





|    |                            | TEST                                                                                  | REPORT                           |                                                                                     |
|----|----------------------------|---------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------|
|    |                            | Product                                                                               | : Smart Sleep Light              |                                                                                     |
|    |                            | Trade mark                                                                            | : N/A                            |                                                                                     |
|    |                            | Model/Type reference                                                                  |                                  |                                                                                     |
|    |                            | Serial Number                                                                         | : N/A                            |                                                                                     |
|    |                            | Report Number                                                                         | : EED32K00287203                 | }                                                                                   |
|    |                            | FCC ID                                                                                | : 2ADIOTEW201                    |                                                                                     |
|    |                            | Date of Issue                                                                         | : Nov. 09, 2018                  |                                                                                     |
|    |                            | Test Standards                                                                        | : 47 CFR Part 15 S               | ubpart C                                                                            |
|    |                            | Test result                                                                           | : PASS                           |                                                                                     |
|    |                            |                                                                                       |                                  |                                                                                     |
|    |                            |                                                                                       | epared for:                      |                                                                                     |
|    | Sh                         | enzhen Medica Techi                                                                   | nology Developme                 | ent Co., Ltd.                                                                       |
| 2F | F Building A               | , Tongfang Information                                                                | on Harbor, No.11,                | East Langshan Road,                                                                 |
|    |                            | Nanshan District                                                                      | , Shenzhen, P.R. C               | china                                                                               |
|    |                            |                                                                                       |                                  |                                                                                     |
|    |                            | Pre                                                                                   | epared by:                       |                                                                                     |
|    |                            | Centre Testing Inte                                                                   | rnational Group C                | o., Ltd.                                                                            |
|    |                            | Hongwei Industrial                                                                    | Zone, Bao'an 70 E                | District,                                                                           |
|    |                            | Chan-han C                                                                            | uanadana China                   |                                                                                     |
|    |                            | Snenznen, G                                                                           | Suangdong, China                 |                                                                                     |
|    |                            |                                                                                       | -755-3368 3668                   |                                                                                     |
|    |                            | TEL: +86                                                                              |                                  |                                                                                     |
|    |                            | TEL: +86                                                                              | -755-3368 3668                   |                                                                                     |
|    | (F)                        | TEL: +86<br>FAX: +86                                                                  | -755-3368 3668<br>-755-3368 3385 |                                                                                     |
|    | Tested by:                 | TEL: +86                                                                              | -755-3368 3668<br>-755-3368 3385 | Max liang                                                                           |
|    | Tested by:                 | TEL: +86<br>FAX: +86                                                                  | -755-3368 3668<br>-755-3368 3385 |                                                                                     |
|    | Tested by:<br>Reviewed by: | TEL: +86<br>FAX: +86<br>Tom- chen                                                     | -755-3368 3668<br>-755-3368 3385 | Max liang                                                                           |
|    |                            | TEL: +86<br>FAX: +86<br>Tom- chen<br>Tom chen (Test Project)<br>Kelm Tay              | -755-3368 3668<br>-755-3368 3385 | Max i ang<br>ax liang (Project Engineer)<br>Sheek, Luo                              |
|    | Reviewed by:               | TEL: +86<br>FAX: +86<br>Tom- chen<br>Tom chen (Test Project)<br>Kevin yang (Reviewer) | -755-3368 3668<br>-755-3368 3385 | Max liang                                                                           |
|    |                            | TEL: +86<br>FAX: +86<br>Tom- chen<br>Tom chen (Test Project)<br>Kelm Tay              | -755-3368 3668<br>-755-3368 3385 | Max i ang<br>ax liang (Project Engineer)<br>Sheek, Luo                              |
|    | Reviewed by:               | TEL: +86<br>FAX: +86<br>Tom- chen<br>Tom chen (Test Project)<br>Kevin yang (Reviewer) | -755-3368 3668<br>-755-3368 3385 | Max i ang<br>ax liang (Project Engineer)<br>Sheek I wo<br>heek Luo (Lab supervisor) |
|    | Reviewed by:               | TEL: +86<br>FAX: +86<br>Tom- chen<br>Tom chen (Test Project)<br>Kevin yang (Reviewer) | -755-3368 3668<br>-755-3368 3385 | Max i ang<br>ax liang (Project Engineer)<br>Sheek I wo<br>heek Luo (Lab supervisor) |
|    | Reviewed by:               | TEL: +86<br>FAX: +86<br>Tom- chen<br>Tom chen (Test Project)<br>Kevin yang (Reviewer) | -755-3368 3668<br>-755-3368 3385 | Max i ang<br>ax liang (Project Engineer)<br>Sheek I wo<br>heek Luo (Lab supervisor) |
|    | Reviewed by:               | TEL: +86<br>FAX: +86<br>Tom- chen<br>Tom chen (Test Project)<br>Kevin yang (Reviewer) | -755-3368 3668<br>-755-3368 3385 | Max i ang<br>ax liang (Project Engineer)<br>Sheek I wo<br>heek Luo (Lab supervisor) |







### 2 Version

|   | Version No. |    | Date         |     |     | Descriptio | n (20) |   |
|---|-------------|----|--------------|-----|-----|------------|--------|---|
|   | 00          | No | ov. 09, 2018 |     | (C) | Original   | C)     |   |
| Ð |             | Ì  |              | (F) |     | Ì          |        | Ì |
|   |             |    |              |     |     |            |        |   |
|   |             |    |              |     |     |            |        |   |
|   |             |    |              |     |     |            |        |   |
|   |             |    |              |     |     |            |        |   |
|   |             |    |              |     |     |            |        |   |
|   |             |    |              |     |     |            |        |   |
|   |             |    |              |     |     |            |        |   |
|   |             |    |              |     |     |            |        |   |







### 3 Test Summary

| Test Item                                                               | Test Requirement                                      | Test method                            | Result |  |
|-------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------|--------|--|
| Antenna Requirement                                                     | 47 CFR Part 15 Subpart C Section<br>15.203/15.247 (c) | ANSI C63.10-2013                       | PASS   |  |
| AC Power Line Conducted<br>Emission                                     | 47 CFR Part 15 Subpart C Section<br>15.207            | ANSI C63.10-2013                       | PASS   |  |
| Conducted Peak Output<br>Power                                          | 47 CFR Part 15 Subpart C Section<br>15.247 (b)(3)     | ANSI C63.10-2013/<br>KDB 558074 D01v04 | PASS   |  |
| 6dB Occupied Bandwidth                                                  | 47 CFR Part 15 Subpart C Section<br>15.247 (a)(2)     | ANSI C63.10-2013/<br>KDB 558074 D01v04 | PASS   |  |
| Power Spectral Density                                                  | 47 CFR Part 15 Subpart C Section 15.247 (e)           | ANSI C63.10-2013/<br>KDB 558074 D01v04 | PASS   |  |
| Band-edge for RF<br>Conducted Emissions                                 | 47 CFR Part 15 Subpart C Section<br>15.247(d)         | ANSI C63.10-2013/<br>KDB 558074 D01v04 | PASS   |  |
| RF Conducted Spurious<br>Emissions                                      | 47 CFR Part 15 Subpart C Section<br>15.247(d)         | ANSI C63.10-2013/<br>KDB 558074 D01v04 | PASS   |  |
| Radiated Spurious<br>Emissions                                          | 47 CFR Part 15 Subpart C Section<br>15.205/15.209     | ANSI C63.10-2013                       | PASS   |  |
| Restricted bands around<br>fundamental frequency<br>(Radiated Emission) | 47 CFR Part 15 Subpart C Section<br>15.205/15.209     | ANSI C63.10-2013                       | PASS   |  |

#### Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.





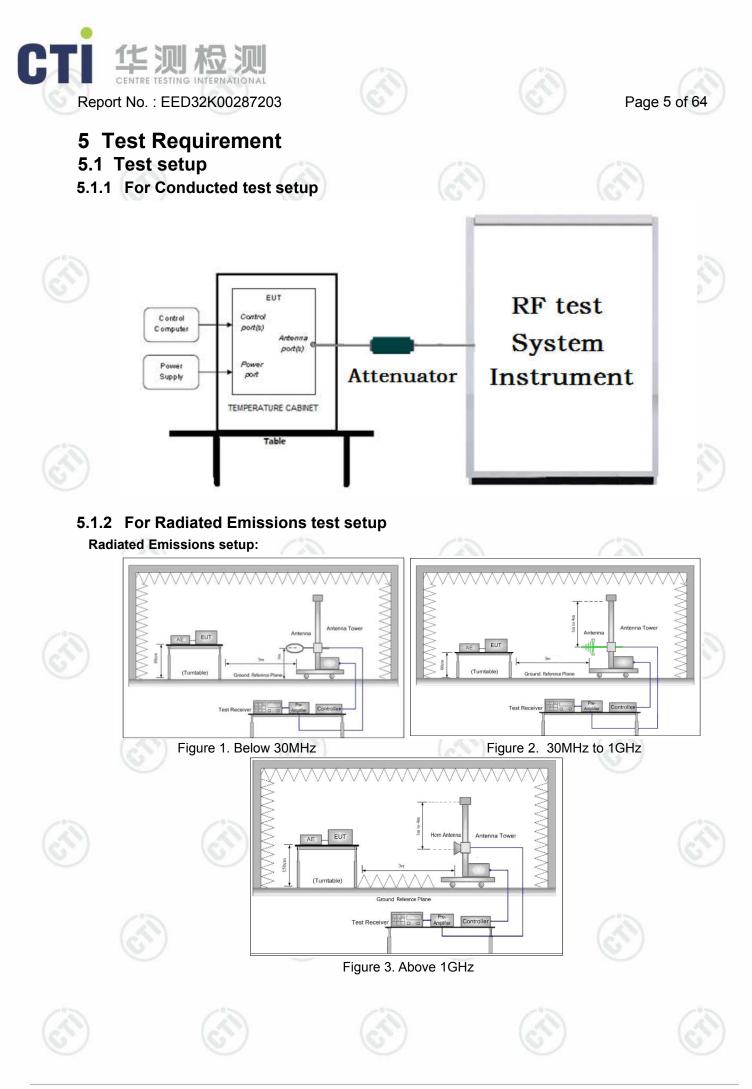




3







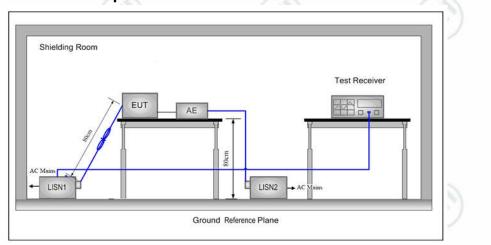



## 4 Content

| 1 COVER PAGE                                                                      |            |          | 1  |
|-----------------------------------------------------------------------------------|------------|----------|----|
| 2 VERSION                                                                         |            |          | 2  |
| 3 TEST SUMMARY                                                                    |            |          | 3  |
| 4 CONTENT                                                                         |            |          | 4  |
| 5 TEST REQUIREMENT                                                                |            | <u></u>  | 5  |
| 5.1 TEST SETUP<br>5.1.1 For Conducted test setup                                  |            |          | 5  |
| 5.1.2 For Radiated Emissions test setup                                           |            |          |    |
| 5.1.3 For Conducted Emissions test setup<br>5.2 TEST ENVIRONMENT                  |            |          |    |
| 5.3 TEST CONDITION                                                                |            |          |    |
| 6 GENERAL INFORMATION                                                             |            |          |    |
| 6.1 CLIENT INFORMATION                                                            |            |          |    |
| 6.2 GENERAL DESCRIPTION OF EUT                                                    |            |          |    |
| 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD.                            |            |          |    |
| 6.4 DESCRIPTION OF SUPPORT UNITS                                                  |            |          |    |
| 6.5 TEST LOCATION                                                                 |            |          |    |
| 6.6 DEVIATION FROM STANDARDS                                                      |            |          |    |
| 6.7 ABNORMALITIES FROM STANDARD CONDITIONS                                        |            |          |    |
| 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER                                   |            |          |    |
| 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS,                               |            |          |    |
| 7 EQUIPMENT LIST                                                                  |            |          | 9  |
| 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION                                      |            |          | 11 |
| Appendix A): Conducted Peak Output Power                                          |            |          | 12 |
| Appendix B): 6dB Occupied Bandwidth                                               |            |          |    |
| Appendix C): Band-edge for RF Conducted Emissions                                 |            |          |    |
| Appendix D): RF Conducted Spurious Emissions                                      |            |          |    |
| Appendix E): Power Spectral Density                                               |            |          |    |
| Appendix F): Antenna Requirement<br>Appendix G): AC Power Line Conducted Emission |            |          |    |
| Appendix G). AC Power Line Conducted Emission                                     |            |          |    |
| Appendix II): Radiated Spurious Emissions                                         |            |          |    |
| PHOTOGRAPHS OF TEST SETUP                                                         | <u>v</u> 2 | <u> </u> | 62 |
| PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS                                         |            |          | 64 |
|                                                                                   |            |          |    |












### 5.1.3 For Conducted Emissions test setup





### 5.2 Test Environment

| <b>Operating Environment:</b> |          | $(\mathcal{A}^{\mathbf{N}})$ | (8) |
|-------------------------------|----------|------------------------------|-----|
| Temperature:                  | 22°C     |                              | (e) |
| Humidity:                     | 58% RH   |                              |     |
| Atmospheric Pressure:         | 1010mbar | 142                          |     |
| Test Condition                |          |                              |     |

#### 

| Test | channel: |  |
|------|----------|--|
|      |          |  |

|    | Test Mode         |                         |                     | RF Channel           |           |
|----|-------------------|-------------------------|---------------------|----------------------|-----------|
|    | restinode         | Tx/Rx                   | Low(L)              | Middle(M)            | High(H)   |
| 1  | 902 11b/g/p(UT20) | 2412MHz ~2462MHz        | Channel 1           | Channel 6            | Channel11 |
| J. | 802.11b/g/n(HT20) |                         | 2412MHz             | 2437MHz              | 2462MHz   |
|    | TX mode:          | The EUT transmitted the | e continuous signal | at the specific chan | nel(s).   |

#### Test mode:

#### Pre-scan under all rate at lowest channel 1

| Mode       |         | 802    | .11b     |         |         |         | G         |        |
|------------|---------|--------|----------|---------|---------|---------|-----------|--------|
| Data Rate  | 1Mbps   | 2Mbps  | 5.5Mbp   | s 11Mb  | os      |         | $\langle$ |        |
| Power(dBm) | 16.12   | 16.74  | 16.88    | 16.96   |         |         |           |        |
| Mode       | 13      |        | 23       | 802.1   | 1g      | 1       |           | 13     |
| Data Rate  | 6Mbps   | 9Mbps  | 12Mbps   | s 18Mbp | s 24Mbp | s 36Mbp | s 48Mbps  | 54Mbps |
| Power(dBm) | 16.06   | 16.01  | 15.87    | 15.41   | 15.30   | 15.21   | 15.00     | 14.98  |
| Mode       |         | •      | <u> </u> | 802.11n | (HT20)  |         |           |        |
| Data Rate  | 6.5Mbps | 13Mbps | 19.5Mbps | 26Mbps  | 39Mbps  | 52Mbps  | 58.5Mbps  | 65Mbps |
| Power(dBm) | 15.36   | 15.22  | 15.14    | 15.01   | 14.97   | 14.87   | 14.33     | 14.21  |

Through Pre-scan, 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20).







