

Page 1 of 44 Report No.: EED32P80441301

TEST REPORT

Product Smart Light

Trade mark N/A

Model/Type reference **EW202W**

Serial Number N/A

EED32P80441301 **Report Number**

FCC ID : 2ADIOEW202W

Date of Issue Apr. 20, 2023 **Test Standards** 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Shenzhen Medica Technology Development Co., Ltd. Floor 12, Block A, Building 7, Vanke Yun city, XingKe one street, NanShan District, Shenzhen City.

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

mark Mark Chen

avon Ma

Reviewed by:

Date:

Tom Chen

Apr. 20, 2023

Aaron Ma

Check No.: 8438211222

Report No.: EED32P80441301

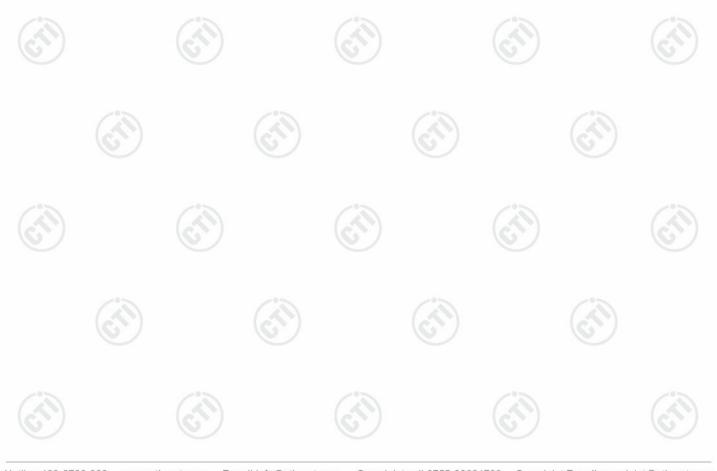
Content

1 COVER PAGE		 1
2 CONTENT		
3 VERSION		 3
4 TEST SUMMARY		
5 GENERAL INFORMATION		 5
5.1 CLIENT INFORMATION	FIDENCE LEVELS, K=2)	
6 EQUIPMENT LIST		 9
7 TEST RESULTS AND MEASUREMENT DA	ATA	 12
7.1 ANTENNA REQUIREMENT 7.2 CONDUCTED EMISSIONS 7.3 MAXIMUM CONDUCTED OUTPUT POWER 7.4 DTS BANDWIDTH 7.5 MAXIMUM POWER SPECTRAL DENSITY 7.6 BAND EDGE MEASUREMENTS AND CONDU 7.7 RADIATED SPURIOUS EMISSION & RESTRI	ICTED SPURIOUS EMISSION	
8 APPENDIX BLE		
9 PHOTOGRAPHS OF TEST SETUP		
10 PHOTOGRAPHS OF EUT CONSTRUCTION	ONAL DETAILS	 32

Report No.: EED32P80441301

3 Version

Version No.	Date	Description)	
00	Apr. 20, 2023	Original		
((2)	(CL)	(67)	


Report No. : EED32P80441301 Page 4 of 44

4 Test Summary

Test Item	Test Requirement	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS	
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS	
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS	
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS	
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS	

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

5 General Information

5.1 Client Information

Applicant:	Shenzhen Medica Technology Development Co., Ltd
Address of Applicant:	Floor 12, Block A, Building 7, Vanke Yun city, XingKe one street, NanShan
	District, Shenzhen City.
Manufacturer:	Shenzhen Medica Technology Development Co., Ltd
Address of Manufacturer:	Floor 12, Block A, Building 7, Vanke Yun city, XingKe one street, NanShan District, Shenzhen City.
Factory:	Shenzhen Medica Technology Development Co., Ltd
Address of Factory:	Floor 12, Block A, Building 7, Vanke Yun city, XingKe one street, NanShan District, Shenzhen City.

5.2 General Description of EUT

Product Name:	Smart Light		
Model No.:	EW202W	100	
Trade mark:	N/A		(31)
Product Type:	☐ Mobile ☐	Portable 🛛 Fix Location	
Operation Frequency:	2402MHz~2480)MHz	
Modulation Type:	GFSK		
Transfer Rate:	⊠ 1Mbps		-
Number of Channel:	40	()	/
Antenna Type:	FPC Antenna		
Antenna Gain:	4.6dBi		~~
Power Supply:	Adapter	Model: KA12H-1201000US Input: 100-240V, 50/60Hz, 0.4A Max Output: 12V1000mA	CIN
Test Voltage:	AC 120V		
Sample Received Date:	Mar. 31, 2023		\
Sample tested Date:	Mar. 31, 2023 to	o Apr. 17, 2023)

Page 6 of 44 Report No.: EED32P80441301

100		10%		100		225	
Operation F	requency eac	h of channe		(2))	(67))
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

