emission recorded.

The spectrum analyzer is set to:

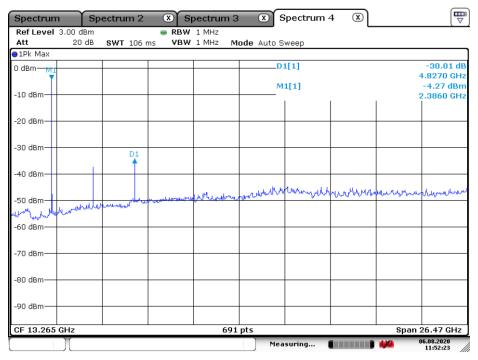
Span = wide enough to capture the peak level of the in-band emission and all spurious emissions

RBW = 100 kHz Sweep = auto

VBW = 100 kHz Detector function = peak

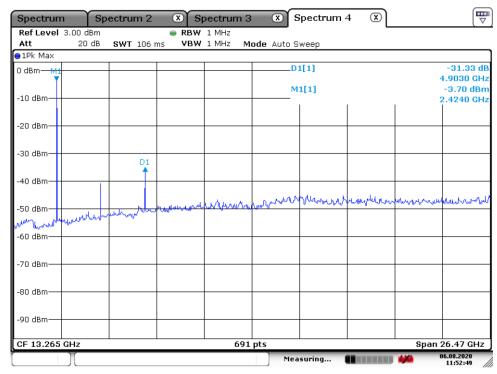
7Trace = max hold

Measurement Data: Complies

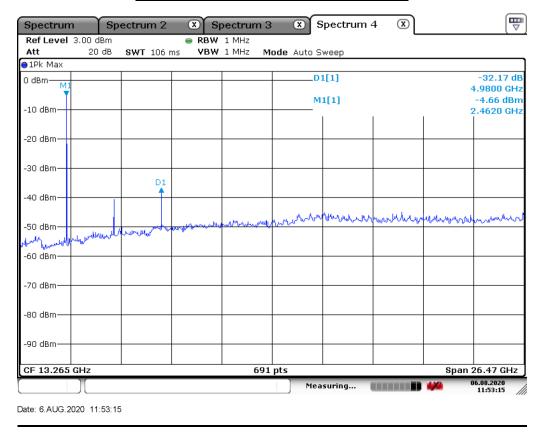

- All conducted emission in any 100 kHz bandwidth outside of the spread spectrum band was at least 20 dB lower than the highest inband spectral density. Therefore the applying equipment meets the require ment.
- See next pages for actual measured spectrum plots.

Minimum Standard:	> 20 dBc

Measurement Setup


Same as the Chapter 3.2.1 (Figure 1)

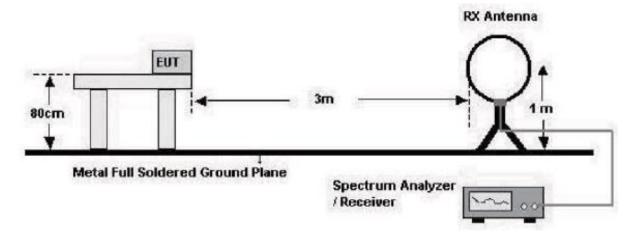
<u>Unwanted Emission – Low Channel</u> Frequency Range = 30 MHz ~ 26.5 GHz


Date: 6.AUG.2020 11:52:24

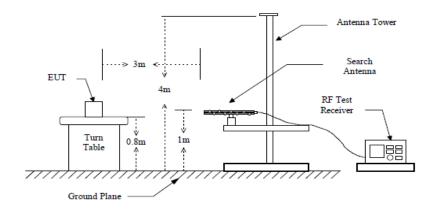
<u>Unwanted Emission – Middle Channel</u> <u>Frequency Range = 30 MHz ~ 26.5 GHz</u>

