

Report No.: JYTSZ-R12-2300023

FCC RF Test Report

Applicant:	Sun Cupid Technology (HK) Ltd.		
Address of Applicant:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong		
Equipment Under Test (El	UT)		
Product Name:	Tablet		
Model No.:	T0802L, Tab 8, NUU Tab 8		
Trade Mark:	NUU		
FCC ID:	2ADINT0802L		
Applicable Standards:	FCC CFR Title 47 Part 15C (§15.247)		
Date of Sample Receipt:	10 Jan., 2023		
Date of Test:	11 Jan., to 20 Feb., 2023		
Date of Report Issued:	08 Mar., 2023		
Test Result:	PASS		

Tested by:	Test Engineer	Date:	08 Mar., 2023
Reviewed by: _	Regieor Engineer	Date:	08 Mar., 2023
Approved by:	检验检测专用单 Manager	Date:	08 Mar., 2023

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

1 Version

Version No.	Date	Description
00	21 Feb., 2023	Original
01	08 Mar., 2023	Update page 1/4

2 Contents

		Page
ver P	age	1
Ve	rsion	2
Co	ntents	
Ge	neral Information	4
3.1	Client Information	4
3.2	General Description of E.U.T.	4
3.3	Test Mode and Test Environment	
3.4	Description of Test Auxiliary Equipment	5
3.5	Measurement Uncertainty	5
3.6	Additions to, Deviations, or Exclusions from the Method	5
3.7	Laboratory Facility	5
3.8	Laboratory Location	5
3.9	Test Instruments List	6
Ме	asurement Setup and Procedure	8
1.1	Test Channel	8
1.2	Test Setup	8
1.3	Test Procedure	10
Te	st Results	11
5.1	Summary	11
5.1	.1 Clause and Data Summary	11
5.1	.2 Test Limit	12
5.2	Antenna requirement	13
5.3	AC Power Line Conducted Emission	14
5.4	Emissions in Restricted Frequency Bands	16
5.5	Emissions in Non-restricted Frequency Bands	20
	Vei Co Ge 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.7 3.8 3.7 3.8 3.7 3.8 3.7 3.8 3.7 3.8 3.7 3.8 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	3.2 General Description of E.U.T. 3.3 Test Mode and Test Environment 3.4 Description of Test Auxiliary Equipment 3.5 Measurement Uncertainty 3.6 Additions to, Deviations, or Exclusions from the Method 3.7 Laboratory Facility 3.8 Laboratory Facility 3.8 Laboratory Location 3.9 Test Instruments List Measurement Setup and Procedure 4.1 Test Channel 4.2 Test Setup 4.3 Test Procedure 5.1.1 Clause and Data Summary 5.1.2 Test Limit. 5.2 Antenna requirement 5.3 AC Power Line Conducted Emission 5.4 Emissions in Restricted Frequency Bands

3 General Information

3.1 Client Information

Applicant:	Sun Cupid Technology (HK) Ltd.
Address:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong.
Manufacturer/ Factory:	Suncupid (ShenZhen) Electronic Ltd
Address:	Baolong Industrial City, Longgang District, Shenzhen Hi-Tech Road, Building 1, A 7, China.

3.2 General Description of E.U.T.

Product Name:	Tablet
Model No.:	T0802L, Tab 8, NUU Tab 8
Operation Frequency:	2402 MHz - 2480 MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Technology:	GFSK
Data Speed:	1 Mbps (LE 1M PHY)
Antenna Type:	Internal Antenna
Antenna Gain:	0.2 dBi (declare by applicant)
Antenna transmit mode:	SISO (1TX, 1RX)
Power Supply:	Rechargeable Li-ion Battery DC3.7V, 4000mAh
AC Adapter:	Model: BCT050200-078EU
	Input: AC100-240V, 50/60Hz, 0.3A
	Output: DC 5.0V, 2000mA
Remark:	Model No.: T0802L, Tab 8, NUU Tab 8 were identical inside, the electrical
	circuit design, layout, components used and internal wiring, with only
	difference being model name.
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

3.3 Test Mode and Test Environment

Test Mode:					
Transmitting mode Keep the EUT in continuous transmitting with modulation					
Remark:					
 Channel Low, Mid and High for each type band with rated data rate were chosen for full testing. The field strength of spurious radiation emission was measured as EUT stand-up position (H mode) and lie down position (E1, E2 mode) for these modes. Just the worst case position (H mode) shown in report. 					
Operating Environment:					
Temperature: 15° C 35° C					
Humidity: 20 % ~ 75 % RH					
Atmospheric Pressure: 1	008 mbar				

3.4 Description of Test Auxiliary Equipment

The EUT has been tested as an independent unit.

