

TEST REPORT

APPLICANT	:	Shenzhen Medica Technology Development Co., Ltd.
PRODUCT NAME	:	Sleep Tracker
MODEL NAME	:	M800
BRAND NAME	:	N/A
FCC ID	:	2ADIOM800
STANDARD(S)	:	47 CFR Part 15 Subpart C
RECEIPT DATE	:	2019-08-12
TEST DATE	:	2019-09-02 to 2019-09-04
ISSUE DATE	:	2019-09-17

Edited by:

Yong Mi

Peng Mi (Rapporteur)

Peng Huarui (Supervisor)

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

Approved by:

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 8 Http://www.morlab.cn E-mai

Fax: 86-755-36698525 E-mail: service@morlab.cn

DIRECTORY

1. Technical Information 4
1.1. Applicant and Manufacturer Information 4
1.2. Equipment Under Test (EUT) Descriptio 4
1.3. Test Standards and Results 6
1.4. Environmental Conditions 7
2. 47 CFR Part 15C Requirements 8
2.1. Antenna requirement 8
2.2. Duty Cycle Of Test Signal 9
2.3. Maximum Peak Conducted Output Power10
2.4. Maximum Average Conducted Output Power13
2.5. 6dB Bandwidth ······14
2.6. Conducted Spurious Emissions and Band Edge17
2.7. Power spectral density (PSD)21
2.8. Conducted Emission24
2.9. Restricted Frequency Bands28
2.10. Radiated Emission
Annex A Test Uncertainty
Annex B Testing Laboratory Information40

	Change History						
Version	Version Date Reason for change						
1.0	2019-09-17	First edition					

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

1. Technical Information

Note: Provide by applicant.

1.1. Applicant and Manufacturer Information

Applicant:	Shenzhen Medica Technology Development Co., Ltd.	
Applicant Address:	2F Building A, Tongfang Information Harbor, No. 11, East	
	Langshan Road, Nanshan District, Shenzhen, China 518057	
Manufacturer:	Shenzhen Medica Technology Development Co., Ltd.	
Manufacturer Address:	2F Building A, Tongfang Information Harbor, No. 11, East	
	Langshan Road, Nanshan District, Shenzhen, China 518057	

1.2. Equipment Under Test (EUT) Descriptio

Product Name:	Sleep Tracker					
Serial No:	(N/A, marked #1 by te	(N/A, marked #1 by test site)				
Hardware Version:	V1.0					
Software Version:	V1.36					
Equipment Type:	Bluetooth LE					
Bluetooth Version:	4.2					
Modulation Type:	GFSK					
Operating Frequency Range:	2402MHz - 2480MHz					
Antenna Type:	PCB Antenna					
Antenna Gain:	2 dBi					
	AC Adapter					
	Brand Name:	N/A				
Accessory Information	Model No.:	SK01G-0500100U				
Accessory Information:	Serial No.:	(N/A, marked #1 by test site)				
	Rated Output:	5V=1A				
	Rated Input:	100-240V ~ 50/60Hz 0.2A				

Note 1: We use the dedicated software to control the EUT continuous transmission.

Note 2: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

1.3. The channel number and frequency

Note: The Lowest Channel 0, Middle 19 and Highest 39 were selected for test in the report.

1.4. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C for the EUT FCC ID Certification:

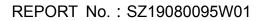
Ν	lo.	Identity	Document Title
1		47 CFR Part 15	Radio Frequency Devices

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Test Date	Test Engineer	Result	Method determination /Remark
1	15.203	Antenna Requirement	N/A	N/A	PASS	No deviation
2	N/A	Duty Cycle Of Test Signal	Sep 02, 2019	Ouyang Feng	PASS	No deviation
3	15.247(b)	Maximum Peak Conducted Output Power	Sep 02, 2019	Ouyang Feng	PASS	No deviation
4	15.247(b)	Maximum Average Conducted Output Power	Sep 02, 2019	Ouyang Feng	PASS	No deviation
5	15.247(a)	Bandwidth	Sep 02, 2019	Ouyang Feng	PASS	No deviation
6	15.247(d)	Conducted Spurious Emission and Band Edge	Sep 02, 2019	Ouyang Feng	PASS	No deviation
7	15.247(e)	Power spectral density (PSD)	Sep 02, 2019	Ouyang Feng	PASS	No deviation
8	15.207	Conducted Emission	Aug 25, 2019	Lin Jiayong	PASS	No deviation
9	15.247(d)	Restricted Frequency Bands	Sep 04, 2019	Li Zihao	PASS	No deviation
10	15.209, 15.247(d)	Radiated Emission	Sep 03, 2019	Li Zihao	PASS	No deviation
		were performed ad	•	nethod of measu	rements pr	rescribed in

ANSIC63.10-2013 and KDB558074 D01 v05r02.

Note 2: The path loss during the RF test is calibrated to correct the results by the offset setting in the test equipments. The Ref offset 2.0dB means the cable loss is 2.0dB.