Date: 6.AUG.2020 11:52:49

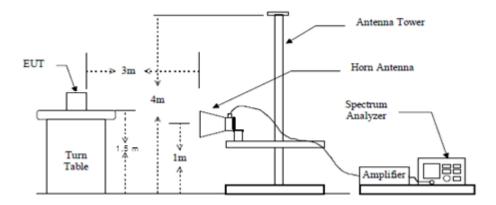
<u>Unwanted Emission – High Channel</u> Frequency Range = 30 MHz ~ 26.5 GHz


3.2.6 Radiated Spurious Emissions

Procedure:


Radiated emissions from 30 MHz to 25 GHz were measured according to the methods defines in ANSI C63.10-2013. The EUT is a placed on as turn table. For emissions testing at or below 1 GHz, the table height shall be 0.8 m above the reference ground plane. For emission measurements above 1 GHz, the table height shall be 1.5 m. The turn table shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes and measurement procedures for electric field radiated emissions above 1 GHz the EUT measurement is to be made "while keeping the antenna in the 'cone of radiation' from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response." is still within the 3dB illumination BW of the measurement antenna.

The EUT configureal to transmit continuously(D $\geq 98\%$)/ Duty Factor = 0


below 30 MHz

below 1 GHz (30 MHz to 1 GHz)

above 1 GHz

Measurement Data: Complies

- See next pages for actual measured data.
- 30 MHz or less Although these tests were performed other than open field test site, adequate comparis on measurements were confirmed against 10m open field test site. Therefore, sufficient tests were mad e to demonstrate that the alternative site produces results that correlated with the one of tests made in an open field site based on KDB 414788.
- No other emissions were detected at a level greater than 20 dB below limit include from 9 kHz to 30MHz.

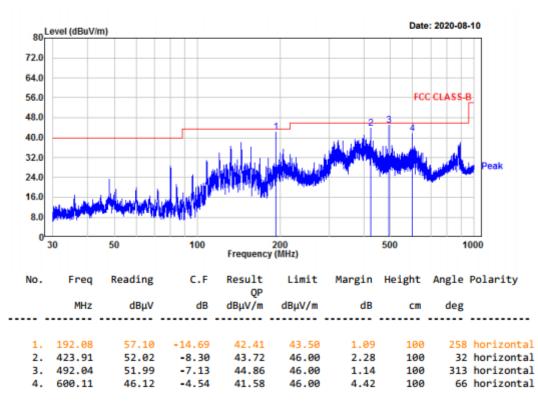
Minimum Standard: FCC Part 15.209(a)

Frequency (MHz)	Limit (uV/m) @ 3 m
0.009 ~ 0.490	2400/F(kHz) (@ 300 m)
0.490 ~ 1.705	24000/F(kHz) (@ 30 m)
1.705 ~ 30	30(@ 30 m)
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

Radiated Emissions

4, Songjuro 236Beon-gil, yanggi-myeon, Yongin-si, Gyeonggi-do, Korea


Tel: +82-31-3236008,9 Fax: +82-31-3236010

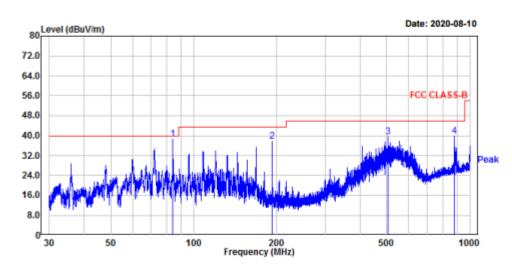
www.ltalab.com

EUT/Model No.: Temp/Humi:

Test Mode : LOW Tested by:

Power :