3.5 Measurement Uncertainty

Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
1.9 dB
2.6 dB
3.8 dB
3.6 dB
5.34 dB
3.7 dB

Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

3.6 Additions to, Deviations, or Exclusions from the Method

No

3.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

3.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd. Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info-JYTee@lets.com, Website: http://jyt.lets.com

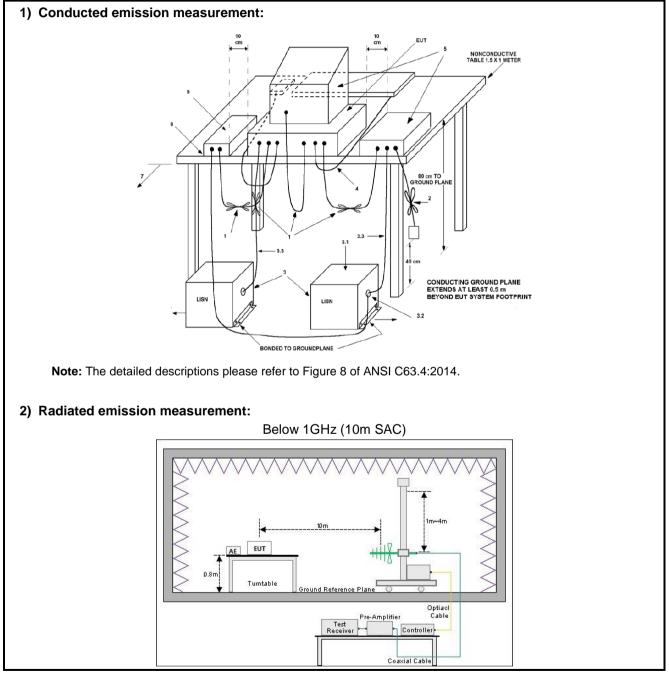
3.9 Test Instruments List

Radiated Emission(3m SAC):						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	ETS	9m*6m*6m	WXJ001-1	04-14-2021	04-13-2024	
Loop Antenna	Schwarzbeck	FMZB 1519 B	WXJ002-4	03-07-2022	03-06-2023	
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ002	03-08-2022	03-07-2023	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-2	03-08-2022	03-07-2023	
Horn Antenna	Schwarzbeck	BBHA9170	WXJ002-5	04-07-2022	04-06-2023	
Pre-amplifier (30MHz ~ 1GHz)	Schwarzbeck	BBV9743B	WXJ001-2	01-10-2023	01-09-2024	
Pre-amplifier (1GHz ~ 18GHz)	SKET	LNPA_0118G-50	WXJ001-3	01-10-2023	01-09-2024	
Pre-amplifier (18GHz ~ 40GHz)	RF System	TRLA-180400G45B	WXJ002-7	03-30-2022	03-29-2023	
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	03-05-2022	03-04-2023	
Spectrum Analyzer	Rohde & Schwarz	FSP 30	WXJ004	01-10-2023	01-09-2024	
Spectrum Analyzer	KEYSIGHT	N9010B	WXJ004-2	10-17-2022	10-16-2023	
Coaxial Cable (30MHz ~ 1GHz)	JYTSZ	JYT3M-1G-NN-8M	WXG001-4	01-10-2023	01-09-2024	
Coaxial Cable (1GHz ~ 18GHz)	JYTSZ	JYT3M-18G-NN-8M	WXG001-5	01-10-2023	01-09-2024	
Coaxial Cable (18GHz ~ 40GHz)	JYTSZ	JYT3M-40G-SS-8M	WXG001-7	01-10-2023	01-09-2024	
Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N	I/A	
Test Software	Tonscend	TS+		Version: 3.0.0.1		

Radiated Emission(10m SAC):						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
10m SAC	ETS	RFSD-100-F/A	WXJ090	04-28-2021	04-27-2024	
BiConiLog Antenna	SCHWARZBECK	VULB 9168	WXJ090-1	04-01-2022	03-31-2023	
BiConiLog Antenna	SCHWARZBECK	VULB 9168	WXJ090-2	03-31-2022	03-30-2023	
EMI Test Receiver	R&S	ESR 3	WXJ090-3	03-30-2022	03-29-2023	
EMI Test Receiver	R&S	ESR 3	WXJ090-4	03-30-2022	03-29-2023	
Low Pre-amplifier	Bost	LNA 0920N	WXJ090-6	01-10-2023	01-09-2024	
Low Pre-amplifier	Bost	LNA 0920N	WXJ090-7	01-10-2023	01-09-2024	
Cable	Bost	JYT10M-1G-NN-10M	WXG002-7	01-10-2023	01-09-2024	
Cable	Bost	JYT10M-1G-NN-10M	WXG002-8	01-10-2023	01-09-2024	
Test Software	R&S	EMC32	Version: 10.50.40			

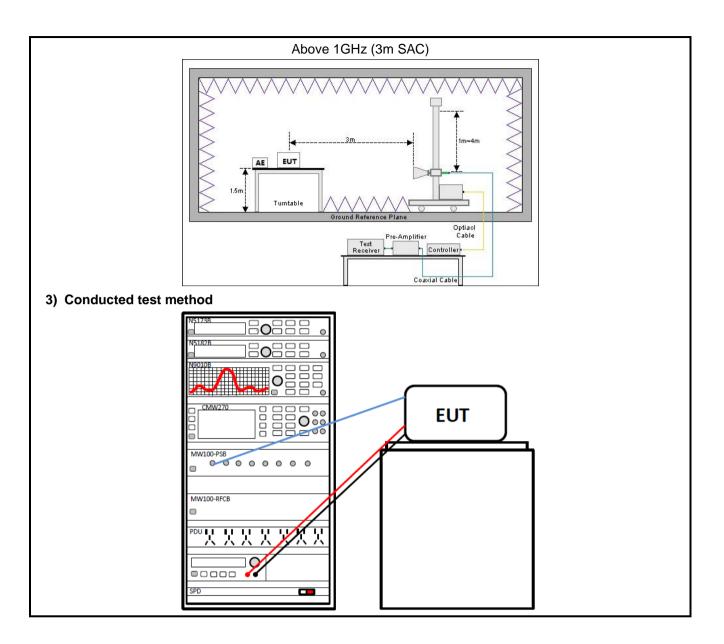
Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESR3	WXJ003-2	07-12-2022	07-11-2023	
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	02-24-2022	02-23-2023	
LISN	Rohde & Schwarz	ESH3-Z5	WXJ005-1	03-30-2022	03-29-2023	
LISN Coaxial Cable (9kHz ~ 30MHz)	JYTSZ	JYTCE-1G-NN-2M	WXG003-1	02-24-2022	02-23-2023	
RF Switch	TOP PRECISION	RSU0301	WXG003	N/A		
Test Software	AUDIX	E3	V	Version: 6.110919b		

