

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZB-R12-2100461

FCC REPORT (WIFI)

Applicant: Sun Cupid Technology (HK) Ltd.

Address of Applicant: 16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan,

Kowloon, Hong Kong.

Equipment Under Test (EUT)

Product Name: Tablet PC

Model No.: T0801L, Tab 8, NUU Tab 8

Trade mark: NUU

FCC ID: 2ADINT0801L

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 24 Mar., 2021

Date of Test: 25 Mar., to 20 Apr., 2021

Date of report issued: 21 Apr., 2021

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	21 Apr., 2021	Original

Tested by:	Test Engineer	Date:	21 Apr., 2021	
Reviewed by:	Winner Thang Project Engineer	Date:	21 Apr., 2021	

Contents

			Page
1	CO/	/ER PAGE	1
2	VER	RSION	2
3	001	NTENTS	3
4		T SUMMARY	
5	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	LABORATORY FACILITY	
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT	8
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.		
	6.6.2		
	6.7	Spurious Emission	
	6.7.		
	6.7.2	2 Radiated Emission Method	34
7	TES	ST SETUP PHOTO	42
8	ELIT	CONSTRUCTIONAL DETAILS	43
U	EUI	CONSTRUCTIONAL DETAILS	

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result
Antenna requirement	15.203 & 15.247 (b)	See Section 6.1	Pass
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass
Duty Cycle	ANSI C63.10-2013	Appendix A – 2.4G Wi-Fi	Pass
Conducted Peak Output Power	15.247 (b)(3)	Appendix A – 2.4G Wi-Fi	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A – 2.4G Wi-Fi	Pass
Power Spectral Density	15.247 (e)	Appendix A – 2.4G Wi-Fi	Pass
Conducted Band Edge	45 247 (4)	Appendix A – 2.4G Wi-Fi	Pass
Radiated Band Edge	15.247 (d)	See Section 6.6.2	Pass
Conducted Spurious Emission	45 205 8 45 200	Appendix A – 2.4G Wi-Fi	Pass
Radiated Spurious Emission	15.205 & 15.209	See Section 6.7.2	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page

5 General Information

5.1 Client Information

Applicant:	Sun Cupid Technology (HK) Ltd.
Address:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong.
Manufacturer:	Sun Cupid Technology (HK) Ltd.
Address:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong.
Factory:	Suncupid (ShenZhen) Electronic Ltd
Address:	Baolong Industrial City, Longgang District, Shenzhen Hi-Tech Road, Building 1, A 7, China.

5.2 General Description of E.U.T.

Product Name:	Tablet PC					
Model No.:	T0801L, Tab 8, NUU Tab 8					
Operation Frequency:	2412MHz~2462MHz: 802.11b/802.11g/802.11n(HT20)					
	2422MHz~2452MHz: 802.11n(HT40)					
Channel numbers:	11: 802.11b/802.11g/802.11(HT20)					
	7: 802.11n(HT40)					
Channel separation:	5MHz					
Modulation technology:	Direct Sequence Spread Spectrum (DSSS)					
(IEEE 802.11b)						
Modulation technology:	Orthogonal Frequency Division Multiplexing(OFDM)					
(IEEE 802.11g/802.11n)						
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps					
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps					
Data speed (IEEE 802.11n):	Up to 150Mbps					
Antenna Type:	Internal Antenna					
Antenna gain:	2.24dBi					
Power supply:	Rechargeable Li-ion Battery DC3.7V, 4000mAh					
AC adapter:	Model: JK050200-S86USU					
	Input: AC100-240V, 50/60Hz, 0.5A					
	Output: DC 5.0V === 2.0A					
Remark:	Model No.: T0801L, Tab 8, NUU Tab 8 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model and trademark name.					
Test Sample Condition:	The test samples were provided in good working order with no visible defects.					

Operation Frequency each of channel for 802.11b/g/n(HT20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

- 1. For 802.11n-HT40 mode, the channel number is from 3 to 9;
- 2. Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel. Channel 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest Channel.

JianYan Testing Group Shenzhen Co., Ltd.

No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.				
Mode Data rate				
802.11b	1Mbps			
802.11g	6Mbps			
802.11n(HT20)	6.5Mbps			
802.11n(HT40)	13.5Mbps			

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

● ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

JianYan Testing Group Shenzhen Co., Ltd.

