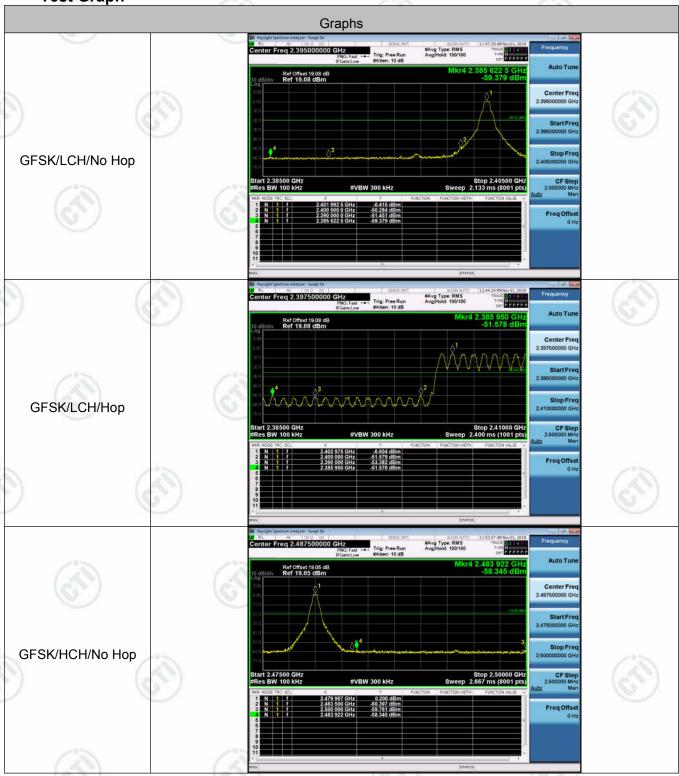


Report No.: EED32K00287202 Page 31 of 74

Appendix F): Band-edge for RF Conducted Emissions

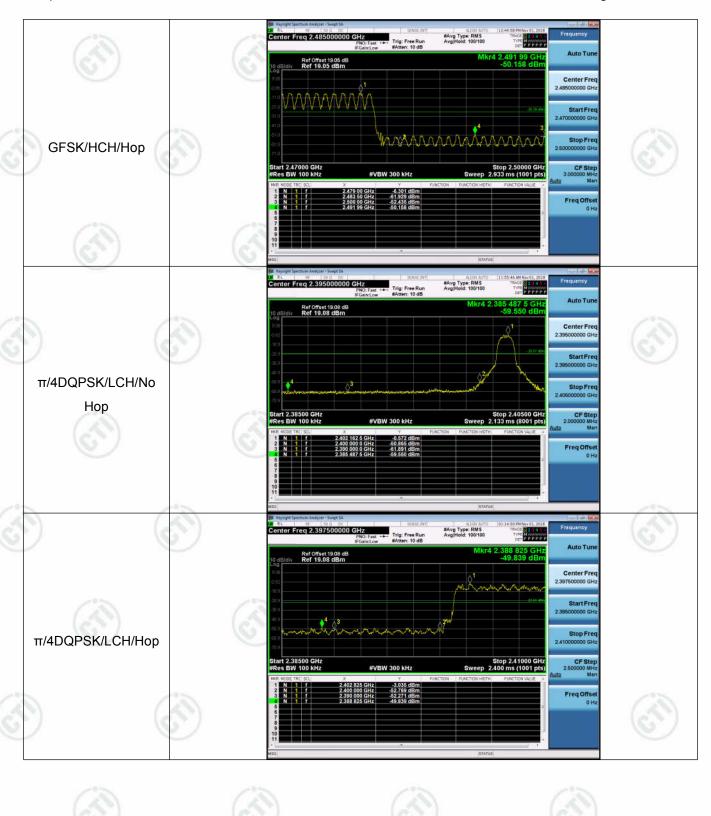
Result Table

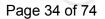
Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequency Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict
05014		0.400	-0.415	Off	-59.379	-20.42	PASS
GFSK	LCH	2402	-6.604	On	-51.578	-26.6	PASS
0-04			0.200	Off	-58.345	-19.8	PASS
GFSK	HCH	2480	-6.301	On	-50.158	-26.3	PASS
445.0504		0.400	-0.572	Off	-59.550	-20.57	PASS
π/4DQPSK	LCH	2402	-3.035	On	-49.839	-23.04	PASS
D			0.159	Off	-58.725	-19.84	PASS
π/4DQPSK	HCH	2480	-2.692	On	-48.685	-22.69	PASS
			-0.510	Off	-58.635	-20.51	PASS
8DPSK	LCH	2402	-2.849	On	-49.458	-22.85	PASS
00000			0.031	Off	-59.280	-19.97	PASS
8DPSK	HCH	2480	-2.356	On	-46.834	-22.36	PASS

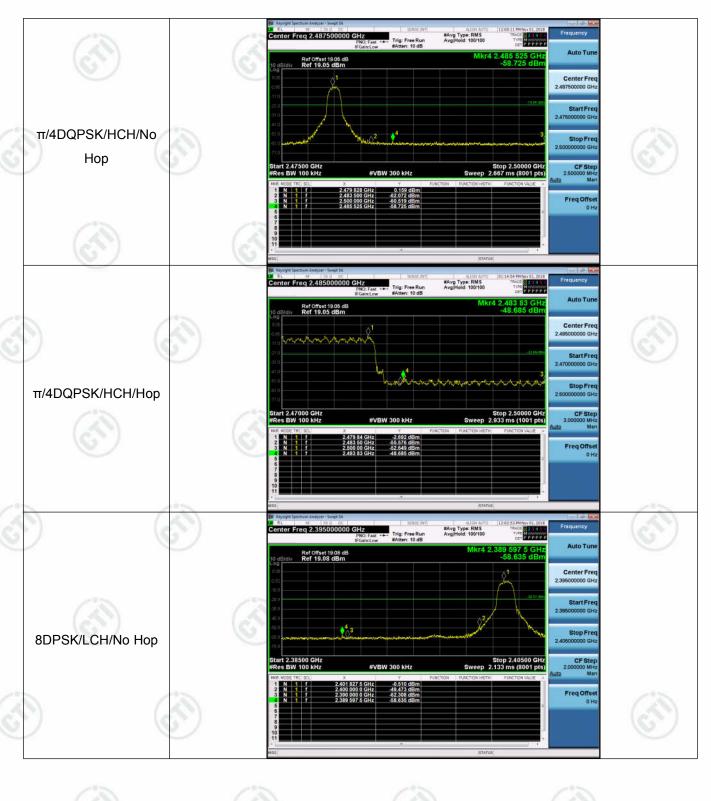


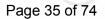
 $Hot line; 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

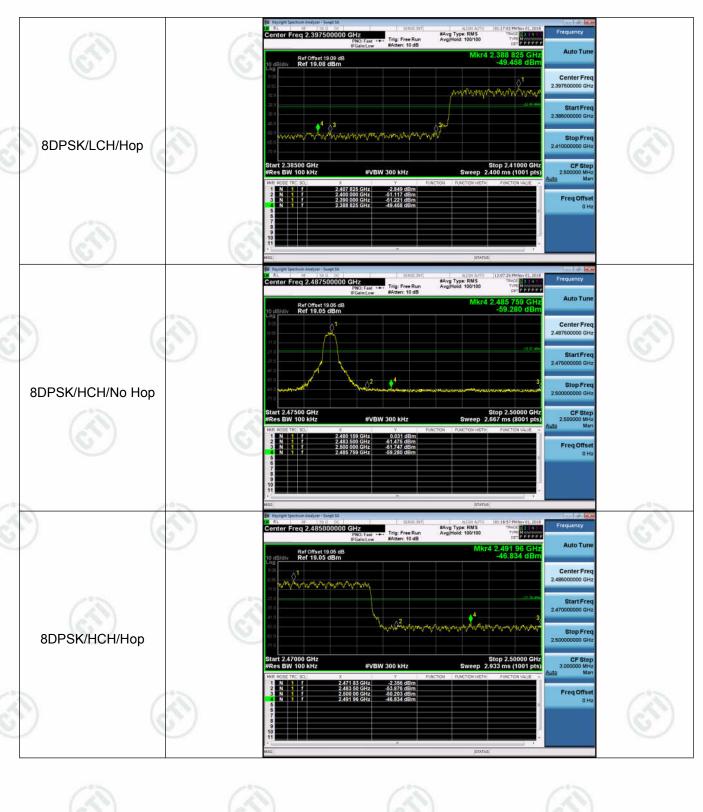
Page 32 of 74






Page 33 of 74






Report No. : EED32K00287202 Page 36 of 74

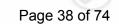
Appendix G): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	-0.54	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	MCH	-0.261	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	HCH	0.081	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	LCH	-0.583	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	MCH	-0.314	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	HCH	0.071	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	LCH	-0.584	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	MCH	-0.322	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	HCH	0.027	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graph