Conducted Method:						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
Spectrum Analyzer	Keysight	N9010B	WXJ004-3	10-17-2022	10-16-2023	
Temperature Humidity Chamber	ZHONG ZHI	CZ-A-80D	WXJ032-3	03-19-2021	03-18-2023	
Power Detector Box	MWRFTEST	MW100-PSB	WXJ007-4	10-17-2022	10-16-2023	
DC Power Supply	Keysight	E3642A	WXJ025-2	N/A		
RF Control Unit	MWRFTEST	MW100-RFCB	WXG006	N/A		
Test Software	MWRFTEST	MTS 8310		Version: 2.0.0.0		


4 Measurement Setup and Procedure

4.1 Test Channel

According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:


Lowe	Lowest channel		le channel	Highest channel		
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	
0	2402	20	2442	39	2480	

4.2 Test Setup

Project No.: JYTSZR2301018

4.3 Test Procedure

Test method	Test step
Conducted emission	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
Radiated emission	For below 1GHz:
	 The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 10 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 10 m.
	 EUT works in each mode of operation that needs to be tested , and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
	For above 1GHz:
	 The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m.
	2. EUT works in each mode of operation that needs to be tested, and having
	the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.
	3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
Conducted test method	1. The BLE antenna port of EUT was connected to the test port of the test
	system through an RF cable.
	 The EUT is keeping in continuous transmission mode and tested in all modulation modes.
	3. Open the test software, prepare a test plan, and control the system through
	the software. After the test is completed, the test report is exported through
	the test software.

5 Test Results

5.1 Summary

5.1.1 Clause and Data Summary

Test items	Standard clause	Test data	Result
Antenna Requirement	15.203 15.247 (b)(4)	See Section 5.2	Pass
AC Power Line Conducted Emission	15.207	See Section 5.3	Pass
Conducted Output Power	15.247 (b)(3)	Appendix A – BLE-1M PHY	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A – BLE-1M PHY	Pass
Power Spectral Density	15.247 (e)	Appendix A – BLE-1M PHY	Pass
Band-edge Emission Conduction Spurious Emission	15.247 (d)	Appendix A – BLE-1M PHY	Pass
Emissions in Restricted Frequency Bands	15.205 15.247 (d)	See Section 5.4	Pass
Emissions in Non-restricted Frequency Bands	15.209 15.247(d)	See Section 5.5	Pass
Remark:			1

1. Pass: The EUT complies with the essential requirements in the standard.

2. N/A: Not Applicable.

3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method:

ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

5.1.2 Test Limit

Test items		Lin	nit			
	Frequency		Limit (dB	μV)		
	(MHz)	Quas	si-Peak	Average		
AC Power Line Conducted	0.15 – 0.5	66 to	56 Note 1	56 to 46 Note 1		
Emission	0.5 – 5		56	46		
Emission	5-30 60 50					
	Note 1: The limit level in $dB\mu V$ decreases linearly with the logarithm of frequency. Note 2: The more stringent limit applies at transition frequencies.					
Conducted Output Power	For systems using digital and 5725-5850 MHz band		the 902-928 N	IHz, 2400-2483.5 MHz,		
6dB Emission Bandwidth	The minimum 6 dB bandw	vidth shall be a	at least 500 kH	z.		
99% Occupied Bandwidth	N/A					
Power Spectral Density	For digitally modulated system intentional radiator to the a band during any time inter	antenna shall	not be greater	than 8 dBm in any 3 kH		
Band-edge Emission Conduction Spurious Emission	In any 100 kHz bandwidth spectrum or digitally modu frequency power that is pr dB below that in the 100 k highest level of the desired radiated measurement, pr the peak conducted powe power limits based on the permitted under paragraph this paragraph shall be 30 limits specified in §15.209 which fall in the restricted with the radiated emission	alated intention oduced by the Hz bandwidth d power, base ovided the tra r limits. If the t use of RMS a h (b)(3) of this d B instead of (a) is not requi- bands, as def	nal radiator is of intentional ra- within the bar d on either an nsmitter demo ransmitter con veraging over section, the a 20 dB. Attenu ired. In additio ined in §15.20	operating, the radio diator shall be at least 2 ad that contains the RF conducted or a instrates compliance with nplies with the conducted a time interval, as ttenuation required undu- tation below the generation, radiated emissions 5(a), must also comply	th ed ler l	
	Frequency	Limit (d	BμV/m)	Detector		
	(MHz)	@ 3m	@ 10m			
	30 – 88	40.0	30.0	Quasi-peak		
Emissions in Restricted	88 – 216	43.5	33.5	Quasi-peak		
Frequency Bands	216 – 960	46.0	36.0	Quasi-peak		
	960 – 1000	54.0	44.0	Quasi-peak		
Emissions in Non-restricted	Note: The more stringent limit	applies at transitio				
Frequency Bands	Frequency		Limit (dBµV/m) @ 3m		
		Ave	rage	Peake		
	Above 1 GHz	54	l.0	74.0		
	Note: The measurement band	width shall be 1 M	Hz or greater.			