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain



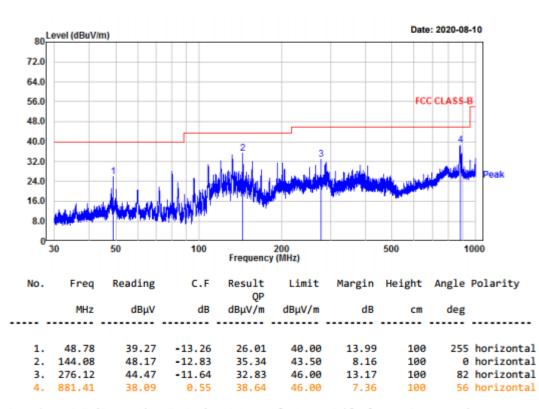
Tel: +82-31-3236008,9 Fax: +82-31-3236010

www.ltalab.com

EUT/Model No.: Temp/Humi:

Test Mode : LOW Tested by:

No.	Freq MHz	Reading dBμV	C.F dB	Result QP dBμV/m	Limit dBµV/m	Margin dB	Height cm	Angle i	Polarity
1. 2. 3.	83.96 192.17 504.04	56.76 52.52 46.46	-18.10 -14.70 -6.90	38.66 37.82 39.56	40.00 43.50 46.00	1.34 5.68 6.44	100 100 100	214 60	vertical vertical vertical

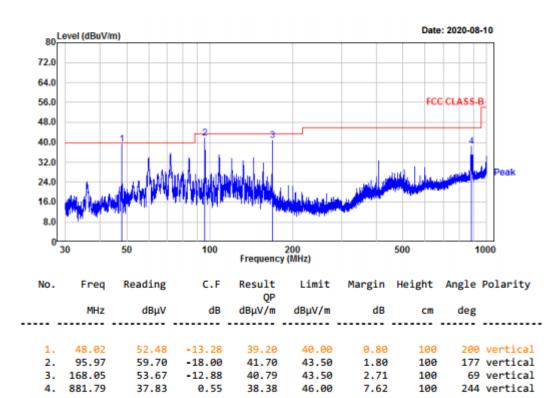

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

Yongin-si, Gyeonggi-do, Korea

Tel: +82-31-3236008,9 Fax: +82-31-3236010 www.ltalab.com

EUT/Model No.: Temp/Humi:
Test Mode : MID Tested by:
Power :

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

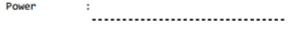

Yongin-si, Gyeonggi-do, Korea

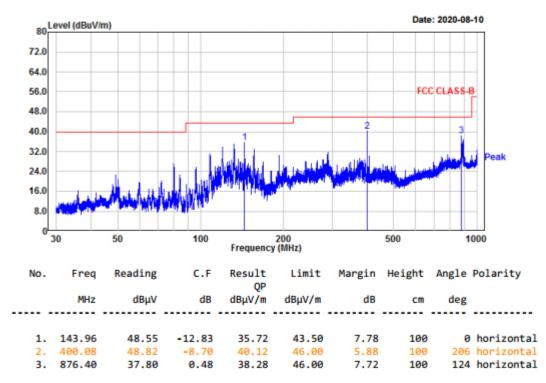
Tel: +82-31-3236008,9 Fax: +82-31-3236010

www.ltalab.com

EUT/Model No.: Temp/Humi:

Test Mode : MID Tested by:


Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain



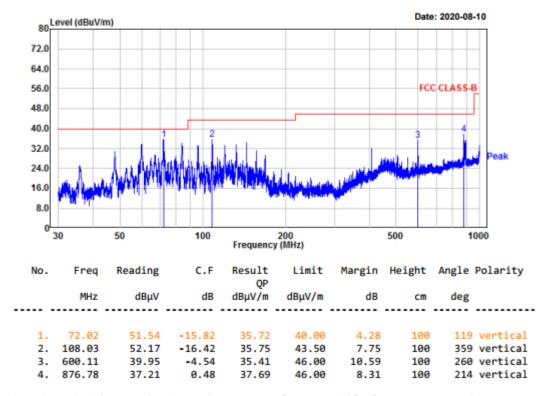
Tel: +82-31-3236008,9 Fax: +82-31-3236010 www.ltalab.com

EUT/Model No.: Temp/Humi:

Test Mode : HIGH Tested by:

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

Yongin-si, Gyeonggi-do, Korea


Tel: +82-31-3236008,9 Fax: +82-31-3236010

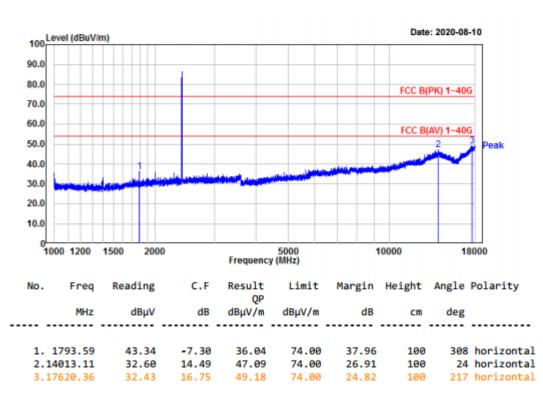
www.ltalab.com

EUT/Model No.: Temp/Humi:

Test Mode : HIGH Tested by:

Power :

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain



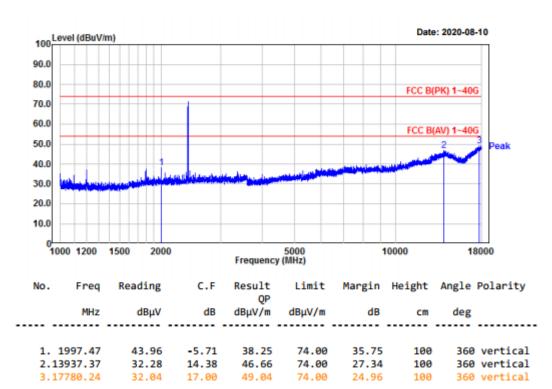
Yongin-si, Gyeonggi-do, Korea

Tel: +82-31-3236008,9 Fax: +82-31-3236010 www.ltalab.com

EUT/Model No.: Temp/Humi:

Test Mode : LOW Tested by:

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain



Yongin-si, Gyeonggi-do, Korea

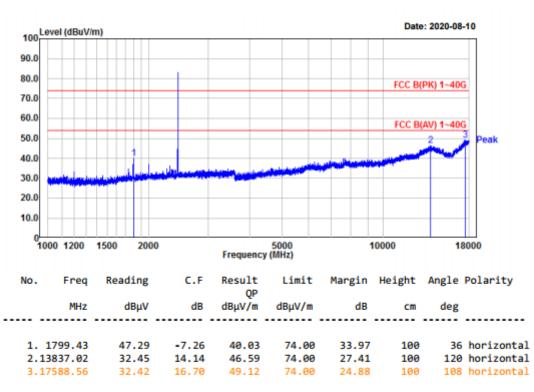
Tel: +82-31-3236008,9 Fax: +82-31-3236010 www.ltalab.com

EUT/Model No.: Temp/Humi: Test Mode : LOW Tested by:

Power

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

Yongin-si, Gyeonggi-do, Korea

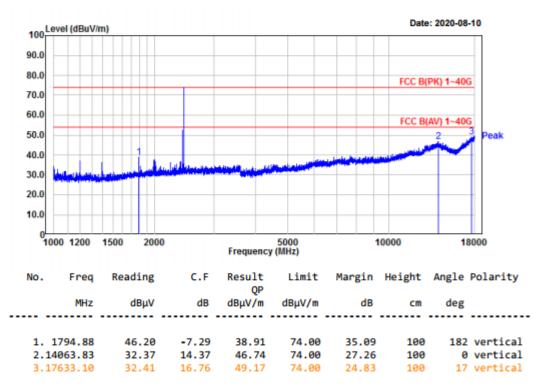

Tel: +82-31-3236008,9 Fax: +82-31-3236010

www.ltalab.com

EUT/Model No.: Temp/Humi:

Test Mode : MID Tested by:

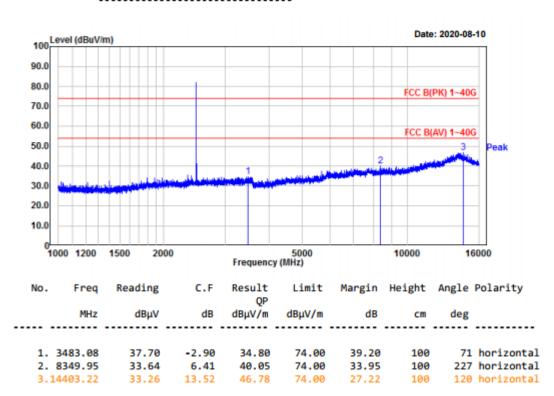
Power :


Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

Yongin-si, Gyeonggi-do, Korea

Tel: +82-31-3236008,9 Fax: +82-31-3236010 www.ltalab.com

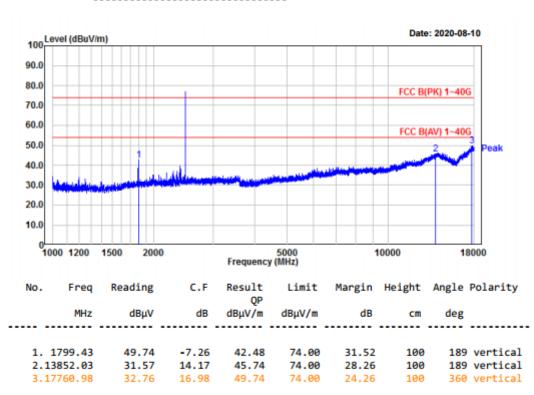
EUT/Model No.: Temp/Humi:
Test Mode : MID Tested by:
Power :


Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

Tel: +82-31-3236008,9 Fax: +82-31-3236010 www.ltalab.com

EUT/Model No.: Temp/Humi:

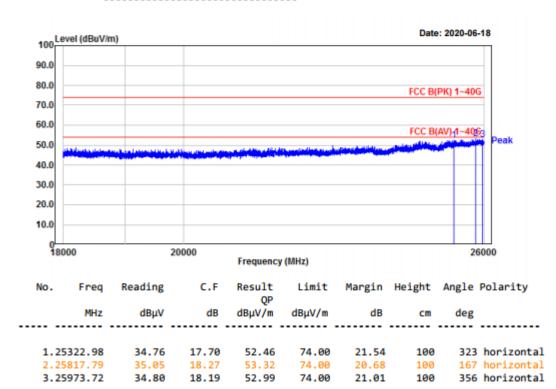
Test Mode : HIGH Tested by:



Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

Tel: +82-31-3236008,9 Fax: +82-31-3236010 www.ltalab.com

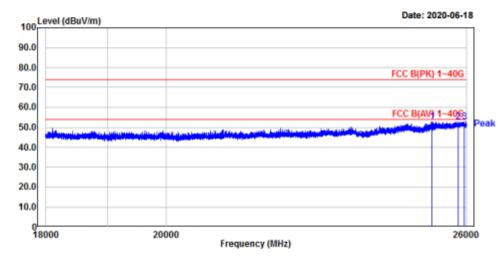
Test Mode : HIGH Tested by:


Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

Tel: +82-31-3236008,9 Fax: +82-31-3236010 www.ltalab.com

EUT/Model No.: Temp/Humi: 23 'C / 38 % R.H.

Test Mode : LOW Tested by:


Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

Tel: +82-31-3236008,9 Fax: +82-31-3236010 www.ltalab.com

EUT/Model No.: Temp/Humi: 23 'C / 38 % R.H.

