

TEST REPORT

Product **Trade mark** Model/Type reference

Serial Number **Report Number** FCC ID Date of Issue **Test Standards Test result**

Sleep Tracker N/A : P103T, P10XT(X can be any Of 1-9 and A-Z) N/A : EED32P80442301

: 2ADIOP103T Apr. 17, 2023 ÷

2

47 CFR Part 15 Subpart C

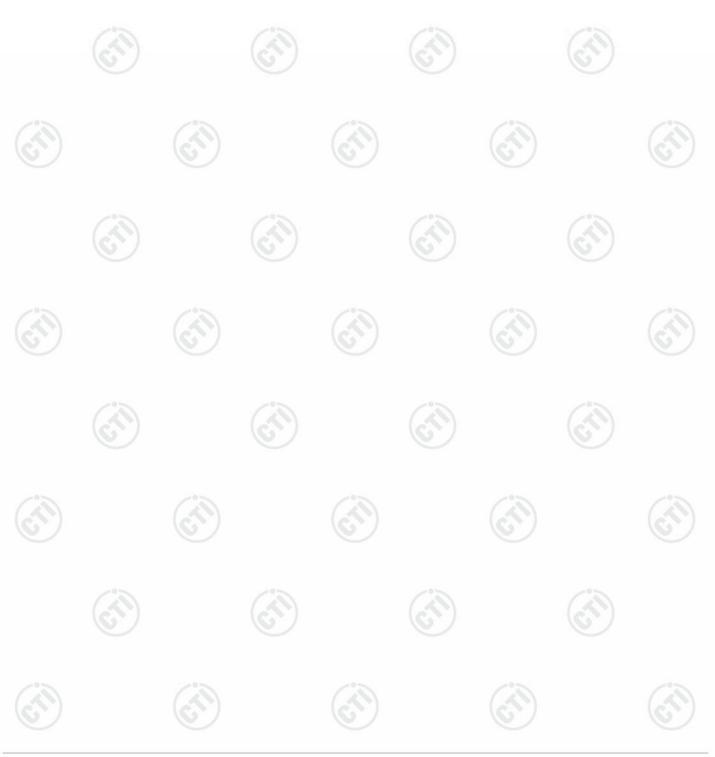
PASS

Prepared for:

Shenzhen Medica Technology Development Co., Ltd Floor 12, Block A, Building 7, Vanke Yun city, XingKe one street, NanShan District, Shenzhen City.

> Prepared by: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:	mark. chen.	Reviewed by:	Tom ch	~ (1)
SApproved by	Mark Chen	Date:	Tom Chen Apr. 17, 2023	
Report Seal	Aaron Ma		Check No.: 843	8211222
(A)				


Page 2 of 41

0								
	Content							
				••••••				
				~~~				
5 GE	ENERAL INFO	ORMATION.			••••••	••••••	••••••	••••••
5. 5. 5. 5. 5.	.2 GENERAL D .3 TEST CONFL .4 TEST ENVIR .5 DESCRIPTIO .6 TEST LOCAT	ESCRIPTION O GURATION ONMENT N OF SUPPOR TION	F EUT	NFIDENCE LEVI	٢		$\odot$	
			•		,			
	-			DATA				
				TIONAL DETA				



## **3 Version**

V	ersion No.	Date	6	Description	9
	00	Apr. 17, 2023		Original	
5	2	2	1	(°)	100
6	(6	(-)	$(c^{(n)})$	(25)	(5)

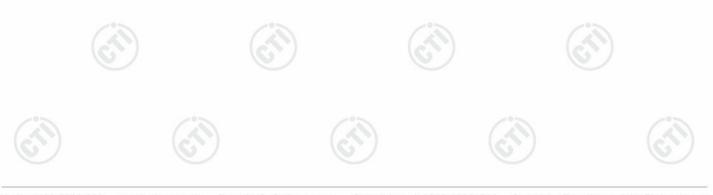




## 4 Test Summary



Page 4 of 41


Fiest Summary		
Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS

#### Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Model No.: P103T, P10XT(X can be any Of 1-9 and A-Z)

Only the model P103T is tested. The electrical circuit design, layout, components used and internal wiring are identical,only model name, appearance and color are different.





## **5** General Information

## 5.1 Client Information

Applicant:	Shenzhen Medica Technology Development Co., Ltd	
Address of Applicant:	Floor 12, Block A, Building 7, Vanke Yun city, XingKe one street,	
22	NanShan District, Shenzhen City.	1000
Manufacturer:	Shenzhen Medica Technology Development Co., Ltd	(~~)
Address of Manufacturer:	Floor 12, Block A, Building 7, Vanke Yun city, XingKe one street, NanShan District, Shenzhen City.	0
Factory:	Shenzhen Medica Technology Development Co., Ltd	
Address of Factory:	Floor 12, Block A, Building 7, Vanke Yun city, XingKe one street, NanShan District, Shenzhen City.	