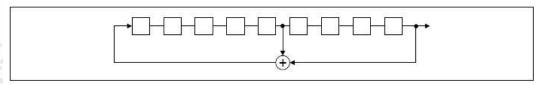


Report No.: EED32K00287202 Page 40 of 74


Report No.: EED32K00287202 Page 43 of 74

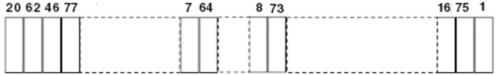
Appendix H): Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

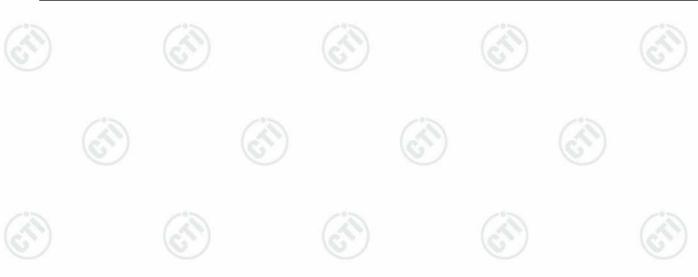
Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence


An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

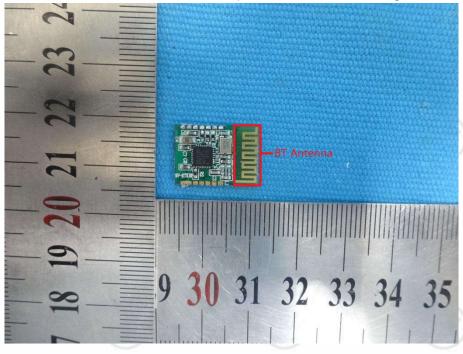
The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Report No.: EED32K00287202 Page 46 of 74

Appendix I): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

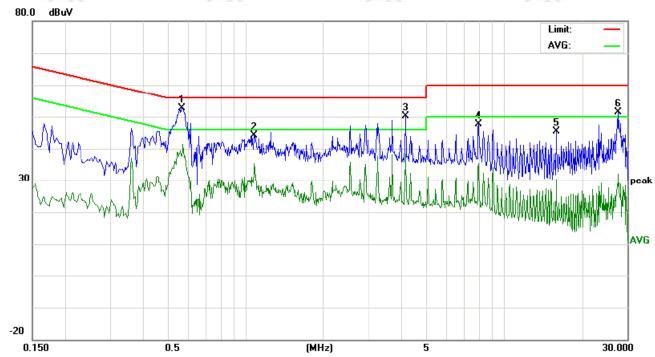
15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PCB antenna and no consideration of replacement. The best case gain of the antenna is 4dBi.

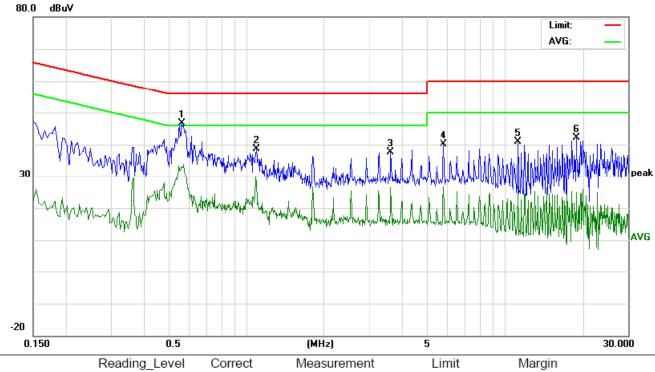
Report No. : EED32K00287202 Page 47 of 74


Appendix J): AC Power Line Conducted Emission

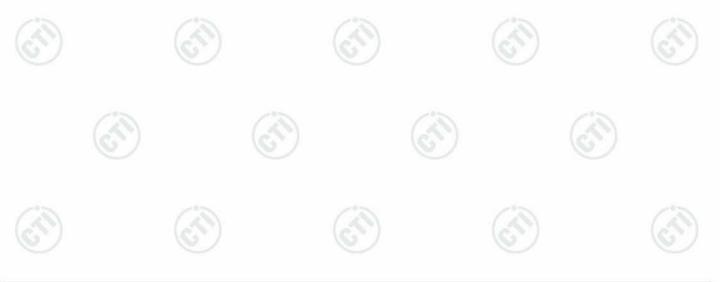
1000		Power Line Cond	100	n							
t Procedure:	I .	Test frequency range :150Kl			- سلمما						
		1)The mains terminal disturb									
		2) The EUT was connected to AC power source through a LISN 1 (Line Impedar Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The stabilization Network is a superscript of the stabilization of t									
	power cables of all other units of the EUT were connected to a second LISN which was bonded to the ground reference plane in the same way as the LISN										
	(63)	for the unit being measu									
	100	multiple power cables to	a single LISN provided	the rating of the LISI	۷ was						
		exceeded.									
		3)The tabletop EUT was pla									
		reference plane. And for horizontal ground referen	ice plane,								
		4) The test was performed									
		EUT shall be 0.4 m from reference plane was bon									
		1 was placed 0.8 m from									
	/3	ground reference plane									
	(63)	plane. This distance was	between the closest p	oints of the LISN 1 a	ind th						
	6	All other units of the EUT	and associated equip	ment was at least 0.8	3 m f						
		LISN 2.									
		In order to find the maxim of the interface cables me									
		conducted measurement		ing to Airoi Cos. To o	""						
(6)		(6,5)		(6)							
		Frequency range (MHz)	Limit (dBμV)							
			Quasi-peak	Average	4						
	(4)	0.15-0.5 0.5-5	66 to 56* 56	56 to 46*	-16						
	6	/	1	/	- 13						
		5-30	60	the fraguency in the							
		* The limit decreases linearl MHz to 0.50 MHz. NOTE: The lower limit is ap			e ran						
		NOTE. The lower limit is ap	plicable at the transition	rirequericy							
urement Da		formed as the live and never	al lines with pools dates	(6,2)							
		formed on the live and neutra neasurement were performe			missi						
ed.	verage	neadarement were performed	a at the hequenoics wit	ii maximizea peak ei	111001						

Page 48 of 74

	Nο	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasurem (dBuV)		Lin (dB			rgin dB)		
-	110.	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	D/F	Comment
_															Comment
	1	0.5700	42.66	40.05	29.29	9.84	52.50	49.89	39.13	56.00	46.00	-6.11	-6.87	Р	
	2	1.0859	34.34	31.57	25.44	9.81	44.15	41.38	35.25	56.00	46.00	-14.62	-10.75	Р	
9	3	4.1619	40.35	37.14	28.62	9.72	50.07	46.86	38.34	56.00	46.00	-9.14	-7.66	Р	
,	4	7.9819	37.86	34.21	25.68	9.81	47.67	44.02	35.49	60.00	50.00	-15.98	-14.51	Р	
	5	15.9579	35.22	32.58	20.09	10.20	45.42	42.78	30.29	60.00	50.00	-17.22	-19.71	Р	
	6	27.7540	41.11	38.57	22.01	10.19	51.30	48.76	32.20	60.00	50.00	-11.24	-17.80	Ρ	



Report No.: EED32K00287202 Page 49 of 74


Neutral line:

	No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	Measurement (dBuV)			o de la companya de			_		
-		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment	
	1	0.5660	36.81	33.25	22.94	9.84	46.65	43.09	32.78	56.00	46.00	-12.91	-13.22	Р		
Ī	2	1.0940	28.71	25.47	17.78	9.81	38.52	35.28	27.59	56.00	46.00	-20.72	-18.41	Р		
ì	3	3.6300	27.84	24.14	16.67	9.72	37.56	33.86	26.39	56.00	46.00	-22.14	-19.61	Р		
١	4	5.8179	30.29	27.56	16.95	9.72	40.01	37.28	26.67	60.00	50.00	-22.72	-23.33	Р		
	5	11.2779	30.71	27.35	16.57	10.05	40.76	37.40	26.62	60.00	50.00	-22.60	-23.38	Р		
	6	18.8859	31.89	28.21	14.78	10.17	42.06	38.38	24.95	60.00	50.00	-21.62	-25.05	Р		

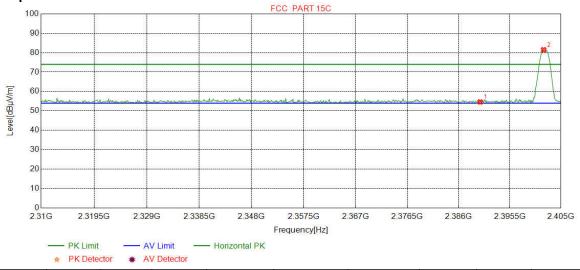
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: EED32K00287202 Page 50 of 74

Appendix K): Restricted bands around fundamental frequency (Radiated)

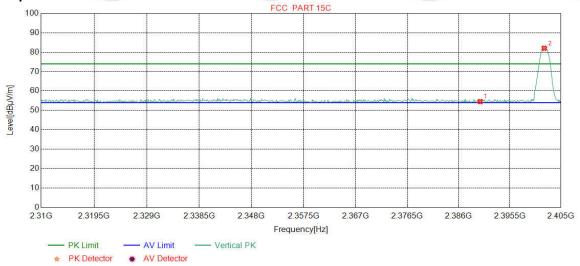
Receiver Setup:		Frequency	Detector	RBW	VBW	Remark]			
		30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	1			
	-		Peak	1MHz	3MHz	Peak	-0			
	(65)	Above 1GHz	Peak	1MHz	10Hz	Average	Š			
Test Procedure:	Belo	Below 1GHz test procedure as below:								
	b. 7 c. 7	The EUT was placed at a 3 meter semi-and tetermine the position of the EUT was set 3 mas mounted on the The antenna height is determine the maximolarizations of the a	echoic camber. The nof the highest rancters away from top of a variable-top of a variable-top one um value of the fintenna are set to	ne table wandiation. The interfering ante meter to four to the strength make the r	ence-receinna tower. Sur meters Dur Both horneasureme	of the second se	wh und			
	t e. F f. F	the antenna was tuned to heights from 1 meter to 4 meters and the rotata table was turned from 0 degrees to 360 degrees to find the maximum real e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.								
	Abo	ve 1GHz test proce	dure as below:							
	h. k	Different between ab o fully Anechoic Cha neter(Above 18GHz b. Test the EUT in the The radiation measur Fransmitting mode, a Repeat above proced	mber and change the distance is 1 e lowest channel rements are perfo nd found the X ax	e form table meter and , the Highe rmed in X, kis position	0.8 meter table is 1.5 st channel Y, Z axis p ing which i	to 1.5 meter). positioning for t is worse case				
Limit:		Frequency	Limit (dBµV	/m @3m)	Rer	mark				
		30MHz-88MHz	40.0)	Quasi-pe	eak Value				
		88MHz-216MHz	43.5	5	Quasi-pe	eak Value				
		216MHz-960MHz	46.0)	Quasi-pe	eak Value				
		960MHz-1GHz	54.0)	Quasi-peak Value					
					A					
		Above 1GHz	54.0 74.0			ye Value Value				



Report No.: EED32K00287202 Page 51 of 74

Test plot as follows:

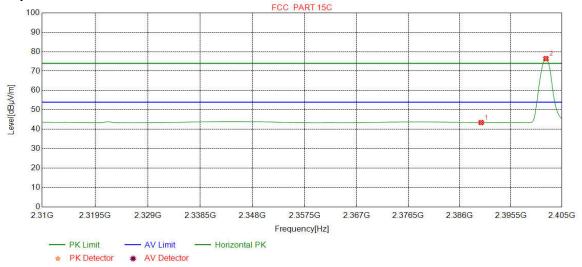
Mode:	GFSK Transmitting	Channel:	2402
Remark:	PK		


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	45.59	54.59	74.00	19.41	Pass	Н	Peak
2	2401.7897	32.26	13.31	-36.60	72.55	81.52	74.00	-7.52	Pass	Н	Peak

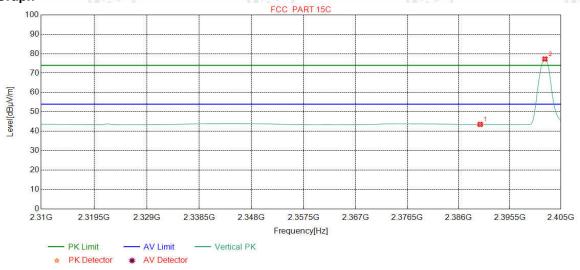
Mode:	GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	45.52	54.52	74.00	19.48	Pass	V	Peak
2	2401.9086	32.26	13.31	-36.60	73.05	82.02	74.00	-8.02	Pass	V	Peak

Page 52 of 74

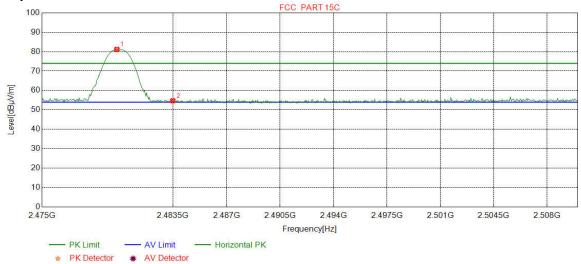
Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV	115	


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	34.46	43.46	54.00	10.54	Pass	Н	Average
2	2402.0275	32.26	13.31	-36.60	67.45	76.42	54.00	-22.42	Pass	Н	Average

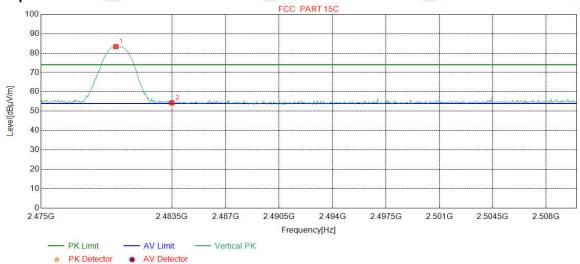
Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	34.53	43.53	54.00	10.47	Pass	V	Average
2	2402.0275	32.26	13.31	-36.60	68.29	77.26	54.00	-23.26	Pass	V	Average

Page 53 of 74

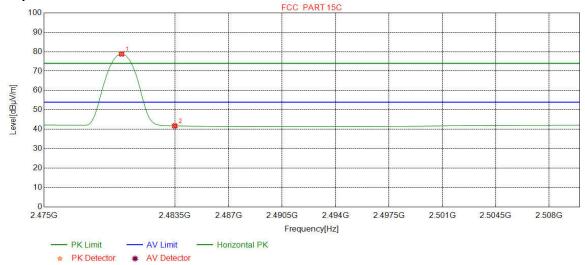
Mode:	GFSK Transmitting	Channel:	2480
Remark:	PK	125	


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2479.8623	32.37	13.39	-36.77	72.20	81.19	74.00	-7.19	Pass	Н	Peak
2	2483.5000	32.38	13.38	-36.80	45.72	54.68	74.00	19.32	Pass	Н	Peak