5.3 Test Configuration

EUT Test Software Settings:						
Test Software of EUT: EspRFtestTool						
EUT Power Grade:	Default(Poselected)	ower level is built-in s	set parameters and c	annot be changed and		
Use test software to transmitting of the E	set the lowest frequen UT.	cy, the middle freque	ncy and the highest t	frequency keep		
Test Mode	Modulation	Rate	Channel	Frequency(MHz)		
Mode a	GFSK	1Mbps	CH0	2402		
Mode b	GFSK	1Mbps	CH19	2440		
Mode c	GFSK	1Mbps	CH39	2480		

Report No. : EED32P80441301 Page 7 of 44

5.4 Test Environment

	Operating Environment	:						
	Radiated Spurious Emi	Radiated Spurious Emissions:						
	Temperature:	22~25.0 °C	(4)		(41)		(41)	
1	Humidity:	50~55 % RH	0		(0)		6	
	Atmospheric Pressure:	1010mbar						
	Conducted Emissions:							
	Temperature:	22~25.0 °C		(3)		(30)		
	Humidity:	50~55 % RH		(0,)		(0,)		
	Atmospheric Pressure:	1010mbar						
	RF Conducted:							
	Temperature:	22~25.0 °C	(3)		(3)			
r)	Humidity:	50~55 % RH	(6,2)		(6,2,2)		(6,7,2)	
	Atmospheric Pressure:	1010mbar						

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	DELL	Latitude 3490	FCC&CE	СТІ

5.6 Test Location

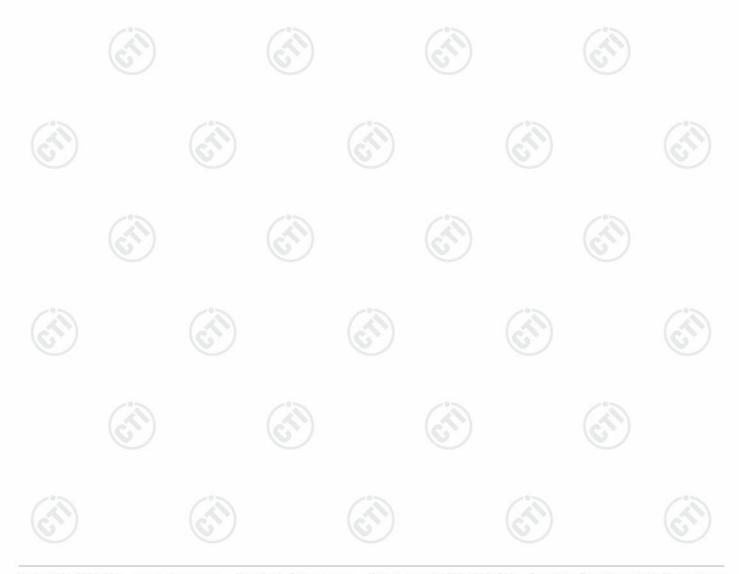
All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164



5.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
	6	3.3dB (9kHz-30MHz)
3	Dadiated Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
(P)		3.4dB (18GHz-40GHz)
	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No.: EED32P80441301 Page 9 of 44

6 Equipment List

RF test system						
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date	Cal. Due date (mm-dd-yyyy)	
Communication tset set	R&S	CMW500	107929	07-06-2022	07-05-2023	
Signal Generator	R&S	SMBV100A	1407.6004K02- 262149-CV	09-09-2022	09-08-2023	
Spectrum Analyzer	R&S	FSV40	101200	08-01-2022	07-31-2023	
RF control unit(power unit)	MWRF-test	MW100-RFCB	MW220620CTI-42	07-06-2022	07-05-2023	
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-19-2022	12-18-2023	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-16-2022	06-15-2023	
BT&WI-FI Automatic test software	MWRF-test	MTS 8310	2.0.0.0		- (1	

Conducted disturbance Test						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Receiver	R&S	ESCI	100435	05-04-2022	05-05-2023	
Temperature/ Humidity Indicator	Defu	TH128	1		(3	
LISN	R&S	ENV216	100098	09-27-2022	09-26-2023	
Barometer	changchun	DYM3	1188			

Page 10 of 44 Report No.: EED32P80441301

		100		100			
3M Semi-anechoic Chamber (2)- Radiated disturbance Test							
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date		
3M Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025		
Receiver	R&S	ESCI7	100938-003	09/28/2022	09/27/2023		
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2023		
Multi device Controller	maturo	NCD/070/10711112			<i></i>		
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024		
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/17/2021	04/16/2024		
Microwave Preamplifier Agilent		8449B	3008A02425	06/20/2022	06/19/2023		