5.2 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(b)(4)

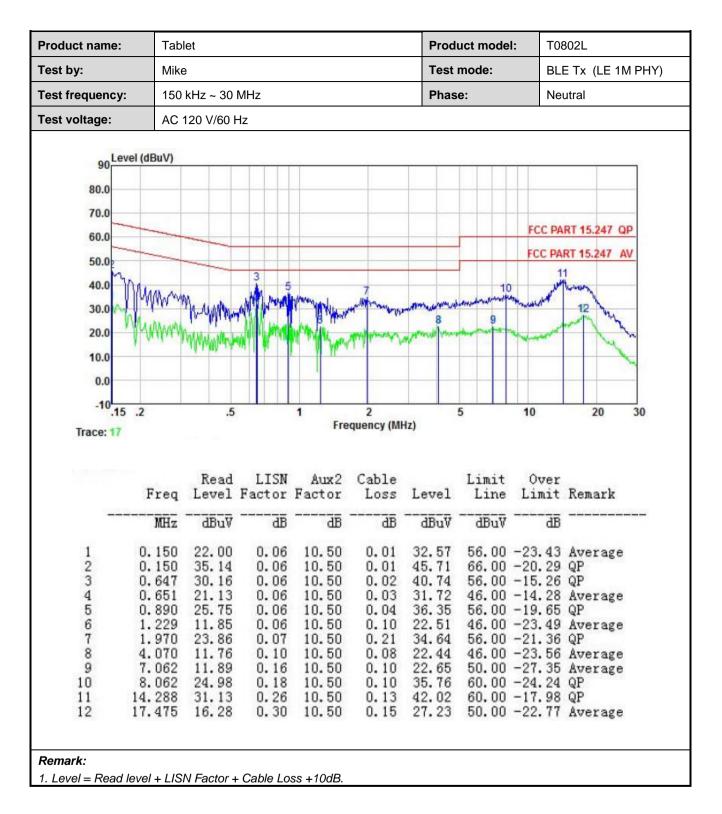
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:


The BLE antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 0.2 dBi. See product internal photos for details.