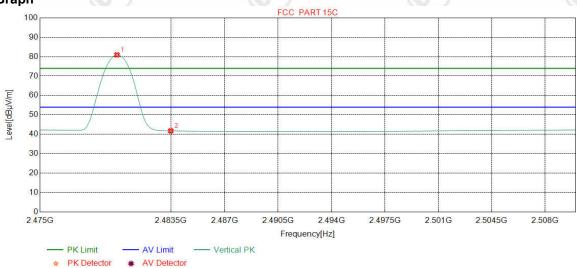
Mode:	GFSK Transmitting	Channel:	2480
Remark:	PK		/

Test Graph


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2479.8623	32.37	13.39	-36.77	74.38	83.37	74.00	-9.37	Pass	V	Peak
2	2483.5000	32.38	13.38	-36.80	45.34	54.30	74.00	19.70	Pass	V	Peak

Page 54 of 74

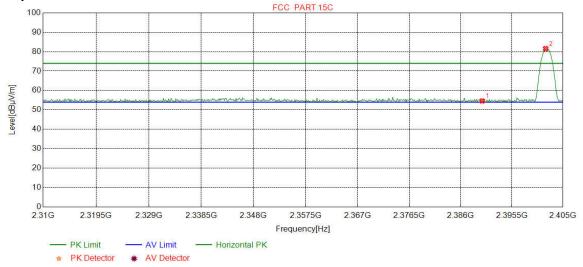
Mode:	GFSK Transmitting	Channel:	2480
Remark:	AV	115	


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2480.0375	32.37	13.39	-36.77	69.81	78.80	54.00	-24.80	Pass	Н	Average
2	2483.5000	32.38	13.38	-36.80	32.76	41.72	54.00	12.28	Pass	Н	Average

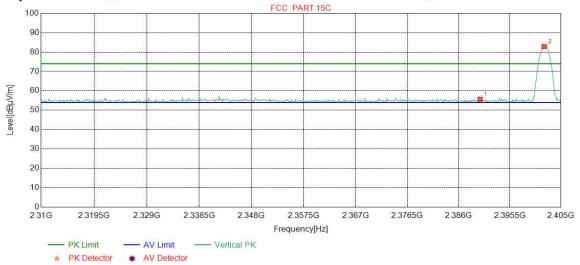
Mode:	GFSK Transmitting	Channel:	2480
Remark:	AV	713	

Test Graph


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2479.9937	32.37	13.39	-36.77	71.95	80.94	54.00	-26.94	Pass	V	Average
2	2483.5000	32.38	13.38	-36.80	32.79	41.75	54.00	12.25	Pass	V	Average

Page 55 of 74

Mode:	π/4DQPSK Transmitting	Channel:	2402
Remark:	PK	102	

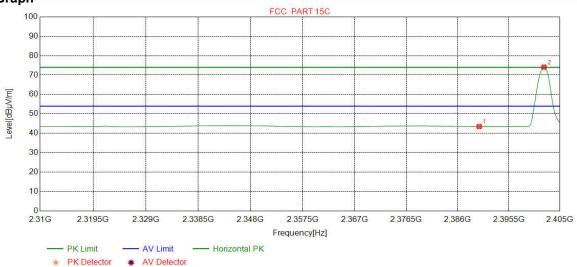

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	45.60	54.60	74.00	19.40	Pass	Н	Peak
2	2401.7897	32.26	13.31	-36.60	72.59	81.56	74.00	-7.56	Pass	Н	Peak

Mode:	π/4DQPSK Transmitting	Channel:	2402
Remark:	PK		/

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	46.61	55.61	74.00	18.39	Pass	V	Peak
2	2401.9086	32.26	13.31	-36.60	73.90	82.87	74.00	-8.87	Pass	V	Peak



Page 56 of 74

Average

Mode:	π/4DQPSK Transmitting	Channel:	2402
Remark:	AV	37)	(0,)

Test Graph

Ant Cable Pream Reading Level Limit Margin Freq. gain NO Factor loss Result **Polarity** Remark [MHz] [dBµV] [dBµV/m] [dBµV/m] [dB] [dB] [dB] [dB] 1 2390.0000 32.25 13.37 -36.62 34.46 43.46 54.00 10.54 **Pass** Н Average

65.10

Mode:	π/4DQPSK Transmitting	Channel:	2402
Remark:	AV		()

74.07

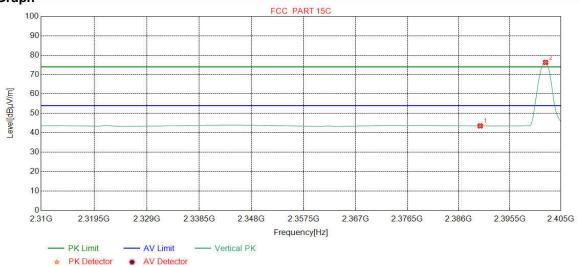
54.00

-20.07

Pass

Н

Test Graph

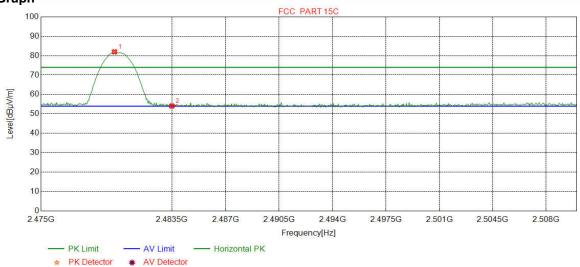

2402.0275

32.26

13.31

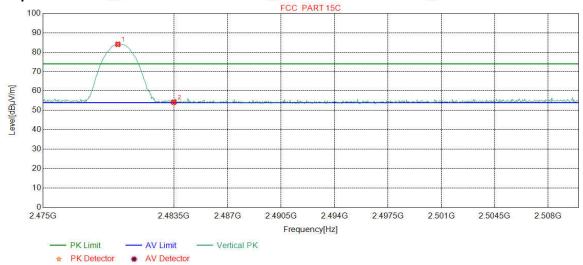
-36.60

2


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	34.52	43.52	54.00	10.48	Pass	V	Average
2	2402.1464	32.26	13.31	-36.60	67.29	76.26	54.00	-22.26	Pass	V	Average

Dogo	5 7	of 74	
Page	ગ /	01/4	

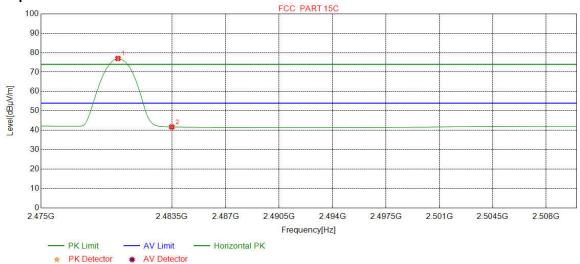
Mode:	π/4DQPSK Transmitting	Channel:	2480
Remark:	PK	(0,)	(0,)


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2479.7747	32.37	13.39	-36.77	73.00	81.99	74.00	-7.99	Pass	Н	Peak
2	2483.5000	32.38	13.38	-36.80	45.10	54.06	74.00	19.94	Pass	Н	Peak

Mode:	π/4DQPSK Transmitting	Channel:	2480
Remark:	PK		/

Test Graph



NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2479.8623	32.37	13.39	-36.77	75.08	84.07	74.00	-10.07	Pass	V	Peak
2	2483.5000	32.38	13.38	-36.80	45.21	54.17	74.00	19.83	Pass	V	Peak

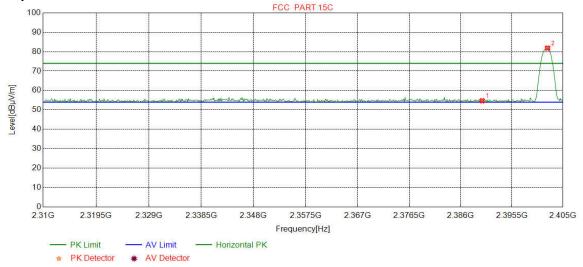
Mode:	π/4DQPSK Transmitting	Channel:	2480
Remark:	AV	37)	(0,2)


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2479.9937	32.37	13.39	-36.77	68.00	76.99	54.00	-22.99	Pass	Н	Average
2	2483.5000	32.38	13.38	-36.80	32.76	41.72	54.00	12.28	Pass	Н	Average