## 6 General Information

### 6.1 Client Information

| Applicant:               | Shenzhen Medica Technology Development Co., Ltd.                                                                  |  |  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|
| Address of Applicant:    | 2F Building A, Tongfang Information Harbor, No.11, East Langshan Road, Nanshan District, Shenzhen, P.R. China     |  |  |
| Manufacturer:            | Shenzhen Medica Technology Development Co., Ltd.                                                                  |  |  |
| Address of Manufacturer: | 2F Building A, Tongfang Information Harbor, No.11, East Langshan Road, Nanshan District, Shenzhen, P.R. China     |  |  |
| Factory:                 | E-safe Technology Limited                                                                                         |  |  |
| Address of Factory:      | Room 210, Block B, Baoyuan huafeng Economic Building, Xixiang Avenue, Bao'an District, Shenzhen, Guangdong, China |  |  |

### 6.2 General Description of EUT

| Product Name:                    | Smart Sleep Light                                                                            |     |
|----------------------------------|----------------------------------------------------------------------------------------------|-----|
| Model No.(EUT):                  | TEW201                                                                                       |     |
| Trade mark:                      | N/A                                                                                          |     |
| EUT Supports Radios application: | BT: 4.0 BT Dual mode, 2402MHz to 2480MHz<br>WiFi: IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz | ( A |
| Power Supply:                    | Model: NLB100120W1A5S95<br>Input: 100-240V~50/60Hz, 0.35A Max<br>Output: 12V1A               | 0   |
| Sample Received Date:            | Oct. 25, 2018                                                                                | -   |
| Sample tested Date:              | Oct. 25, 2018 to Nov. 09, 2018                                                               | 9   |

### 6.3 Product Specification subjective to this standard

| Operation Frequency:  | IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz                                                                                                            |     |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Channel Numbers:      | IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channel                                                                                                         | 10  |
| Channel Separation:   | 5MHz                                                                                                                                                  | (3) |
| Type of Modulation:   | IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK)<br>IEEE for 802.11g :OFDM(64QAM, 16QAM, QPSK, BPSK)<br>IEEE for 802.11n(HT20) : OFDM (64QAM, 16QAM,QPSK,BPSK) |     |
| Test Power Grade:     | N/A                                                                                                                                                   |     |
| Test Software of EUT: | N/A                                                                                                                                                   |     |
| Firmware version:     | V0.51(manufacturer declare)                                                                                                                           |     |
| Hardware version:     | V1.0(manufacturer declare)                                                                                                                            |     |
| Antenna Type:         | PCB Antenna                                                                                                                                           | 100 |
| Antenna Gain:         | 2.5dBi                                                                                                                                                | (2) |
| Test Voltage:         | AC 120V, 60Hz                                                                                                                                         | S   |

| Operation                                                           | Operation Frequency each of channel(802.11b/g/n HT20) |   |         |   |         |        |         |  |  |
|---------------------------------------------------------------------|-------------------------------------------------------|---|---------|---|---------|--------|---------|--|--|
| Channel Frequency Channel Frequency Channel Frequency Channel Frequ |                                                       |   |         |   |         |        |         |  |  |
| 1                                                                   | 2412MHz                                               | 4 | 2427MHz | 7 | 2442MHz | 10     | 2457MHz |  |  |
| 2                                                                   | 2417MHz                                               | 5 | 2432MHz | 8 | 2447MHz | 11     | 2462MHz |  |  |
| 3                                                                   | 2422MHz                                               | 6 | 2437MHz | 9 | 2452MHz | $\sim$ |         |  |  |

### 6.4 Description of Support Units

The EUT has been tested independently.







### 6.5 Test Location

All tests were performed at: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101 Telephone: +86 (0) 755 3368 3668 Fax:+86 (0) 755 3368 3385 No tests were sub-contracted. CNAS-Lab Code: L1910 A2LA-Lab Cert. No. 3061.01 FCC Designation No.: CN1164

### 6.6 Deviation from Standards

None.

### 6.7 Abnormalities from Standard Conditions

None.

#### 6.8 Other Information Requested by the Customer

None.

### 6.9 Measurement Uncertainty (95% confidence levels, k=2)

| No. | Item                            | Measurement Uncertainty |  |  |
|-----|---------------------------------|-------------------------|--|--|
| 1   | Radio Frequency                 | 7.9 x 10 <sup>-8</sup>  |  |  |
| 2   | RF power, conducted             | 0.46dB (30MHz-1GHz)     |  |  |
|     |                                 | 0.55dB (1GHz-18GHz)     |  |  |
| 3   | Radiated Spurious emission test | 4.3dB (30MHz-1GHz)      |  |  |
|     |                                 | 4.5dB (1GHz-12.75GHz)   |  |  |
| 4   | Conduction emission             | 3.5dB (9kHz to 150kHz)  |  |  |
|     |                                 | 3.1dB (150kHz to 30MHz) |  |  |
| 5   | Temperature test                | 0.64°C                  |  |  |
| 6   | Humidity test                   | 3.8%                    |  |  |
| 7   | DC power voltages               | 0.026%                  |  |  |







\_\_\_\_



#### Equipment List 7

| Equipment                              | Manufacturer      | Model No.                        | Serial<br>Number | Cal. Date<br>(mm-dd-yyyy) | Cal. Due date<br>(mm-dd-yyyy) |
|----------------------------------------|-------------------|----------------------------------|------------------|---------------------------|-------------------------------|
| Signal<br>Generator                    | Keysight          | E8257D                           | MY53401106       | 03-13-2018                | 03-12-2019                    |
| Spectrum<br>Analyzer                   | Keysight          | N9010A                           | MY54510339       | 03-13-2018                | 03-12-2019                    |
| Signal<br>Generator                    | Keysight          | N5182B                           | MY53051549       | 03-13-2018                | 03-12-2019                    |
| High-pass<br>filter                    | Sinoscite         | FL3CX03WG1<br>8NM12-0398-<br>002 |                  | 01-10-2018                | 01-09-2019                    |
| High-pass<br>filter                    | MICRO-<br>TRONICS | SPA-F-63029-4                    | 6                | 01-10-2018                | 01-09-2019                    |
| DC Power                               | Keysight          | E3642A                           | MY54426035       | 03-13-2018                | 03-12-2019                    |
| PC-1                                   | Lenovo            | R4960d                           |                  | 03-13-2018                | 03-12-2019                    |
| BT&WI-FI<br>Automatic<br>control       | R&S               | OSP120                           | 101374           | 03-13-2018                | 03-12-2019                    |
| RF control<br>unit                     | JS Tonscend       | JS0806-2                         | 15860006         | 03-13-2018                | 03-12-2019                    |
| RF control<br>unit                     | JS Tonscend       | JS0806-1                         | 15860004         | 03-13-2018                | 03-12-2019                    |
| RF control<br>unit                     | JS Tonscend       | JS0806-4                         | 158060007        | 03-13-2018                | 03-12-2019                    |
| BT&WI-FI<br>Automatic<br>test software | JS Tonscend       | JS1120-2                         |                  | 03-13-2018                | 03-12-2019                    |

| Equipment                      |
|--------------------------------|
| Receiver                       |
| Temperature<br>Humidity Indica |
| Communication set              |
| <u> </u>                       |

| Equipment                          | Manufacturer | Model No.                   | Serial<br>Number | Cal. date<br>(mm-dd-yyyy) | Cal. Due date<br>(mm-dd-yyyy) |
|------------------------------------|--------------|-----------------------------|------------------|---------------------------|-------------------------------|
| Receiver                           | R&S          | ESCI                        | 100435           | 05-25-2018                | 05-24-2019                    |
| Temperature/<br>Humidity Indicator | Defu         | TH128                       | ()               | 07-02-2018                | 07-01-2019                    |
| Communication test set             | Agilent      | E5515C                      | GB47050<br>534   | 03-16-2018                | 03-15-2019                    |
| Communication test set             | R&S          | CMW500                      | 152394           | 03-16-2018                | 03-15-2019                    |
| LISN                               | R&S          | ENV216                      | 100098           | 05-10-2018                | 05-10-2019                    |
| LISN                               | schwarzbeck  | NNLK8121                    | 8121-529         | 05-10-2018                | 05-10-2019                    |
| Voltage Probe                      | R&S          | ESH2-Z3<br>0299.7810.5<br>6 | 100042           | 06-13-2017                | 06-11-2020                    |
| Current Probe                      | R&S          | EZ-17<br>816.2063.03        | 100106           | 05-30-2018                | 05-29-2019                    |
| ISN                                | TESEQ        | ISN T800                    | 30297            | 02-06-2018                | 02-05-2019                    |

Conducted disturbance Test









# Page 10 of 64

| _                                      |                   | Semi/full-anech                  | Serial         | Cal. date    | Cal. Due date |
|----------------------------------------|-------------------|----------------------------------|----------------|--------------|---------------|
| Equipment                              | Manufacturer      | Model No.                        | Number         | (mm-dd-yyyy) | (mm-dd-yyyy)  |
| 3M Chamber &<br>Accessory<br>Equipment | TDK               | SAC-3                            |                | 06-04-2016   | 06-03-2019    |
| TRILOG<br>Broadband<br>Antenna         | Schwarzbeck       | VULB9163                         | 9163-401       | 04-26-2018   | 04-25-2019    |
| TRILOG<br>Broadband<br>Antenna         | Schwarzbeck       | VULB9163                         | 9163-618       | 07-30-2018   | 07-29-2019    |
| Microwave<br>Preamplifier              | Agilent           | 8449B                            | 3008A024<br>25 | 08-21-2018   | 08-20-2019    |
| Microwave<br>Preamplifier              | Tonscend          | EMC051845<br>SE                  | 980380         | 01-19-2018   | 01-18-2019    |
| Horn Antenna                           | Schwarzbeck       | BBHA 9120D                       | 9120D-<br>1869 | 04-25-2018   | 04-23-2021    |
| Double ridge horn<br>antenna           | A.H.SYSTEM<br>S   | SAS-574                          | 6042           | 06-05-2018   | 06-04-2021    |
| Pre-amplifier                          | A.H.SYSTEM<br>S   | PAP-1840-60                      | 6041           | 06-05-2018   | 06-04-2021    |
| Loop Antenna                           | ETS               | 6502                             | 00071730       | 06-22-2017   | 06-21-2019    |
| Spectrum<br>Analyzer                   | R&S               | FSP40                            | 100416         | 05-11-2018   | 05-10-2019    |
| Receiver                               | R&S               | ESCI                             | 100435         | 05-25-2018   | 05-24-2019    |
| Multi device<br>Controller             | maturo            | NCD/070/107<br>11112             |                | 01-10-2018   | 01-09-2019    |
| LISN                                   | schwarzbeck       | NNBM8125                         | 81251547       | 05-11-2018   | 05-10-2019    |
| LISN                                   | schwarzbeck       | NNBM8125                         | 81251548       | 05-11-2018   | 05-10-2019    |
| Signal Generator                       | Agilent           | E4438C                           | MY45095<br>744 | 03-13-2018   | 03-12-2019    |
| Signal Generator                       | Keysight          | E8257D                           | MY53401<br>106 | 03-13-2018   | 03-12-2019    |
| Temperature/<br>Humidity Indicator     | TAYLOR            | 1451                             | 1905           | 05-02-2018   | 05-01-2019    |
| Communication test set                 | Agilent           | E5515C                           | GB47050<br>534 | 03-16-2018   | 03-15-2019    |
| Cable line                             | Fulai(7M)         | SF106                            | 5219/6A        | 01-10-2018   | 01-09-2019    |
| Cable line                             | Fulai(6M)         | SF106                            | 5220/6A        | 01-10-2018   | 01-09-2019    |
| Cable line                             | Fulai(3M)         | SF106                            | 5216/6A        | 01-10-2018   | 01-09-2019    |
| Cable line                             | Fulai(3M)         | SF106                            | 5217/6A        | 01-10-2018   | 01-09-2019    |
| Communication test set                 | R&S               | CMW500                           | 104466         | 02-05-2018   | 02-04-2019    |
| High-pass filter                       | Sinoscite         | FL3CX03WG<br>18NM12-<br>0398-002 |                | 01-10-2018   | 01-09-2019    |
| High-pass filter                       | MICRO-<br>TRONICS | SPA-F-<br>63029-4                |                | 01-10-2018   | 01-09-2019    |
| band rejection<br>filter               | Sinoscite         | FL5CX01CA0<br>9CL12-0395-<br>001 |                | 01-10-2018   | 01-09-2019    |
| band rejection<br>filter               | Sinoscite         | FL5CX01CA0<br>8CL12-0393-<br>001 |                | 01-10-2018   | 01-09-2019    |
| band rejection<br>filter               | Sinoscite         | FL5CX02CA0<br>4CL12-0396-<br>002 |                | 01-10-2018   | 01-09-2019    |
| band rejection<br>filter               | Sinoscite         | FL5CX02CA0<br>3CL12-0394-<br>001 |                | 01-10-2018   | 01-09-2019    |







### 8 Radio Technical Requirements Specification

#### **Reference documents for testing:**

| No. | Identity         | Document Title                                                       |
|-----|------------------|----------------------------------------------------------------------|
| 1   | FCC Part15C      | Subpart C-Intentional Radiators                                      |
| 2   | ANSI C63.10-2013 | American National Standard for Testing Unlicesed Wireless<br>Devices |

#### Test Results List

| est Results List:                    |             |                                                                         |         | 0           |
|--------------------------------------|-------------|-------------------------------------------------------------------------|---------|-------------|
| Test Requirement                     | Test method | Test item                                                               | Verdict | Note        |
| Part15C Section<br>15.247 (b)(3)     | ANSI C63.10 | Conducted Peak Output<br>Power                                          | PASS    | Appendix A) |
| Part15C Section<br>15.247 (a)(2)     | ANSI C63.10 | 6dB Occupied Bandwidth                                                  | PASS    | Appendix B) |
| Part15C Section<br>15.247(d)         | ANSI C63.10 | Band-edge for RF<br>Conducted Emissions                                 | PASS    | Appendix C) |
| Part15C Section<br>15.247(d)         | ANSI C63.10 | RF Conducted Spurious<br>Emissions                                      | PASS    | Appendix D) |
| Part15C Section<br>15.247 (e)        | ANSI C63.10 | Power Spectral Density                                                  | PASS    | Appendix E) |
| Part15C Section<br>15.203/15.247 (c) | ANSI C63.10 | Antenna Requirement                                                     | PASS    | Appendix F) |
| Part15C Section<br>15.207            | ANSI C63.10 | AC Power Line Conducted<br>Emission                                     | PASS    | Appendix G) |
| Part15C Section<br>15.205/15.209     | ANSI C63.10 | Restricted bands around<br>fundamental frequency<br>(Radiated Emission) | PASS    | Appendix H) |
| Part15C Section<br>15.205/15.209     | ANSI C63.10 | Radiated Spurious<br>Emissions                                          | PASS    | Appendix I) |
| 15.205/15.209                        | ANSI C63.10 | -                                                                       | PASS    | Apper       |







# Appendix A): Conducted Peak Output Power

|             | Result Table |         |                                   |         |
|-------------|--------------|---------|-----------------------------------|---------|
|             | Mode         | Channel | Conducted Peak Output Power [dBm] | Verdict |
|             | 11B          | LCH     | 16.96                             | PASS    |
| -           | 11B          | МСН     | 17.04                             | PASS    |
| <u>50</u> ) | 11B          | нсн     | 17.62                             | PASS    |
| ~           | 11G          | LCH     | 16.06                             | PASS    |
|             | 11G          | МСН     | 16.26                             | PASS    |
|             | 11G          | НСН     | 15.9                              | PASS    |
|             | 11N20SISO    | LCH     | 15.36                             | PASS    |
|             | 11N20SISO    | МСН     | 15.4                              | PASS    |
|             | 11N20SISO    | НСН     | 14.83                             | PASS    |
|             |              |         |                                   |         |