roduct name:	Tab	let				Produ	ct model:	T080)2L	
est by:	Mike	Э				Test m	node:	BLE	Tx (LE 1M F	PHY)
est frequency:	150	kHz ~ 30	MHz			Phase	:	Line		
est voltage:	AC	120 V/60	Hz					•		
Laura	(dDa)0									
90 Level	(dBuV)									٦
80.0	1				_					-
70.0										-
60.0								FCC PA	RT 15.247 Q	2
50.0			5					FCC PA	RT 15.247 A	<u>/</u>
40.0	Ma. MA	3 Million .	M.	1		9		A	Nerry	_
30.0	ditte.	Marrie War	1 MAY	Annual Kan	name a sum	nonecont	and representations	Andrewell	121	
20.0	YWW	WWW.	MININ	in the second	wanter	approximent	marmonary	a second and a second and	111	
	13	1 Pr.		10.00					1	~
10.0										-
0.0										
	.2	.5		1	2		5	10	20	30
-10.15 Trace: 19	.2	.5			2 equency (Mi		5	10	20	30
-10.15	.2	.5	,		_		5	10	20	30
-10.15		Read	LISN	Fre Aux2	equency (Mi Cable	Hz)	Limit	Over		30
-10.15		Read	LISN	Fre	equency (MI			Over	20 Remark	30
-10.15		Read	LISN	Fre Aux2	equency (Mi Cable	Hz)	Limit	Over		30
-10.15 Trace: 19	Freq	Read Level	LISN Factor	Fre Aux2 Factor	equency(MI Cable Loss	Hz) Level	Limit Line dBuV	Over Limit	Remark	30
-10.15 Trace: 19	Freq MHz 0.150 0.166	Read Level dBuV 36.53 22.63	LISN Factor dB 0.04 0.04	Aux2 Factor 	Cable Loss dB 0.01 0.01	Hz) Level dBuV 47.08 33.18	Limit Line dBuV 66.00 55.16	Over Limit -18.92 -21.98	Remark QP Average	30
-10.15 Trace: 19	Freq MHz 0.150 0.166 0.322	Read Level dBuV 36.53 22.63 31.35	LISN Factor dB 0.04 0.04 0.06	Aux2 Factor dB 10.50 10.50 10.50	Cable Loss dB 0.01 0.01 0.03	Hz) Level dBuV 47.08 33.18 41.94	Limit Line dBuV 66.00 55.16 59.66	Over Limit -18.92 -21.98 -17.72	Remark QP Average QP	30
-1015 Trace: 19 1 2 3 4 5	Freq MHz 0.150 0.166 0.322 0.617 0.661	Read Level dBuV 36.53 22.63 31.35 28.33 35.12	LISN Factor dB 0.04 0.04 0.06 0.06 0.06 0.07	Aux2 Factor dB 10.50 10.50 10.50 10.50 10.50 10.50	Cable Loss dB 0.01 0.03 0.02 0.03	Hz) Level dBuV 47.08 33.18 41.94 38.91 45.72	Limit Line dBuV 66.00 55.16 59.66 46.00 56.00	Over Limit -18.92 -21.98 -17.72 -7.09 -10.28	Remark QP Average QP Average QP	30
-10.15 Trace: 19	Freq MHz 0.150 0.166 0.322 0.617 0.661 1.262	Read Level dBuV 36.53 22.63 31.35 28.33 35.12 19.52	LISN Factor dB 0.04 0.04 0.06 0.06 0.07 0.07	Aux2 Factor dB 10.50 10.50 10.50 10.50 10.50 10.50 10.50	Cable Loss dB 0.01 0.03 0.02 0.03 0.10	Hz) Level dBuV 47.08 33.18 41.94 38.91 45.72 30.19	Limit Line dBuV 66.00 55.16 59.66 46.00 56.00 46.00	Over Limit -18.92 -21.98 -17.72 -7.09 -10.28 -15.81	Remark QP Average QP Average QP Average	30
-10.15 Trace: 19 1 2 3 4 5 6 7	Freq MHz 0.150 0.166 0.322 0.617 0.661	Read Level dBuV 36.53 22.63 31.35 28.33 35.12 19.52 15.74 15.16	LISN Factor dB 0.04 0.04 0.06 0.06 0.06 0.07	Aux2 Factor dB 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50	Cable Loss dB 0.01 0.03 0.02 0.03	Hz) Level dBuV 47.08 33.18 41.94 38.91 45.72	Limit Line dBuV 66.00 55.16 59.66 46.00 56.00 46.00 46.00	Over Limit -18.92 -21.98 -17.72 -7.09 -10.28 -15.81 -19.51	Remark QP Average QP Average QP	30
-10.15 Trace: 19	Freq MHz 0.150 0.166 0.322 0.617 0.661 1.262 2.249 3.399 3.603	Read Level dBuV 36.53 22.63 31.35 28.33 35.12 19.52 15.74 15.16 26.27	LISN Factor dB 0.04 0.06 0.06 0.06 0.07 0.07 0.07 0.08 0.10 0.10	Aux2 Factor dB 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50	Cable Loss dB 0.01 0.03 0.02 0.03 0.10 0.17 0.07 0.08	Hz) Level dBuV 47.08 33.18 41.94 38.91 45.72 30.19 26.49 25.83 36.95	Limit Line dBuV 66.00 55.16 59.66 46.00 56.00 46.00 46.00 46.00 56.00	Over Limit -18.92 -21.98 -17.72 -7.09 -10.28 -15.81 -19.51 -20.17 -19.05	Remark QP Average QP Average QP Average Average Average QP	30
-10.15 Trace: 19	Freq MHz 0.150 0.166 0.322 0.617 0.661 1.262 2.249 3.399	Read Level dBuV 36.53 22.63 31.35 28.33 35.12 19.52 15.74 15.16	LISN Factor dB 0.04 0.06 0.06 0.06 0.07 0.07 0.07 0.08 0.10	Aux2 Factor dB 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50	Cable Loss dB 0.01 0.03 0.02 0.03 0.10 0.17 0.07	Hz) Level dBuV 47.08 33.18 41.94 38.91 45.72 30.19 26.49 25.83	Limit Line dBuV 66.00 55.16 59.66 46.00 56.00 46.00 46.00 46.00 56.00 60.00	Over Limit -18.92 -21.98 -17.72 -7.09 -10.28 -15.81 -19.51 -20.17	Remark QP Average QP Average QP Average Average Average QP QP	30

5.3 AC Power Line Conducted Emission

Product Name: **Product Model:** Tablet T0802L Test By: Mike Test mode: BLE Tx (LE 1M PHY) **Test Channel:** Lowest channel **Polarization:** Vertical **Test Voltage:** AC 120/60Hz FCC PART 15 C 110 100. 90-80 FCC PART 15 C-PK 70 Level[dBµV/m] 60 50 40 30 20 10-231G 2 3194G 2 3476G 2 3758G 2 3852G 2 3946G 2 404G 2 3288G 2 357G 2 3664G 2.3382G Frequency[Hz] - PK Limit - AV Limit - Vertical PK AV Detector PK Detector **Suspected Data List** Reading Factor Level Limit Margin Freq. NO. Polarity Trace [MHz] [dBµV/m] [dB] [dBµV/m] [dBµV/m] [dB] 2338.85 24.56 ΡK Vertical 1 35.21 59.77 74.00 14.23 2 2338.85 13.14 35.21 48.35 54.00 5.65 AV Vertical 2364.14 ΡK 3 24.57 35.40 59.97 74.00 14.03 Vertical 2364.14 4 12.81 35.40 54.00 5.79 AV Vertical 48.21 2390.00 5 22.62 35.60 58.22 74.00 15.78 ΡK Vertical 2390.00 12.71 35.60 5.69 AV Vertical 6 48.31 54.00 Remark: 1. Level = Reading + Factor(Antenna Factor + Cable Loss – Preamplifier Factor).