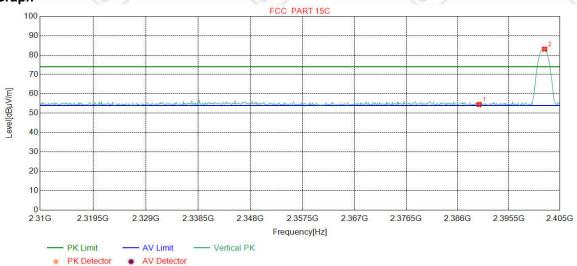
Mode:	π/4DQPSK Transmitting	Channel:	2480
Remark:	AV		/

Test Graph


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2480.0375	32.37	13.39	-36.77	70.21	79.20	54.00	-25.20	Pass	V	Average
2	2483.5000	32.38	13.38	-36.80	32.75	41.71	54.00	12.29	Pass	V	Average

Page 59 of 74

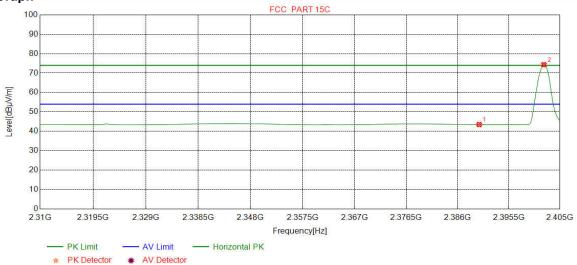
	Mode:	8DPSK Transmitting	Channel:	2402
1	Remark:	PK	10%	


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	45.68	54.68	74.00	19.32	Pass	Н	Peak
2	2402.1464	32.26	13.31	-36.60	72.87	81.84	74.00	-7.84	Pass	Н	Peak

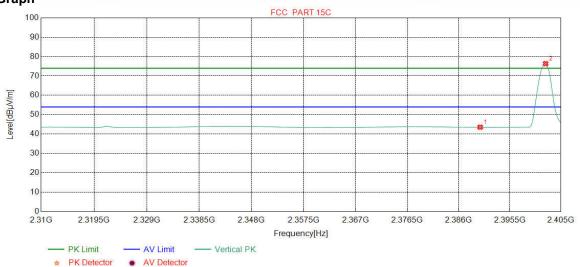
Mode:	8DPSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	45.48	54.48	74.00	19.52	Pass	V	Peak
2	2402.1464	32.26	13.31	-36.60	74.13	83.10	74.00	-9.10	Pass	V	Peak

1 446 00 01 7 7	Page	60	of	74
-----------------	------	----	----	----

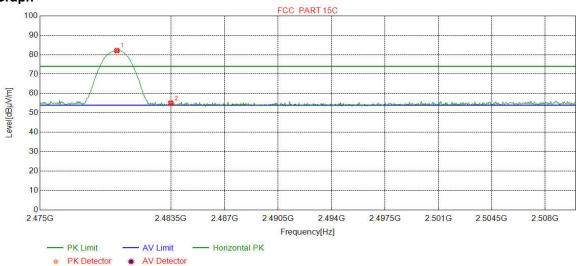
Mode:	8DPSK Transmitting	Channel:	2402
Remark:	AV	(0,0)	(0,1)


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	34.47	43.47	54.00	10.53	Pass	Н	Average
2	2402.0275	32.26	13.31	-36.60	65.36	74.33	54.00	-20.33	Pass	Н	Average

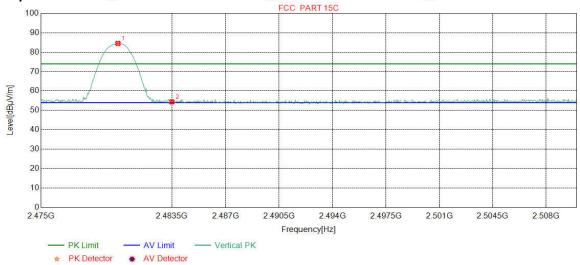
Mode:	8DPSK Transmitting	Channel:	2402
Remark:	AV		/

Test Graph



NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	34.51	43.51	54.00	10.49	Pass	V	Average
2	2402.1464	32.26	13.31	-36.60	67.39	76.36	54.00	-22.36	Pass	V	Average

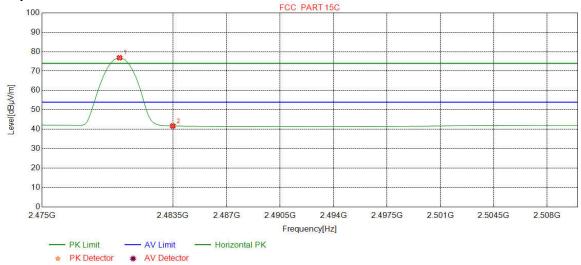
Mode:	8DPSK Transmitting	Channel:	2480
Remark:	PK	(6.5)	(0,2)


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2479.9937	32.37	13.39	-36.77	73.12	82.11	74.00	-8.11	Pass	Н	Peak
2	2483.5000	32.38	13.38	-36.80	46.06	55.02	74.00	18.98	Pass	Н	Peak

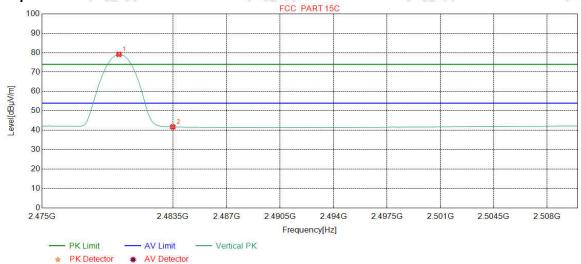
Mode:	8DPSK Transmitting	Channel:	2480
Remark:	PK		/

Test Graph


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2479.9937	32.37	13.39	-36.77	75.54	84.53	74.00	-10.53	Pass	V	Peak
2	2483.5000	32.38	13.38	-36.80	45.41	54.37	74.00	19.63	Pass	V	Peak

Page 62 of 74

Mode:	8DPSK Transmitting	Channel:	2480
Remark:	AV	10%	

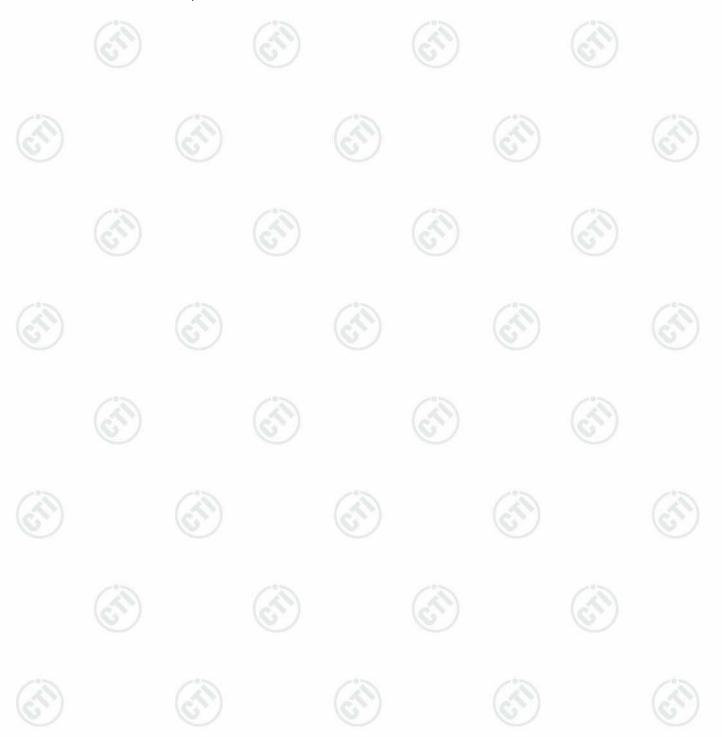

Test Graph

Cable Ant Pream Reading Level Limit Freq. Margin NO Result Polarity Factor loss gain Remark [MHz] [dBµV] [dBµV/m] [dBµV/m] [dB] [dB] [dB] [dB] 1 2480.0375 32.37 13.39 -36.77 67.87 76.86 54.00 -22.86 Pass Н Average 2 2483.5000 32.38 13.38 -36.80 32.74 41.70 54.00 12.30 Η Average Pass