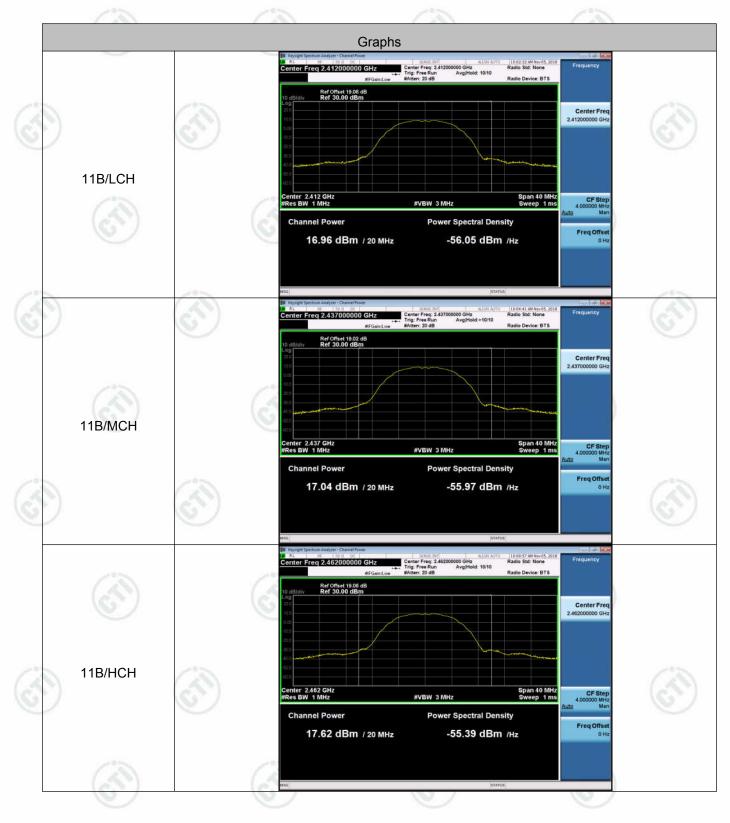












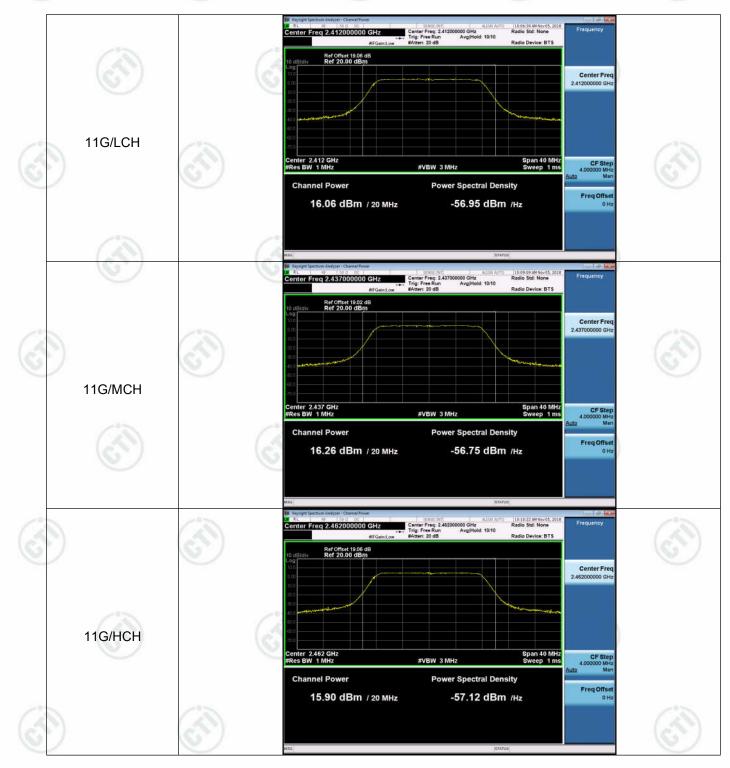





### Page 13 of 64

Test Graph





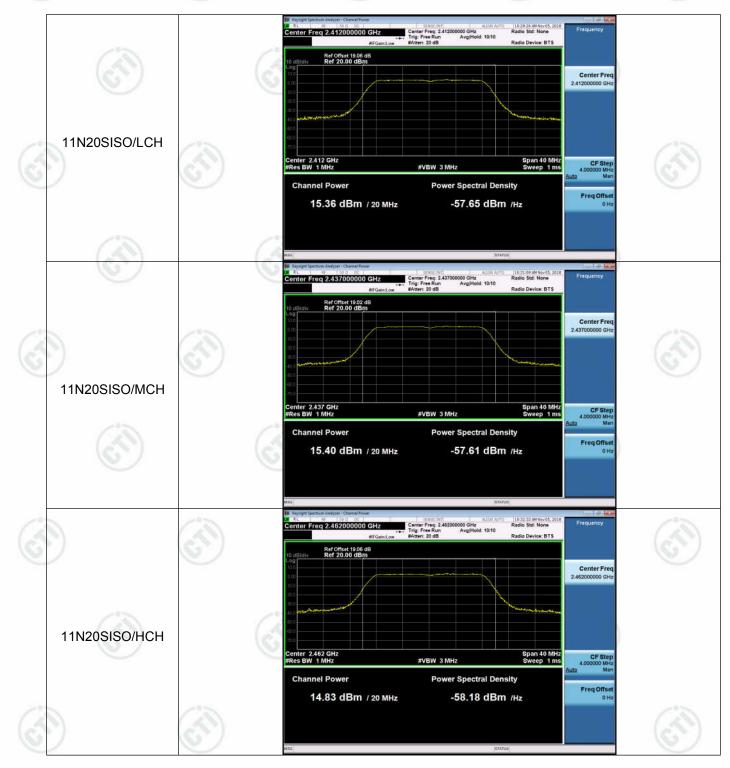


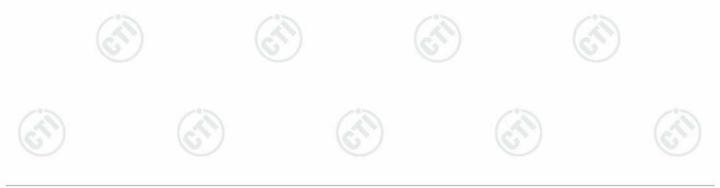





### Page 14 of 64










### Page 15 of 64









## Appendix B): 6dB Occupied Bandwidth

### **Result Table**

| Mode      | Channel | 6dB Bandwidth [MHz] | 99% OBW [MHz] | Verdict |
|-----------|---------|---------------------|---------------|---------|
| 11B       | LCH     | 8.076               | 10.587        | PASS    |
| 11B       | МСН     | 8.056               | 10.614        | PASS    |
| 11B       | НСН     | 10.02               | 14.368        | PASS    |
| 11G       | LCH     | 16.32               | 16.337        | PASS    |
| 11G       | МСН     | 16.31               | 16.334        | PASS    |
| 11G       | НСН     | 16.31               | 16.345        | PASS    |
| 11N20SISO | LCH     | 16.55               | 17.478        | PASS    |
| 11N20SISO | МСН     | 16.64               | 17.477        | PASS    |
| 11N20SISO | НСН     | 16.54               | 17.488        | PASS    |
|           |         |                     |               |         |

















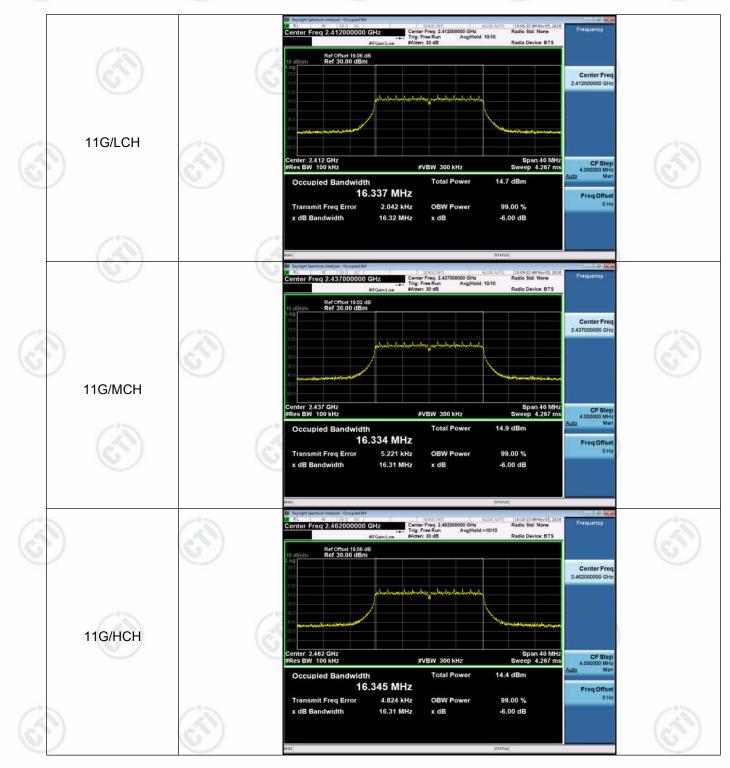


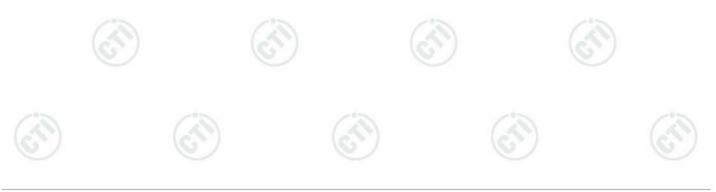






#### **Test Graph**

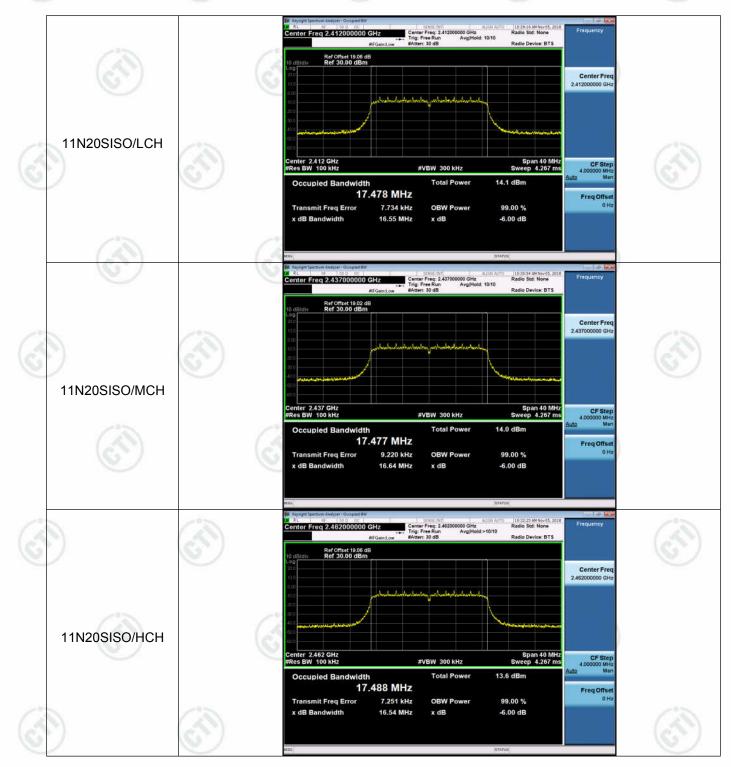


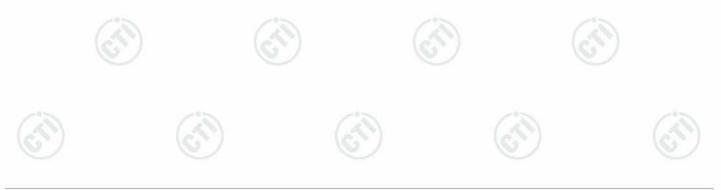








## Page 18 of 64





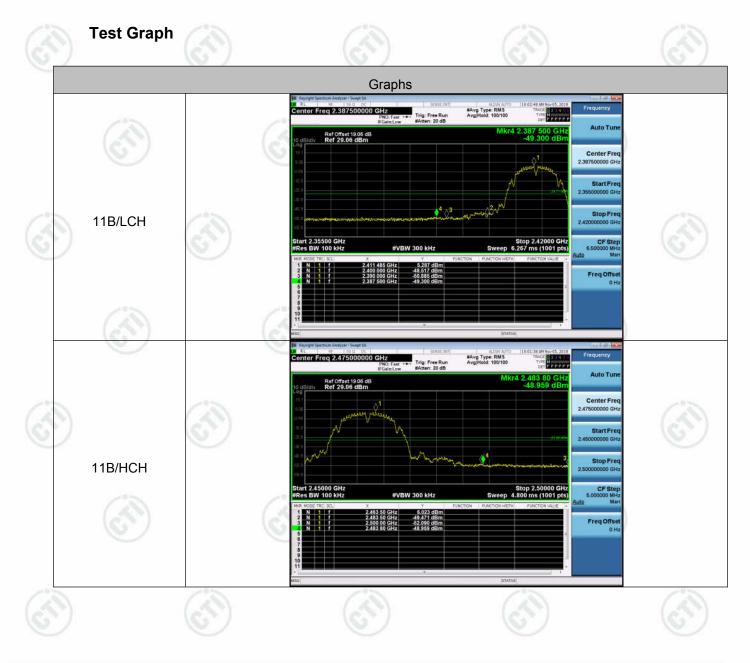








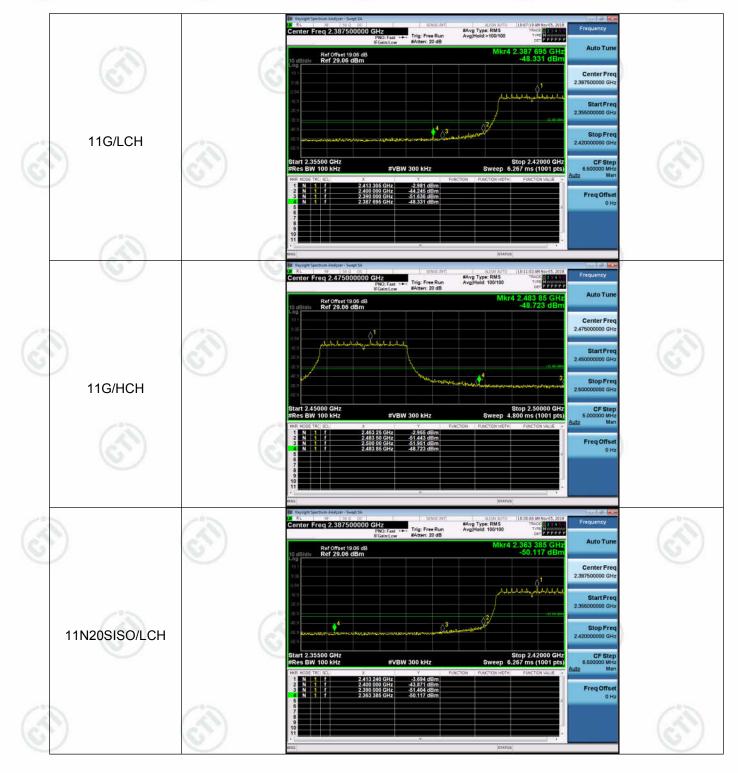



## Page 20 of 64

## Appendix C): Band-edge for RF Conducted Emissions

#### **Result Table**


| Mode      | Channel | Carrier Power[dBm] | Max.Spurious Level<br>[dBm] | Limit [dBm] | Verdict |
|-----------|---------|--------------------|-----------------------------|-------------|---------|
| 11B       | LCH     | 5.287              | -49.300                     | -24.71      | PASS    |
| 11B       | НСН     | 6.023              | -48.959                     | -23.98      | PASS    |
| 11G       | LCH     | -2.981             | -48.331                     | -32.98      | PASS    |
| 11G       | НСН     | -2.955             | -48.723                     | -32.96      | PASS    |
| 11N20SISO | LCH     | -3.694             | -50.117                     | -33.69      | PASS    |
| 11N20SISO | нсн     | -3.812             | -48.930                     | -33.81      | PASS    |