5.4 Emissions in Restricted Frequency Bands

		Tablet			Product I	Model:	T0802L		
est By:		Mike	Test mode: BLE Tx (LE			E 1M PHY)			
est Cha	nnel:	Lowest channe	1		Polarizati	ion:	Horizontal		
est Volt	tage:	AC 120/60Hz				·			
	110 90 80 70 60 50		и	FCC PART 15	C	Jurra departe constraine de	-	ART 15 C-PK Limit	
Level	40 30 20 10 0 2.31G PK Lim • PK Det			3476G 2.357G Frequency[Hz torizontal AV	2.3664G	2.3758G 2.3	852G 2.39	046G 2.404G	
	30 20 10 0 2.31G	AV Limit ctor AV Detector	- Horizontal PK H	Frequency[Hz]		852G 2.39	2404G	
	30 20 10 0 2.31G PK Lim • PK Det	ctor		Frequency[Hz		23758G 23 Margin [dB]	852G 2.39	2404G Polarity	
Suspe	30 20 10 0 2.31G PK Lim • PK Det ected Da Freq. [MHz] 2338.29	AV Limit	- Horizontal PK F Factor	Frequency[Hz iorizontal AV	Limit	Margin			
Suspo NO.	30 20 10 0 231G PK Lim • PK Det ected Da Freq. [MHz]	AV Limit	- Horizontal PK - F Factor [dB]	Frequency[Hz torizontal AV	Limit [dBµV/m]	Margin [dB]	Trace	Polarity	
Suspo NO. 1	30 20 10 0 2.31G PK Lim • PK Det ected Da Freq. [MHz] 2338.29	AV Limit ◆ AV Detector a List Reading [dBµV/m] 23.72 13.12	Factor [dB] 35.21	Frequency[Hz Iorizontal AV	Limit [dBµV/m] 74.00	Margin [dB] 15.07	TracePK	Polarity Horizontal	
Suspe NO. 1 2	30 20 10 0 2316 → PK Lim ◆ PK Det ected Dat Freq. [MHz] 2338.29 2338.29	a List Reading [dBµV/m] 23.72 13.12 23.37	Factor [dB] 35.21 35.21	Frequency[Hz lorizontal AV Level [dBµV/m] 58.93 48.33	Limit [dBµV/m] 74.00 54.00	Margin [dB] 15.07 5.67	Trace PK AV	Polarity Horizontal Horizontal	
Suspe NO. 1 2 3	30 20 10 0 231G PK Lim PK Det PK Det PK Det 2338.29 2338.29 2338.29 2338.29 2363.17	a List Reading [dBµV/m] 23.72 13.12 23.37 12.78	Factor [dB] 35.21 35.21 35.39	Frequency[Hz torizontal AV Level [dBµV/m] 58.93 48.33 58.76	Limit [dBµV/m] 74.00 54.00 74.00	Margin [dB] 15.07 5.67 15.24	Trace PK AV PK	Polarity Horizontal Horizontal Horizontal	

	Name:	Tablet			Product I	Model:	T0802L		
est By:		Mike			Test mod	le:	BLE Tx (LI	E 1M PHY)	
est Cha	innel:	Highest channe	el l		Polarizat	ion:	Vertical		
est Volt	age:	AC 120/60Hz							
	110 100 90 80 70 60 50		1 2	FCC PART 15 (5	FCC P/	ART 15 C-PK Limit	
Leve L	40 30 20 10 0 2.478G 2. PK Limit ◆ PK Detect		2.4846G 2.4 - Vertical PK — Verti	1868G 2.489G Frequency[Hz]	2 4912G	2.4934G 2.49	956G 2.49	78G 2.5G	
	30 20 10 0 2.478G 2 PK Limit • PK Detector	AV Limit AV Detector	- Vertical PK — Vert	Frequency[Hz]		956G 2.49	78G 2.5G	
	30 20 10 0 2.478G 2. PK Limit • PK Detect	AV Limit		Frequency[Hz]		2.4934G 2.44 Margin [dB]	956G 2.49 Trace	78G 25G Polarity	
Suspe	30 20 10 0 2.478G 2 PK Limit ◆ PK Detect Freq. [MHz] 2483.50	AV Limit AV Detector	- Vertical PK Verti Factor	Frequency[Hz	Limit	Margin			
Suspo NO.	30 20 10 0 2.478G 2 PK Limit PK Detector Freq. [MHz]	AV Limit AV Detector AV Detector AV Detector AV Detector	- Vertical PK Verti Factor [dB]	Frequency[Hz cal AV	Limit [dBµV/m]	Margin [dB]	Trace	Polarity	
Suspo NO. 1	30 20 10 0 2.478G 2 PK Limit ◆ PK Detect Freq. [MHz] 2483.50	AV Limit AV Detector AV Detector AV Detector AV Detector AV Detector	- Vertical PK Vert Factor [dB] 35.51	Frequency[Hz cal AV Level [dBµV/m] 58.91	Limit [dBµV/m] 74.00	Margin [dB] 15.09	Trace	Polarity Vertical	
Suspe NO. 1 2	30 20 10 0 2478G 2 → PK Limit ◆ PK Detect ● PK De	AV Limit AV Detector AV Detector	- Vertical PK — Vert [dB] 35.51 35.51	Frequency[Hz] cal AV Level [dBμV/m] 58.91 48.42	Limit [dBµV/m] 74.00 54.00	Margin [dB] 15.09 5.58	Trace PK AV	Polarity Vertical Vertical	
Suspe NO. 1 2 3	30 20 10 0 2.478G 2 PK Limit ◆ PK Detect Freq. [MHz] 2483.50 2483.50 2490.07	AV Limit AV Detector AV DETE	- Vertical PK	Erequency[Hz]	Limit [dBµV/m] 74.00 54.00 54.00	Margin [dB] 15.09 5.58 5.77	Trace PK AV AV	Polarity Vertical Vertical Vertical	