Note 3: Additions to, deviation, or exclusions from the method should be judged in the "method determination" column of add, deviate or exclude from the specific method should be explained in the "Remark" of the above table.

1.5. Environmental Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86-106

2. 47 CFR Part 15C Requirements

2.1. Antenna requirement

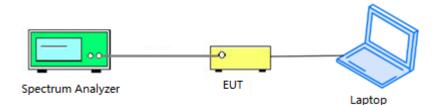
2.1.1. Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1.2. Result: Compliant

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.

2.2. Duty Cycle Of Test Signal


2.2.1. Requirement

Preferably, all measurements of maximum conducted (average) output power will be performed with the EUT transmitting continuously (i.e., with a duty cycle of greater than or equal to 98%). When continuous operation cannot be realized, then the use of sweep triggering/signal gating techniques can be used to ensure that measurements are made only during transmissions at the maximum power control level. Such sweep triggering/signal gating techniques will require knowledge of the minimum transmission duration (T) over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Sweep triggering/signal gating techniques can be set such that it does not exceed T at any time that data are being acquired (i.e., no transmitter OFF-time is to be considered).

When continuous transmission cannot be achieved and sweep triggering/signal gating cannot be implemented, alternative procedures are provided that can be used to measure the average power; however, they will require an additional measurement of the transmitter duty cycle (D). Within this subclause, the duty cycle refers to the fraction of time over which the transmitter is ON and is transmitting at its maximum power control level. The duty cycle is considered to be constant if variations are less than $\pm 2\%$; otherwise, the duty cycle is considered to be nonconstant.

2.2.2. Test Description

Test Setup:

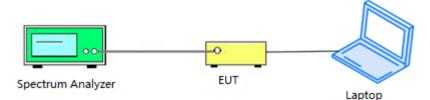
ANSI C63.10 2013 Clause 11.6 was used in order to prove compliance.

2.2.3. Test Result

Test Mode	Duty Cycle (%) (D) 83.60	Duty Factor (10*lg[1/D])
GFSK	83.60	0.78

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.3. Maximum Peak Conducted Output Power


2.3.1. Requirement

According to FCC section 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: The maximum peak conducted output power of the intentional radiator shall not exceed 1 Watt.

2.3.2. Test Description

The measured output power was calculated by the reading of the spectrum analyzer and calibration.

Test Setup:

The EUT (Equipment under the test) is coupled to the Spectrum analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading, all test result in Spectrum analyzer.

2.3.3. Test Procedure

The measured output power was calculated by the reading of the spectrum analyzer and calibration. Following is the test procedure for Peak Output Power test on the spectrum analyzer: a) Set analyzer center frequency to channel center frequency.

- b) Set RBW to1MHz
- c) Set VBW to 3MHz
- d) Set span to 3MHz
- e) Sweep time to auto couple
- f) Detector = peak
- g) Trace mode = max hold
- h) Allow trace to fully stabilize
- i) Use peak marker function to determine the peak amplitude level.

2.3.4. Test Result

The lowest, middle and highest channels are selected to perform testing to verify the conducted RF output peak power of the Module.

A. Test Verdict:

Channel		Measured Output Peak Power		Limi	Vardiat	
Channel	Frequency (MHz)	dBm	W	dBm	W	Verdict
0	2402	2.67	0.002			PASS
19	2440	1.93	0.002	30	1	PASS
39	2480	1.39	0.001			PASS

A. Test Plots:

(Channel 0, 2402MHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn

📜 Agilent Spec	ctrum Analyzer - Swept SA							- đ
w Marker 1	RF 50 Ω DC 2.440081000000) GHz PNO: Fast G IFGain:Low	SENSE Trig: Free R Atten: 30 d	Run	ALIGN AUTO :: Log-Pwr :>10/10	TRAC	4 Sep 02, 2019 E 1 2 3 4 5 6 PE MWWWWW F P N N N N N	Peak Search
10 dB/div	Ref Offset 2 dB Ref 20.00 dBm				Mkr1	2.440 0 1.9	81 GHz 29 dBm	Next Pea
10.0				<u>^</u> 1				Next Pk Righ
0.00				· · · · · · · · · · · · · · · · · · ·				Next Pk Le
-20.0								Marker Del
-40.0								Mkr→C
60.0								Mkr→RefL
70.0								Mo
Center 2.4 Res BW	440000 GHz 1.0 MHz	#VBW	3.0 MHz		Sweep 1	Span 3 .000 ms (.000 MHz 1001 pts)	1 of
ISG					STATUS			

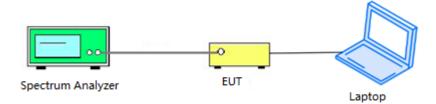
(Channel 19, 2440MHz)

(Channel 39, 2480MHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 E-mail: service@morlab.cn Http://www.morlab.cn

2.4. Maximum Average Conducted Output Power


2.4.1. Requirement

According to FCC section 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: The maximum average conducted output power of the intentional radiator shall not exceed 1 Watt.