Report No. : EED32P80441301 Page 11 of 44

					10.	
3M full-anechoic Chamber						
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		(3	
Receiver	Keysight	N9038A	MY57290136	02-27-2023	02-26-2024	
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-21-2023	02-20-2024	
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-21-2023	02-20-2024	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024	
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024	
Preamplifier	EMCI	EMC184055SE	980597	04-20-2022 04-13-2023	04-19-2023 04-12-2024	
Preamplifier	EMCI	EMC001330	980563	03-28-2023	03-27-2024	
Preamplifier	JS Tonscend	TAP-011858	AP21B806112	07-29-2022	07-28-2023	
Communication test set	R&S	CMW500	102898	12-23-2022	12-22-2023	
Temperature/	biaozhi	GM1360	EJ1611459	02-15-2023	02-14-2024	
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024	
Cable line	Times	SFT205-NMSM-2.50M	394812-0001			
Cable line	Times	SFT205-NMSM-2.50M	394812-0002		/0;	
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	(6,1,7)	(c ^r	
Cable line	Times	SFT205-NMSM-2.50M	393495-0001			
Cable line	Times	EMC104-NMNM-1000	SN160710	/		
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	(S)	
Cable line	Times	SFT205-NMNM-1.50M	381964-0001			
Cable line	Times	SFT205-NMSM-7.00M	394815-0001		/3	
Cable line	Times	HF160-KMKM-3.00M	393493-0001		(c)	

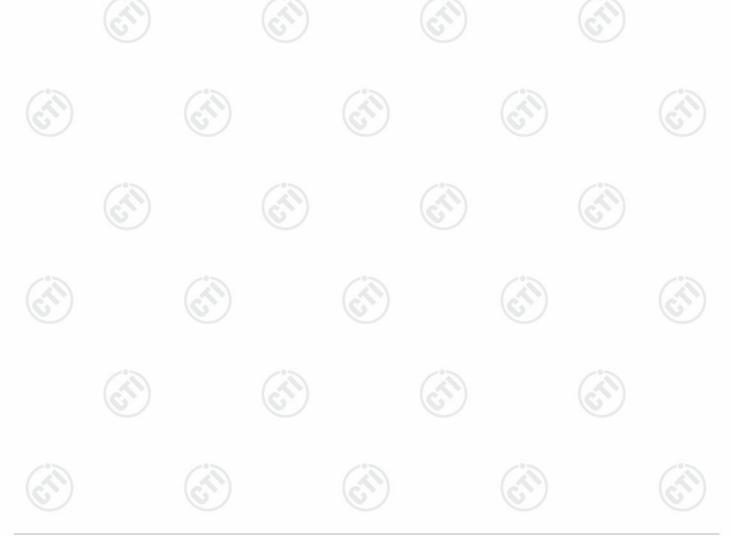
Report No. : EED32P80441301 Page 12 of 44

7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

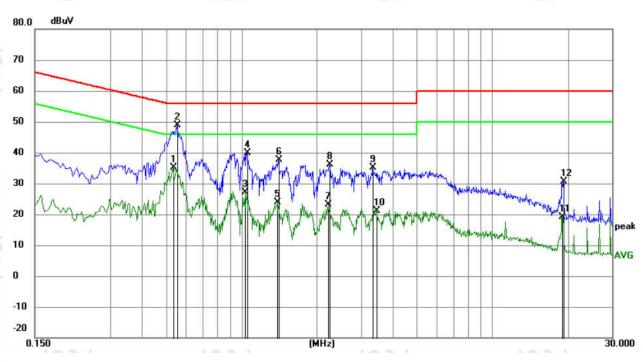
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna: Please see Internal photos

The antenna is FPC antenna. The best case gain of the antenna is 4.6dBi.

Report No. : EED32P80441301 Page 13 of 44

7.2 Conducted Emissions


7.2 Conducted Entis	3310113		(20)					
Test Requirement:	47 CFR Part 15C Section 15.	207	(0.)					
Test Method:	ANSI C63.10: 2013							
Test Frequency Range:	150kHz to 30MHz							
Receiver setup:	RBW=9 kHz, VBW=30 kHz, S	Sweep time=auto						
Limit:	Eroguepov rongo (MUz)	Limit (d	dBuV)					
	Frequency range (MHz)	Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
	* Decreases with the logarith	m of the frequency.						
	Shielding Room EUT AE AC Mains LISN1 Gro	Test Re						
	 The mains terminal disturbance voltage test was conducted in a shielded room. The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane. The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to 							
Test Mode:	ANSI C63.10: 2013 on co All modes were tested, only t report.	-0-	was recorded in the					
Test Results:	Pass	(e.)	(e)					
restricsuits.	1 000							