## 5.2 General Description of EUT

Product Name:	Sleep Tracker	
Model No.:	P103T, P10XT(X can be any Of 1-9 and A-Z)	~
Test Model No.:	P103T	
Trade mark:	N/A	V
Product Type:	Mobile      Portable      Fix Location	
Operation Frequency:	2402MHz~2480MHz	0
Modulation Type:	GFSK	0
Transfer Rate:	⊠ 1Mbps	$\mathcal{O}$
Number of Channel:	40	
Antenna Type:	Chip Antenna	
Antenna Gain:	5.05dBi	
Power Supply:	Battery DC 3.7V	G
Test Voltage:	DC 3.7V	
Sample Received Date:	Mar. 31, 2023	
Sample tested Date:	Mar. 31, 2023 to Apr. 10, 2023	2



Page 5 of 41





Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

$(\mathcal{S})$	Channel	Frequency	
The	lowest channel (CH0)	2402MHz	
The	middle channel (CH19)	2440MHz	
The	highest channel (CH39)	2480MHz	(2)

## 5.3 Test Configuration

Test Software of EU	T: SYDTEK S	tudio Release	S)	(3)
EUT Power Grade:	Default(Pov selected)	ver level is built-in s	et parameters and c	annot be changed and
Use test software to transmitting of the E	set the lowest frequency UT.	v, the middle frequer	ncy and the highest	frequency keep
Test Mode	Modulation	Rate	Channel	Frequency(MHz)
Mode a	GFSK	1Mbps	СН0	2402
Mode b	GFSK	1Mbps	CH19	2440
Mode c	GFSK	1Mbps	CH39	2480





(S

Page 7 of 41

## 5.4 Test Environment

	Operating Environment	t:				
100	Radiated Spurious Emi	ssions:				
10	Temperature:	22~25.0 °C		(2)		(2)
2	Humidity:	50~55 % RH		(e)		C
	Atmospheric Pressure:	1010mbar				
	Conducted Emissions:					
	Temperature:	22~25.0 °C				
	Humidity:	50~55 % RH	$(\mathcal{O})$		6	
	Atmospheric Pressure:	1010mbar				
	RF Conducted:	·				
	Temperature:	22~25.0 °C		1		13
	Humidity:	50~55 % RH		$(c^{\gamma})$		$(c^{(n)})$
~	Atmospheric Pressure:	1010mbar		U		U

## 5.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

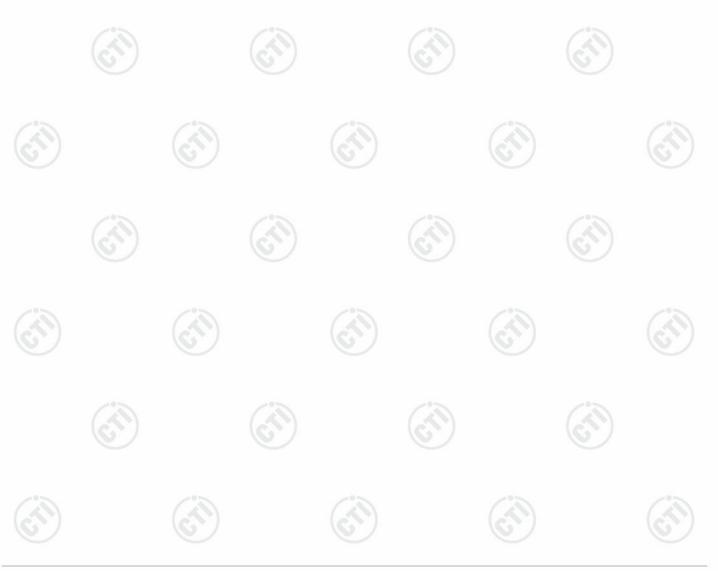
1	Description	Manufacturer	Model No.	Certification	Supplied by
	Netbook	DELL	Latitude 3490	FCC&CE	CTI

## 5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164








Page 8 of 41

# 5.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	PE nower, conducted	0.46dB (30MHz-1GHz)
	RF power, conducted	0.55dB (1GHz-40GHz)
		3.3dB (9kHz-30MHz)
2	Dedicted Spurious omission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
A.		3.4dB (18GHz-40GHz)
	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%



Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com



# 6 Equipment List

Dere	Δ	~f	1.
Page	9	OT	4

RF test system																					
Equipment	Manufacturer Mode No.				Manufacturer Mode No. Serial Number				Manufacturer Mode No. Serial Number		anufacturer Mode No. Serial Number				Mode No. Serial Number		Mode No. Serial Number		Mode No. Serial Number		Cal. Due date (mm-dd-yyyy)
Communication tset set	R&S	CMW500	107929	07-06-2022	07-05-2023																
Signal Generator	R&S	SMBV100A	1407.6004K02- 262149-CV	09-09-2022	09-08-2023																
Spectrum Analyzer	R&S	FSV40	101200	08-01-2022	07-31-2023																
RF control unit(power unit)	MWRF-test	MW100-RFCB	MW220620CTI-42	07-06-2022	07-05-2023																
high-low temperature test chamber		LK-80GA	QZ20150611879	12-19-2022	12-18-2023																
Temperature/ Humidity Indicator	biaozhi	НМ10	1804186	06-16-2022	06-15-2023																
BT&WI-FI Automatic test software	MWRF-test	MTS 8310	2.0.0.0	(A)	- 6																

Conducted disturbance Test										
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)					
Receiver	R&S	ESCI	100435	05-04-2022	05-05-2023					
Temperature/ Humidity Indicator	Defu	TH128	1							
LISN	R&S	ENV216	100098	09-27-2022	09-26-2023					
Barometer	changchun	DYM3	1188							







#### Page 10 of 41

( 1)		100	1	( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )	10				
3M Semi-anechoic Chamber (2)- Radiated disturbance Test									
Equipment	Manufacturer	r Model Serial		Cal. Date	Due Date				
3M Chamber & Accessory Equipment	TDK SAC-3			05/22/2022	05/21/2025				
Receiver	R&S	ESCI7	100938-003	09/28/2022	09/27/2023				
TRILOG Broadband Antenna	Broadband schwarzbeck		9163-618	05/22/2022	05/21/2023				
Multi device Controller	maturo	NCD/070/10711112		(	- 61				
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024				
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/17/2021	04/16/2024				
Microwave Preamplifier	Agilent	8449B	3008A02425	06/20/2022	06/19/2023				
	ST/	(61)		6)					



