2.4.2. Test Description

The measured output power was calculated by the reading of the spectrum analyzer and calibration.

Test Setup:

The EUT (Equipment under the test) is coupled to the Spectrum analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading, all test result in Spectrum analyzer.

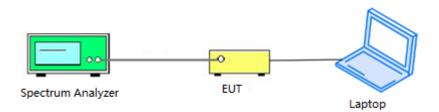
2.4.3. Test Procedure

KDB 558074 Section 8.3.2 was used in order to prove compliance.

2.4.4. Test Result

	Fraguanay	Average Power				Lin	Verdict	
Channel	Frequency (MHz)	Measured	Duty	Duty factor Calculated			IIL	veruici
	(1011 12)	dBm	Factor	dBm	W	dBm	W	
0	2402	1.10		1.88	0.002			PASS
19	2440	0.37	0.78	1.15	0.001	30	1	PASS
39	2480	-0.30		0.48	0.001			PASS

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



2.5.1. Requirement

According to FCC section 15.247(a) (2), Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

2.5.2. Test Description

Test Set:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

2.5.3. Test Procedure

The steps for the first option are as follows:

- a) Set analyzer center frequency to channel center frequency.
- b) Set RBW = 100 kHz.
- c) Set VBW=300 kHz.
- d) Detector = peak
- e) Trace mode = max hold
- f) Sweep = auto couple
- g) Allow trace to fully stabilize

h) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by6 dB relative to the maximum level measured in the fundamental emission

MORLAB

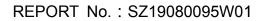
The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described in 11.8.1 (i.e., RBW = 100 kHz, VBW \geq 3 \times RBW, and peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be ≥ 6 dB.

2.5.4. Test Result

The lowest, middle and highest channels are selected to perform testing to record the 6 dB bandwidth of the module.

Test Verdict: Α.

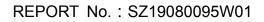
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits(kHz)	Result
0	2402	0.652	≥500	PASS
19	2440	0.650	≥500	PASS
39	2480	0.653	≥500	PASS


B. Test Plots:

(Channel 0, 2402MHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

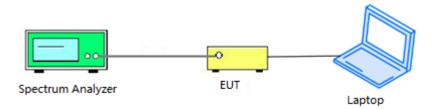
(Channel 19, 2440 MHz)



(Channel 39, 2480MHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn


2.6. Conducted Spurious Emissions and Band Edge

2.6.1. Requirement

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

2.6.2. Test Description

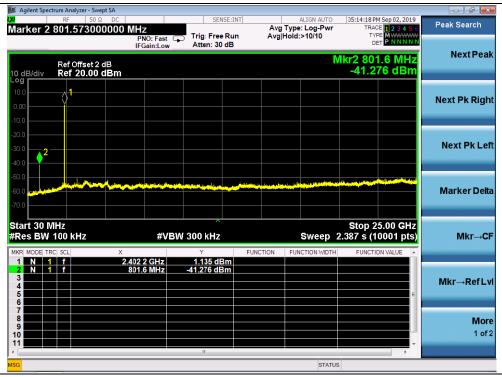
Test Setup:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

2.6.3. Test Procedure

KDB 558074 Section 8.5 and 8.7 was used in order to prove compliance.

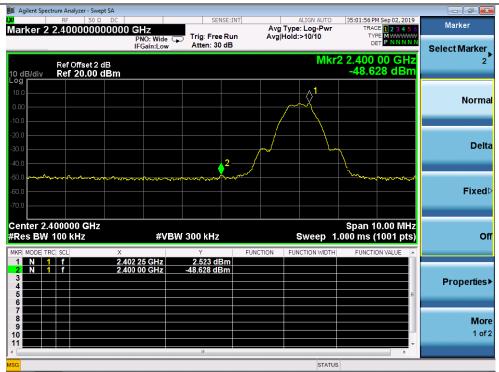

2.6.4. Test Result

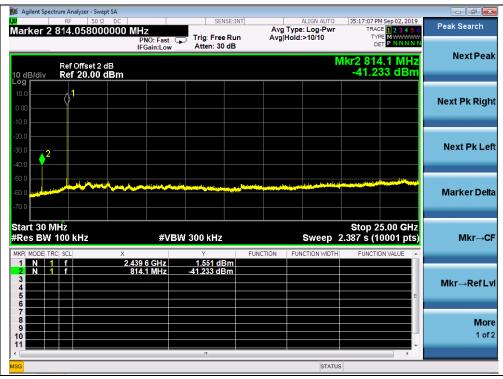
The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions.