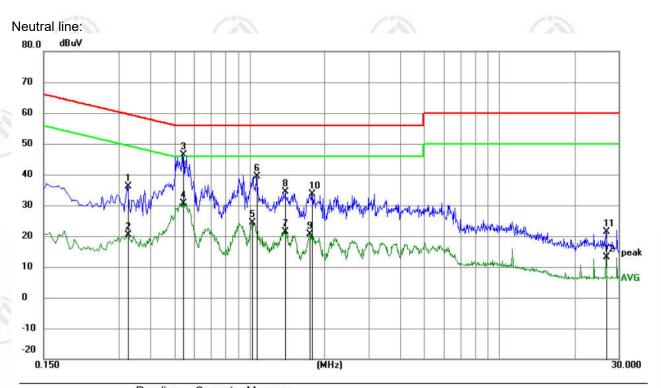
Measurement Data

Live line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.5324	25.26	9.99	35.25	46.00	-10.75	AVG	
2	*	0.5550	38.75	10.02	48.77	56.00	-7.23	QP	
3		1.0319	17.37	9.83	27.20	46.00	-18.80	AVG	
4		1.0500	29.97	9.83	39.80	56.00	-16.20	QP	
5		1.3919	14.05	9.81	23.86	46.00	-22.14	AVG	
6		1.4054	27.78	9.81	37.59	56.00	-18.41	QP	
7		2.2154	13.32	9.79	23.11	46.00	-22.89	AVG	
8		2.2468	26.34	9.79	36.13	56.00	-19.87	QP	
9		3.3315	25.31	9.79	35.10	56.00	-20.90	QP	
10		3.4395	11.46	9.79	21.25	46.00	-24.75	AVG	
11		19.0185	9.06	9.96	19.02	50.00	-30.98	AVG	
12		19.1940	20.57	9.96	30.53	60.00	-29.47	QP	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.3255	26.02	10.04	36.06	59.57	-23.51	QP	
2		0.3255	10.39	10.04	20.43	49.57	-29.14	AVG	
3	*	0.5415	36.41	10.00	46.41	56.00	-9.59	QP	
4		0.5415	20.66	10.00	30.66	46.00	-15.34	AVG	
5		1.0230	14.47	9.83	24.30	46.00	-21.70	AVG	
6		1.0680	29.66	9.83	39.49	56.00	-16.51	QP	
7		1.3829	11.56	9.81	21.37	46.00	-24.63	AVG	
8		1.3920	24.64	9.81	34.45	56.00	-21.55	QP	
9		1.7385	10.89	9.80	20.69	46.00	-25.31	AVG	
10		1.7745	23.78	9.80	33.58	56.00	-22.42	QP	
11		26.8125	11.31	10.01	21.32	60.00	-38.68	QP	
12		26.8125	3.23	10.01	13.24	50.00	-36.76	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

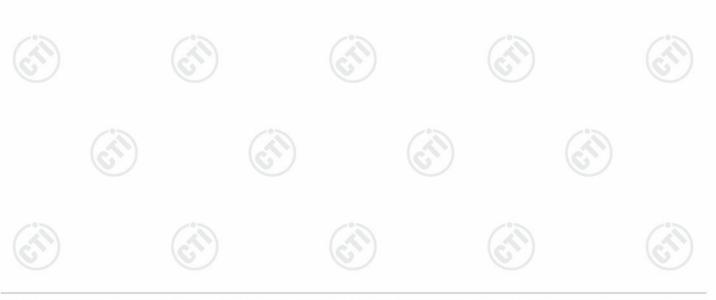
7.3 Maximum Conducted Output Power

10.0	164 / 164 / 164 /	
Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10 2013	
Test Setup:		
	Control Computer Power ports) Power port Power Table RF test System System Instrument	
	Remark: Offset=Cable loss+ attenuation factor.	
Test Procedure:	 a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set apap ≥ 3 × RBW. 	(C)
	 c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. 	
Limit:	30dBm	/ 5
Test Mode:	Refer to clause 5.3	
Test Results:	Refer to Appendix BLE	

Report No. : EED32P80441301 Page 17 of 44

7.4 DTS Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Control Computer Control Computer Actenna portity Actenna portity Actenna portity Actenna portity Attenuator Temperature cabnet Table RF test System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
Limit:	≥ 500 kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix BLE

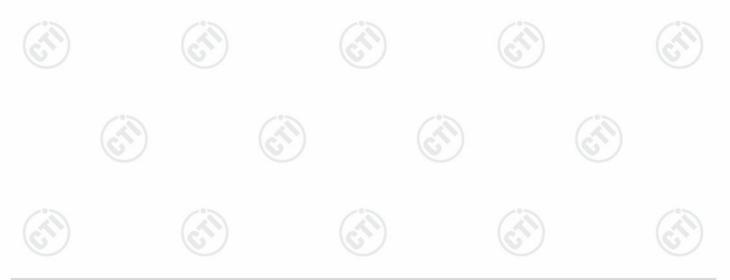


7.5 Maximum Power Spectral Density

Test Requirement:	47 CFR Part 15C Section 15.247 (e)						
Test Method:	ANSI C63.10 2013						
Test Setup:							
	Control Control Control Power Supply Power Temperature Casnet	RF test - System Instrument					
	 Remark: Offset=Cable loss+ attenua	ation factor.					
Test Procedure:	 a) Set analyzer center frequency to DTS channel center frequency. b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz < RBW < 100 kHz. d) Set the VBW > [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amplitude level within the RBW. j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat. 						
Limit:	≤8.00dBm/3kHz						
Test Mode:	Refer to clause 5.3						
Test Results:	Refer to Appendix BLE						