Mode:	8DPSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2479.9937	32.37	13.39	-36.77	70.17	79.16	54.00	-25.16	Pass	V	Average
2	2483.5000	32.38	13.38	-36.80	32.77	41.73	54.00	12.27	Pass	V	Average


Page 63 of 74

Note:

- 1) Through Pre-scan transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of $\pi/4DQPSK$ modulation type, the 3-DH5 of data type is the worse case of 8DPSK modulation type in charge + transmitter mode.
- 2) As shown in this section, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak values are measured.
- 3) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No.: EED32K00287202 Page 64 of 74

Appendix L): Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 10Uz	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

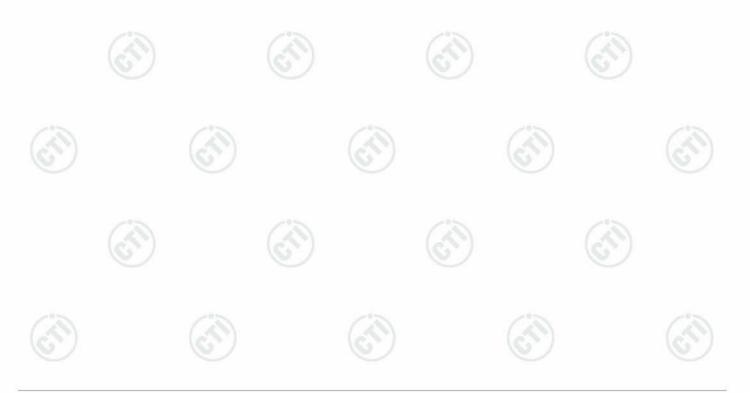
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Limit:

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-05	30
1.705MHz-30MHz	30	- (<u> </u>	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

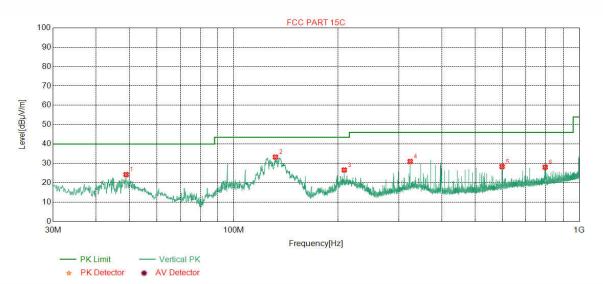
Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.



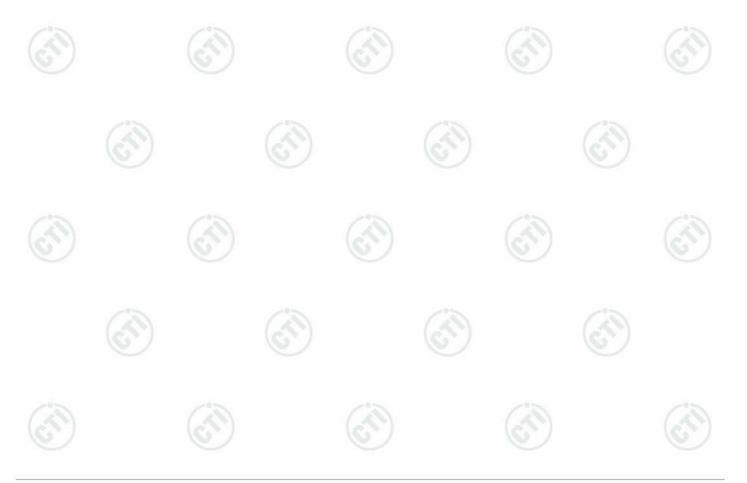
Report No.: EED32K00287202 Page 65 of 74

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	96.0636	10.37	1.13	-32.07	57.73	37.16	43.50	6.34	Pass	Horizontal
2	156.0156	7.76	1.46	-31.99	54.78	32.01	43.50	11.49	Pass	Horizontal
3	228.0938	11.63	1.79	-31.91	54.48	35.99	46.00	10.01	Pass	Horizontal
4	347.9978	14.26	2.22	-31.86	53.04	37.66	46.00	8.34	Pass	Horizontal
5	504.0864	17.08	2.68	-31.92	48.29	36.13	46.00	9.87	Pass	Horizontal
6	852.0602	21.52	3.51	-31.74	42.89	36.18	46.00	9.82	Pass	Horizontal



 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0755-33681700 \\$



NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	48.8199	13.20	0.79	-32.12	42.34	24.21	40.00	15.79	Pass	Vertical
2	132.0542	7.60	1.34	-32.01	56.32	33.25	43.50	10.25	Pass	Vertical
3	208.8859	11.13	1.71	-31.94	45.69	26.59	43.50	16.91	Pass	Vertical
4	324.0364	13.73	2.14	-31.81	46.92	30.98	46.00	15.02	Pass	Vertical
5	597.7008	18.95	2.94	-31.97	38.41	28.33	46.00	17.67	Pass	Vertical
6	796.5707	20.86	3.38	-32.01	35.81	28.04	46.00	17.96	Pass	Vertical

Report No. : EED32K00287202 Page 67 of 74

Transmitter Emission above 1GHz

Mod	e: GFSK Trans	smitting(1	-DH5)						Channel: 2402MHz			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1195.6391	28.10	2.66	-37.65	51.28	44.39	74.00	29.61	Pass	Н	Peak	
2	2632.7265	32.61	4.09	-36.65	47.80	47.85	74.00	26.15	Pass	Н	Peak	
3	4804.0000	34.50	4.55	-36.15	42.40	45.30	74.00	28.70	Pass	Н	Peak	
4	5331.4581	34.83	4.82	-35.94	45.35	49.06	74.00	24.94	Pass	Н	Peak	
5	7206.0000	36.31	5.81	-36.43	42.35	48.04	74.00	25.96	Pass	Н	Peak	
6	9608.0000	37.64	6.63	-36.79	43.50	50.98	74.00	23.02	Pass	Н	Peak	
7	1196.4393	28.10	2.66	-37.65	53.11	46.22	74.00	27.78	Pass	V	Peak	
8	2961.9924	33.14	4.44	-36.79	47.37	48.16	74.00	25.84	Pass	V	Peak	
9	4804.0000	34.50	4.55	-36.15	41.80	44.70	74.00	29.30	Pass	V	Peak	
10	6074.4824	35.81	5.23	-36.28	43.75	48.51	74.00	25.49	Pass	V	Peak	
11	7206.0000	36.31	5.81	-36.43	42.29	47.98	74.00	26.02	Pass	V	Peak	
12	9608.0000	37.64	6.63	-36.79	43.36	50.84	74.00	23.16	Pass	V	Peak	

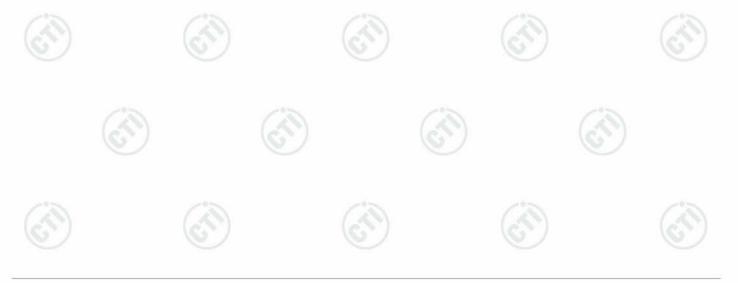
Mode	e: GFSK Tran	smitting(1	Channel: 2441MHz								
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1394.8790	28.29	2.89	-37.20	49.87	43.85	74.00	30.15	Pass	Н	Peak
2	2987.1974	33.18	4.51	-36.73	47.04	48.00	74.00	26.00	Pass	Н	Peak
3	4804.0000	34.50	4.55	-36.15	41.48	44.38	74.00	29.62	Pass	Н	Peak
4	6025.7276	35.81	5.27	-36.28	43.86	48.66	74.00	25.34	Pass	Н	Peak
5	7206.0000	36.31	5.81	-36.43	41.88	47.57	74.00	26.43	Pass	Н	Peak
6	9608.0000	37.64	6.63	-36.79	43.33	50.81	74.00	23.19	Pass	Н	Peak
7	1195.6391	28.10	2.66	-37.65	52.53	45.64	74.00	28.36	Pass	V	Peak
8	2015.4031	31.72	3.50	-36.75	47.58	46.05	74.00	27.95	Pass	V	Peak
9	3417.3417	33.37	4.51	-36.61	46.18	47.45	74.00	26.55	Pass	V	Peak
10	4804.0000	34.50	4.55	-36.15	40.72	43.62	74.00	30.38	Pass	V	Peak
11	7206.0000	36.31	5.81	-36.43	41.04	46.73	74.00	27.27	Pass	V	Peak
12	9608.0000	37.64	6.63	-36.79	43.43	50.91	74.00	23.09	Pass	V	Peak