A. Test Verdict:

	hannel Frequency Measured Max. Out of (MHz) Band Emission (dBm)		Limit	(dBm)		
Channel			Carrier Level	Calculated	Verdict	
	()		Carrier Lever	-20dBc Limit		
0	2402	-41.28	1.14	-18.86	PASS	
19	2440	-41.23	1.55	-18.45	PASS	
39	2480	-41.43	-1.26	-21.26	PASS	

B. Test Plots:


(Channel = 0, 30MHz to 25GHz)

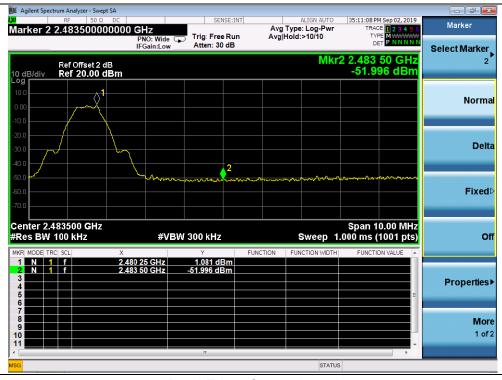

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn

(Band Edge, Channel = 0)

(Channel = 19, 30MHz to 25GHz)

MORLAB


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel:
 86-755-36698555
 Fax:
 86-755-36698525

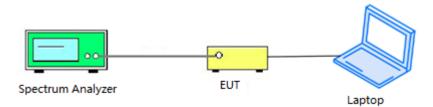
 Http://www.morlab.cn
 E-mail:
 service@morlab.cn

Magilent Spectrum Analyzer - Swept SA					
₩ RF 50 Ω DC Marker 2 826.543000000 MHz	SENS			PM Sep 02, 2019 ACE 1 2 3 4 5 6	Peak Search
PNO	: Fast 😱 Trig: Free F in:Low Atten: 30 d	Run Avg Hold	->10/10 T		
	III.LOW AND A		Mkr2 82	6.5 MHz	Next Peak
Ref Offset 2 dB 10 dB/div Ref 20.00 dBm			-41.4	125 dBm	
Log					
					Next Pk Right
					Ū
-10.0					
-20.0					Next Pk Left
-30.0					NEXT FR Leit
-40.0					
-50.0	the line and the second design of the second design		ite see takifu da mideni. Afa katifuk	and the state of the second	
-60.0 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	And the second descent				Marker Delta
-70.0					
Start 30 MHz		I	Stop	25.00 GHz	
#Res BW 100 kHz	#VBW 300 kHz		Sweep 2.387 s (Mkr→CF
MKR MODE TRC SCL X	Y		CTION WIDTH FUNC	TION VALUE	
1 N 1 f 2.479 6 2 N 1 f 826.5		n			
					Mkr→RefLvl
5				=	
6					
8					More
10					1 of 2
MSG			STATUS		

(Channel = 39, 30MHz to 25GHz)

(Band Edge, Channel = 39)

MORLAB


2.7. Power spectral density (PSD)

2.7.1. Requirement

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

2.7.2. Test Description

Test Setup:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

2.7.3. Test Procedure

The measured power spectral density was calculated by the reading of the spectrum analyzer and calibration. Following is the test procedure for PSD test:

- a) Set analyzer center frequency to channel center frequency
- b) Set span to 1.5 times DTS
- c) Set RBW to 3 kHz
- d) Set VBW to 10 kHz
- e) Detector = peak
- f) Sweep time = auto couple
- g) Trace mode = max hold
- h) Allow trace to fully stabilize
- i) Use the peak marker function to determine the maximum amplitude level within the RBW

2.7.4. Test Result

The lowest, middle and highest channels are tested.

A. Test Verdict:

	Spectral power density (dBm/3kHz)											
Channel	Frequency (MHz)	Limit (dBm/3kHz)	Verdict									
0	2402	-12.91	8	PASS								
19	2440	-13.56	8	PASS								
39	2480	-14.22	8	PASS								

B. Test Plots:



(Channel = 0, 2402MHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn

(Channel = 19, 2440MHz)

(Channel = 39, 2480MHz)

MORLAB

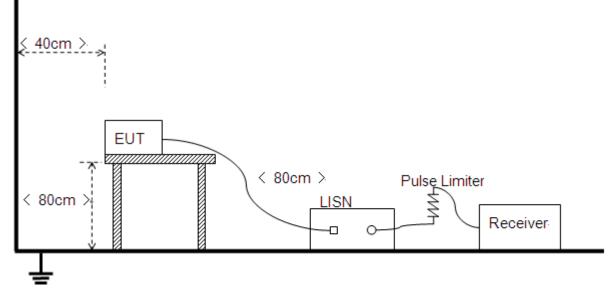
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.8. Conducted Emission

2.8.1. Requirement

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50μ H/ 50Ω line impedance stabilization network (LISN).

Frequency range (MHz)	Conducted Limit (dBµV)	
Frequency range (MHz)	Quai-peak	Average
0.15 - 0.50	66 to 56	56 to 46
0.50 - 5	56	46
5 - 30	60	50


NOTE:

(a) The lower limit shall apply at the band edges.

(b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 - 0.50MHz.