7.6 Band Edge measurements and Conducted Spurious Emission

47 CFR Part 15C Section 15.247 (d)				
ANSI C63.10 2013				
RF test System Forwer Supply RF test System Instrument Remark: Offset=Cable loss+ attenuation factor.				
a) Set RBW =100KHz. b) Set VBW = 300KHz. c) Sweep time = auto couple. d) Detector = peak. e) Trace mode = max hold. f) Allow trace to fully stabilize. g) Use peak marker function to determine the peak amplitude level.				
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Refer to clause 5.3				
Refer to Appendix BLE				



7.7 Radiated Spurious Emission & Restricted bands

Test Requirement:	47 CFR Part 15C Secti	47 CFR Part 15C Section 15.209 and 15.205							
Test Method:	ANSI C63.10 2013								
Test Site:	Measurement Distance	Measurement Distance: 3m (Semi-Anechoic Chamber)							
Receiver Setup:	Frequency	1	Detector	RBW	VBW	Remark			
	0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak			
	0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average			
	0.090MHz-0.110MH	Z	Quasi-peak	10kHz	30kHz	Quasi-peak			
	0.110MHz-0.490MH	z	Peak	10kHz	30kHz	Peak			
	0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average			
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak			
	30MHz-1GHz		Quasi-peak	100 kH	z 300kHz	Quasi-peak			
	Above 1GHz		Peak	1MHz	3MHz	Peak			
			Peak	1MHz	10kHz	Average			
Limit:	Frequency	l	eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measuremen distance (m)			
			400/F(kHz)	-	-/*>	300			
			1000/F(kHz)	-	(A)	30			
			30	-		30			
	30MHz-88MHz		100	40.0	Quasi-peak	3			
	88MHz-216MHz		150	43.5	Quasi-peak	3			
	216MHz-960MHz	9	200	46.0	Quasi-peak	3			
	960MHz-1GHz	/	500	54.0	Quasi-peak	3			
	Above 1GHz		500	54.0	Average	3			
	Note: 15.35(b), frequency emissions is limit applicable to the epeak emission level rad	20d quip	IB above the i	maximum est. This p	permitted ave	erage emission			

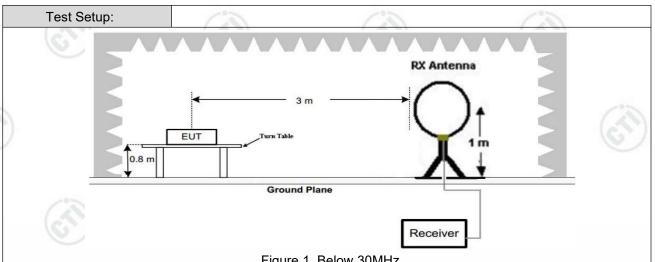
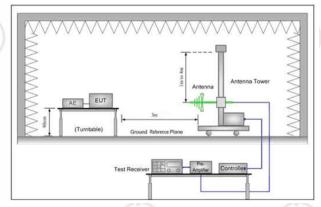



Figure 1. Below 30MHz

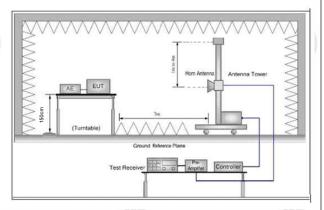


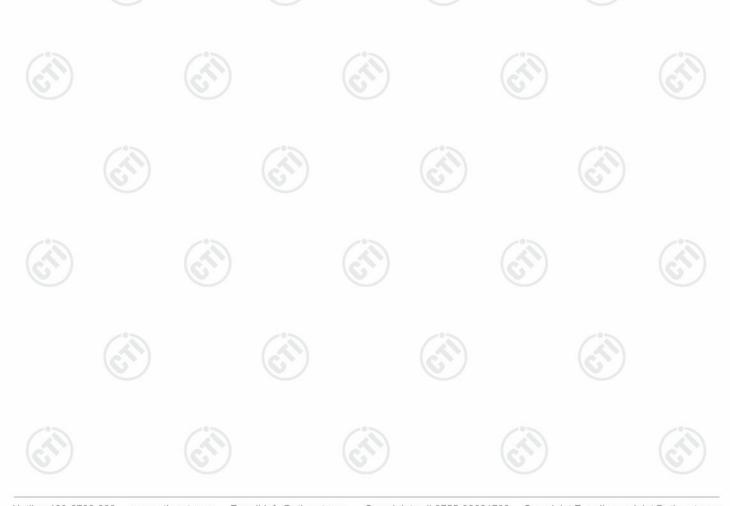
Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