 $Hot line; 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Page	\sim	_£	7 4
Page	nx	OT	74

Mode	Mode: GFSK Transmitting(1-DH5)									Channel: 2480MHz			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	1190.8382	28.09	2.67	-37.67	48.02	41.11	74.00	32.89	Pass	Н	Peak		
2	1814.5629	30.48	3.34	-36.86	46.71	43.67	74.00	30.33	Pass	Н	Peak		
3	3873.6874	33.70	4.35	-36.15	43.62	45.52	74.00	28.48	Pass	Н	Peak		
4	4960.0000	34.50	4.82	-36.20	41.71	44.83	74.00	29.17	Pass	Н	Peak		
5	7440.0000	36.54	5.85	-36.34	40.70	46.75	74.00	27.25	Pass	Н	Peak		
6	9920.0000	37.77	6.79	-36.82	42.91	50.65	74.00	23.35	Pass	Н	Peak		
7	1996.5993	31.68	3.47	-36.74	48.29	46.70	74.00	27.30	Pass	V	Peak		
8	3291.5542	33.32	4.56	-36.80	45.44	46.52	74.00	27.48	Pass	V	Peak		
9	4960.0000	34.50	4.82	-36.20	41.66	44.78	74.00	29.22	Pass	V	Peak		
10	5889.2139	35.62	5.06	-36.18	43.16	47.66	74.00	26.34	Pass	V	Peak		
11	7440.0000	36.54	5.85	-36.34	42.12	48.17	74.00	25.83	Pass	V	Peak		
12	9920.0000	37.77	6.79	-36.82	42.99	50.73	74.00	23.27	Pass	V	Peak		

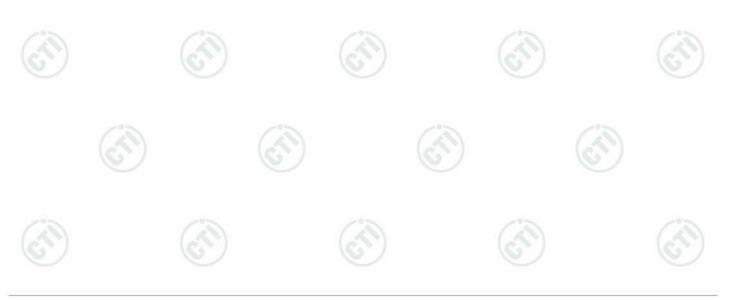
Mod	Mode: π /4DQPSK Transmitting(2-DH5)								Channel: 2402MHz				
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	1428.8858	28.33	2.93	-37.16	48.49	42.59	74.00	31.41	Pass	Н	Peak		
2	2704.3409	32.73	4.12	-36.72	47.93	48.06	74.00	25.94	Pass	Н	Peak		
3	4804.0000	34.50	4.55	-36.15	41.80	44.70	74.00	29.30	Pass	Н	Peak		
4	5550.8551	35.08	5.16	-36.04	43.18	47.38	74.00	26.62	Pass	Н	Peak		
5	7206.0000	36.31	5.81	-36.43	40.68	46.37	74.00	27.63	Pass	Н	Peak		
6	9608.0000	37.64	6.63	-36.79	43.18	50.66	74.00	23.34	Pass	Н	Peak		
7	1198.8398	28.10	2.66	-37.64	51.50	44.62	74.00	29.38	Pass	V	Peak		
8	2991.5983	33.19	4.52	-36.73	46.34	47.32	74.00	26.68	Pass	V	Peak		
9	4804.0000	34.50	4.55	-36.15	41.52	44.42	74.00	29.58	Pass	V	Peak		
10	5945.7696	35.71	5.30	-36.16	44.20	49.05	74.00	24.95	Pass	V	Peak		
11	7206.0000	36.31	5.81	-36.43	42.12	47.81	74.00	26.19	Pass	V	Peak		
12	9608.0000	37.64	6.63	-36.79	43.39	50.87	74.00	23.13	Pass	V	Peak		

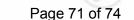


Report No. : EED32K00287202 Page 69 of 74

Mode	Mode: π /4DQPSK Transmitting(2-DH5)									Channel: 2441MHz			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	1976.1952	31.54	3.45	-36.79	48.32	46.52	74.00	27.48	Pass	Н	Peak		
2	3174.5425	33.27	4.61	-36.83	46.55	47.60	74.00	26.40	Pass	Н	Peak		
3	4882.0000	34.50	4.81	-36.10	42.03	45.24	74.00	28.76	Pass	Н	Peak		
4	5979.8980	35.77	5.33	-36.25	43.91	48.76	74.00	25.24	Pass	Н	Peak		
5	7323.0000	36.42	5.85	-36.41	42.78	48.64	74.00	25.36	Pass	Н	Peak		
6	9764.0000	37.71	6.71	-36.83	43.13	50.72	74.00	23.28	Pass	Н	Peak		
7	1596.5193	29.04	3.07	-37.00	50.42	45.53	74.00	28.47	Pass	V	Peak		
8	3004.8755	33.20	4.92	-36.72	47.14	48.54	74.00	25.46	Pass	V	Peak		
9	4882.0000	34.50	4.81	-36.10	41.82	45.03	74.00	28.97	Pass	V	Peak		
10	5945.7696	35.71	5.30	-36.16	43.95	48.80	74.00	25.20	Pass	V	Peak		
11	7323.0000	36.42	5.85	-36.41	42.29	48.15	74.00	25.85	Pass	V	Peak		
12	9764.0000	37.71	6.71	-36.83	42.79	50.38	74.00	23.62	Pass	V	Peak		

Mode	e: π/4DQPSK	Transmit	ting(2-DF		Channel: 2480MHz						
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1852.5705	30.73	3.38	-36.94	48.55	45.72	74.00	28.28	Pass	Н	Peak
2	2987.5975	33.18	4.51	-36.73	47.10	48.06	74.00	25.94	Pass	Н	Peak
3	4960.0000	34.50	4.82	-36.20	43.05	46.17	74.00	27.83	Pass	Н	Peak
4	6120.3120	35.82	5.26	-36.28	43.90	48.70	74.00	25.30	Pass	Н	Peak
5	7440.0000	36.54	5.85	-36.34	42.54	48.59	74.00	25.41	Pass	Н	Peak
6	9920.0000	37.77	6.79	-36.82	43.12	50.86	74.00	23.14	Pass	Н	Peak
7	1397.2795	28.30	2.90	-37.21	52.65	46.64	74.00	27.36	Pass	V	Peak
8	3762.5263	33.61	4.36	-36.21	43.60	45.36	74.00	28.64	Pass	V	Peak
9	4960.0000	34.50	4.82	-36.20	41.25	44.37	74.00	29.63	Pass	V	Peak
10	6892.5893	36.06	5.82	-36.30	44.29	49.87	74.00	24.13	Pass	V	Peak
11	7440.0000	36.54	5.85	-36.34	42.07	48.12	74.00	25.88	Pass	V	Peak
12	9920.0000	37.77	6.79	-36.82	42.98	50.72	74.00	23.28	Pass	V	Peak