Test Mode : LOW Tested by:

	No.	Freq	Reading	C.F	Result QP	Limit	Margin	Height	Angle	Polarity
		MHz	dΒμV	dB	dBμV/m	dBμV/m	dB	cm	deg	
-										
	1.25	227.71	35.35	17.41	52.76	74.00	21.24	100	360	vertical
	2.25	815.42	34.40	18.27	52.67	74.00	21.33	100	209	vertical
	2 25	050 40	24 71	10 10	E2 00	74 00	21 10	100	106	ventical

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

Yongin-si, Gyeonggi-do, Korea

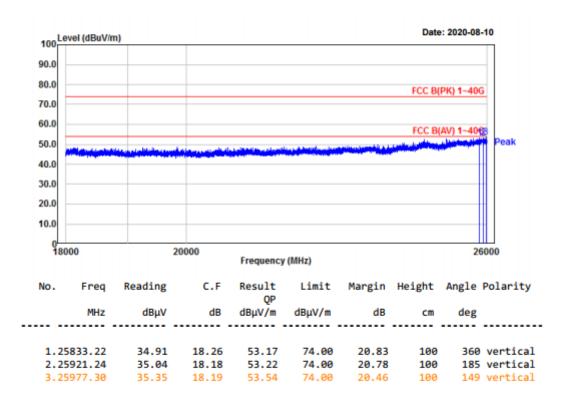
Tel: +82-31-3236008,9 Fax: +82-31-3236010 www.ltalab.com

EUT/Model No.: Temp/Humi: 23 'C / 38 % R.H.

Test Mode : MID Tested by:

No.	Freq	Reading	C.F	Result OP	Limit	Margin	Height	Angle P	olarity
	MHz	dΒμV	dB	dBμV/m	dBμV/m	dB	cm	deg	
1.7	24628.47	35.36	17.12	52.48	74.00	21.52	100	123	horizontal
2.7	25336.95	36.01	17.73	53.74	74.00	20.26	100	338	horizontal
3.2	25803.55	34.96	18.28	53.24	74.00	20.76	100	186	horizontal

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain



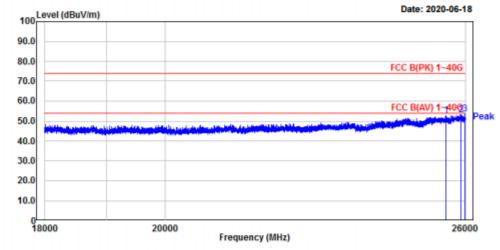
Yongin-si, Gyeonggi-do, Tel: +82-31-3236008,9

Fax: +82-31-3236010 www.ltalab.com

EUT/Model No.: Temp/Humi: 23 'C / 38 % R.H.

Test Mode : MID Tested by:

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain



Yongin-si, Gyeonggi-do, Korea Tel: +82-31-3236008,9

Tel: +82-31-3236008,9 Fax: +82-31-3236010 www.ltalab.com

EUT/Model No.: Temp/Humi: 23 'C / 38 % R.H.

Test Mode : HIGH Tested by:

Polarity	Angle	Height	Margin	Limit	Result OP	C.F	Reading	Freq	No.
	deg	cm	dB	dBμV/m	dBμV/m	dB	dΒμV	MHz	
horizontal	178	100	21.10	74.00	52.90	18.12	34.78	5569.78	1.29
horizontal	320	100	20.76	74.00	53.24	18.19	35.05	5903.38	2.2
horizontal	204	100	20.56	74.00	53.44	18.19	35.25	5991.63	3.29

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

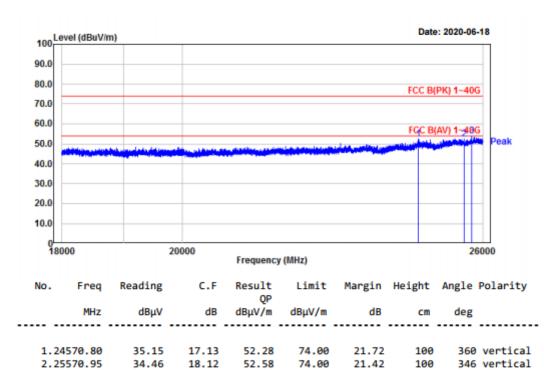
346 vertical

20.15 100 357 vertical

2.25570.95

3.25752.60

4, Songjuro 236Beon-gil, yanggi-myeon, Yongin-si, Gyeonggi-do, Korea


Tel: +82-31-3236008,9

Fax: +82-31-3236010

www.ltalab.com

EUT/Model No.: Temp/Humi: 23 'C / 38 % R.H.