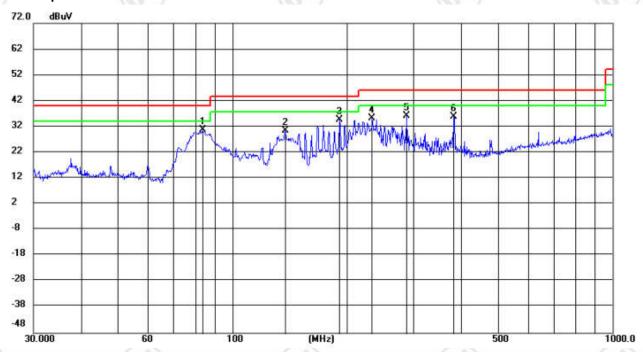
- 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:


Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both

		horizontal and vertical polarizations of the antenna are set to make the measurement.
	d.	For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e.	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f.	If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	g.	Test the EUT in the lowest channel (2402MHz), the middle channel (2440MHz), the Highest channel (2480MHz)
	h.	The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i.	Repeat above procedures until all frequencies measured was complete.
Test M	lode: R	efer to clause 5.3
Test R	esults: Pa	ass
		7.2



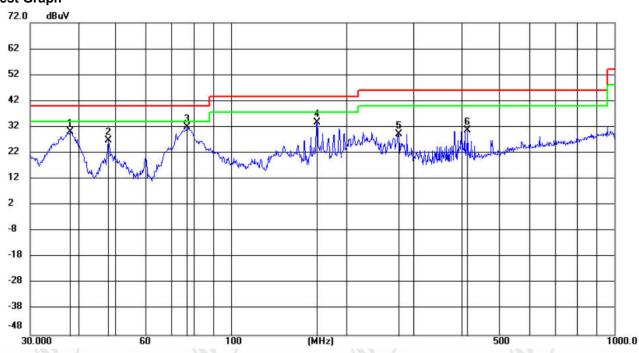
Report No.: EED32P80441301 Page 23 of 44

Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel for GFSK was recorded in the report.

Horizontal:

Лk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	83.5221	19.97	10.81	30.78	40.00	-9.22	peak	200	191	
8	137.9028	21.35	9.23	30.58	43.50	-12.92	peak	200	182	
kg 1	191.7450	22.52	12.10	34.62	43.50	-8.88	peak	200	352	
i i	233.3486	20.26	14.93	35.19	46.00	-10.81	peak	100	7	
11	287.9904	19.41	16.83	36.24	46.00	-9.76	peak	100	346	
8	382.5878	16.69	19.02	35.71	46.00	-10.29	peak	100	140	
		MHz 83.5221 137.9028	Mk. Freq. Level MHz dBuV 83.5221 19.97 137.9028 21.35 191.7450 22.52 233.3486 20.26 287.9904 19.41	Mk. Freq. Level Factor MHz dBuV dB 83.5221 19.97 10.81 137.9028 21.35 9.23 191.7450 22.52 12.10 233.3486 20.26 14.93 287.9904 19.41 16.83	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 83.5221 19.97 10.81 30.78 137.9028 21.35 9.23 30.58 191.7450 22.52 12.10 34.62 233.3486 20.26 14.93 35.19 287.9904 19.41 16.83 36.24	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 83.5221 19.97 10.81 30.78 40.00 137.9028 21.35 9.23 30.58 43.50 191.7450 22.52 12.10 34.62 43.50 233.3486 20.26 14.93 35.19 46.00 287.9904 19.41 16.83 36.24 46.00	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dB 83.5221 19.97 10.81 30.78 40.00 -9.22 137.9028 21.35 9.23 30.58 43.50 -12.92 191.7450 22.52 12.10 34.62 43.50 -8.88 233.3486 20.26 14.93 35.19 46.00 -10.81 287.9904 19.41 16.83 36.24 46.00 -9.76	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dB uV/m dB uV/m<	Mk. Freq. Level Factor ment Limit Margin Height MHz dBuV dB dBuV/m dBuV/m dB Detector cm 83.5221 19.97 10.81 30.78 40.00 -9.22 peak 200 137.9028 21.35 9.23 30.58 43.50 -12.92 peak 200 191.7450 22.52 12.10 34.62 43.50 -8.88 peak 200 233.3486 20.26 14.93 35.19 46.00 -10.81 peak 100 287.9904 19.41 16.83 36.24 46.00 -9.76 peak 100	Mk. Freq. Level Factor ment Limit Margin Height Degree MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree 83.5221 19.97 10.81 30.78 40.00 -9.22 peak 200 191 137.9028 21.35 9.23 30.58 43.50 -12.92 peak 200 182 191.7450 22.52 12.10 34.62 43.50 -8.88 peak 200 352 233.3486 20.26 14.93 35.19 46.00 -10.81 peak 100 7 287.9904 19.41 16.83 36.24 46.00 -9.76 peak 100 346