No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.8 Test Instruments list

Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	ETS	9m*6m*6m	966	01-19-2021	01-18-2024
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-03-2021	03-02-2022
Biconical Antenna	SCHWARZBECK	VUBA9117	359	06-18-2020	06-17-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-03-2021	03-02-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-18-2020	06-17-2021
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2020	11-17-2021
EMI Test Software	AUDIX	E3	V	ersion: 6.110919b)
Pre-amplifier	HP	8447D	2944A09358	03-03-2021	03-02-2022
Pre-amplifier	CD	PAP-1G18	11804	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2020	11-17-2021
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022
Spectrum Analyzer	Agilent	N9020A	MY50510123	11-18-2020	11-17-2021
Signal Generator	Rohde & Schwarz	SMX	835454/016	03-03-2021	03-02-2022
Signal Generator	R&S	SMR20	1008100050	03-03-2021	03-02-2022
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-03-2021	03-02-2022
Cable	MICRO-COAX	MFR64639	K10742-5	03-03-2021	03-02-2022
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-03-2021	03-02-2022
DC Power Supply	XinNuoEr	WYK-10020K	1409050110020	09-25-2020	09-24-2021
Temperature Humidity Chamber	HengPu	HPGDS-500	20140828008	11-01-2020	10-31-2021
Simulated Station	Rohde & Schwarz	CMW500	140493	07-22-2020	07-21-2021

Conducted Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-03-2021	03-02-2022		
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-03-2021	03-02-2022		
LISN	CHASE	MN2050D	1447	03-03-2021	03-02-2022		
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2020	06-17-2021		
Cable	HP	10503A	N/A	03-03-2021	03-02-2022		
EMI Test Software	AUDIX	E3	Version: 6.110919b				

Conducted method:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021
Vector Signal Generator	Keysight	N5182B	MY59101009	11-27-2020	11-26-2021
Analog Signal Generator	Keysight	N5173B	MY59100765	11-27-2020	11-26-2021
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-27-2020	11-26-2021
Simulated Station	Rohde & Schwarz	CMW270	102335	11-27-2020	11-26-2021
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A
PDU	MWRF-test	XY-G10	N/A	N/A	N/A
Test Software	MWRF-tes	MTS 8310	,	Version: 2.0.0.0	
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2021

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: JYTSZB-R12-2100461

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

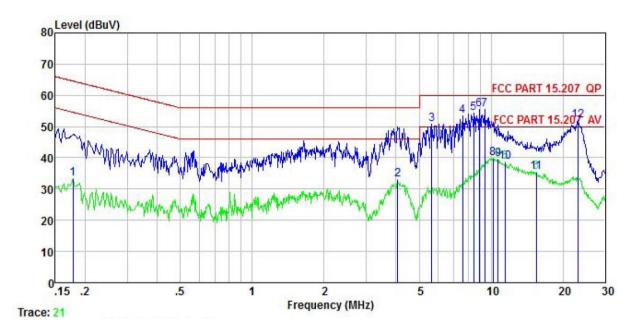
(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The Wi-Fi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 2.24 dBi.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

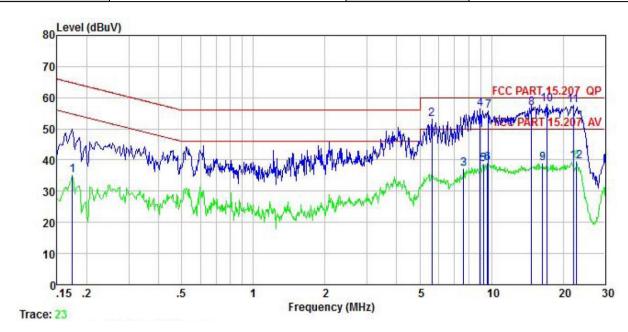
6.2 Conducted Emission


Test Requirement:	FCC Part 15 C Section 15.2	207						
Test Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz						
Class / Severity:	Class B	Class B						
Receiver setup:	RBW=9 kHz, VBW=30 kHz							
Limit:	Fraguenov rango (MHz)	Limit (d	dBuV)					
	Frequency range (MHz)	Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
	* Decreases with the logarit	hm of the frequency.						
Test procedure	line impedance stabiliz 50ohm/50uH coupling 2. The peripheral devices LISN that provides a 50 termination. (Please re photographs). 3. Both sides of A.C. line interference. In order to positions of equipment	LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).						
Test setup:	LISN	st	er — AC power					
Test Instruments:	Refer to section 5.9 for deta	ails						
Test mode:	Refer to section 5.3 for deta	ails						
Test results:	Passed							