Page 11 of 41

				/	1	
		3M full-anechoi	c Chamber		1	
Equipment	Equipment Manufacturer		Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date ) (mm-dd-yyyy)	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	(A)	- 6	
Receiver	Keysight	N9038A	MY57290136	02-27-2023	02-26-2024	
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-21-2023	02-20-2024	
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-21-2023	02-20-2024	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024	
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024	
Preamplifier	EMCI	EMC184055SE	980597	04-20-2022	04-19-2023	
Preamplifier	EMCI	EMC001330	980563	04-13-2022	04-12-2023	
Preamplifier	JS Tonscend	TAP-011858	AP21B806112	07-29-2022	07-28-2023	
Communication test set	R&S	CMW500	102898	12-23-2022	12-22-2023	
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2022	04-10-2023	
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024	
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	(	9 -	
Cable line	Times	SFT205-NMSM-2.50M	394812-0002			
Cable line	Times	SFT205-NMSM-2.50M	394812-0003		- 0	
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	$\odot$		
Cable line	Times	EMC104-NMNM-1000	SN160710			
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	(	- 6	
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	(	9	
Cable line	Times	SFT205-NMSM-7.00M	394815-0001			
Cable line	Times	HF160-KMKM-3.00M	393493-0001	( A	- 6	

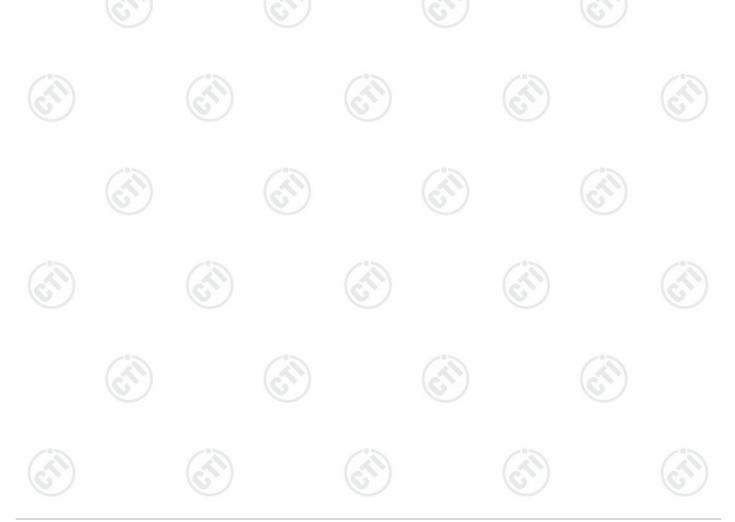


## 7 Test results and Measurement Data

## 7.1 Antenna Requirement

#### Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

#### 15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### 15.247(b) (4) requirement:

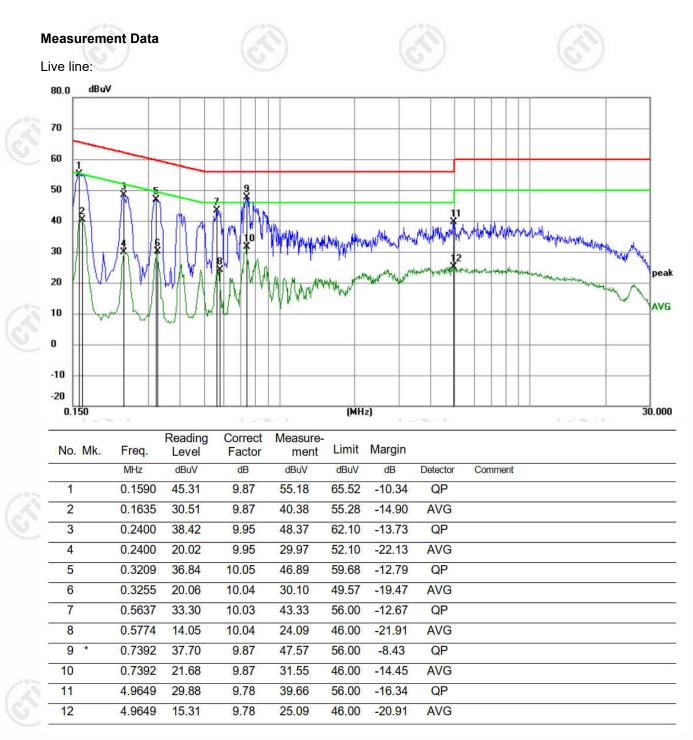
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:	Please see Internal photos	
The enterna is Chin enterna	The best sees gain of the enterna is 5 ()EdDi	

The antenna is Chip antenna. The best case gain of the antenna is 5.05dBi.








Tes	st Requirement:	47 CFR Part 15C Section 15.	.207	
Te	st Method:	ANSI C63.10: 2013		
Te	st Frequency Range:	150kHz to 30MHz		
Re	ceiver setup:	RBW=9 kHz, VBW=30 kHz, S	Sweep time=auto	(a)
Lin	nit:		Limit (	dBuV)
		Frequency range (MHz)	Quasi-peak	Average
		0.15-0.5	66 to 56*	56 to 46*
		0.5-5	56	46
		5-30	60	50
		* Decreases with the logarith		
		Shielding Room	Test Re	
		<ul> <li>impedance. The power connected to a second Lipplane in the same way multiple socket outlet stripsingle LISN provided the formation of the tabletop EUT was pluground reference plane. A placed on the horizontal g</li> <li>4) The test was performed w the EUT shall be 0.4 m vertical ground reference plane. The LIS unit under test and bor</li> </ul>	to AC power source Network) which provide cables of all other SN 2, which was bond as the LISN 1 for the owas used to connect rating of the LISN was aced upon a non-meta And for floor-standing a ground reference plane ith a vertical ground re from the vertical grou plane was bonded N 1 was placed 0.8 m anded to a ground re pund reference plane. T LISN 1 and the EUT. t was at least 0.8 m fro pum emission, the relat	e through a LISN 1 (Line is a $50\Omega/50\mu$ H + $5\Omega$ linear units of the EUT were ed to the ground reference a unit being measured. A multiple power cables to a not exceeded. allic table 0.8m above the urrangement, the EUT was ference plane. The rear or und reference plane. The to the horizontal ground from the boundary of the ference plane for LISNs This distance was between All other units of the EUT on the LISN 2. ive positions of equipment
Te	st Mode:	ANSI C63.10: 2013 on co All modes were tested, only t report.	- 0.5	
			1837	15.4