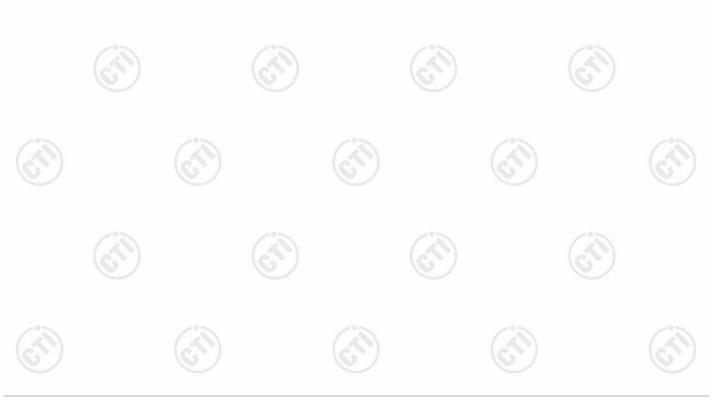
Vertical:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		38.2120	15.87	14.21	30.08	40.00	-9.92	peak	100	271	
2		47.9940	12.59	14.32	26.91	40.00	-13.09	peak	100	217	
3	*	77.0505	22.05	9.88	31.93	40.00	-8.07	peak	200	248	
4		167.2368	22.90	10.86	33.76	43.50	-9.74	peak	100	235	
5		273.2341	12.90	16.32	29.22	46.00	-16.78	peak	100	352	
6		414.7223	10.97	19.71	30.68	46.00	-15.32	peak	200	194	

Radiated Spurious Emission above 1GHz:

Mode	:		BLE GFSK Trai	nsmitting		Channel:		2402 MHz	2
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1330.033	1.16	39.98	41.14	74.00	32.86	Pass	Н	PK
2	2036.3036	4.67	38.03	42.70	74.00	31.30	Pass	Н	PK
3	3205.0137	-20.32	66.11	45.79	74.00	28.21	Pass	Н	PK
4	4644.1096	-16.65	51.46	34.81	74.00	39.19	Pass	Н	PK
5	8368.3579	-10.98	49.23	38.25	74.00	35.75	Pass	Н	PK
6	12429.6286	-4.73	48.05	43.32	74.00	30.68	Pass	Н	PK
7	1328.2328	1.15	40.61	41.76	74.00	32.24	Pass	V	PK
8	1999.2999	4.55	40.55	45.10	74.00	28.90	Pass	V	PK
9	3205.0137	-20.32	61.19	40.87	74.00	33.13	Pass	V	PK
10	4995.133	-15.84	58.38	42.54	74.00	31.46	Pass	V	PK
11	8983.3989	-8.60	52.08	43.48	74.00	30.52	Pass	V	PK
12	13121.6748	-3.56	46.68	43.12	74.00	30.88	Pass	V	PK

Mode	:		BLE GFSK Trai	nsmitting		Channel:		2440 MHz	2
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1329.0329	1.16	41.04	42.20	74.00	31.80	Pass	Н	PK
2	2009.3009	4.58	38.26	42.84	74.00	31.16	Pass	Н	PK
3	3253.0169	-20.06	64.95	44.89	74.00	29.11	Pass	Н	PK
4	4800.12	-16.23	51.78	35.55	74.00	38.45	Pass	Н	PK
5	7722.3148	-11.12	49.06	37.94	74.00	36.06	Pass	Н	PK
6	11988.5992	-5.32	48.48	43.16	74.00	30.84	Pass	Н	PK
7	1328.4328	1.16	41.87	43.03	74.00	30.97	Pass	V	PK
8	1994.4994	4.52	39.99	44.51	74.00	29.49	Pass	V	PK
9	3253.0169	-20.06	59.13	39.07	74.00	34.93	Pass	V	PK
10	5998.1999	-12.97	56.95	43.98	74.00	30.02	Pass	V	PK
11	8989.3993	-8.55	52.05	43.50	74.00	30.50	Pass	V	PK
12	12473.6316	-4.80	47.93	43.13	74.00	30.87	Pass	V	PK

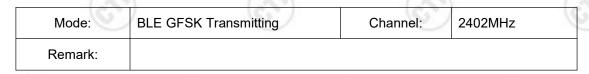


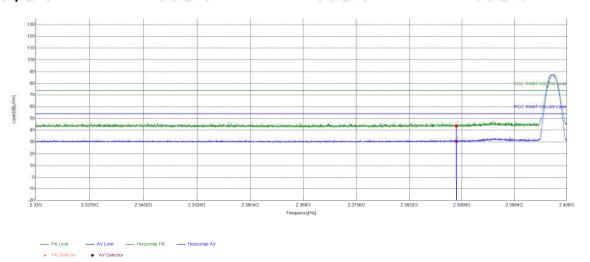
Report No.: EED32P80441301 Page 26 of 44