 $Hot line; 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$


Page	70	of 7/	
Paue	70	01/4	

Mode	Mode: 8DPSK Transmitting(3-DH5)									Channel: 2402MHz			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	1397.6795	28.30	2.90	-37.21	49.62	43.61	74.00	30.39	Pass	Н	Peak		
2	3195.9946	33.28	4.64	-36.71	46.23	47.44	74.00	26.56	Pass	Н	Peak		
3	4804.0000	34.50	4.55	-36.15	42.42	45.32	74.00	28.68	Pass	Н	Peak		
4	6040.3540	35.81	5.24	-36.26	44.00	48.79	74.00	25.21	Pass	Н	Peak		
5	7206.0000	36.31	5.81	-36.43	42.41	48.10	74.00	25.90	Pass	Н	Peak		
6	9608.0000	37.64	6.63	-36.79	42.47	49.95	74.00	24.05	Pass	Н	Peak		
7	1393.2787	28.29	2.89	-37.21	53.97	47.94	74.00	26.06	Pass	V	Peak		
8	3198.9199	33.28	4.65	-36.70	47.08	48.31	74.00	25.69	Pass	V	Peak		
9	4804.0000	34.50	4.55	-36.15	43.24	46.14	74.00	27.86	Pass	V	Peak		
10	5973.0723	35.76	5.33	-36.23	43.51	48.37	74.00	25.63	Pass	V	Peak		
11	7206.0000	36.31	5.81	-36.43	41.36	47.05	74.00	26.95	Pass	V	Peak		
12	9608.0000	37.64	6.63	-36.79	43.35	50.83	74.00	23.17	Pass	V	Peak		

Mod	e: 8DPSK Tra	Channel: 2441MHz									
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1853.7708	30.73	3.38	-36.93	47.03	44.21	74.00	29.79	Pass	Н	Peak
2	3564.5815	33.45	4.41	-36.48	44.93	46.31	74.00	27.69	Pass	Н	Peak
3	4882.0000	34.50	4.81	-36.10	41.76	44.97	74.00	29.03	Pass	Н	Peak
4	5985.7486	35.78	5.33	-36.27	43.07	47.91	74.00	26.09	Pass	Н	Peak
5	7323.0000	36.42	5.85	-36.41	41.93	47.79	74.00	26.21	Pass	Н	Peak
6	9764.0000	37.71	6.71	-36.83	43.06	50.65	74.00	23.35	Pass	Н	Peak
7	1195.6391	28.10	2.66	-37.65	53.09	46.20	74.00	27.80	Pass	V	Peak
8	3198.9199	33.28	4.65	-36.70	46.67	47.90	74.00	26.10	Pass	V	Peak
9	4882.0000	34.50	4.81	-36.10	41.78	44.99	74.00	29.01	Pass	V	Peak
10	5916.5167	35.67	5.15	-36.22	44.52	49.12	74.00	24.88	Pass	V	Peak
11	7323.0000	36.42	5.85	-36.41	42.30	48.16	74.00	25.84	Pass	V	Peak
12	9764.0000	37.71	6.71	-36.83	42.79	50.38	74.00	23.62	Pass	V	Peak

Mod	e: 8DPSK Tra	nsmitting	(3-DH5)					Channel:2480MHz			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1395.2791	28.30	2.89	-37.21	50.10	44.08	74.00	29.92	Pass	Н	Peak
2	3202.8203	33.28	4.64	-36.70	45.74	46.96	74.00	27.04	Pass	Н	Peak
3	4960.0000	34.50	4.82	-36.20	41.65	44.77	74.00	29.23	Pass	Н	Peak
4	6324.1074	35.86	5.46	-36.18	43.38	48.52	74.00	25.48	Pass	Н	Peak
5	7440.0000	36.54	5.85	-36.34	40.94	46.99	74.00	27.01	Pass	Н	Peak
6	9920.0000	37.77	6.79	-36.82	43.01	50.75	74.00	23.25	Pass	Н	Peak
7	1194.8390	28.09	2.66	-37.65	53.76	46.86	74.00	27.14	Pass	V	Peak
8	3011.7012	33.20	4.91	-36.75	47.01	48.37	74.00	25.63	Pass	V	Peak
9	4960.0000	34.50	4.82	-36.20	43.88	47.00	74.00	27.00	Pass	V	Peak
10	6245.1245	35.85	5.34	-36.30	44.49	49.38	74.00	24.62	Pass	V	Peak
11	7440.0000	36.54	5.85	-36.34	42.63	48.68	74.00	25.32	Pass	V	Peak
12	9920.0000	37.77	6.79	-36.82	43.12	50.86	74.00	23.14	Pass	V	Peak

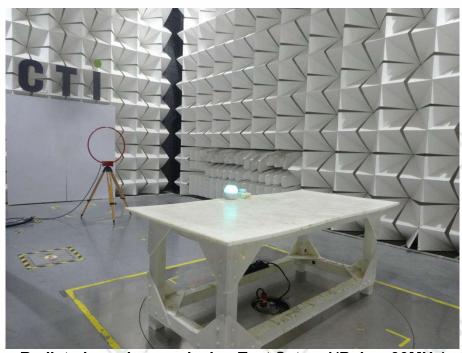
Note:

- 1) Through Pre-scan transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of $\pi/4DQPSK$ modulation type, he 3-DH5 of data type is the worse case of 8DPSKmodulation type in transmitter mode.
- 2) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. H owever, the peak field strength of any emission shall not exceed the maximum permitted average limits specifie d above by more than 20 dB under any condition of modulation. So, only the peak values are measured.
- 3) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

4) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.



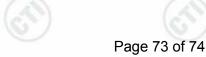
Report No. : EED32K00287202 Page 72 of 74

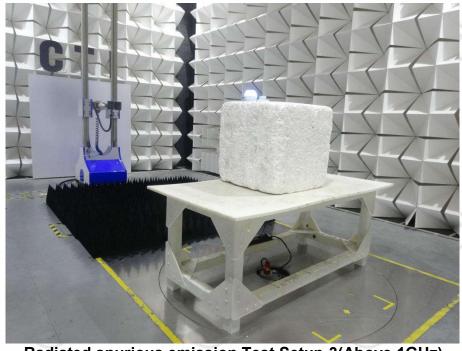
PHOTOGRAPHS OF TEST SETUP

Test model No.: TEW201

Radiated spurious emission Test Setup-1(Below 30MHz)

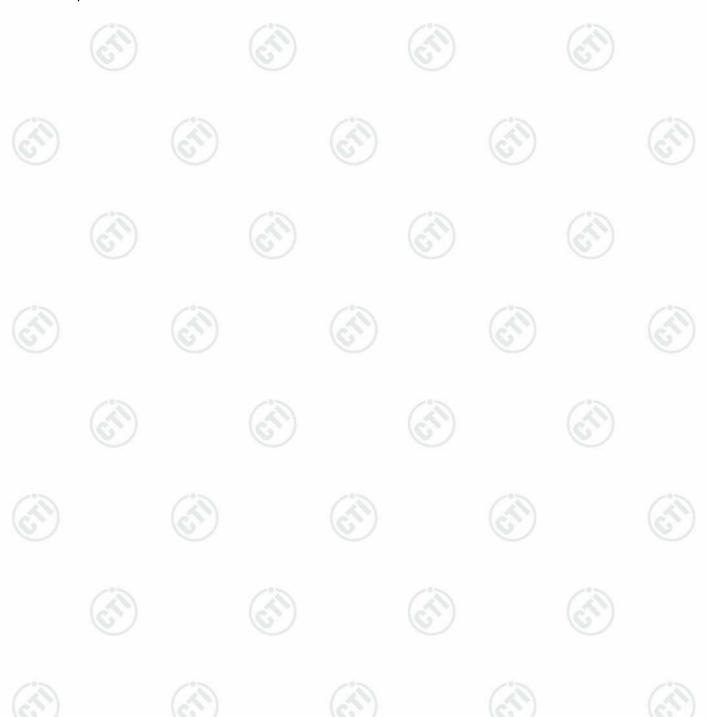
Radiated spurious emission Test Setup-2(30MHz-1GHz)







Conducted Emissions Test Setup


Page 74 of 74

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32K00287201 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