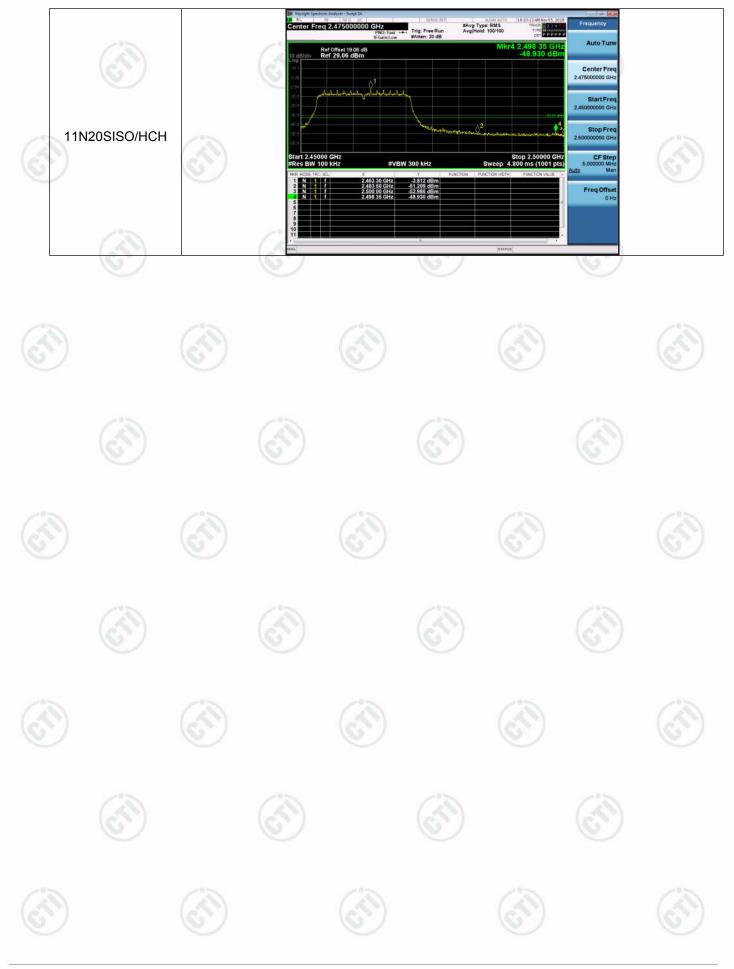






### Page 21 of 64












## Page 22 of 64



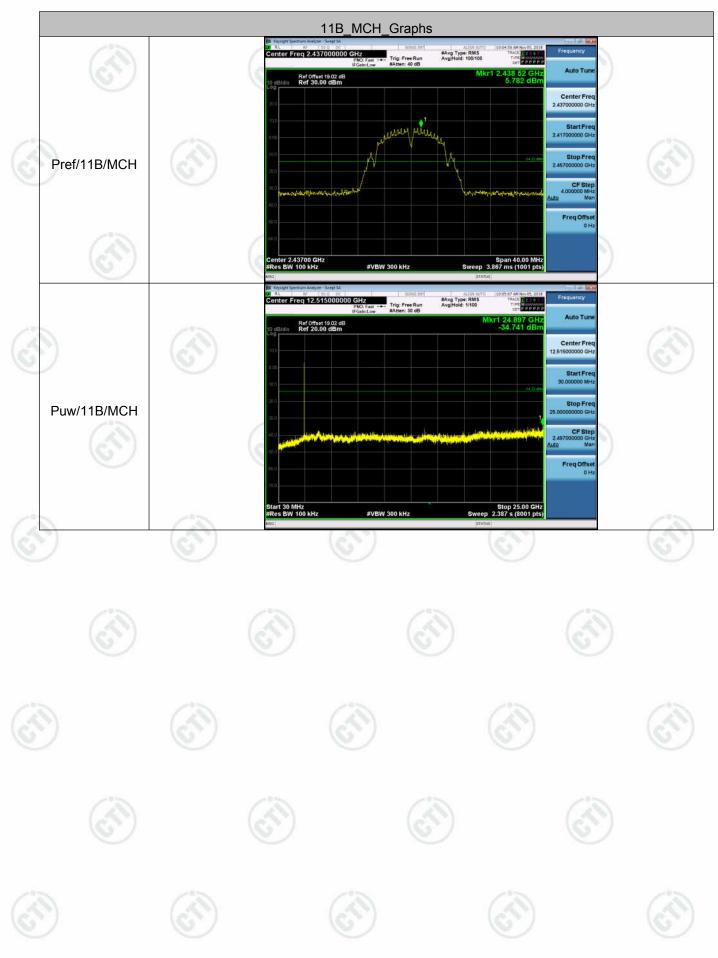




## Appendix D): RF Conducted Spurious Emissions

| Result Tab | le 🔗    |            | (5)                                  |         |
|------------|---------|------------|--------------------------------------|---------|
| Mode       | Channel | Pref [dBm] | Puw[dBm]                             | Verdict |
| 11B        | LCH     | 5.885      | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 11B        | МСН     | 5.782      | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 11B        | НСН     | 6.371      | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 11G        | LCH     | -2.754     | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 11G        | МСН     | -2.66      | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 11G        | нсн     | -3.4       | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 11N20SISO  | LCH     | -3.231     | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 11N20SISO  | МСН     | -3.374     | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 11N20SISO  | НСН     | -3.866     | <limit< td=""><td>PASS</td></limit<> | PASS    |
|            |         |            |                                      |         |

### Test Graph










### Page 24 of 64



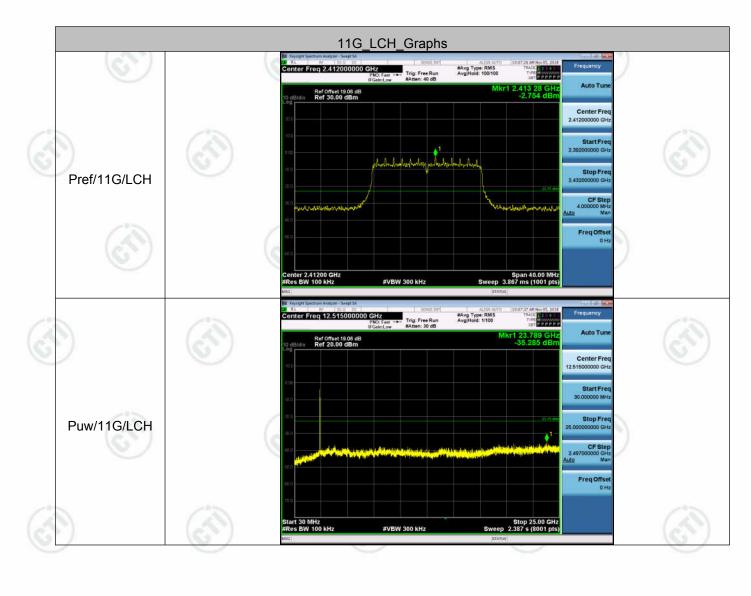






# Page 25 of 64












# Page 26 of 64











# Page 27 of 64











## Page 28 of 64











# Page 29 of 64











# Page 30 of 64












# Page 31 of 64









## Appendix E): Power Spectral Density

### **Result Table**

| Mode      | Channel | Power Spectral Density[dBm/3kHz] | Limit [dBm/3kHz] | Verdict |
|-----------|---------|----------------------------------|------------------|---------|
| 11B       | LCH     | -8.213                           | 8                | PASS    |
| 11B       | МСН     | -9.334                           | 8                | PASS    |
| 11B       | НСН     | -8.087                           | 8                | PASS    |
| 11G       | LCH     | -17.158                          | 8                | PASS    |
| 11G       | MCH     | -17.142                          | 8                | PASS    |
| 11G       | НСН     | -17.383                          | 8                | PASS    |
| 11N20SISO | LCH     | -18.089                          | 8                | PASS    |
| 11N20SISO | МСН     | -18.134                          | 8                | PASS    |
| 11N20SISO | НСН     | -18.556                          | 8                | PASS    |
|           |         |                                  |                  |         |







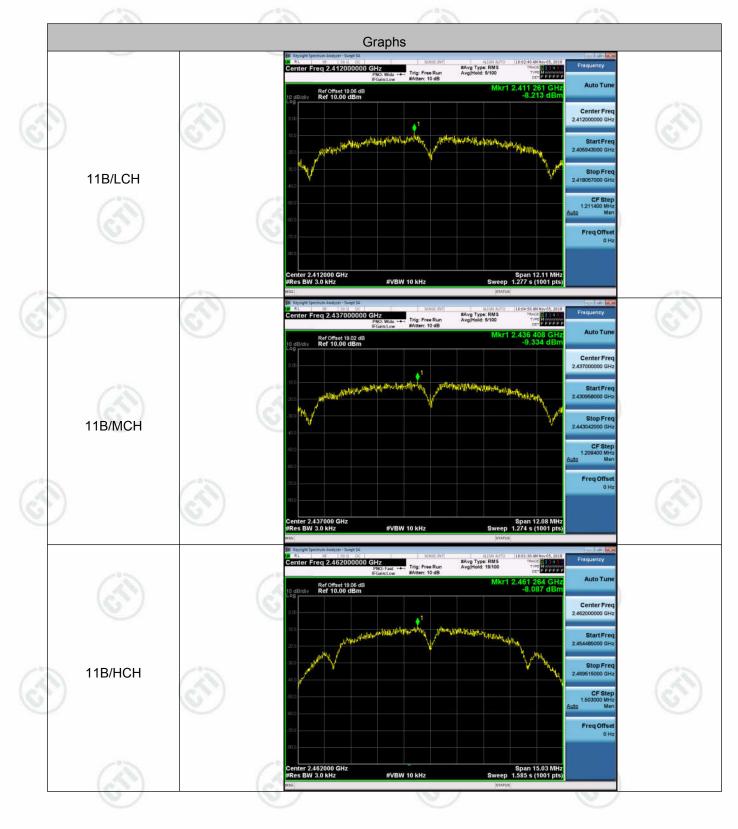



















#### **Test Graph**









### Page 34 of 64









### Page 35 of 64





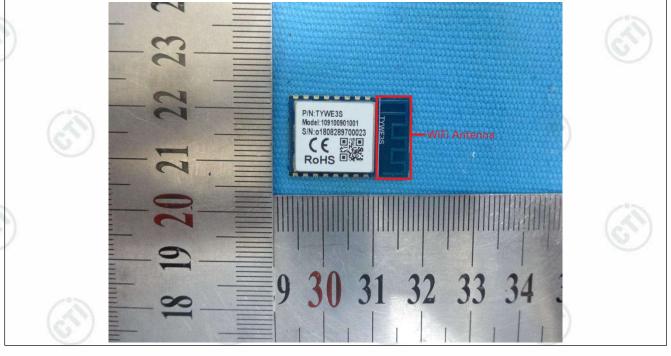


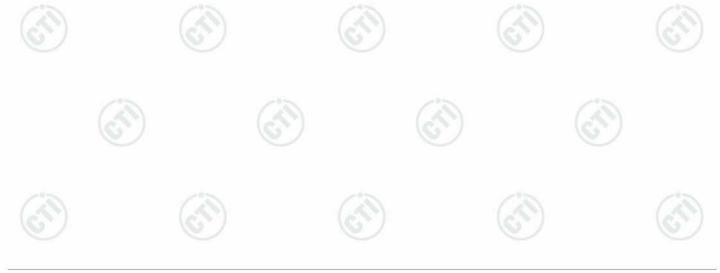




### **Appendix F): Antenna Requirement**

#### 15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


#### 15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### **EUT Antenna:**

The antenna is PCB antenna and no consideration of replacement. The best case gain of the antenna is 2.5dBi.







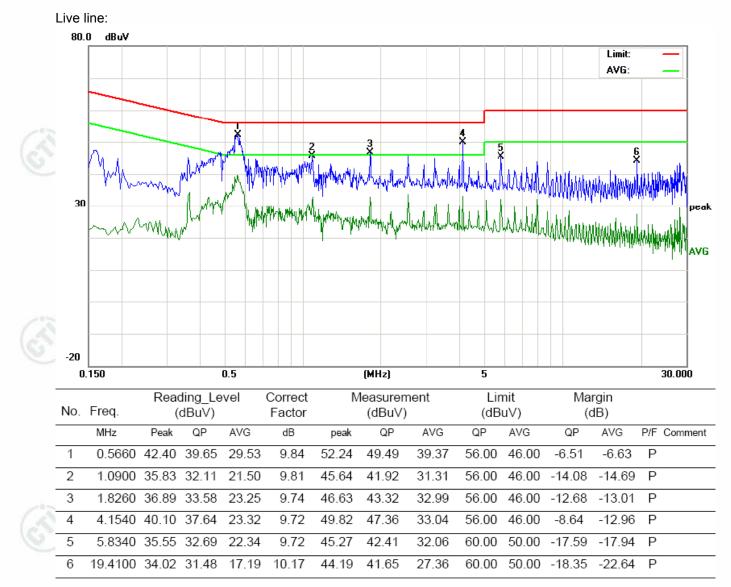


### Appendix G): AC Power Line Conducted Emission

| Test Procedure: | Test frequency range :150KHz-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30MHz                                                                                                                   |                                                                                                                                  |                                                          |  |  |  |  |  |  |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--|--|--|--|--|--|
|                 | <ol> <li>The mains terminal disturbance</li> <li>The EUT was connected to<br/>Stabilization Network) whice<br/>power cables of all other universe which was bonded to the great<br/>the unit being measured. A<br/>power cables to a single LIS<br/>exceeded.</li> </ol>                                                                                                                                                                                                                                                                                                                        | AC power source t<br>h provides a $50\Omega/5$<br>inits of the EUT wer<br>ound reference plane<br>multiple socket outle | hrough a LISN 1 (Line<br>0µH + 5Ω linear imp<br>re connected to a sec<br>the in the same way as the<br>the strip was used to con | e Impedance<br>edance. Th<br>cond LISN :<br>ne LISN 1 fo |  |  |  |  |  |  |
|                 | 3)The tabletop EUT was place<br>reference plane. And for flo<br>horizontal ground reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | oor-standing arrange                                                                                                    |                                                                                                                                  |                                                          |  |  |  |  |  |  |
|                 | <ul> <li>4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.</li> </ul> |                                                                                                                         |                                                                                                                                  |                                                          |  |  |  |  |  |  |
|                 | 5) In order to find the maximum the interface cables must measurement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                         |                                                                                                                                  |                                                          |  |  |  |  |  |  |
| Limit:          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13                                                                                                                      |                                                                                                                                  |                                                          |  |  |  |  |  |  |
| (3)             | Frequency range (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Limit (o                                                                                                                | lBμV)                                                                                                                            |                                                          |  |  |  |  |  |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Quasi-peak                                                                                                              | Average                                                                                                                          |                                                          |  |  |  |  |  |  |
|                 | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 66 to 56*                                                                                                               | 56 to 46*                                                                                                                        |                                                          |  |  |  |  |  |  |
|                 | 0.5-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56                                                                                                                      | 46                                                                                                                               |                                                          |  |  |  |  |  |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                         | 5-30 60 50                                                                                                                       |                                                          |  |  |  |  |  |  |
| 0               | 5-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60                                                                                                                      | 50                                                                                                                               |                                                          |  |  |  |  |  |  |

#### **Measurement Data**

An initial pre-scan was performed on the live and neutral lines with peak detector.

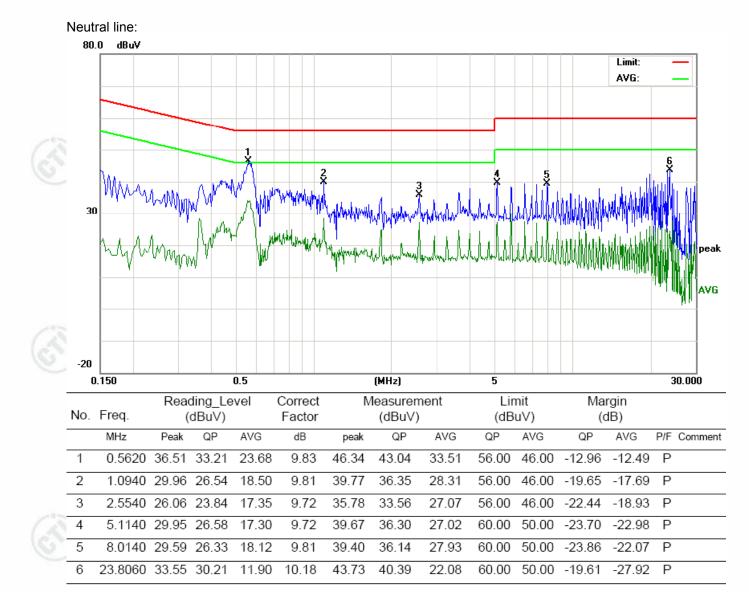

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.






















Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.