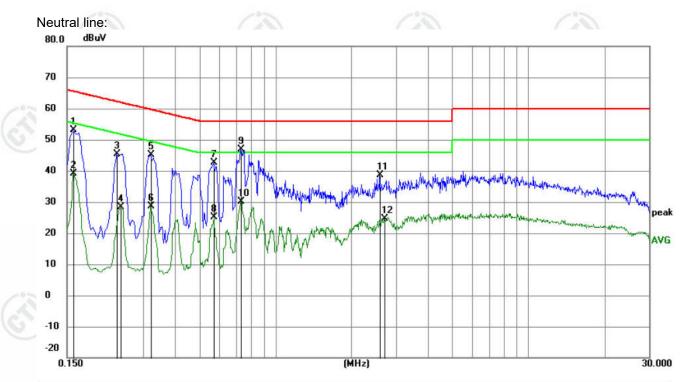




Page 14 of 41



#### Remark:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.





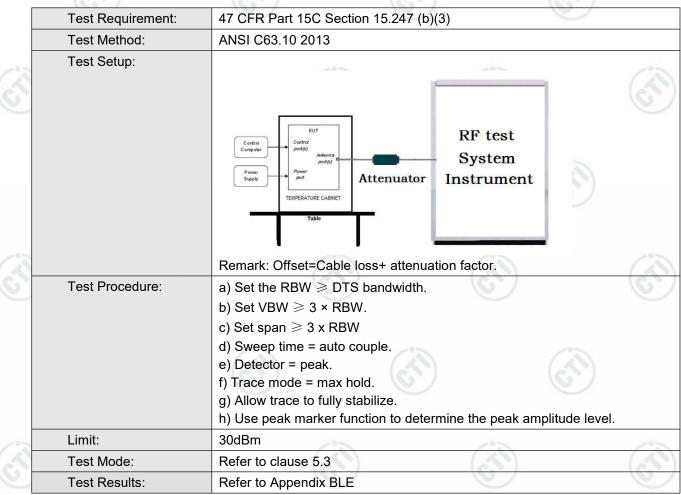


Page 15 of 41



No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1590	43.20	9.87	53.07	65.52	-12.45	QP	
2	0.1590	29.22	9.87	39.09	55.52	-16.43	AVG	
3	0.2354	35.55	9.94	45.49	62.26	-16.77	QP	
4	0.2444	18.53	9.96	28.49	51.95	-23.46	AVG	
5	0.3209	35.02	10.05	45.07	59.68	-14.61	QP	
6	0.3209	18.63	10.05	28.68	49.68	-21.00	AVG	
7	0.5728	32.47	10.04	42.51	56.00	-13.49	QP	
8	0.5728	15.02	10.04	25.06	46.00	-20.94	AVG	
9 *	0.7304	36.94	9.87	46.81	56.00	-9.19	QP	
10	0.7304	20.31	9.87	30.18	46.00	-15.82	AVG	
11	2.5844	28.86	9.79	38.65	56.00	-17.35	QP	
12	2.7058	14.95	9.79	24.74	46.00	-21.26	AVG	

#### Remark:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.





Page 16 of 41

## 7.3 Maximum Conducted Output Power









## 7.4 DTS Bandwidth

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
	Test Method:	ANSI C63.10 2013
8	Test Setup:	
		Control Computer Computer Computer Computer Power Supply TemPERATURE CABINET Table
3		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	<ul> <li>a) Set RBW = 100 kHz.</li> <li>b) Set the VBW ≥[3 × RBW].</li> <li>c) Detector = peak.</li> <li>d) Trace mode = max hold.</li> <li>e) Sweep = auto couple.</li> <li>f) Allow the trace to stabilize.</li> <li>g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.</li> </ul>
8	Limit:	≥ 500 kHz
-	Test Mode:	Refer to clause 5.3
	Test Results:	Refer to Appendix BLE