2.8.2. Test Description

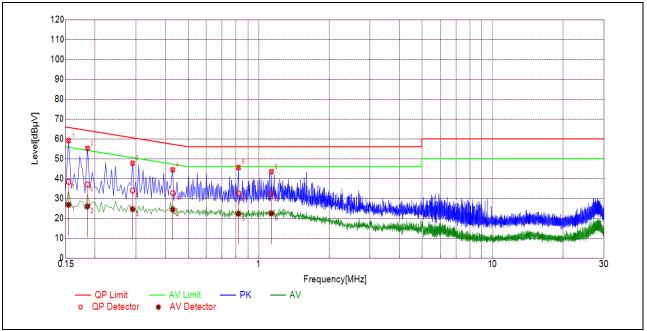
Test Setup:

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10: 2013.

2.8.3. Test Result

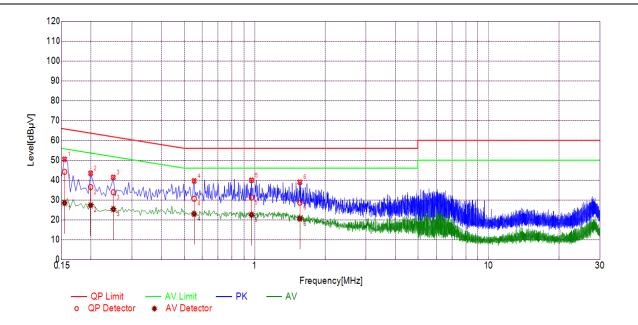
The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

Note: Both of the test voltage AC 120V/60Hz and AC 230V/50Hz were considered and tested respectively, only the results of the worst case AC 120V/60Hz were recorded in this report.


A. Test setup:

Test Mode: <u>EUT+Adapter+BT TX</u> Test voltage: <u>AC 120V/60Hz</u> The measurement results are obtained as below: E [dB μ V] =U_R + L_{Cable loss} [dB] + A_{Factor} U_R: Receiver Reading A_{Factor}: Voltage division factor of LISN

B. Test Plots:

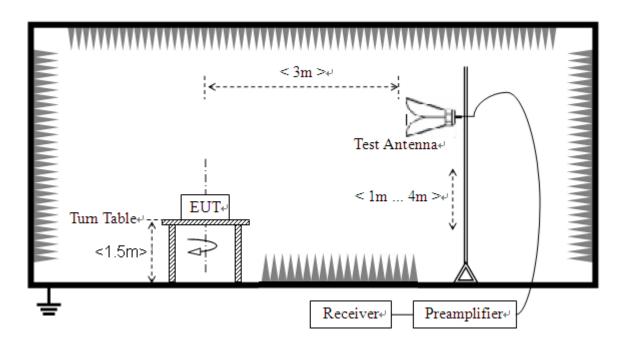


(L Phase)

NO.	Fre.					dBµV)	Power-line	Verdict
	(MHz)	Quai-peak	Average	Quai-peak	Average			
1	0.1545	38.35	26.77	65.76	55.76		PASS	
2	0.1860	37.07	26.02	64.21	54.21		PASS	
3	0.2894	34.00	24.63	60.54	50.54	Line	PASS	
4	0.4293	32.69	24.41	57.27	47.27	LINE	PASS	
5	0.8212	32.50	22.39	56.00	46.00		PASS	
6	1.1302	32.34	22.43	56.00	46.00		PASS	

NO.	Fre.	Emission L	evel (dBµV)	Limit (dBµV)		Power-line	Verdict
	(MHz)	Quai-peak	Average	Quai-peak	Average		
1	0.1546	44.17	28.45	65.75	55.75		PASS
2	0.1995	36.48	27.33	63.63	53.63		PASS
3	0.2492	33.87	25.31	61.78	51.78	Noutral	PASS
4	0.5504	30.62	22.93	56.00	46.00	Neutral	PASS
5	0.9686	31.19	22.50	56.00	46.00		PASS
6	1.5635	28.64	20.58	56.00	46.00		PASS

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


2.9. Restricted Frequency Bands

2.9.1. Requirement

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

2.9.2. Test Description

Test Setup

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna:

Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

2.9.3. Test Result

The lowest and highest channels are tested to verify the Restricted Frequency Bands.

The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$

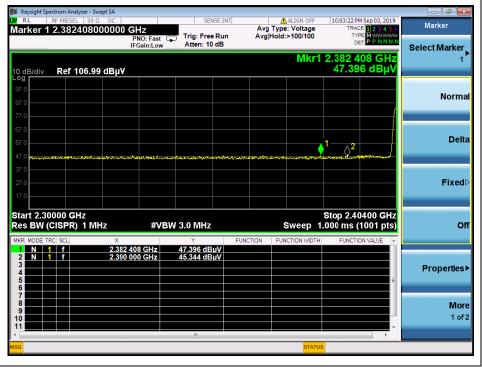
A_T: Total correction Factor except Antenna

U_R: Receiver Reading

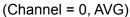
G_{preamp}: Preamplifier Gain

A_{Factor}: Antenna Factor at 3m

Note: Restricted Frequency Bands were performed when antenna was at vertical and horizontal polarity, and only the worse test condition (vertical) was recorded in this test report.


Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
onanner	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	Verdict
0	2382.41	PK	47.40	-29.67	32.56	50.29	74	PASS
0	2387.82	AV	34.35	-29.67	32.56	37.24	54	PASS
39	2490.25	PK	46.97	-29.67	32.56	49.86	74	PASS
39	2489.13	AV	34.44	-29.67	32.56	37.33	54	PASS

A. Test Verdict:



B. Test Plots:

(Channel = 0, PEAK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

									pt SA	Analyzer - Swi	pectrum	eysight S
Marker	3:22 PM Sep 03, 2019 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P P N N N N	e	ALIGN OFF ype: Voltage old:>100/100		ın		Trig: Fre	NO: Fast	DC 00000 G	SEL 50 Ω	RF PRE	RL
Select Marker 2	0 254 GHz .974 dBµV	r2 2.	Mkr			10 dB	Atten: 1	Gain:Low		105.99	Re	dB/div
Norma												
Delta	alasteraria	Webert Ware	agentan di Inadi di Junya.		2-	↓ ↓	and an office of the	ر میں	ىلىرىمىنى ^م ىدلىمارىيىس			
Fixed												
Of	2.50000 GHz ns (1001 pts)	1.00	Sweep	CTION	FUN	Z	3.0 MHz	#VBV	z	GHz R) 1 MH	(CISP	nt 2.4 s BW
Properties	5 E						45.589 dl 46.974 dl	0 GHz 4 GHz	2.489 0 2.490 2		1 f 1 f	N
Mor 1 of:												
	Þ	TUS	STAT				III		_			

(Channel = 39, PEAK)

(Channel = 39, AVG)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

2.10. Radiated Emission

2.10.1. Requirement

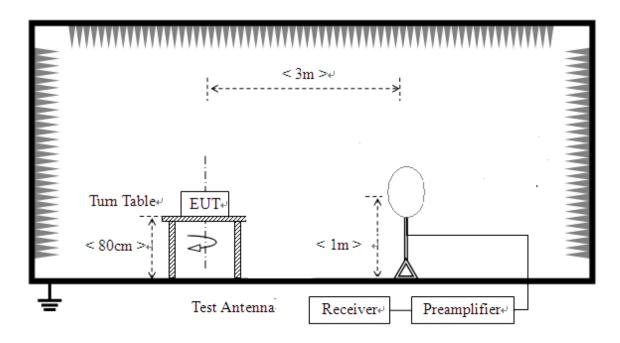
According to FCC section 15.247(d), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

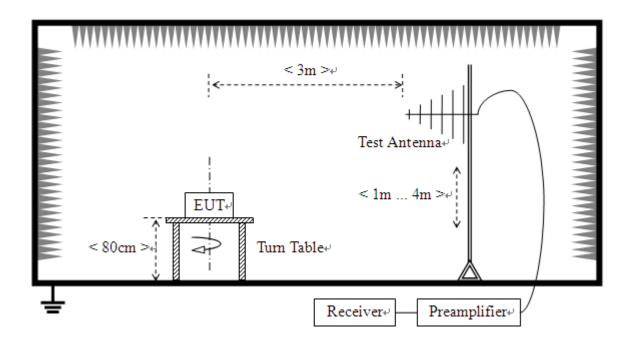
According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Note1: For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.

Note2: For above 1000MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK). In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table)

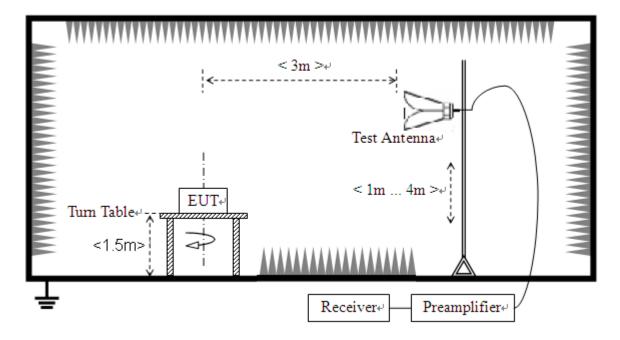



2.10.2. Test Description

Test Setup:

1) For radiated emissions from 9kHz to 30MHz

2) For radiated emissions from 30MHz to1GHz



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn

3) For radiated emissions above 1GHz

The RF absorbing material used on the reference ground plane and on the turntable have a maximum height (thickness) of 30 cm (12 in) and have a minimum-rated attenuation of 20 dB at all frequencies from 1 GHz to 18 GHz. Test site have a minimum area of the ground plane covered with RF absorbing material as specified in Figure 6 of ANSI C63.4: 2014.

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.10:2013. For radiated emissions below or equal to 1GHz, The EUT was set-up on insulator 80cm above the Ground Plane, For radiated emissions above 1GHz, The EUT was set-up on insulator 150cm above the Ground Plane. The set-up and test methods were according to ANSI C63.10:2013.

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna:

(a) In the frequency range of 9kHz to 30MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.