 $\langle \mathbf{x} \rangle$ 



# Appendix H): Restricted bands around fundamental frequency (Radiated)

| Receiver Setup: | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RBW                                                                                                                                                                                                                                                                        | VBW                                                                                                                                                                                                                                                                    | Remark                                                                                                                                                                                                                              |                                                 |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
|                 | 30MHz-1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120kHz                                                                                                                                                                                                                                                                     | 300kHz                                                                                                                                                                                                                                                                 | Quasi-peak                                                                                                                                                                                                                          |                                                 |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1MHz                                                                                                                                                                                                                                                                       | 3MHz                                                                                                                                                                                                                                                                   | Peak                                                                                                                                                                                                                                | 1                                               |
|                 | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1MHz                                                                                                                                                                                                                                                                       | 10Hz                                                                                                                                                                                                                                                                   | Average                                                                                                                                                                                                                             | 10                                              |
| Test Procedure: | Below 1GHz test procedu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ure as below:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6                                                                                                                                                                                                                                                                          | ()                                                                                                                                                                                                                                                                     | (                                                                                                                                                                                                                                   | ć                                               |
|                 | <ul> <li>a. The EUT was placed of at a 3 meter semi-aner determine the position</li> <li>b. The EUT was set 3 me was mounted on the to</li> <li>c. The antenna height is determine the maximu polarizations of the and</li> <li>d. For each suspected en the antenna was tuned from 0 deg</li> <li>e. The test-receiver system Bandwidth with Maxim</li> <li>f. Place a marker at the frequency to show com bands. Save the spect for lowest and highest</li> <li>Above 1GHz test proceding</li> <li>g. Different between abor to fully Anechoic Chan 18GHz the distance is</li> <li>h. Test the EUT in the lo</li> <li>i. The radiation measure Transmitting mode, an j. Repeat above procedure</li> </ul> | choic camber. The<br>of the highest rate<br>eters away from the<br>op of a variable-he<br>varied from one r<br>m value of the file<br>tenna are set to ne<br>mission, the EUT<br>d to heights from<br>rees to 360 degre<br>em was set to Pea<br>num Hold Mode.<br>end of the restrict<br>npliance. Also me<br>rum analyzer plot<br>channel<br>ure as below:<br>ve is the test site,<br>nber change form<br>1 meter and table<br>west channel , the<br>ments are perfor-<br>id found the X axi | e table wa<br>diation.<br>he interfer<br>eight anter<br>neter to fo<br>eld strength<br>nake the n<br>was arran<br>1 meter to<br>ees to find<br>ak Detect<br>ted band co<br>easure any<br>t. Repeat fo<br>table 0.8<br>e is 1.5 me<br>e Highest<br>med in X,<br>s positioni | ence-recei<br>nna tower.<br>our meters<br>n. Both hor<br>neasureme<br>ged to its<br>4 meters a<br>the maxin<br>Function a<br>closest to the<br>emissions<br>for each por<br>for each por<br>com Semi-<br>meter to 1<br>eter).<br>channel<br>Y, Z axis p<br>ing which i | 360 degrees to<br>iving antenna,<br>above the gro<br>rizontal and ve<br>ent.<br>worst case an<br>and the rotata<br>num reading.<br>nd Specified<br>he transmit<br>s in the restric<br>ower and mod<br>Anechoic Cha<br>.5 meter( Abo | wh<br>wh<br>ertic<br>d th<br>ble<br>ted<br>ulat |
| Limit:          | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Limit (dBµV/r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m @3m)                                                                                                                                                                                                                                                                     | Rei                                                                                                                                                                                                                                                                    | mark                                                                                                                                                                                                                                |                                                 |
|                 | 30MHz-88MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                            | Quasi-pe                                                                                                                                                                                                                                                               | eak Value                                                                                                                                                                                                                           |                                                 |
|                 | 88MHz-216MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                            | Quasi-pe                                                                                                                                                                                                                                                               | eak Value                                                                                                                                                                                                                           |                                                 |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                            | Quasi-pe                                                                                                                                                                                                                                                               | eak Value                                                                                                                                                                                                                           |                                                 |
|                 | 216MHz-960MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                     |                                                 |
|                 | 216MHz-960MHz<br>960MHz-1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                            | · ·                                                                                                                                                                                                                                                                    | eak Value                                                                                                                                                                                                                           |                                                 |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                         | Quasi-pe                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                     |                                                 |





Freq.

[MHz]

NO

2.3215G

**PK** Limit

PK Detector

Ant

Factor

[dB]

2.333G

\*

Cable

loss

AV Limit

AV Detector

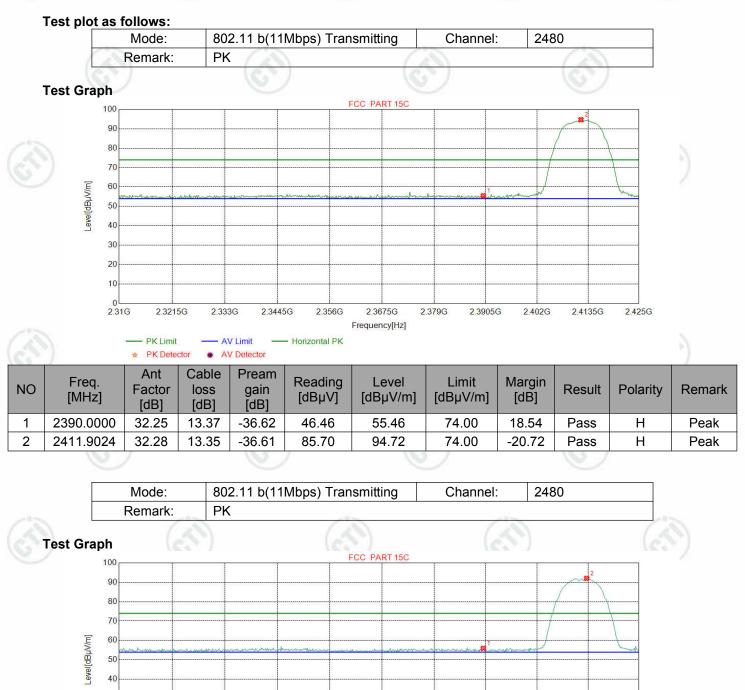
Pream

gain

[dB]

2.3445G

2.356G


- Vertical PK

Reading

[dBµV]







2.3675G

Level

[dBµV/m]

Frequency[Hz]

2.3905G

Limit

[dBµV/m]

2.379G

2.4135G

Result

Pass

Pass

2.425G

Polarity

V

V

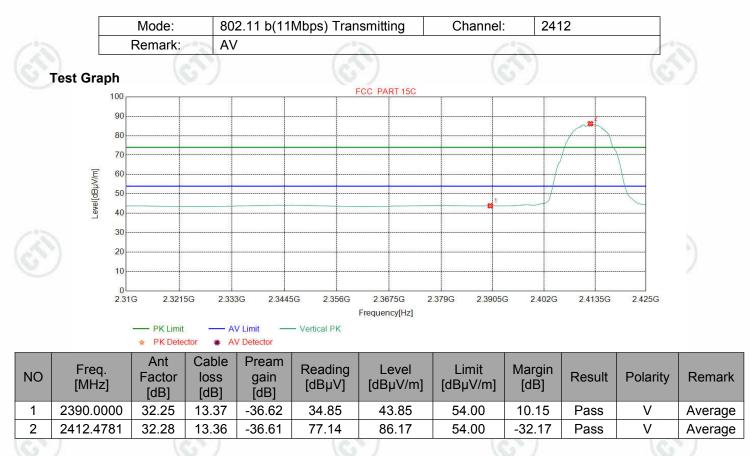
Remark

Peak

Peak

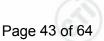
2.402G

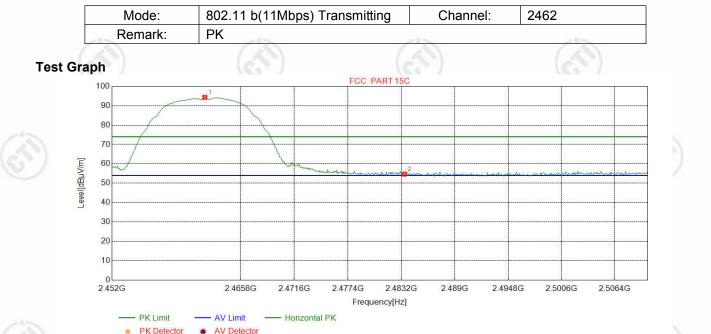
Margin


[dB]

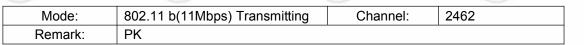


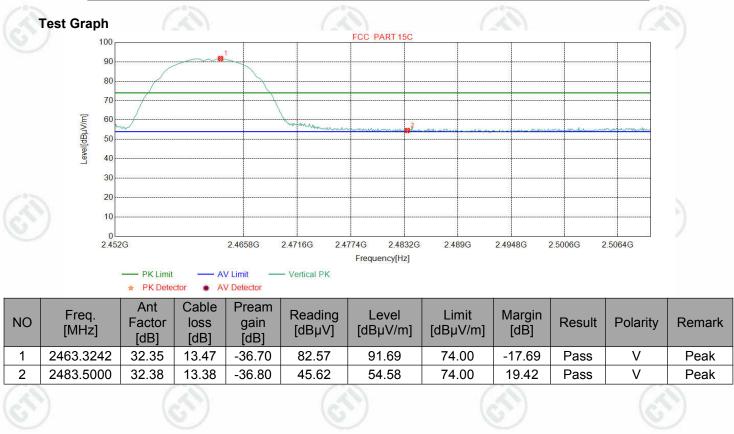






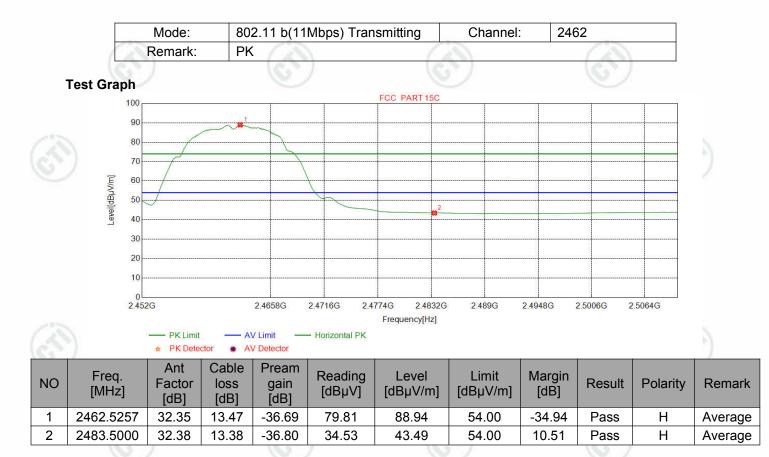



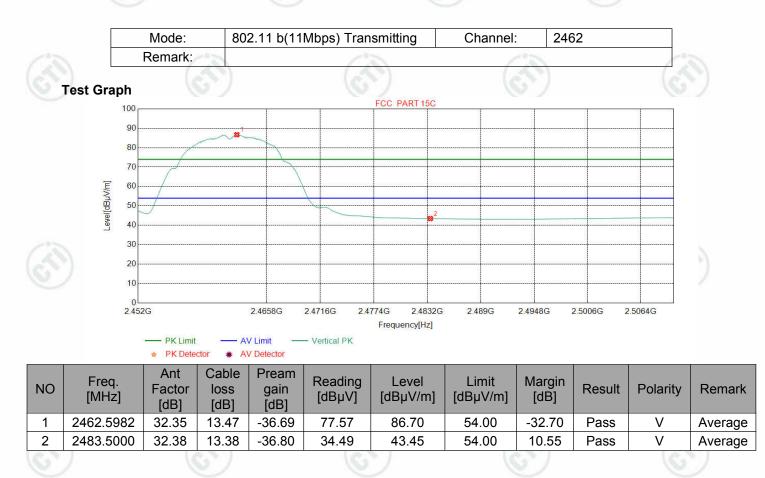







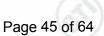

| 1.1 | Y FR Delector  |                       |                       |                       |                   |                   |                   |                |        |          | 1      |
|-----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|--------|
| NO  | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity | Remark |
| 1   | 2461.9449      | 32.35                 | 13.48                 | -36.70                | 85.20             | 94.33             | 74.00             | -20.33         | Pass   | Н        | Peak   |
| 2   | 2483.5000      | 32.38                 | 13.38                 | -36.80                | 45.70             | 54.66             | 74.00             | 19.34          | Pass   | Н        | Peak   |
|     |                |                       |                       |                       |                   |                   |                   |                |        |          |        |