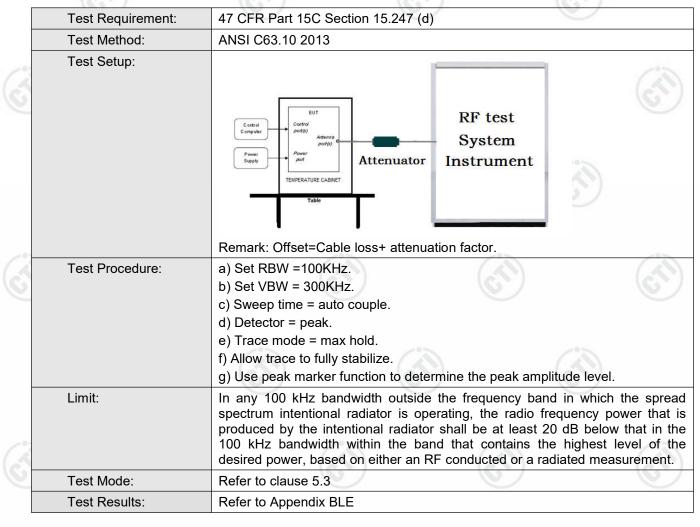




Page 18 of 41

# 7.5 Maximum Power Spectral Density

	Test Requirement:	47 CFR Part 15C Section 15.247 (e)				
	Test Method:	ANSI C63.10 2013				
3	Test Setup:					
		Corted Computer Power Supply TeMPERATURE CABINET Table				
2		Remark: Offset=Cable loss+ attenuation factor.				
	Test Procedure:	<ul> <li>a) Set analyzer center frequency to DTS channel center frequency.</li> <li>b) Set the span to 1.5 times the DTS bandwidth.</li> <li>c) Set the RBW to 3 kHz &lt; RBW &lt; 100 kHz.</li> <li>d) Set the VBW &gt; [3 × RBW].</li> <li>e) Detector = peak.</li> <li>f) Sweep time = auto couple.</li> <li>g) Trace mode = max hold.</li> <li>h) Allow trace to fully stabilize.</li> <li>i) Use the peak marker function to determine the maximum amplitude level within the RBW.</li> <li>j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.</li> </ul>				
	Limit:	≤8.00dBm/3kHz				
	Test Mode:	Refer to clause 5.3				
	Test Results:	Refer to Appendix BLE				








Page 19 of 41

## 7.6 Band Edge measurements and Conducted Spurious Emission



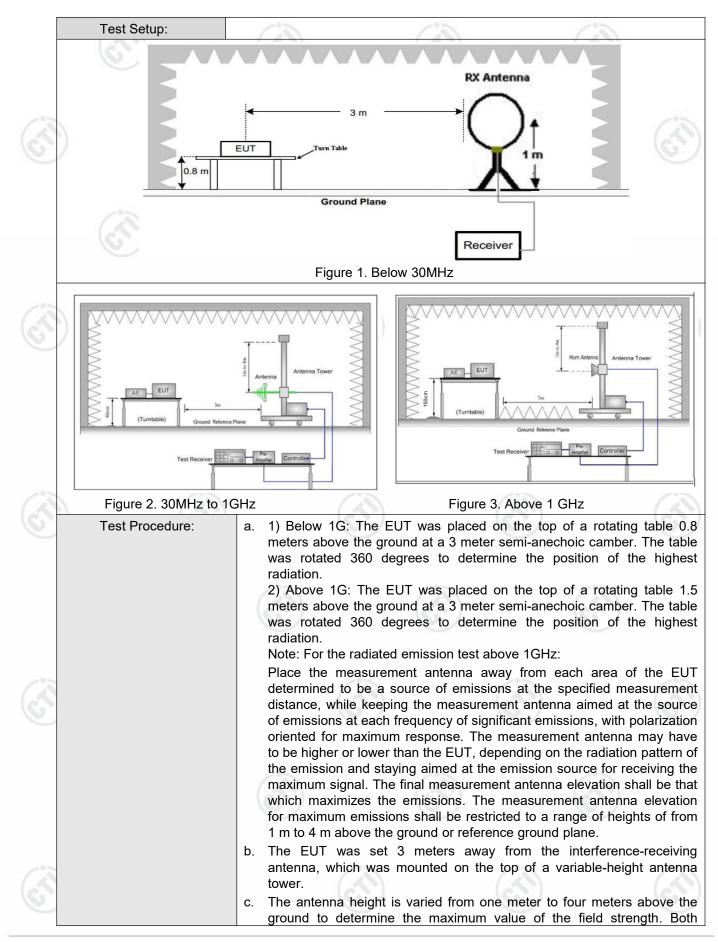






Page 20 of 41

## 7.7 Radiated Spurious Emission & Restricted bands


	Test Requirement:	47 CFR Part 15C Section	ion 15	.209 and 15	.205	C			
	Test Method:	ANSI C63.10 2013							
	Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)							
	Receiver Setup:	Frequency	9	Detector	RBW	VBW	Remark		
<u>C</u>		0.009MHz-0.090MH	lz	Peak	10kHz	z 30kHz	Peak		
		0.009MHz-0.090MH	lz	Average	10kHz	z 30kHz	Average		
		0.090MHz-0.110MH	lz	Quasi-peak	10kHz	z 30kHz	Quasi-peak		
		0.110MHz-0.490MH	lz	Peak	10kHz	z 30kHz	Peak		
		0.110MHz-0.490MH	lz	Average	10kHz	z 30kHz	Average		
		0.490MHz -30MHz	<u>.</u>	Quasi-peak	10kHz	z 30kHz	Quasi-peak		
		30MHz-1GHz		Quasi-peak	100 kH	lz 300kHz	Quasi-peak		
13			Peak		1MHz	3MHz	Peak		
6		Above 1GHz	P) [	Peak	1MHz	: 10kHz	Average		
	Limit:	Frequency		d strength ovolt/meter)	Limit (dBuV/m)	Remark	Measuremer distance (m)		
		0.009MHz-0.490MHz	240	0/F(kHz)	-	- / 2	300		
		0.490MHz-1.705MHz	240	00/F(kHz)	-	- (2)	30		
		1.705MHz-30MHz		30	-	6	30		
		30MHz-88MHz		100	40.0	Quasi-peal	x 3		
		88MHz-216MHz		150	43.5	Quasi-peal	< <u>3</u>		
		216MHz-960MHz	9	200	46.0	Quasi-peal	< <u>3</u>		
S.		960MHz-1GHz		500	54.0	Quasi-peal	< 3		
		Above 1GHz		500	54.0	Average	3		
		Note: 15.35(b), frequency emissions is limit applicable to the e peak emission level rac	s 20dB equipm	above the nent under t	maximum est. This p	permitted av	verage emission		