(b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Place the test antenna at 3m away from area of the EUT, while keeping the test antenna aimed at the source of emissions at each frequency of significant

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

emissions, with polarization oriented for maximum response. The test antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final test antenna elevation shall be that which maximizes the emissions. The test antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. The emission levels at both horizontal and vertical polarizations should be tested.

2.10.3. Test Result

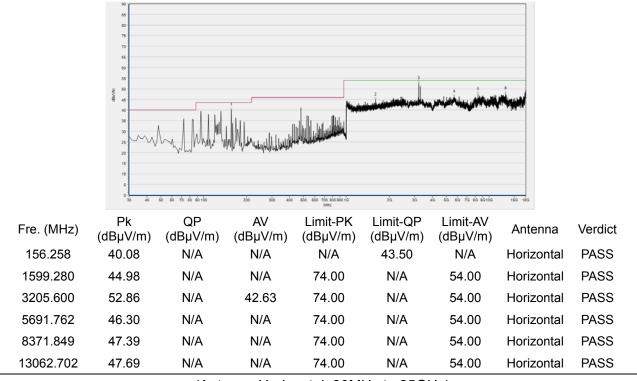
According to ANSI C63.10, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak limit, it is unnecessary to perform an quasi-peak measurement.

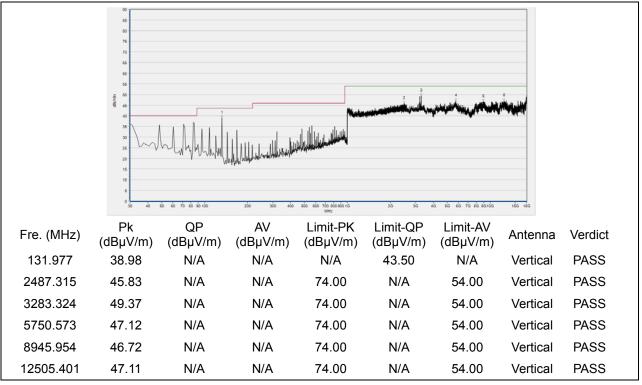
The measurement results are obtained as below: $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$ A_T : Total correction Factor except Antenna U_R : Receiver Reading G_{preamp} : Preamplifier Gain A_{Factor} : Antenna Factor at 3m

During the test, the total correction Factor A_T and A_{Factor} were built in test software.

Note1: All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

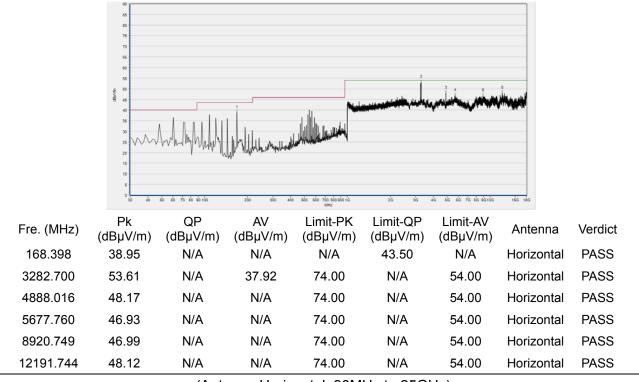
Note2: For the frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit was not recorded.

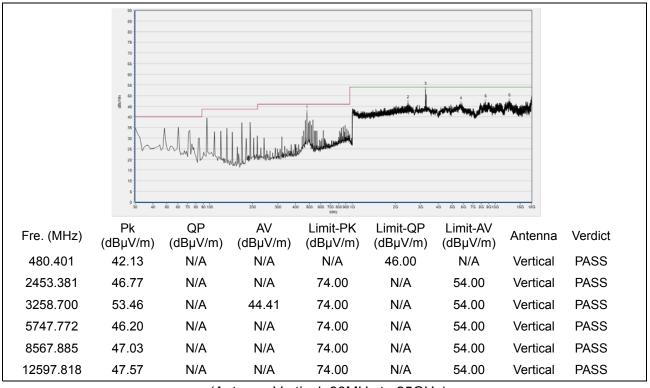

Note3: For the frequency, which started from 25GHz to 40GHz, was pre-scanned and the result which was 20dB lower than the limit was not recorded.