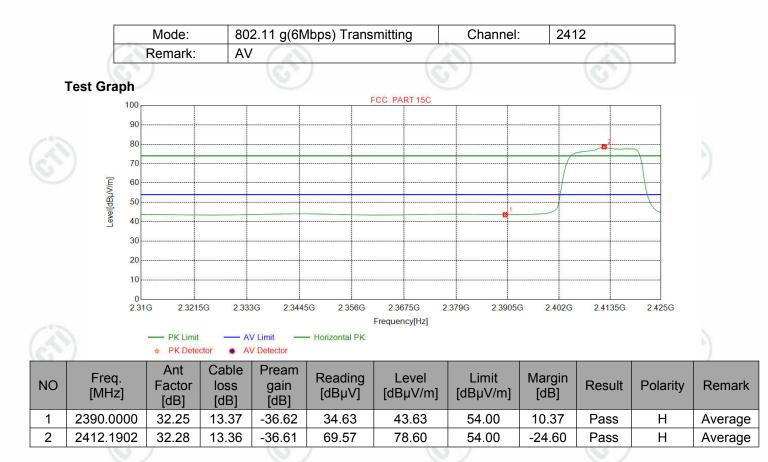


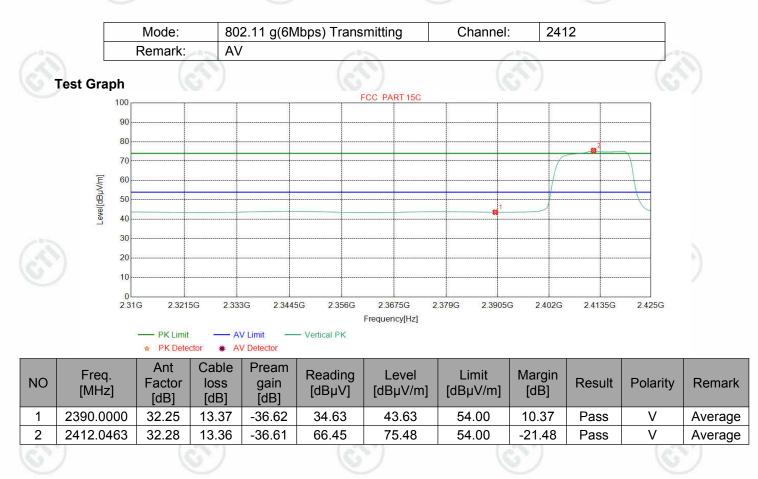








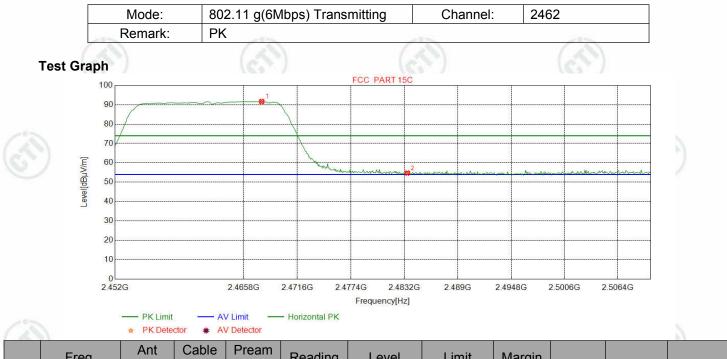


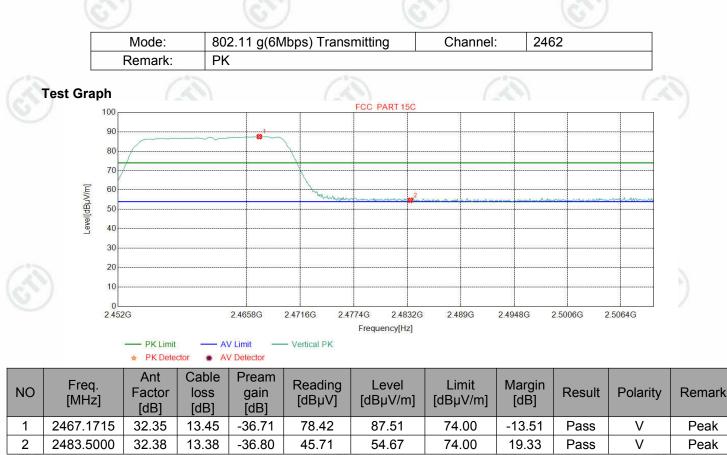






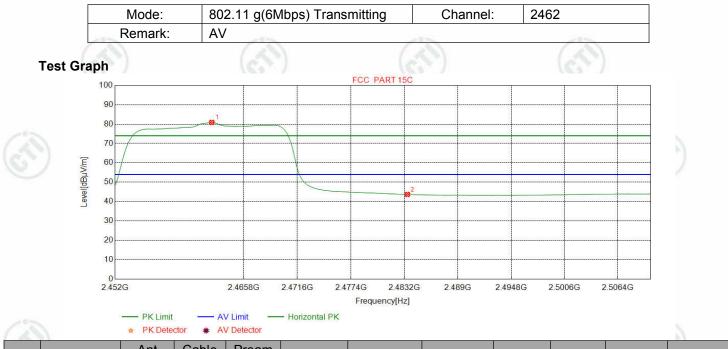


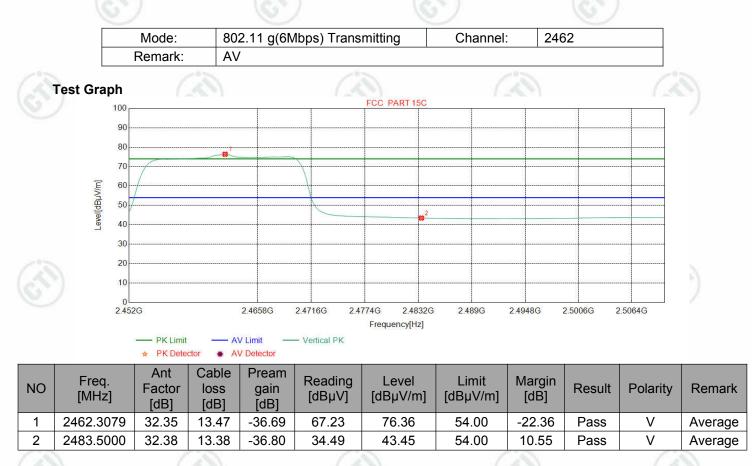








| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity | Remark |
|----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|--------|
| 1  | 2467.7522      | 32.35                 | 13.45                 | -36.71                | 82.58             | 91.67             | 74.00             | -17.67         | Pass   | Н        | Peak   |
| 2  | 2483.5000      | 32.38                 | 13.38                 | -36.80                | 45.75             | 54.71             | 74.00             | 19.29          | Pass   | Н        | Peak   |
|    | 1.63           |                       |                       | 1 45.35               |                   | 7.2               |                   |                | 1 4 3  |          |        |













| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity | Remark  |
|----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|---------|
| 1  | 2462.3805      | 32.35                 | 13.47                 | -36.69                | 71.75             | 80.88             | 54.00             | -26.88         | Pass   | Н        | Average |
| 2  | 2483.5000      | 32.38                 | 13.38                 | -36.80                | 34.70             | 43.66             | 54.00             | 10.34          | Pass   | Н        | Average |



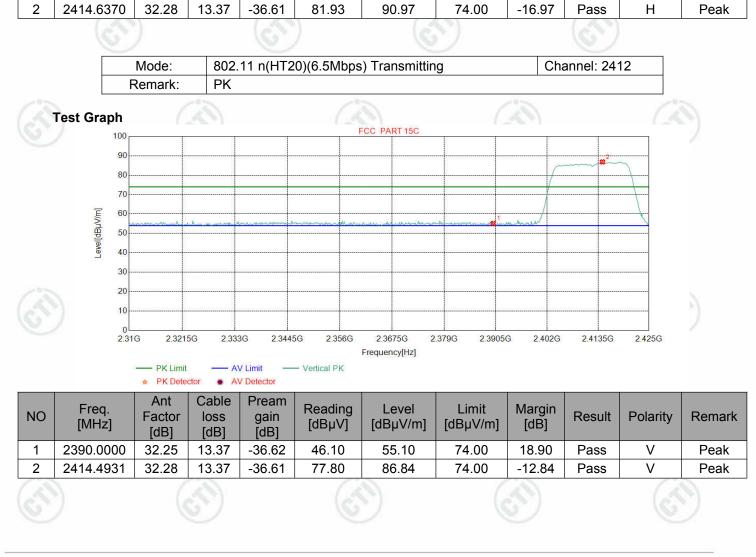




54.99

74.00

19.01


Pass

Н

Peak

45.99

Page 49 of 64

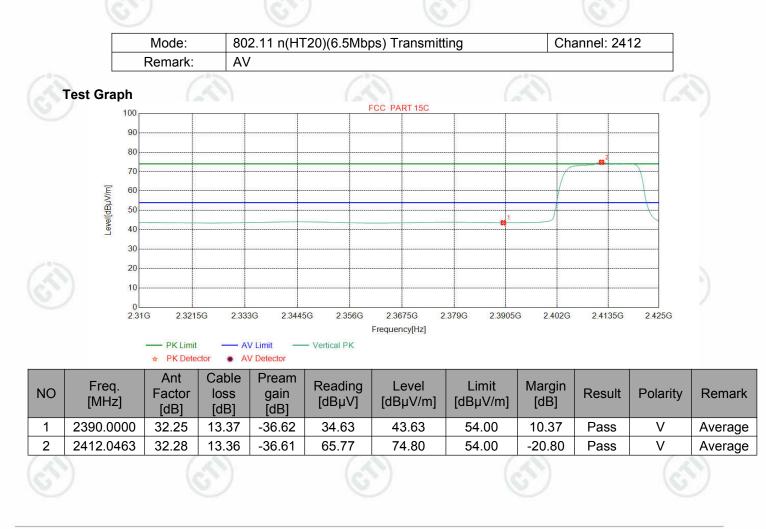


1

2390.0000

32.25

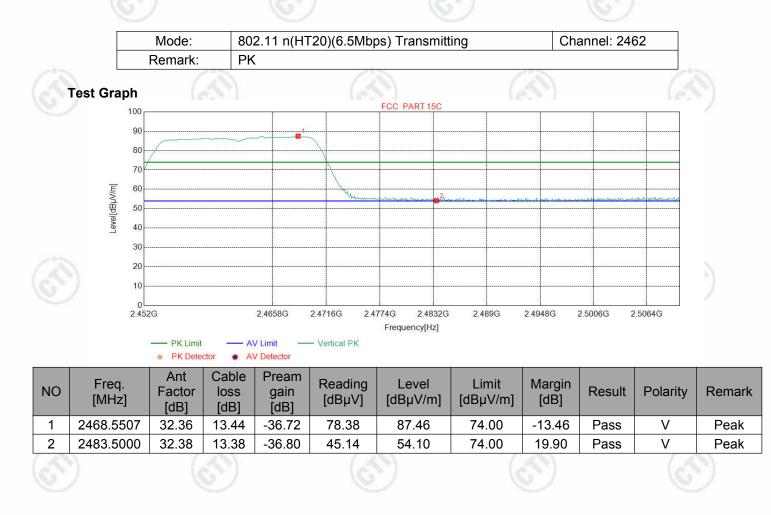
13.37


-36.62





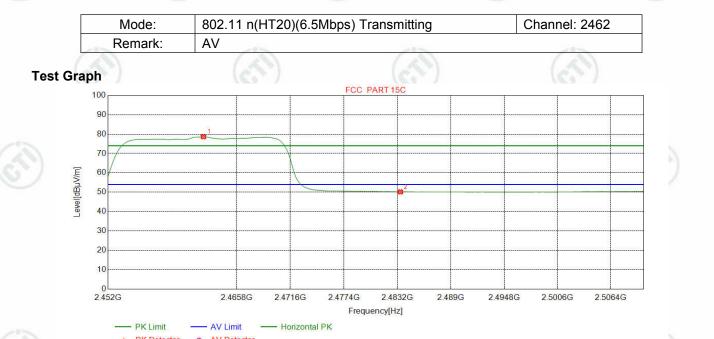
Page 50 of 64


|   | NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity | Remark  |
|---|----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|---------|
|   | 1  | 2390.0000      | 32.25                 | 13.37                 | -36.62                | 34.68             | 43.68             | 54.00             | 10.32          | Pass   | Н        | Average |
|   | 2  | 2412.0463      | 32.28                 | 13.36                 | -36.61                | 69.06             | 78.09             | 54.00             | -24.09         | Pass   | Н        | Average |
| _ |    | 1.43           |                       |                       | 1.5                   |                   | 1.0               | 100               |                | 1.4.3  |          |         |





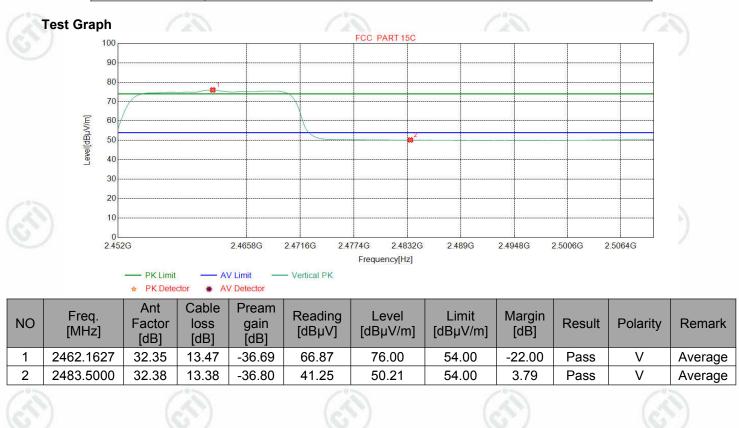



| 1.43 |                |                       |                       |                       |                   |                   |                   | 10             |        |          |        |
|------|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|--------|
| NO   | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity | Remark |
| 1    | 2468.5507      | 32.36                 | 13.44                 | -36.72                | 82.84             | 91.92             | 74.00             | -17.92         | Pass   | Н        | Peak   |
| 2    | 2483.5000      | 32.38                 | 13.38                 | -36.80                | 46.10             | 55.06             | 74.00             | 18.94          | Pass   | Н        | Peak   |
|      | 1.4            |                       |                       | 1.5                   |                   | 1.0               | 1.01              |                | 1.4.3  |          |        |



Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com


Page 51 of 64






Page 52 of 64

| YK Detector     * AV Detector |                |                       |                       |                                          |                   |                   |                   |                | N      |          |         |
|-------------------------------|----------------|-----------------------|-----------------------|------------------------------------------|-------------------|-------------------|-------------------|----------------|--------|----------|---------|
| NO                            | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB]                    | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity | Remark  |
| 1                             | 2462.2353      | 32.35                 | 13.47                 | -36.69                                   | 69.53             | 78.66             | 54.00             | -24.66         | Pass   | Н        | Average |
| 2                             | 2483.5000      | 32.38                 | 13.38                 | -36.80                                   | 41.20             | 50.16             | 54.00             | 3.84           | Pass   | Н        | Average |
|                               | 1.4            |                       |                       | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. |                   |                   |                   |                |        |          |         |



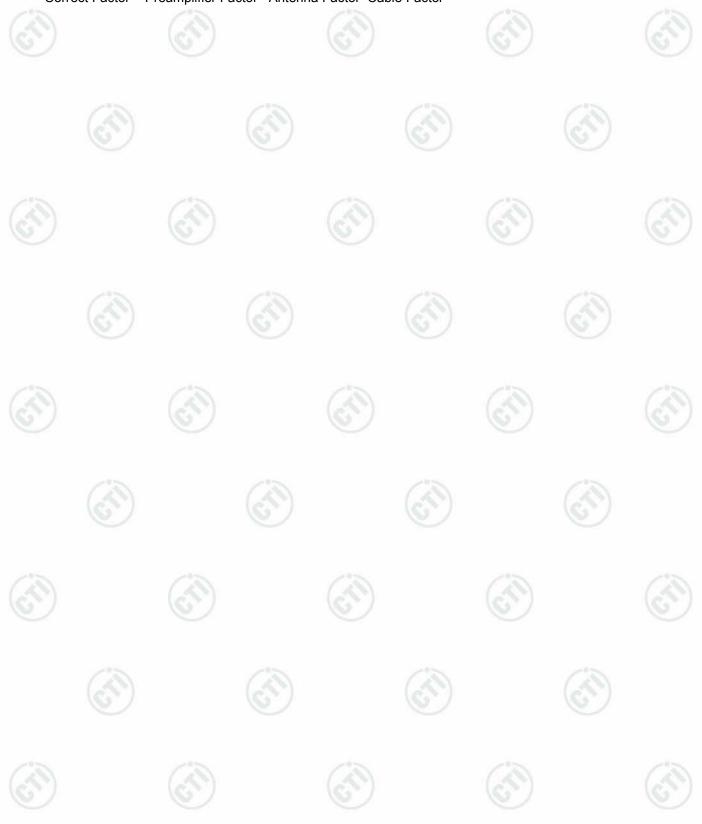








Page 53 of 64


Note:

1) Through Pre-scan transmitting mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20), and then Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor









### **Appendix I): Radiated Spurious Emissions**

| Receiver Setup: |                   | 6          | () ·   |        |            | l               |
|-----------------|-------------------|------------|--------|--------|------------|-----------------|
|                 | Frequency         | Detector   | RBW    | VBW    | Remark     |                 |
|                 | 0.009MHz-0.090MHz | Peak       | 10kHz  | 30kHz  | Peak       |                 |
|                 | 0.009MHz-0.090MHz | Average    | 10kHz  | 30kHz  | Average    |                 |
| S               | 0.090MHz-0.110MHz | Quasi-peak | 10kHz  | 30kHz  | Quasi-peak | 13              |
| )               | 0.110MHz-0.490MHz | Peak       | 10kHz  | 30kHz  | Peak       | $(\mathcal{O})$ |
|                 | 0.110MHz-0.490MHz | Average    | 10kHz  | 30kHz  | Average    | $\sim$          |
|                 | 0.490MHz -30MHz   | Quasi-peak | 10kHz  | 30kHz  | Quasi-peak |                 |
| 1               | 30MHz-1GHz        | Quasi-peak | 120kHz | 300kHz | Quasi-peak |                 |
| (S)             |                   | Peak       | 1MHz   | 3MHz   | Peak       |                 |
|                 | Above 1GHz        | Peak       | 1MHz   | 10Hz   | Average    |                 |

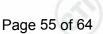
#### **Test Procedure:**

#### Below 1GHz test procedure as below:

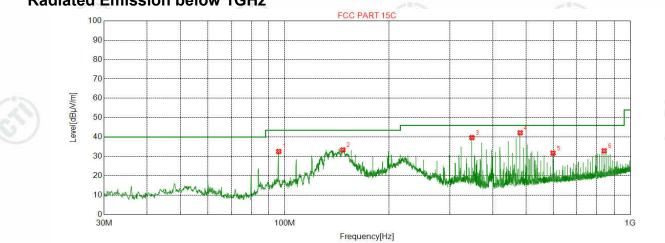
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

#### Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter( Above 18GHz the distance is 1 meter and table is 1.5 meter).
  h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.


| MHz-0.490MHz<br>MHz-1.705MHz<br>5MHz-30MHz | 2400/F(kHz)<br>24000/F(kHz)                                               | -                                                                                                        | -                                                                                                                                      | 300                                                                                                                                                                                             | 1                                                                                                                                          |
|--------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
|                                            | 24000/F(kHz)                                                              | _                                                                                                        | - 0.5                                                                                                                                  |                                                                                                                                                                                                 | 1                                                                                                                                          |
| 5MHz-30MHz                                 |                                                                           |                                                                                                          |                                                                                                                                        | 30                                                                                                                                                                                              | 3                                                                                                                                          |
|                                            | 30                                                                        | -                                                                                                        | $(\underline{C})$                                                                                                                      | 30                                                                                                                                                                                              | 3                                                                                                                                          |
| MHz-88MHz                                  | 100                                                                       | 40.0                                                                                                     | Quasi-peak                                                                                                                             | 3                                                                                                                                                                                               | ~                                                                                                                                          |
| /Hz-216MHz                                 | 150                                                                       | 43.5                                                                                                     | Quasi-peak                                                                                                                             | 3                                                                                                                                                                                               |                                                                                                                                            |
| MHz-960MHz                                 | 200                                                                       | 46.0                                                                                                     | Quasi-peak                                                                                                                             | 3                                                                                                                                                                                               | 1                                                                                                                                          |
| 0MHz-1GHz                                  | 500                                                                       | 54.0                                                                                                     | Quasi-peak                                                                                                                             | 3                                                                                                                                                                                               | 1                                                                                                                                          |
| bove 1GHz                                  | 500                                                                       | 54.0                                                                                                     | Average                                                                                                                                | 3                                                                                                                                                                                               | 1                                                                                                                                          |
|                                            | MHz-960MHz<br>0MHz-1GHz<br>bove 1GHz<br>5.35(b), Unless<br>20dB above the | MHz-960MHz2000MHz-1GHz500bove 1GHz5005.35(b), Unless otherwise specifie200dB above the maximum permitted | MHz-960MHz20046.00MHz-1GHz50054.0bove 1GHz50054.05.35(b), Unless otherwise specified, the limi20dB above the maximum permitted average | MHz-960MHz20046.0Quasi-peak0MHz-1GHz50054.0Quasi-peakbove 1GHz50054.0Average5.35(b), Unless otherwise specified, the limit on peak radio20dB above the maximum permitted average emission limit | MHz-960MHz         200         46.0         Quasi-peak         3           0MHz-1GHz         500         54.0         Quasi-peak         3 |

j. Repeat above procedures until all frequencies measured was complete.