est By:		Tablet			Product I	Model:	T0802L	
St Dy.		Mike			Test mod	le:	BLE Tx(L	E 1M PHY)
est Cha	nnel:	Highest channe	el		Polarizat	ion:	Horizontal	
est Volt	age:	AC 120/60Hz			·			
1 Lmi/Arian	10 00 90 80 70 60 50		1 1 2	FCC PART 15	C		.5	ART 15 C-PK Limit
	40 30 20 10 0 2.478G 2. PK Limit			4868G 2.489G Frequency[Hz łorizontal AV	2.4912G]	2.4934G 2.49	956G 2.49	
	30 20 10 0 2.478G 2 PK Limit PK Detector	AV Limit or AV Detector	- Horizontal PK F	Frequency[Hz]		956G 2.49	178G 2.5G
	30 20 10 2.478G 2. PK Limit • PK Detec	AV Limit		Frequency[Hz		24934G 249 Margin [dB]	256G 2.49 Trace	Polarity
Suspe	30 20 10 0 2.478G 2. → PK Limit ◆ PK Detect Freq. [MHz] 2483.50	AV Limit AV Detector A List Reading	- Horizontal PK F Factor	Frequency[Hz iorizontal AV	Limit	Margin		
Suspe NO.	30 20 10 0 2.478G 2. → PK Limit ◆ PK Detect Freq. [MHz]	AV Limit → AV Detector A List Reading [dBµV/m]	- Horizontal PK	Frequency[Hz torizontal AV	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
Suspe NO. 1	30 20 10 0 2.478G 2. → PK Limit ◆ PK Detect Freq. [MHz] 2483.50	AV Limit AV Detector	Factor [dB] 35.51	Frequency[Hz Iorizontal AV	Limit [dBµV/m] 74.00	Margin [dB] 15.54	Trace	Polarity Horizontal
Suspe NO. 1 2	30 20 10 0 2478G 2 → PK Limit ◆ PK Detec • PK Detec • PK Detec • PK Detec • PK Detec • PK 2483.50 2483.50	AV Limit AV Detector A List Reading [dBµV/m] 22.95 12.78	Factor [dB] 35.51 35.51	Frequency[Hz lorizontal AV Level [dBµV/m] 58.46 48.29	Limit [dBµV/m] 74.00 54.00	Margin [dB] 15.54 5.71	Trace PK AV	Polarity Horizontal Horizontal
Suspe NO. 1 2 3	30 20 10 0 2.478G 2. → PK Limit ◆ PK Detect Freq. [MHz] 2.483.50 2.483.50 2.490.95	a List Reading [dBµV/m] 22.95 12.78 12.68	Factor [dB] 35.51 35.51 35.50	Frequency[Hz torizontal AV Level [dBµV/m] 58.46 48.29 48.18	Limit [dBµV/m] 74.00 54.00 54.00	Margin [dB] 15.54 5.71 5.82	Trace PK AV AV	Polarity Horizontal Horizontal Horizontal

5.5 Emissions in Non-restricted Frequency Bands

Below 1GHz:

	Tablet			Pro	oduct Model:	: T0802	2L	
est By:	Mike			Tes	st mode:	BLE T	BLE Tx (LE 1M PHY)	
est Frequency:	30 MHz ~ 1 G	Hz		Pol	arization:	Vertic	al & Horizontal	
st Voltage:	AC 120/60Hz							
			Full Spec	trum				
50 _								
						FCC PART 1	15.247 10 m	
40+								
\geq 30								
							**	
₽ 20 .⊑ 20						*	Else and a second second	
					and the second	A second and		
	*	A	hard a start and a start of the st	Million a creater both	All and a second se	He-d		
0+	La allera de la constant	and a state of the second s	الملاكة فليورق فالمربط فيرك	In the garden and the				
· · · ·								
Зом	50 60	80 100	M	200	300 400	500	800 1G	
	50 60	80 100			300 400	500	800 1G	
30M			Freque	ency in Hz				
30M	w Result 1V-PK+	+	Freque Preview F	ency in Hz Result 1H-PK+		500 Oritical_Fre		
30M		+	Freque	ency in Hz Result 1H-PK+				
30M	w Result 1V-PK+	+	Freque Preview F	ency in Hz Result 1H-PK+				
30M	w Result 1V-PK+	+	Freque Preview F	ency in Hz Result 1H-PK+				
30M	w Result 1V-PK+	+	Freque Preview F	ency in Hz Result 1H-PK+				
30M Previe	w Result 1V-PK+ ART 15.247 10r	+	Freque Preview F	ency in Hz Result 1H-PK+				
30M Previe FCC F Critical_Free Frequency	w Result 1V-PK+ ART 15.247 10r	+	Freque Preview F	ency in Hz Result 1H-PK+			eqs PK+	
30M Previe FCC F Critical_Free Frequency (MHz)	W Result 1V-PK ART 15.247 10r ART S.247 10r MaxPeak (dB µ V/m)	+ m •	Freque Preview F Final_Res Margin (dB)	ency in Hz Result 1H-PK+ sult QPK Height (cm)	* Pol	Oritical_Free	eqs PK+ Corr. (dB/m)	
30M Previe FCC F Critical_Free Frequency (MHz) 944.661500	W Result 1V-PK ART 15.247 10r CART 5.247 10r MaxPeak (dB µ V/m) 24.63	+ m Limit (dB µ V/m) 36.00	Freque Preview F Final_Res Margin (dB) 11.37	ency in Hz Result 1H-PK+ sult QPK Height (cm) 100.0	Pol H	Oritical_Free	eqs PK+ Corr. (dB/m) -1.2	
30M 30M Previe FCC F FCC F Frequency (MHz) 944.661500 676.262500	ew Result 1V-PK- PART 15.247 10r PART 5.247 10r PART 15.247 10r PART 15.247 10r PART 15.247 10r PART 10.7 PK 100 PK 100	+ m Limit (dB µ V/m) 36.00 36.00	Freque Preview F Final_Res Margin (dB) 11.37 16.37	ency in Hz Result 1H-PK+ sult QPK Height (cm) 100.0 100.0	Pol H H	Azimuth (deg) 40.0 201.0	Corr. (dB/m) -1.2 -6.0	
30M Previe FCC F Critical_Free Frequency (MHz) 944.661500	W Result 1V-PK ART 15.247 10r CART 5.247 10r MaxPeak (dB µ V/m) 24.63	+ m Limit (dB µ V/m) 36.00	Freque Preview F Final_Res Margin (dB) 11.37 16.37 22.05	ency in Hz Result 1H-PK+ sult QPK (cm) 100.0 100.0 100.0	Pol H	Oritical_Free	eqs PK+ Corr. (dB/m) -1.2	
30M Previe FCC F Critical_Frevie Frequency (MHz) 944.661500 676.262500 37.905500	EXART 15.247 10r PART 15.247 10r EQS MaxPeak (dB μ V/m) 24.63 19.63 7.95	+ m Limit (dB µ V/m) 36.00 36.00 30.00	Freque Preview F Final_Res Margin (dB) 11.37 16.37	ency in Hz Result 1H-PK+ sult QPK Height (cm) 100.0 100.0	Pol H H	Oritical_Free Azimuth (deg) 40.0 201.0 206.0	Corr. (dB/m) -1.2 -6.0 -16.2	