_		20%		20%		20%		1	0.5	
	Mode	:		BLE GFSK Tra	nsmitting		Channel:		2480 MHz	<u>z</u>
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1328.0328	1.15	39.87	41.02	74.00	32.98	Pass	Н	PK
3	2	2025.5026	4.64	38.69	43.33	74.00	30.67	Pass	Н	PK
	3	3306.0204	-19.83	63.06	43.23	74.00	30.77	Pass	Н	PK
	4	5918.1945	-13.49	49.75	36.26	74.00	37.74	Pass	Н	PK
	5	10786.5191	-6.26	47.66	41.40	74.00	32.60	Pass	Н	PK
	6	15139.8093	0.92	44.01	44.93	74.00	29.07	Pass	Н	PK
	7	1328.4328	1.16	40.94	42.10	74.00	31.90	Pass	V	PK
	8	1901.8902	4.04	37.69	41.73	74.00	32.27	Pass	V	PK
	9	3306.0204	-19.83	60.25	40.42	74.00	33.58	Pass	V	PK
	10	4995.133	-15.84	56.52	40.68	74.00	33.32	Pass	V	PK
	11	5994.1996	-13.00	56.10	43.10	74.00	30.90	Pass	V	PK
6	12	8991.3994	-8.53	52.17	43.64	74.00	30.36	Pass	V	PK

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

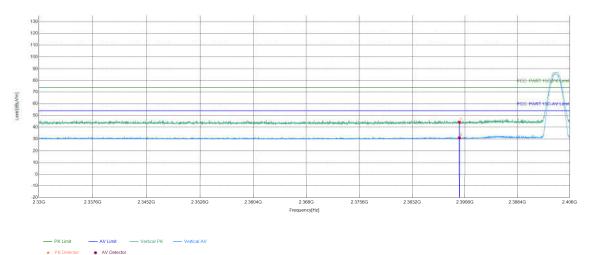


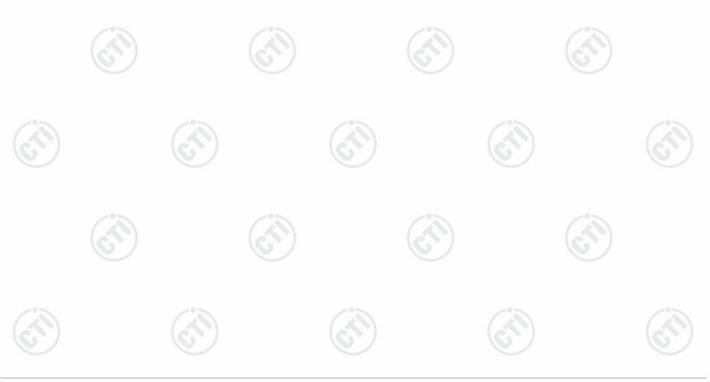


Restricted bands:

Test plot as follows:

Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	5.77	37.98	43.75	74.00	30.25	PASS	Horizontal	PK
2	2390	5.77	24.75	30.52	74.00	43.48	PASS	Horizontal	AV

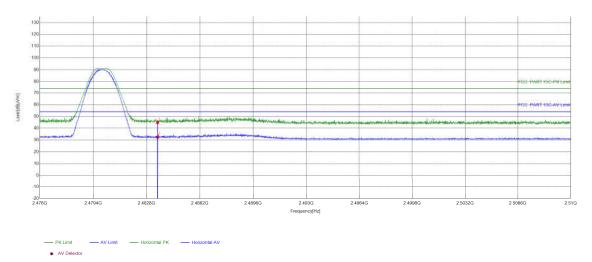



Report No.: EED32P80441301

	Page	28	of	44
--	------	----	----	----

Mode:	BLE GFSK Transmitting	Channel:	2402MHz
Remark:			

	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
3	1	2390	5.77	38.49	44.26	74.00	29.74	PASS	Vertical	PK
	2	2390	5.77	25.21	30.98	74.00	43.02	PASS	Vertical	AV

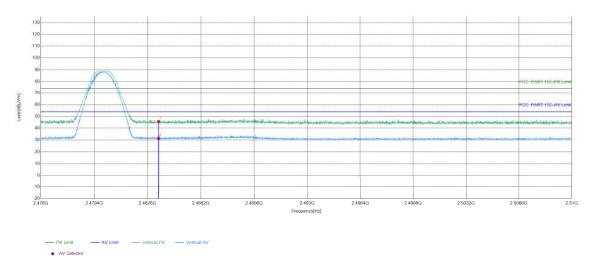


Report No.: EED32P80441301

Page 29 of 44

Mode:	BLE GFSK Transmitting	Channel:	2480MHz
Remark:			

	Suspecte	Suspected List												
1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark				
	1	2483.5	6.57	38.27	44.84	74.00	29.16	PASS	Horizontal	PK				
	2	2483.5	6.57	25.87	32.44	74.00	41.56	PASS	Horizontal	AV				



Page 30 of 44 Report No.: EED32P80441301

Mode:	BLE GFSK Transmitting	Channel:	2480MHz
Remark:			

Test Graph

Suspected List										
-	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	6.57	39.23	45.80	74.00	28.20	PASS	Vertical	PK
	2	2483.5	6.57	24.86	31.43	74.00	42.57	PASS	Vertical	AV

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No.: EED32P80441301

Page 31 of 44

Appendix BLE

Refer to Appendix: Bluetooth LE of EED32P80441301