Plots for Channel = 0

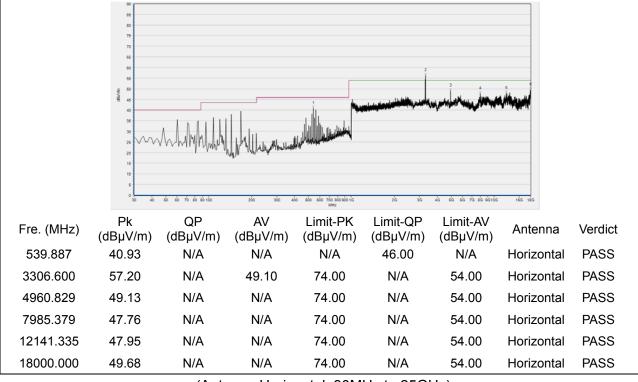
(Antenna Horizontal, 30MHz to 25GHz)

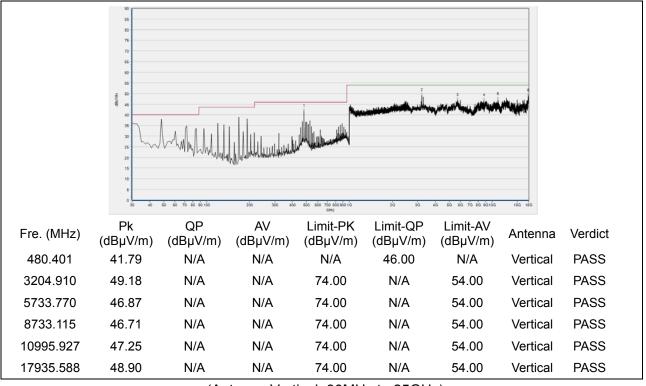

(Antenna Vertical, 30MHz to 25GHz)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Plot for Channel = 19

(Antenna Horizontal, 30MHz to 25GHz)


(Antenna Vertical, 30MHz to 25GHz)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Plot for Channel = 39

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Annex A Test Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

Test items	Uncertainty
Peak Output Power	±2.22dB
Power spectral density (PSD)	±2.22dB
Bandwidth	±5%
Conducted Spurious Emission	±2.77 dB
Restricted Frequency Bands	±5%
Radiated Emission	±2.95dB
Conducted Emission	±2.44dB

This uncertainty represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Annex B Testing Laboratory Information

1. Identification of the Responsible Testing Laboratory

Laboratory Name:	Shenzhen Morlab Communications Technology Co., Ltd.			
	Morlab Laboratory			
Laboratory Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang			
	Road, Block 67, BaoAn District, ShenZhen, GuangDong			
	Province, P. R. China			
Telephone:	+86 755 36698555			
Facsimile:	+86 755 36698525			

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.		
	Morlab Laboratory		
	FL.3, Building A, FeiYang Science Park, No.8 LongChang		
Address:	Road, Block 67, BaoAn District, ShenZhen, GuangDong		
	Province, P. R. China		

3. Facilities and Accreditations

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013 and CISPR Publication 22; the FCC designation number is CN1192, the test firm registration number is 226174.

4. Test Equipments Utilized

4.1 Conducted Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
EXA Signal	MY53470836	N9010A	Agilopt	2019.04.09	2020.04.08
Analzyer	MT55470650	N9010A	Agilent	2019.04.09	2020.04.00
RF cable	CB01	RF01	Morlab	N/A	N/A
(30MHz-26GHz)					
Coaxial cable	CB02	RF02	Morlab	N/A	N/A
SMA connector	CN01	RF03	HUBER-SUHNER	N/A	N/A
Computer	T430i	Think Pad	Lenovo	N/A	N/A

4.2 Conducted Emission Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Receiver	MY56400093	N9038A	KEYSIGHT	2019.05.08	2020.05.09
LISN	812744	NSLK	Schwarzbeck	2019.05.08	2020.05.09
LISN		8127			
Pulse Limiter	0201	VTSD	Schwarzbeck	2019.05.08	2020.05.09
(20dB)	9391	9561-D			
Coaxial cable(BNC)	0001		Marlah	NI/A	N1/A
(30MHz-26GHz)	CB01	EMC01	Morlab	N/A	N/A

4.3 List of Software Used

Description	Manufacturer	Software Version
Test system	Tonscend	V2.6
Power Panel	Agilent	V3.8
MORLAB EMCR V1.2	MORLAB	V 1.0

4.4 Radiated Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Receiver	MY54130016	N9038A	Agilent	2019.07.26	2020.07.25
Test Antenna - Bi-Log	9163-520	VULB 9163	Schwarzbeck	2019.05.08	2020.05.09
Test Antenna - Loop	1520-022	FMZB1520	Schwarzbeck	2019.02.15	2020.02.14
Test Antenna – Horn	01774	BBHA 9120D	Schwarzbeck	2019.07.26	2020.07.25
Test Antenna – Horn	BBHA9170 #774	BBHA9170	Schwarzbeck	2019.07.26	2020.07.25
Coaxial cable (N male) (9KHz-30MHz)	CB04	EMC04	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB02	EMC02	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB03	EMC03	Morlab	N/A	N/A
1-18GHz pre-Amplifier	MA02	TS-PR18	Rohde& Schwarz	2019.05.08	2020.05.09
18-26.5GHz pre-Amplifier	MA03	TS-PR18	Rohde& Schwarz	2019.05.08	2020.05.09
Notch Filter	N/A	WRCG-2400- 2483.5-60SS	Wainwright	2018.12.01	2019.11.30
Anechoic Chamber	N/A	9m*6m*6m	CRT	2017.11.19	2020.11.18

_____ END OF REPORT ____