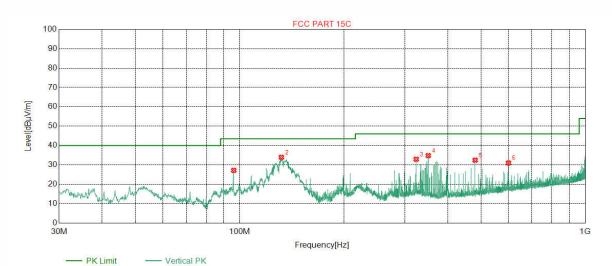



#### Radiated Spurious Emissions test Data: Radiated Emission below 1GHz



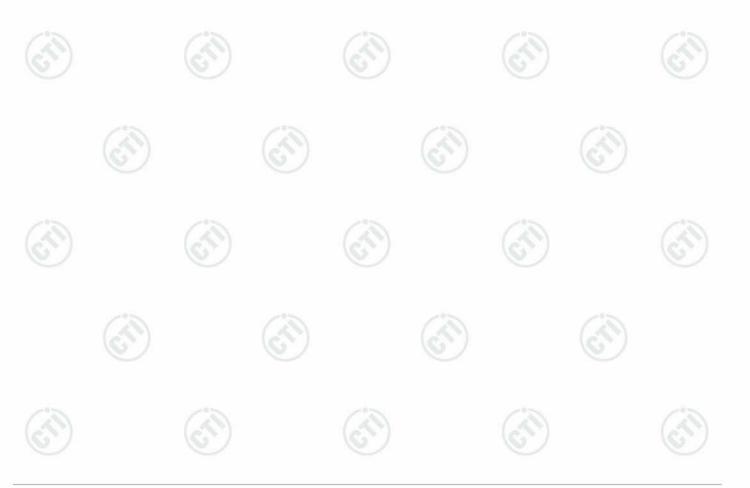
### PK Limit Horizontal PK PK Detector AV Detector

| C | NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Magin<br>[dB] | Result | Polarity   |
|---|----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|---------------|--------|------------|
|   | 1  | 96.0636        | 10.37                 | 1.13                  | -32.07                | 53.08             | 32.51             | 43.50             | 10.99         | Pass   | Horizontal |
|   | 2  | 147.2847       | 7.45                  | 1.43                  | -32.00                | 56.46             | 33.34             | 43.50             | 10.16         | Pass   | Horizontal |
|   | 3  | 347.9978       | 14.26                 | 2.22                  | -31.86                | 55.10             | 39.72             | 46.00             | 6.28          | Pass   | Horizontal |
|   | 4  | 480.0280       | 16.68                 | 2.61                  | -31.90                | 54.78             | 42.17             | 46.00             | 3.83          | Pass   | Horizontal |
|   | 5  | 597.4097       | 18.95                 | 2.94                  | -31.97                | 41.77             | 31.69             | 46.00             | 14.31         | Pass   | Horizontal |
|   | 6  | 840.1280       | 21.38                 | 3.50                  | -31.89                | 39.89             | 32.88             | 46.00             | 13.12         | Pass   | Horizontal |








# Page 56 of 64



#### ➡ PK Detector ★ AV Detector

| $\alpha$ | NO | Freq.<br>[MHz]           | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Magin<br>[dB] | Result | Polarity |
|----------|----|--------------------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|---------------|--------|----------|
| G        | 1  | 96.0636                  | 10.37                 | 1.13                  | -32.07                | 47.73             | 27.16             | 43.50             | 16.34         | Pass   | Vertical |
| ~        | 2  | 131.9572                 | 7.60                  | 1.34                  | -32.01                | 56.99             | 33.92             | 43.50             | 9.58          | Pass   | Vertical |
|          | 3  | 324.0364                 | 13.73                 | 2.14                  | -31.81                | 48.86             | 32.92             | 46.00             | 13.08         | Pass   | Vertical |
|          | 4  | 351.1991                 | 14.33                 | 2.23                  | -31.87                | 50.10             | 34.79             | 46.00             | 11.21         | Pass   | Vertical |
|          | 5  | 480.0280                 | 16.68                 | 2.61                  | -31.90                | 45.05             | 32.44             | 46.00             | 13.56         | Pass   | Vertical |
|          | 6  | 599.1559                 | 18.98                 | 2.95                  | -31.98                | 41.01             | 30.96             | 46.00             | 15.04         | Pass   | Vertical |
|          |    | Concerning of the second |                       | -                     |                       |                   |                   |                   |               |        |          |









#### Transmitter Emission above 1GHz

| Mode | e: 802.11 b(11 | Mbps) Ti              | ransmittir            | ıg                    |                   |                   |                   | Channel: 2412MHz |        |          |        |
|------|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|------------------|--------|----------|--------|
| NO   | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB]   | Result | Polarity | Remark |
| 1    | 1196.4393      | 28.10                 | 2.66                  | -37.65                | 49.05             | 42.16             | 74.00             | 31.84            | Pass   | Н        | Peak   |
| 2    | 3215.4966      | 33.29                 | 4.59                  | -36.74                | 46.05             | 47.19             | 74.00             | 26.81            | Pass   | Н        | Peak   |
| 3    | 4824.0000      | 34.50                 | 4.61                  | -36.11                | 47.60             | 50.60             | 74.00             | 23.40            | Pass   | Н        | Peak   |
| 4    | 6172.9673      | 35.83                 | 5.24                  | -36.25                | 44.01             | 48.83             | 74.00             | 25.17            | Pass   | Н        | Peak   |
| 5    | 7236.0000      | 36.34                 | 5.79                  | -36.44                | 42.36             | 48.05             | 74.00             | 25.95            | Pass   | Н        | Peak   |
| 6    | 9648.0000      | 37.66                 | 6.72                  | -36.92                | 42.45             | 49.91             | 74.00             | 24.09            | Pass   | Н        | Peak   |
| 7    | 1196.8394      | 28.10                 | 2.66                  | -37.65                | 51.75             | 44.86             | 74.00             | 29.14            | Pass   | V        | Peak   |
| 8    | 3021.4521      | 33.21                 | 4.89                  | -36.79                | 46.32             | 47.63             | 74.00             | 26.37            | Pass   | V        | Peak   |
| 9    | 4824.0000      | 34.50                 | 4.61                  | -36.11                | 46.35             | 49.35             | 74.00             | 24.65            | Pass   | V        | Peak   |
| 10   | 6025.7276      | 35.81                 | 5.27                  | -36.28                | 43.56             | 48.36             | 74.00             | 25.64            | Pass   | V        | Peak   |
| 11   | 7236.0000      | 36.34                 | 5.79                  | -36.44                | 42.48             | 48.17             | 74.00             | 25.83            | Pass   | V        | Peak   |
| 12   | 9648.0000      | 37.66                 | 6.72                  | -36.92                | 43.48             | 50.94             | 74.00             | 23.06            | Pass   | V        | Peak   |
| 6    | )              | (                     | <u>(2)</u>            |                       | 6                 | ð)                | (c                |                  |        | 6        | )      |

| Mod | e: 802.11 b(11 | Mbps) Ti              | ransmittir            | ıg                    |                   |                   |                   | Channel: 2437MHz |        |          |        |  |
|-----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|------------------|--------|----------|--------|--|
| NO  | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB]   | Result | Polarity | Remark |  |
| 1   | 1196.4393      | 28.10                 | 2.66                  | -37.65                | 48.59             | 41.70             | 74.00             | 32.30            | Pass   | Н        | Peak   |  |
| 2   | 2965.9932      | 33.15                 | 4.45                  | -36.78                | 45.83             | 46.65             | 74.00             | 27.35            | Pass   | Н        | Peak   |  |
| 3   | 4874.0000      | 34.50                 | 4.78                  | -36.09                | 42.96             | 46.15             | 74.00             | 27.85            | Pass   | Н        | Peak   |  |
| 4   | 7311.0000      | 36.41                 | 5.85                  | -36.31                | 40.82             | 46.77             | 74.00             | 27.23            | Pass   | Н        | Peak   |  |
| 5   | 8129.9880      | 36.45                 | 6.32                  | -36.48                | 43.55             | 49.84             | 74.00             | 24.16            | Pass   | Н        | Peak   |  |
| 6   | 9748.0000      | 37.70                 | 6.77                  | -36.79                | 43.08             | 50.76             | 74.00             | 23.24            | Pass   | Н        | Peak   |  |
| 7   | 1195.6391      | 28.10                 | 2.66                  | -37.65                | 53.09             | 46.20             | 74.00             | 27.80            | Pass   | V        | Peak   |  |
| 8   | 2967.1934      | 33.15                 | 4.45                  | -36.78                | 45.83             | 46.65             | 74.00             | 27.35            | Pass   | V        | Peak   |  |
| 9   | 4874.0000      | 34.50                 | 4.78                  | -36.09                | 44.34             | 47.53             | 74.00             | 26.47            | Pass   | V        | Peak   |  |
| 10  | 6263.6514      | 35.85                 | 5.38                  | -36.27                | 43.40             | 48.36             | 74.00             | 25.64            | Pass   | V        | Peak   |  |
| 11  | 7311.0000      | 36.41                 | 5.85                  | -36.31                | 40.30             | 46.25             | 74.00             | 27.75            | Pass   | V        | Peak   |  |
| 12  | 9748.0000      | 37.70                 | 6.77                  | -36.79                | 42.87             | 50.55             | 74.00             | 23.45            | Pass   | V        | Peak   |  |







## Page 58 of 64

| Mode | e: 802.11 b(11 | Mbps) Ti              | ransmittir            | ig                    |                   |                   |                   | Channel        | : 2462MH | Z        |        |
|------|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|----------|----------|--------|
| NO   | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result   | Polarity | Remark |
| 1    | 1232.0464      | 28.13                 | 2.67                  | -37.55                | 49.54             | 42.79             | 74.00             | 31.21          | Pass     | Н        | Peak   |
| 2    | 3007.8008      | 33.20                 | 4.91                  | -36.73                | 45.95             | 47.33             | 74.00             | 26.67          | Pass     | Н        | Peak   |
| 3    | 4924.0000      | 34.50                 | 4.85                  | -36.17                | 43.25             | 46.43             | 74.00             | 27.57          | Pass     | Н        | Peak   |
| 4    | 6524.0024      | 35.91                 | 5.41                  | -36.17                | 44.93             | 50.08             | 74.00             | 23.92          | Pass     | Н        | Peak   |
| 5    | 7386.0000      | 36.49                 | 5.85                  | -36.34                | 42.28             | 48.28             | 74.00             | 25.72          | Pass     | Н        | Peak   |
| 6    | 9848.0000      | 37.74                 | 6.83                  | -36.93                | 43.18             | 50.82             | 74.00             | 23.18          | Pass     | Н        | Peak   |
| 7    | 1199.2398      | 28.10                 | 2.66                  | -37.64                | 53.68             | 46.80             | 74.00             | 27.20          | Pass     | V        | Peak   |
| 8    | 3389.0639      | 33.36                 | 4.55                  | -36.66                | 47.17             | 48.42             | 74.00             | 25.58          | Pass     | V        | Peak   |
| 9    | 4924.0000      | 34.50                 | 4.85                  | -36.17                | 43.06             | 46.24             | 74.00             | 27.76          | Pass     | V        | Peak   |
| 10   | 6315.3315      | 35.86                 | 5.46                  | -36.20                | 44.13             | 49.25             | 74.00             | 24.75          | Pass     | V        | Peak   |
| 11   | 7386.0000      | 36.49                 | 5.85                  | -36.34                | 42.59             | 48.59             | 74.00             | 25.41          | Pass     | V        | Peak   |
| 12   | 9848.0000      | 37.74                 | 6.83                  | -36.93                | 42.64             | 50.28             | 74.00             | 23.72          | Pass     | V        | Peak   |
| 6    | )              | (,                    | <u>()</u>             |                       |                   | N                 | (é                |                |          | (2)      |        |

| Mod | e: 802.11 g(6N | /lbps) Tra            | nsmitting             |                       |                   |                   |                   | Channel: 2412MHz |        |          |        |  |
|-----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|------------------|--------|----------|--------|--|
| NO  | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB]   | Result | Polarity | Remark |  |
| 1   | 1894.1788      | 31.00                 | 3.42                  | -36.79                | 47.67             | 45.30             | 74.00             | 28.70            | Pass   | Н        | Peak   |  |
| 2   | 3003.9004      | 33.20                 | 4.92                  | -36.72                | 45.56             | 46.96             | 74.00             | 27.04            | Pass   | Н        | Peak   |  |
| 3   | 4824.0000      | 34.50                 | 4.61                  | -36.11                | 42.47             | 45.47             | 74.00             | 28.53            | Pass   | Н        | Peak   |  |
| 4   | 5779.0279      | 35.45                 | 4.96                  | -36.07                | 43.43             | 47.77             | 74.00             | 26.23            | Pass   | Н        | Peak   |  |
| 5   | 7236.0000      | 36.34                 | 5.79                  | -36.44                | 41.58             | 47.27             | 74.00             | 26.73            | Pass   | Н        | Peak   |  |
| 6   | 9648.0000      | 37.66                 | 6.72                  | -36.92                | 43.18             | 50.64             | 74.00             | 23.36            | Pass   | Н        | Peak   |  |
| 7   | 1196.4393      | 28.10                 | 2.66                  | -37.65                | 50.27             | 43.38             | 74.00             | 30.62            | Pass   | V        | Peak   |  |
| 8   | 2989.9980      | 33.18                 | 4.52                  | -36.73                | 44.76             | 45.73             | 74.00             | 28.27            | Pass   | V        | Peak   |  |
| 9   | 4824.0000      | 34.50                 | 4.61                  | -36.11                | 38.91             | 41.91             | 74.00             | 32.09            | Pass   | V        | Peak   |  |
| 10  | 5719.5470      | 35.35                 | 4.99                  | -36.12                | 41.87             | 46.09             | 74.00             | 27.91            | Pass   | V        | Peak   |  |
| 11  | 7236.0000      | 36.34                 | 5.79                  | -36.44                | 39.51             | 45.20             | 74.00             | 28.80            | Pass   | V        | Peak   |  |
| 12  | 9648.0000      | 37.66                 | 6.72                  | -36.92                | 43.27             | 50.73             | 74.00             | 23.27            | Pass   | V        | Peak   |  |