Page 9 of 43

Measurement Data:

Product name:	Tablet PC	Product model:	T0801L
Test by:	YT	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>	<u>dB</u>	₫B	dBu₹	dBu∜	<u>dB</u>	
1	0.178	33.97	-0.58	-0.12	0.01	33.28			Average
2	4.070 5.653	33.51 50.74	-0.41	-0.04 0.53	0.08	33.14 50.91	60.00		Average OP
4	7.606	52.51	-0.60	1.47	0.10	53.48	60.00	-6.52	QP
5	8.456	53.16	-0.65	1.65	0.10	54.26	60.00		
4 5 6 7	8.916 9.401	54.17 54.38	-0.67 -0.70	1.74 1.84	0.11 0.12	55.35 55.64	60.00 60.00		
8	10.179	38.53	-0.73	2.02	0.13	39.95			Average
	10.676	37.95	-0.72	2.22	0.12	39.57			Average
10	11.498	36.83	-0.72	2.51	0.11	38.73			Average
11	15.470	32.64	-0.71	3.38	0.15	35.46			Average
12	23.140	51.79	-1.00	0.95	0.17	51.91	60.00	-8.09	QP

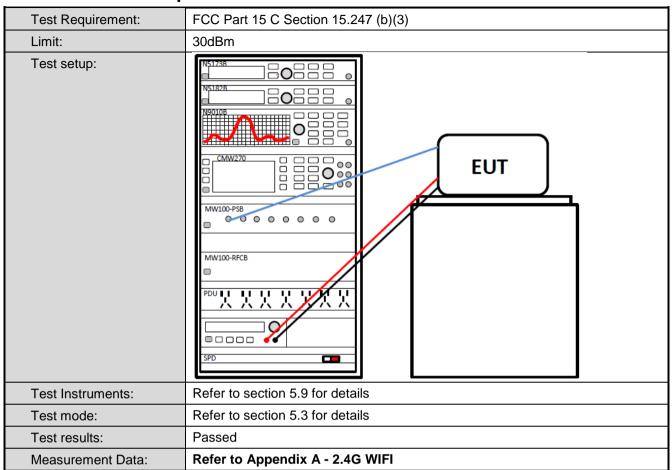
Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

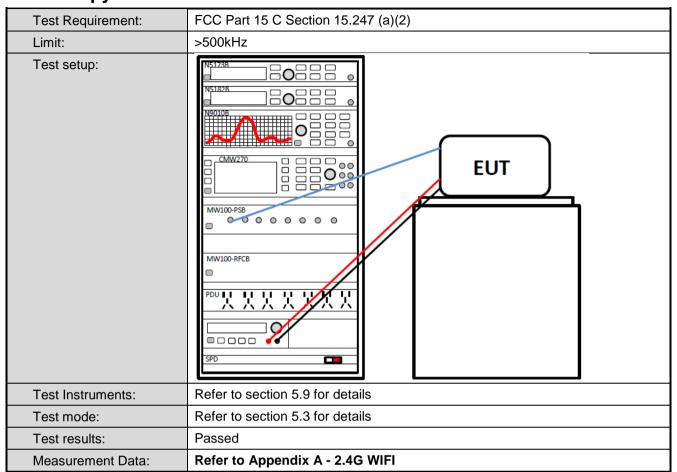
Product name:	Tablet PC	Product model:	T0801L
Test by:	YT	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level		Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
2	MHz	dBu∜	<u>dB</u>	āB		dBu₹	dBu∜	<u>dB</u>	
1	0.174	35.79	-0.68	0.00	0.01	35.12			Average
2	5.623	53.01	-0.68	0.73	0.09	53.15	60.00	-6.85	QP
3	7.646	36.78	-0.76	0.97	0.10	37.09	50.00	-12.91	Average
4	8.964	55.91	-0.78	1.22	0.11	56.46	60.00	-3.54	QP
5	9.253	38.20	-0.78	1.27	0.11	38.80	50.00	-11.20	Average
1 2 3 4 5 6 7 8	9.603	38.30	-0.79	1.34	0.12	38.97			Average
7	9.705	55.15	-0.79	1.35	0.12	55.83	60.00		
8	14.750	54.21	-0.81	3.02	0.13	56.55	60.00	-3.45	QP
9	16.398	37.48	-0.96	2.21	0.16	38.89	50.00	-11.11	Average
10	17.018	56.72	-1.01	1.88	0.16	57.75	60.00	-2.25	QP
11	22.063	58.13	-1.30	0.45	0.16	57.44	60.00	-2.56	QP
12	22.775	40.10	-1.31	0.52	0.16	39.47			Average