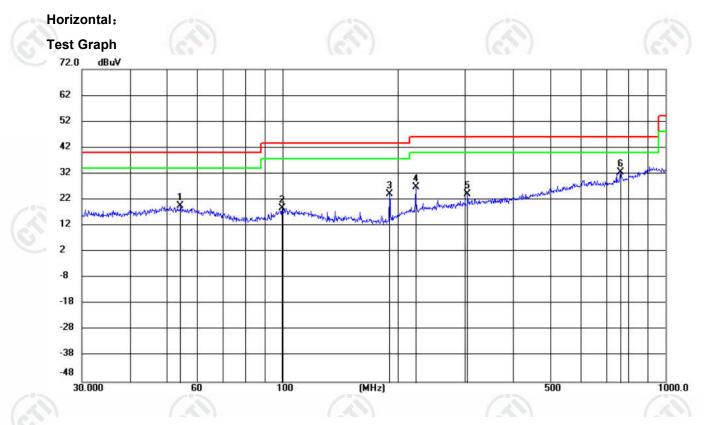


# CTI华测检测



Page 22 of 41

Repo	eport No. : EED32P80442		301				Page 22	2 of 41
			<ul> <li>measured</li> <li>d. For each and then the test meter) a degrees</li> <li>e. The test Bandwidd</li> <li>f. If the em limit spe EUT wor margin average</li> <li>g. Test the (2440MH)</li> <li>h. The radii for Trans worst ca</li> </ul>	ement. In suspected of the antenna frequency of and the rota to find the ma -receiver syst th with Maxin hission level of cified, then te uld be reporte would be re method as sp e EUT in the Hz),the Higher iation measur smitting mode se.	emission, the was tuned to below 30MHz table table was aximum readin em was set to num Hold Moo of the EUT in esting could be d. Otherwise tested one becified and the lowest chan est channel (24 rements are p e, and found	EUT was an heights from the antenna- vas turned fing. The Peak Detect de. peak mode we estopped an the emission by one usin the reported in nnel (2402M 80MHz) performed in the X axis po	ana are set to ranged to its v 1 meter to 4 n a was tuned to rom 0 degree t Function and vas 10dB lowe d the peak va s that did not l g peak, qua n a data shee Hz),the middl X, Y, Z axis positioning whice easured was	worst case meters (for b heights 1 es to 360 d Specified er than the lues of the have 10dB si-peak or t. e channel positioning ch it is the
	Test Mode		Pass					
	(	(KI)	(A)	(TI)	(A)	(TI)	(A)	(TI




Page 23 of 41

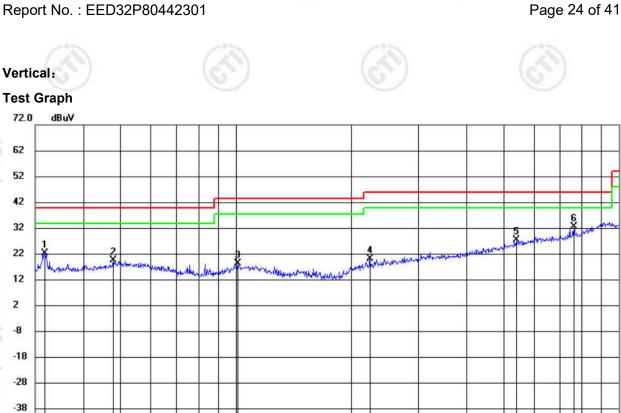
#### Report No. : EED32P80442301

#### **Radiated Spurious Emission below 1GHz:**

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel for GFSK was recorded in the report.



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		54.2609	5.46	14.30	19.76	40.00	-20.24	QP	200	21	
2		99.8777	5.18	13.62	18.80	43.50	-24.70	QP	100	147	
3		190.4050	13.40	10.73	24.13	43.50	-19.37	QP	200	106	
4		222.9502	13.06	13.79	26.85	46.00	-19.15	QP	200	85	
5		304.6099	7.19	16.92	24.11	46.00	-21.89	QP	100	221	
6	*	763.3757	8.02	24.50	32.52	46.00	-13.48	QP	100	307	




-48

30.000

60





No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		31.6202	9.88	12.75	22.63	40.00	-17.37	QP	100	279	
2		47.9940	5.48	14.46	19.94	40.00	-20.06	QP	200	254	
3		101.2885	5.04	13.64	18.68	43.50	-24.82	QP	100	225	
4		223.7334	6.87	13.82	20.69	46.00	-25.31	QP	100	279	
5		539.4775	6.41	21.48	27.89	46.00	-18.11	QP	100	4	
6	*	763.3757	8.38	24.50	32.88	46.00	-13.12	QP	100	4	

(MHz)

100

500

1000.0





#### **Radiated Spurious Emission above 1GHz:**

During the test, the Radiates Emission from above 1GHz was performed in all modes, only the worst case of GFSK was recorded in the report.