# Page 59 of 64

| Mode | e: 802.11 g(6N | /lbps) Tra            | nsmitting             |                       |                   |                   |                   | Channel: 2437MHz |        |          |        |  |
|------|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|------------------|--------|----------|--------|--|
| NO   | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB]   | Result | Polarity | Remark |  |
| 1    | 1854.1708      | 30.74                 | 3.38                  | -36.93                | 46.86             | 44.05             | 74.00             | 29.95            | Pass   | Н        | Peak   |  |
| 2    | 3469.9970      | 33.39                 | 4.45                  | -36.58                | 44.78             | 46.04             | 74.00             | 27.96            | Pass   | Н        | Peak   |  |
| 3    | 4874.0000      | 34.50                 | 4.78                  | -36.09                | 42.62             | 45.81             | 74.00             | 28.19            | Pass   | Н        | Peak   |  |
| 4    | 6500.6001      | 35.90                 | 5.47                  | -36.22                | 43.81             | 48.96             | 74.00             | 25.04            | Pass   | Н        | Peak   |  |
| 5    | 7311.0000      | 36.41                 | 5.85                  | -36.31                | 41.30             | 47.25             | 74.00             | 26.75            | Pass   | Н        | Peak   |  |
| 6    | 9748.0000      | 37.70                 | 6.77                  | -36.79                | 42.83             | 50.51             | 74.00             | 23.49            | Pass   | Н        | Peak   |  |
| 7    | 1195.6391      | 28.10                 | 2.66                  | -37.65                | 54.41             | 47.52             | 74.00             | 26.48            | Pass   | V        | Peak   |  |
| 8    | 3330.5581      | 33.33                 | 4.54                  | -36.74                | 46.31             | 47.44             | 74.00             | 26.56            | Pass   | V        | Peak   |  |
| 9    | 4874.0000      | 34.50                 | 4.78                  | -36.09                | 41.68             | 44.87             | 74.00             | 29.13            | Pass   | V        | Peak   |  |
| 10   | 5974.0474      | 35.76                 | 5.33                  | -36.23                | 44.01             | 48.87             | 74.00             | 25.13            | Pass   | V        | Peak   |  |
| 11   | 7311.0000      | 36.41                 | 5.85                  | -36.31                | 42.12             | 48.07             | 74.00             | 25.93            | Pass   | V        | Peak   |  |
| 12   | 9748.0000      | 37.70                 | 6.77                  | -36.79                | 43.28             | 50.96             | 74.00             | 23.04            | Pass   | V        | Peak   |  |
| 1    |                | 1                     |                       |                       | 1.2               |                   | - C -             |                  |        | 1.1      |        |  |

| Mode | e: 802.11 g(6N | /lbps) Tra            | nsmitting             | _                     |                   |                   |                   | Channel        | Channel: 2462MHz |          |        |  |  |
|------|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|------------------|----------|--------|--|--|
| NO   | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result           | Polarity | Remark |  |  |
| 1    | 1393.6787      | 28.29                 | 2.89                  | -37.21                | 49.29             | 43.26             | 74.00             | 30.74          | Pass             | Н        | Peak   |  |  |
| 2    | 3218.4218      | 33.29                 | 4.58                  | -36.74                | 47.16             | 48.29             | 74.00             | 25.71          | Pass             | Н        | Peak   |  |  |
| 3    | 4924.0000      | 34.50                 | 4.85                  | -36.17                | 42.66             | 45.84             | 74.00             | 28.16          | Pass             | Н        | Peak   |  |  |
| 4    | 6394.3144      | 35.88                 | 5.33                  | -36.32                | 45.27             | 50.16             | 74.00             | 23.84          | Pass             | Н        | Peak   |  |  |
| 5    | 7386.0000      | 36.49                 | 5.85                  | -36.34                | 41.89             | 47.89             | 74.00             | 26.11          | Pass             | Н        | Peak   |  |  |
| 6    | 9848.0000      | 37.74                 | 6.83                  | -36.93                | 43.33             | 50.97             | 74.00             | 23.03          | Pass             | Н        | Peak   |  |  |
| 7    | 1796.5593      | 30.36                 | 3.31                  | -36.81                | 48.32             | 45.18             | 74.00             | 28.82          | Pass             | V        | Peak   |  |  |
| 8    | 3189.1689      | 33.28                 | 4.63                  | -36.75                | 45.51             | 46.67             | 74.00             | 27.33          | Pass             | V        | Peak   |  |  |
| 9    | 4924.0000      | 34.50                 | 4.85                  | -36.17                | 41.86             | 45.04             | 74.00             | 28.96          | Pass             | V        | Peak   |  |  |
| 10   | 6138.8389      | 35.83                 | 5.25                  | -36.22                | 44.27             | 49.13             | 74.00             | 24.87          | Pass             | V        | Peak   |  |  |
| 11   | 7386.0000      | 36.49                 | 5.85                  | -36.34                | 41.32             | 47.32             | 74.00             | 26.68          | Pass             | V        | Peak   |  |  |
| 12   | 9848.0000      | 37.74                 | 6.83                  | -36.93                | 43.00             | 50.64             | 74.00             | 23.36          | Pass             | V        | Peak   |  |  |

















## Page 60 of 64

| Mode | e: 802.11 n(H <sup>-</sup> | T20)(6.5N             | lbps) Tra             | nsmitting             |                   |                   |                   | Channel        | : 2412MH | z        |        |
|------|----------------------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|----------|----------|--------|
| NO   | Freq.<br>[MHz]             | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result   | Polarity | Remark |
| 1    | 1396.0792                  | 28.30                 | 2.89                  | -37.21                | 50.18             | 44.16             | 74.00             | 29.84          | Pass     | Н        | Peak   |
| 2    | 3352.9853                  | 33.34                 | 4.52                  | -36.70                | 46.16             | 47.32             | 74.00             | 26.68          | Pass     | Н        | Peak   |
| 3    | 4824.0000                  | 34.50                 | 4.61                  | -36.11                | 42.41             | 45.41             | 74.00             | 28.59          | Pass     | Н        | Peak   |
| 4    | 5952.5953                  | 35.72                 | 5.32                  | -36.15                | 43.27             | 48.16             | 74.00             | 25.84          | Pass     | Н        | Peak   |
| 5    | 7236.0000                  | 36.34                 | 5.79                  | -36.44                | 42.18             | 47.87             | 74.00             | 26.13          | Pass     | Н        | Peak   |
| 6    | 9648.0000                  | 37.66                 | 6.72                  | -36.92                | 43.52             | 50.98             | 74.00             | 23.02          | Pass     | Н        | Peak   |
| 7    | 1393.6787                  | 28.29                 | 2.89                  | -37.21                | 55.44             | 49.41             | 74.00             | 24.59          | Pass     | V        | Peak   |
| 8    | 2903.1806                  | 33.05                 | 4.38                  | -36.64                | 47.33             | 48.12             | 74.00             | 25.88          | Pass     | V        | Peak   |
| 9    | 4824.0000                  | 34.50                 | 4.61                  | -36.11                | 42.00             | 45.00             | 74.00             | 29.00          | Pass     | V        | Peak   |
| 10   | 5946.7447                  | 35.71                 | 5.30                  | -36.15                | 43.20             | 48.06             | 74.00             | 25.94          | Pass     | V        | Peak   |
| 11   | 7236.0000                  | 36.34                 | 5.79                  | -36.44                | 42.56             | 48.25             | 74.00             | 25.75          | Pass     | V        | Peak   |
| 12   | 9648.0000                  | 37.66                 | 6.72                  | -36.92                | 43.17             | 50.63             | 74.00             | 23.37          | Pass     | V        | Peak   |
| 6    | •)                         | - (                   |                       |                       | (2)               | .>)               | (6                | 5)             |          | 6        | 2)     |

| Mode | e: 802.11 n(H  | T20)(6.5N             | lbps) Tra             | insmitting            |                   |                   |                   | Channel: 2437MHz |        |          |        |  |
|------|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|------------------|--------|----------|--------|--|
| NO   | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB]   | Result | Polarity | Remark |  |
| 1    | 1916.9834      | 31.15                 | 3.42                  | -36.80                | 47.51             | 45.28             | 74.00             | 28.72            | Pass   | Н        | Peak   |  |
| 2    | 3536.3036      | 33.43                 | 4.45                  | -36.48                | 45.28             | 46.68             | 74.00             | 27.32            | Pass   | Н        | Peak   |  |
| 3    | 4874.0000      | 34.50                 | 4.78                  | -36.09                | 42.27             | 45.46             | 74.00             | 28.54            | Pass   | Н        | Peak   |  |
| 4    | 6441.1191      | 35.89                 | 5.48                  | -36.27                | 44.10             | 49.20             | 74.00             | 24.80            | Pass   | Н        | Peak   |  |
| 5    | 7311.0000      | 36.41                 | 5.85                  | -36.31                | 42.56             | 48.51             | 74.00             | 25.49            | Pass   | Н        | Peak   |  |
| 6    | 9748.0000      | 37.70                 | 6.77                  | -36.79                | 42.88             | 50.56             | 74.00             | 23.44            | Pass   | н        | Peak   |  |
| 7    | 1596.5193      | 29.04                 | 3.07                  | -37.00                | 47.73             | 42.84             | 74.00             | 31.16            | Pass   | V        | Peak   |  |
| 8    | 2902.7806      | 33.04                 | 4.38                  | -36.63                | 46.04             | 46.83             | 74.00             | 27.17            | Pass   | V        | Peak   |  |
| 9    | 4874.0000      | 34.50                 | 4.78                  | -36.09                | 40.18             | 43.37             | 74.00             | 30.63            | Pass   | V        | Peak   |  |
| 10   | 6249.0249      | 35.85                 | 5.35                  | -36.29                | 42.82             | 47.73             | 74.00             | 26.27            | Pass   | V        | Peak   |  |
| 11   | 7311.0000      | 36.41                 | 5.85                  | -36.31                | 41.59             | 47.54             | 74.00             | 26.46            | Pass   | V        | Peak   |  |
| 12   | 9748.0000      | 37.70                 | 6.77                  | -36.79                | 42.88             | 50.56             | 74.00             | 23.44            | Pass   | V        | Peak   |  |







# Page 61 of 64

| Mode | e: 802.11 n(H <sup>-</sup> | T20)(6.5N             | /lbps) Tra            | nsmitting             |                   |                   |                   | Channel: 2462MHz |        |          |        |  |
|------|----------------------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|------------------|--------|----------|--------|--|
| NO   | Freq.<br>[MHz]             | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB]   | Result | Polarity | Remark |  |
| 1    | 1198.8398                  | 28.10                 | 2.66                  | -37.64                | 50.06             | 43.18             | 74.00             | 30.82            | Pass   | Н        | Peak   |  |
| 2    | 3091.6592                  | 33.24                 | 4.74                  | -36.83                | 46.75             | 47.90             | 74.00             | 26.10            | Pass   | Н        | Peak   |  |
| З    | 4924.0000                  | 34.50                 | 4.85                  | -36.17                | 42.31             | 45.49             | 74.00             | 28.51            | Pass   | Н        | Peak   |  |
| 4    | 5980.8731                  | 35.77                 | 5.33                  | -36.25                | 44.35             | 49.20             | 74.00             | 24.80            | Pass   | Н        | Peak   |  |
| 5    | 7386.0000                  | 36.49                 | 5.85                  | -36.34                | 42.09             | 48.09             | 74.00             | 25.91            | Pass   | Н        | Peak   |  |
| 6    | 9848.0000                  | 37.74                 | 6.83                  | -36.93                | 42.80             | 50.44             | 74.00             | 23.56            | Pass   | Н        | Peak   |  |
| 7    | 1197.6395                  | 28.10                 | 2.66                  | -37.65                | 53.46             | 46.57             | 74.00             | 27.43            | Pass   | V        | Peak   |  |
| 8    | 4298.8299                  | 34.22                 | 4.40                  | -36.13                | 45.35             | 47.84             | 74.00             | 26.16            | Pass   | V        | Peak   |  |
| 9    | 4924.0000                  | 34.50                 | 4.85                  | -36.17                | 42.04             | 45.22             | 74.00             | 28.78            | Pass   | V        | Peak   |  |
| 10   | 6391.3891                  | 35.88                 | 5.34                  | -36.31                | 44.68             | 49.59             | 74.00             | 24.41            | Pass   | V        | Peak   |  |
| 11   | 7386.0000                  | 36.49                 | 5.85                  | -36.34                | 41.92             | 47.92             | 74.00             | 26.08            | Pass   | V        | Peak   |  |
| 12   | 9848.0000                  | 37.74                 | 6.83                  | -36.93                | 42.98             | 50.62             | 74.00             | 23.38            | Pass   | V        | Peak   |  |

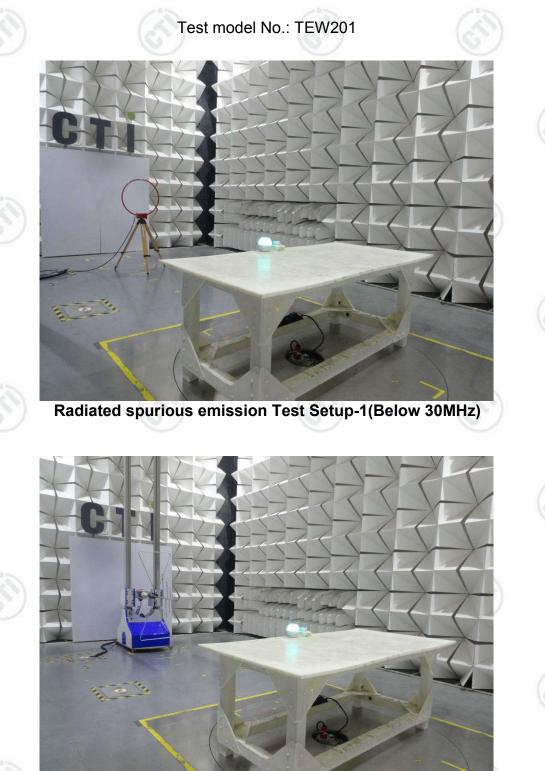
#### Note:

1) Through Pre-scan transmitting mode and charge+transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20), and then Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:


Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor- Antenna Factor-Cable Factor


3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

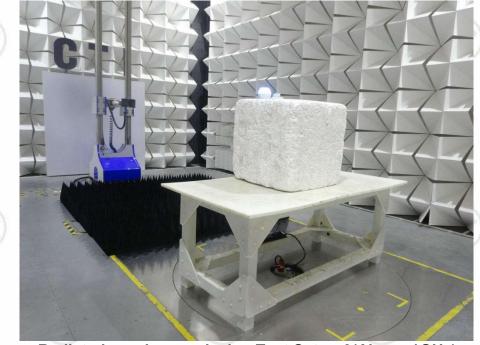






### PHOTOGRAPHS OF TEST SETUP




Radiated spurious emission Test Setup-2(30MHz-1GHz)











Radiated spurious emission Test Setup-3(Above 1GHz)



**Conducted Emissions Test Setup** 

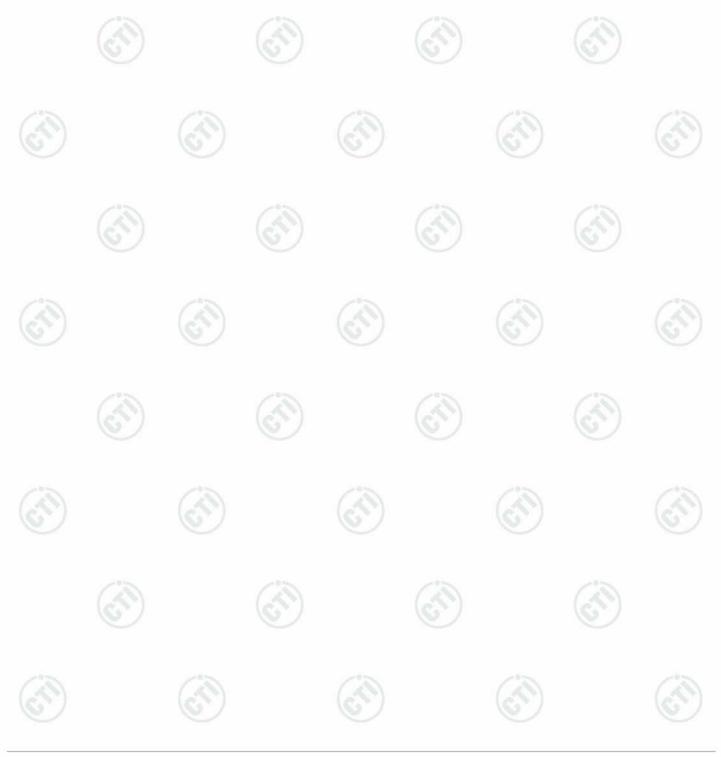













### **PHOTOGRAPHS OF EUT Constructional Details**

Refer to Report No.EED32K00287201 for EUT external and internal photos.

#### \*\*\* End of Report \*\*\*

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