Above 1GHz:

			LE Tx (LE 1M PH			
			channel: Lowest ch			
	T	D	etector: Peak Valu	le	Γ	1
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4804.00	55.37	-9.08	46.29	74.00	27.71	Vertical
4804.00	58.59	-9.08	49.51	74.00	24.49	Horizontal
100 1.00	00.00		tector: Average Va		21.10	Tionzontai
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4804.00	49.05	-9.08	39.97	54.00	14.03	Vertical
4804.00	52.24	-9.08	43.16	54.00	10.84	Horizontal
1001100	02.21		10110	01100	10.01	Tionzonia
		Test	channel: Middle ch	nannel		
		D	etector: Peak Valu	le		
Frequency	Read Level	Factor	Level	Limit	Margin	Delevization
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Polarizatior
4882.00	55.53	-8.59	46.94	74.00	27.06	Vertical
4882.00	58.15	-8.59	49.56	74.00	24.44	Horizontal
		Det	tector: Average Va	alue		
Frequency	Read Level	Factor	Level	Limit	Margin	Polarizatior
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Folarization
4882.00	49.00	-8.59	40.41	54.00	13.59	Vertical
4882.00	52.30	-8.59	43.71	54.00	10.29	Horizontal
		Teste	hannah Hishaat al	housel		
			hannel: Highest cl			
Francisco	- Dood Lovel	D	etector: Peak Valu	a	Margin	
Frequency (MHz)	Read Level	D Factor	etector: Peak Valu	ue Limit	Margin (dB)	Polarizatior
(MHz)	(dBµV)	D Factor (dB)	etector: Peak Valu Level (dBµV/m)	ue Limit (dBµV/m)	(dB)	Polarization
(MHz) 4960.00	(dBµV) 55.58	D Factor (dB) -8.03	etector: Peak Valu Level (dBµV/m) 47.55	ue Limit (dBµV/m) 74.00	(dB) 26.45	Vertical
(MHz)	(dBµV)	D Factor (dB) -8.03 -8.03	etector: Peak Valu Level (dBµV/m) 47.55 50.26	ue Limit (dBµV/m) 74.00 74.00	(dB)	
(MHz) 4960.00 4960.00	(dBµV) 55.58 58.29	D Factor (dB) -8.03 -8.03 Det	etector: Peak Valu Level (dBµV/m) 47.55 50.26 tector: Average Va	ue Limit (dBµV/m) 74.00 74.00 alue	(dB) 26.45 23.74	Vertical
(MHz) 4960.00 4960.00 Frequency	(dBµV) 55.58 58.29 Read Level	D Factor (dB) -8.03 -8.03 Det Factor	etector: Peak Valu Level (dBµV/m) 47.55 50.26 tector: Average Va Level	ue Limit (dBµV/m) 74.00 74.00 alue Limit	(dB) 26.45 23.74 Margin	Vertical
(MHz) 4960.00 4960.00	(dBµV) 55.58 58.29	D Factor (dB) -8.03 -8.03 Det	etector: Peak Valu Level (dBµV/m) 47.55 50.26 tector: Average Va	ue Limit (dBµV/m) 74.00 74.00 alue	(dB) 26.45 23.74	Vertical Horizontal

2. Test Frequency up to 25GHz, and the emission levels of other frequencies are lower than the limit 20dB, not show in test report.

-----End of report-----