e:		BLE GFSK Tra	nsmitting		Channel:		2402 MHz	
Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1137.6138	0.83	40.22	41.05	74.00	32.95	Pass	н	PK
1733.6734	3.05	38.45	41.50	74.00	32.50	Pass	Н	PK
3488.0325	-20.04	55.99	35.95	74.00	38.05	Pass	н	PK
4804.1203	-16.23	52.91	36.68	74.00	37.32	Pass	Н	PK
7206.2804	-11.83	61.69	49.86	74.00	24.14	Pass	Н	PK
16295.8864	1.70	46.66	48.36	74.00	25.64	Pass	Н	PK
1067.8068	0.88	39.85	40.73	74.00	33.27	Pass	V	PK
2054.5055	4.73	38.21	42.94	74.00	31.06	Pass	V	PK
3235.0157	-20.16	58.00	37.84	74.00	36.16	Pass	V	PK
4804.1203	-16.23	55.66	39.43	74.00	34.57	Pass	V	PK
7206.2804	-11.83	54.34	42.51	74.00	31.49	Pass	V	PK
13679.712	-1.74	47.09	45.35	74.00	28.65	Pass	V	PK
	[MHz] 1137.6138 1733.6734 3488.0325 4804.1203 7206.2804 16295.8864 1067.8068 2054.5055 3235.0157 4804.1203 7206.2804	Freq. [MHz]Factor [dB]1137.61380.831733.67343.053488.0325-20.044804.1203-16.237206.2804-11.8316295.88641.701067.80680.882054.50554.733235.0157-20.164804.1203-16.237206.2804-11.83	Freq. [MHz]Factor [dB]Reading [dBµV]1137.61380.8340.221733.67343.0538.453488.0325-20.0455.994804.1203-16.2352.917206.2804-11.8361.6916295.88641.7046.661067.80680.8839.852054.50554.7338.213235.0157-20.1658.004804.1203-16.2355.667206.2804-11.8354.34	Freq. [MHz]Factor [dB]Reading [dBµV]Level [dBµV]1137.61380.8340.2241.051733.67343.0538.4541.503488.0325-20.0455.9935.954804.1203-16.2352.9136.687206.2804-11.8361.6949.8616295.88641.7046.6648.361067.80680.8839.8540.732054.50554.7338.2142.943235.0157-20.1658.0037.844804.1203-16.2355.6639.437206.2804-11.8354.3442.51	Freq. [MHz]Factor [dB]Reading [dBµV]Level [dBµV]Limit [dBµV/m]1137.61380.8340.2241.0574.001733.67343.0538.4541.5074.003488.0325-20.0455.9935.9574.004804.1203-16.2352.9136.6874.007206.2804-11.8361.6949.8674.0016295.88641.7046.6648.3674.001067.80680.8839.8540.7374.002054.50554.7338.2142.9474.003235.0157-20.1658.0037.8474.004804.1203-16.2355.6639.4374.007206.2804-11.8354.3442.5174.00	Freq. [MHz]Factor [dB]Reading [dBµV]Level [dBµV/m]Limit [dBµV/m]Margin [dB]1137.61380.8340.2241.0574.0032.951733.67343.0538.4541.5074.0032.503488.0325-20.0455.9935.9574.0038.054804.1203-16.2352.9136.6874.0037.327206.2804-11.8361.6949.8674.0024.1416295.88641.7046.6648.3674.0025.641067.80680.8839.8540.7374.0033.272054.50554.7338.2142.9474.0031.063235.0157-20.1658.0037.8474.0034.577206.2804-11.8354.3442.5174.0031.49	Freq. [MHz]Factor [dB]Reading [dBµV]Level [dBµV/m]Limit [dBµV/m]Margin [dB]Result1137.61380.8340.2241.0574.0032.95Pass1733.67343.0538.4541.5074.0032.50Pass3488.0325-20.0455.9935.9574.0038.05Pass4804.1203-16.2352.9136.6874.0037.32Pass7206.2804-11.8361.6949.8674.0024.14Pass16295.88641.7046.6648.3674.0025.64Pass1067.80680.8839.8540.7374.0031.06Pass3235.0157-20.1658.0037.8474.0036.16Pass4804.1203-16.2355.6639.4374.0031.49Pass	Freq. [MHz]Factor [dB]Reading [dBµV]Level [dBµV/m]Limit [dBµV/m]Margin [dB]ResultPolarity1137.61380.8340.2241.0574.0032.95PassH1733.67343.0538.4541.5074.0032.50PassH3488.0325-20.0455.9935.9574.0038.05PassH4804.1203-16.2352.9136.6874.0037.32PassH7206.2804-11.8361.6949.8674.0024.14PassH1067.80680.8839.8540.7374.0033.27PassV2054.50554.7338.2142.9474.0031.06PassV3235.0157-20.1658.0037.8474.0036.16PassV4804.1203-16.2355.6639.4374.0031.49PassV

ſ	Mode	:		BLE GFSK Tra	insmitting		Channel:		2440 MHz	
3	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
-	1	1078.6079	0.87	40.88	41.75	74.00	32.25	Pass	н	PK
	2	1990.299	4.50	38.95	43.45	74.00	30.55	Pass	Н	PK
	3	3245.0163	-20.10	55.81	35.71	74.00	38.29	Pass	Н	PK
	4	4880.1253	-16.21	53.58	37.37	74.00	36.63	Pass	Н	PK
	5	7320.288	-11.65	59.49	47.84	74.00	26.16	Pass	Н	PK
	6	16255.8837	1.35	47.20	48.55	74.00	25.45	Pass	Н	PK
	7	1125.4125	0.84	40.37	41.21	74.00	32.79	Pass	V	PK
0	8	1848.8849	3.64	38.27	41.91	74.00	32.09	Pass	V	PK
	9	3190.0127	-20.37	59.60	39.23	74.00	34.77	Pass	V	PK
	10	4880.1253	-16.21	55.03	38.82	74.00	35.18	Pass	V	PK
	11	7319.288	-11.65	55.64	43.99	74.00	30.01	Pass	V	PK
	12	13732.7155	-1.72	46.87	45.15	74.00	28.85	Pass	V	PK



Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com









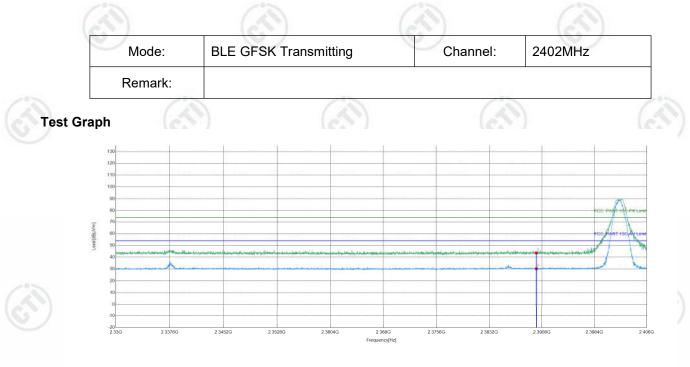
Page 26 of 41

		10-		10-		O *-			0.000	
	Mode	:		BLE GFSK Tra	ansmitting		Channel:		2480 MHz	Z
	NO	Freq. [MHz]	Factor [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1108.0108	0.85	40.51	41.36	74.00	32.64	Pass	н	PK
	2	1767.6768	3.17	38.76	41.93	74.00	32.07	Pass	Н	PK
	3	3328.0219	-19.91	I 55.88	35.97	74.00	38.03	Pass	Н	PK
	4	4960.1307	-15.97	7 53.35	37.38	74.00	36.62	Pass	Н	PK
	5	7440.296	-11.34	4 61.00	49.66	74.00	24.34	Pass	Н	PK
	6	16336.8891	0.92	47.29	48.21	74.00	25.79	Pass	Н	PK
	7	1017.6018	0.93	40.75	41.68	74.00	32.32	Pass	V	PK
	8	1954.4954	4.31	38.65	42.96	74.00	31.04	Pass	V	PK
	9	3195.013	-20.36	5 58.58	38.22	74.00	35.78	Pass	V	PK
	10	4960.1307	-15.97	7 56.48	40.51	74.00	33.49	Pass	V	PK
3	11	7440.296	-11.34	4 57.70	46.36	74.00	27.64	Pass	V	PK
	12	16279.8853	1.56	46.62	48.18	74.00	25.82	Pass	V	PK

#### Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor


2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

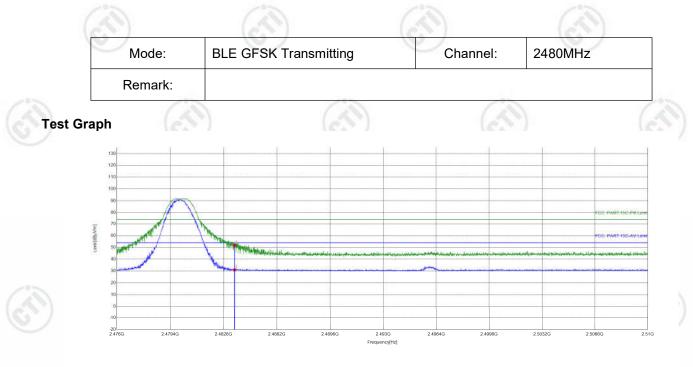






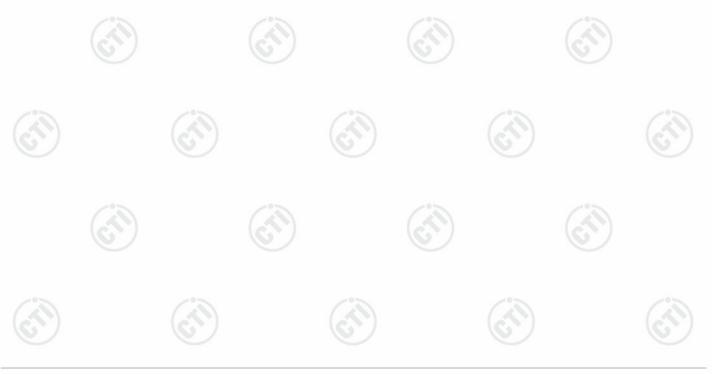
Page 28 of 41




## PK Limit AV Limit Vertical PK Vertical PK Detector AV Detector

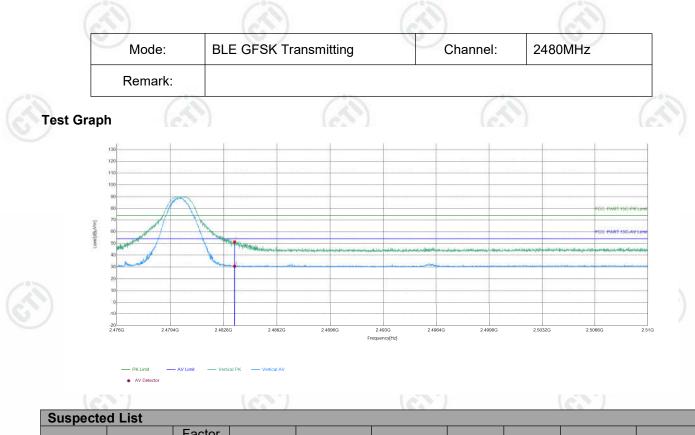
		(6.2)				(C.)				
	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
A.	1	2390	5.77	37.92	43.69	74.00	30.31	PASS	Vertical	PK
٢	2	2390	5.77	24.47	30.24	74.00	43.76	PASS	Vertical	AV






Page 29 of 41




### PK Limit AV Limit Horizontal PK Horizontal A AV Detector

	(C. )										
	Suspecte	d List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	2483.5	6.57	45.32	51.89	74.00	22.11	PASS	Horizontal	PK	
U	2	2483.5	6.57	24.40	30.97	74.00	43.03	PASS	Horizontal	AV	






Page 30 of 41



100	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
$(\mathcal{A})$	1	2483.5	6.57	44.84	51.41	74.00	22.59	PASS	Vertical	PK
C	2	2483.5	6.57	24.10	30.67	74.00	43.33	PASS	Vertical	AV

Note: The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor



Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com