Test Mode Tested by:

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

74.00

53.85 74.00

34.46 18.12 52.58

35.62 18.23

3.2.7 AC Conducted Emissions

Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

Measurement Data: NT

Minimum Standard: FCC Part 15.207(a) / EN 55022

Frequency Range	quasi-peak	Average
0.15 ~ 0.5	66 to 56 *	56 to 46 *
0.5 ~ 5	56	46
5 ~ 30	60	50

^{*} Note: This product operates only with battery

Ref. No.: LR500112009A

APPENDIX TEST EQUIPMENT USED FOR TESTS

	Use	Description	Model No.	Serial No.	Manufacturer	Interval	Last Cal. Date
1		Signal Analyzer (9 kHz ~ 30 GHz)	FSV30	100757	R&S	1 year	2019-09-06
2		SYNTHESIZED CW GENERATOR	83711B	US34490456	HP	1 year	2020-03-16
3		Attenuator (3 dB)	8491A	37822	HP	1 year	2019-09-07
4		Attenuator (10 dB)	8491A	63196	HP	1 year	2019-09-07
5		EMI Test Receiver (~7 GHz)	ESCI7	100722	R&S	1 year	2019-09-07
6		RF Amplifier (~1.3 GHz)	8447D OPT 010	2944A07684	HP	1 year	2019-09-07
7		RF Amplifier (1~26.5 GHz)	8449B	3008A02126	HP	1 year	2020-03-21
8		Horn Antenna (1~18 GHz)	3115	00114105	ETS	2 year	2019-04-27
9		DRG Horn (Small)	3116B	81109	ETS-Lindgren	2 year	2020-05-03
10		DRG Horn (Small)	3116B	133350	ETS-Lindgren	2 year	2020-05-03
11		TRILOG Antenna	VULB 9160	9160-3237	SCHWARZBECK	2 year	2019-04-17
12		Temp.Humidity Data Logger	SK-L200TH II A	00801	SATO	1 year	2019-11-23
13		DC Power Supply	6674A	3637A01657	Agilent	-	-
14		AC Power Supply	HK-80	LR001	DAERIMTECH	-	-
15		Power Meter	EPM-441A	GB32481702	HP	1 year	2020-03-20
16		Power Sensor	8481A	3318A94972	HP	1 year	2020-09-06
17		Audio Analyzer	8903B	3729A18901	HP	1 year	2019-09-07
18		Modulation Analyzer	8901B	3749A05878	HP	1 year	2019-09-07
19		TEMP & HUMIDITY Chamber	YJ-500	LTAS06041	JinYoung Tech	1 year	2019-09-07
20		Stop Watch	HS-3	812Q08R	CASIO	2 year	2020-03-21
21		LISN	KNW-407	8-1430-1	Kyoritsu	1 year	2019-09-07
22		Two-Lime V-Network	ESH3-Z5	893045/017	R&S	1 year	2020-03-20
23		Highpass Filter	WHKX1.5/15G-10SS	74	Wainwright Instruments	1 year	2020-03-19
24		Highpass Filter	WHKX3.0/18G-10SS	118	Wainwright Instruments	1 year	2020-03-19
25		OSP120 BASE UNIT	OSP120	101230	R&S	1 year	2020-03-21
26		Signal Generator(100 kHz ~ 40 GHz)	SMB100A	177621	R&S	1 year	2020-03-20
27		Vector Signal Generator(9kHz ~ 6 GHz)	SMBV100A	255081	R&S	1 year	2020-03-20
28		Signal Analyzer (10 Hz ~ 40 GHz)	FSV40	101367	R&S	1 year	2020-03-20