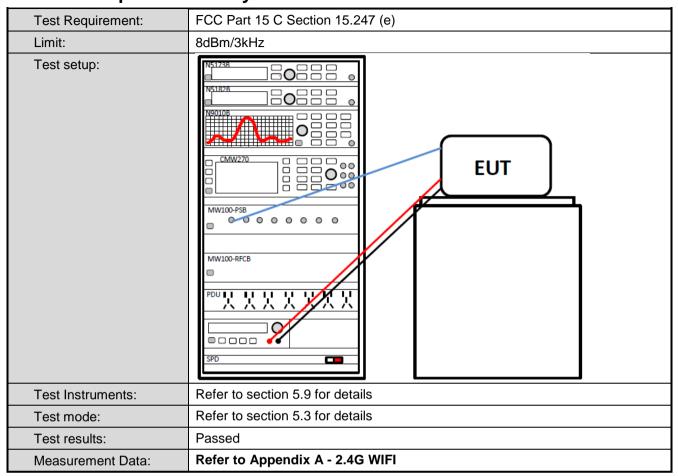
Notes:


- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 11 of 43


6.3 Conducted Output Power

6.4 Occupy Bandwidth



Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.5 Power Spectral Density

6.6 Band Edge

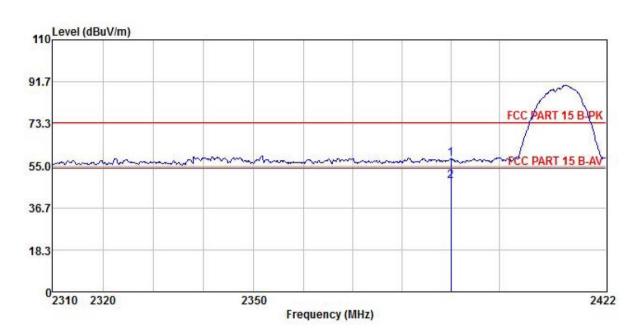
6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.					
Test setup:	NS112B					
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					
Measurement Data:	Refer to Appendix A - 2.4G WIFI					

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Se	FCC Part 15 C Section 15.209 and 15.205						
Test Frequency Range:	2310 MHz to 2390) MHz and 24	183.5 MHz to 2	500 MHz				
Test Distance:	3m	ו						
Receiver setup:	Frequency	Detector	RBW	VBW				
	Above 1GHz	Peak	1MHz	3MHz	+			
Limite	Frequency	RMS	<u> 1MHz </u>	3MHz	z Average Value Remark			
Limit:			54.00	3111)	Average Value			
	Above 1GH		74.00		Peak Value			
Test procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 							
Test setup:	- 150cm	AE EUT (Turntable)	Ground Reference Plane		na Tower			
Test Instruments:	Refer to section 5	.9 for details						
Test mode:	Refer to section 5	.3 for details						
Test results:	Passed							


Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

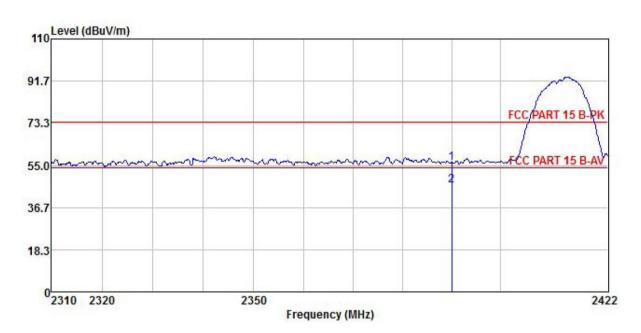
802.11b mode:

Product Name:	Tablet PC	Product Model:	T0801L
Test By:	YT	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	DC 3.7V	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor					Over Limit	Remark	
	MHz dBuV		dBuV dB/m		dB	dBuV/m dBuV/m		<u>dB</u>		
1 2	2390.000 2390.000									

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

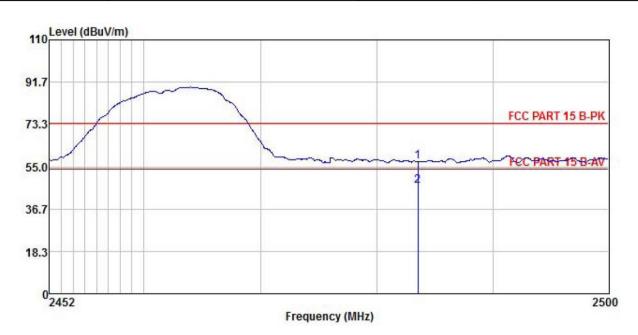

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 17 of 43

Project No.: JYTSZE2103070

Product Name:	Tablet PC	Product Model:	T0801L
Test By:	YT	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	DC 3.7V	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor						
	MHz	dBu∇	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	2390.000	20.44	27.03	8.73	0.00	56.20	74.00	-17.80	Peak
2	2390.000	10.59	27.03	8.73	0.00	46.35	54.00	-7.65	Average

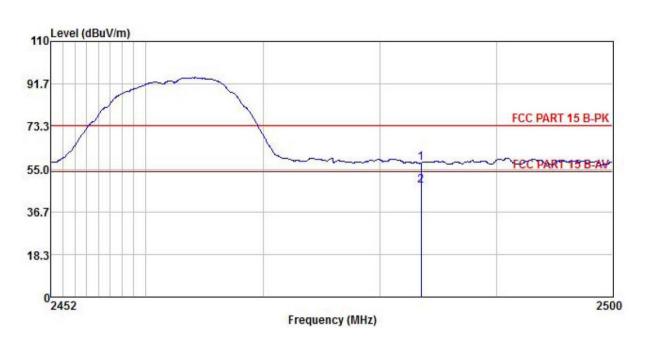

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 18 of 43

Product Name:	Tablet PC	Product Model:	T0801L		
Test By:	YT	Test mode:	802.11b Tx mode		
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	DC 3.7V	Environment:	Temp: 24°C Huni: 57%		

	Freq		Antenna Factor						
	MHz	dBu∜	dB/m	dB	dB	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500				0.00 0.00				


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 19 of 43

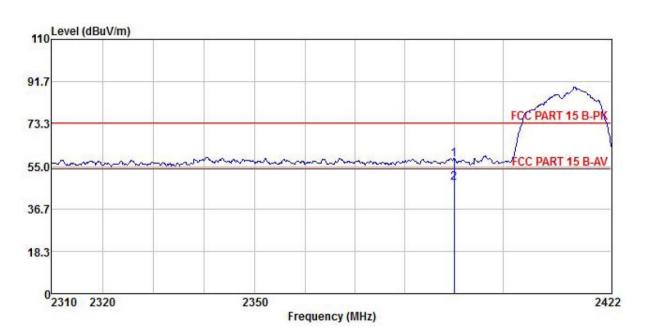
Project No.: JYTSZE2103070

Product Name:	Tablet PC	Product Model:	T0801L		
Test By:	YT	Test mode:	802.11b Tx mode		
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	DC 3.7V	Environment:	Temp: 24°C Huni: 57%		

	Freq		Antenna Factor						
	MHz	dBu₹	dB/m	₫B	₫B	dBuV/m	dBuV/m	₫B	* <u></u>
1 2	2483.500 2483.500								

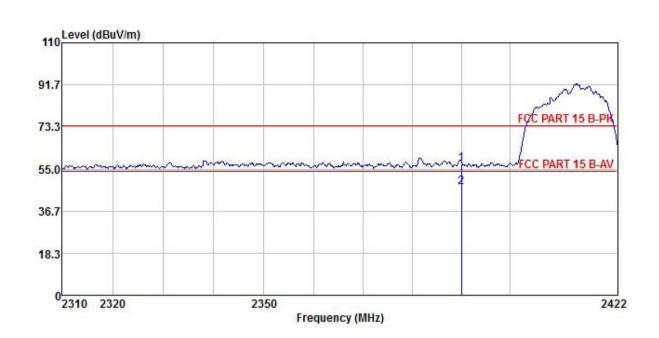
Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.


Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 20 of 43

802.11g mode:

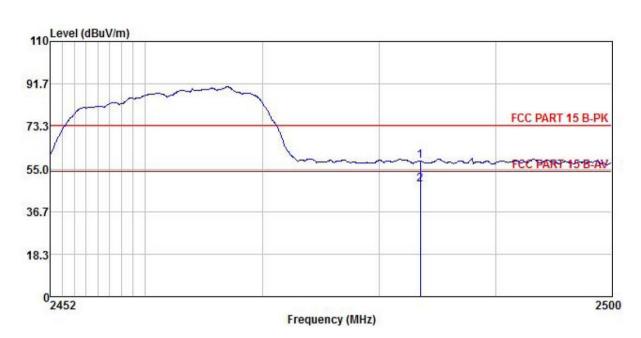
Product Name:	Tablet PC	Product Model:	T0801L		
Test By:	YT	Test mode:	802.11g Tx mode		
Test Channel:	Lowest channel	Polarization:	Vertical		
Test Voltage:	DC 3.7V	Environment:	Temp: 24℃ Huni: 57%		


	Freq		Antenna Factor						
	MHz	dBu∀	dB/m	₫B	₫B	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000								

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

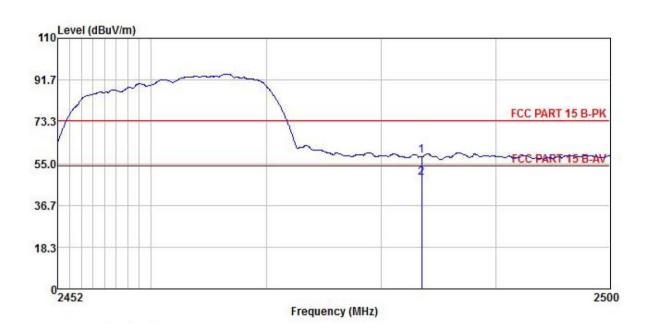
Product Name:	Tablet PC	Product Model:	T0801L		
Test By:	YT	Test mode:	802.11g Tx mode		
Test Channel:	Lowest channel	Polarization:	Horizontal		
Test Voltage:	DC 3.7V	Environment:	Temp: 24℃ Huni: 57%		


	Freq		Antenna Factor					Over Limit	
	MHz	dBu∜	dB/mdB	<u>dB</u> <u>dB</u>	dBuV/m dE	$\overline{dBuV/m}$	<u>dB</u>		
1 2	2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

23116366 Page 22 of 43

Product Name:	Tablet PC	Product Model:	T0801L		
Test By:	YT	Test mode:	802.11g Tx mode		
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	DC 3.7V	Environment:	Temp: 24°C Huni: 57%		


	Freq		Antenna Factor						
	MHz	dBu₹	dB/m	₫B	₫B	dBuV/m	dBuV/m	₫B	
1 2	2483.500 2483.500								

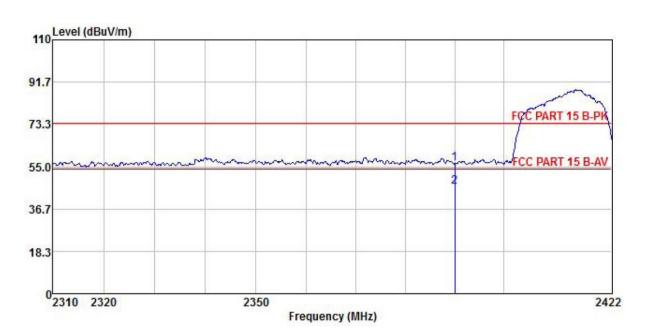
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 23 of 43

Product Name:	Tablet PC	Product Model:	T0801L		
Test By:	YT	Test mode:	802.11g Tx mode		
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	DC 3.7V	Environment:	Temp: 24°C Huni: 57%		

	Freq		Antenna Factor						
	MHz	MHz dBuV	<u>dB</u> /m	B/m	<u>dB</u>	dBuV/m	dBuV/m	dB	
1	2483.500	22.40	27.27	8.82	0.00	58.49	74.00	-15.51	Peak
2	2483.500	12.53	27.27	8.82	0.00	48.62	54.00	-5.38	Average

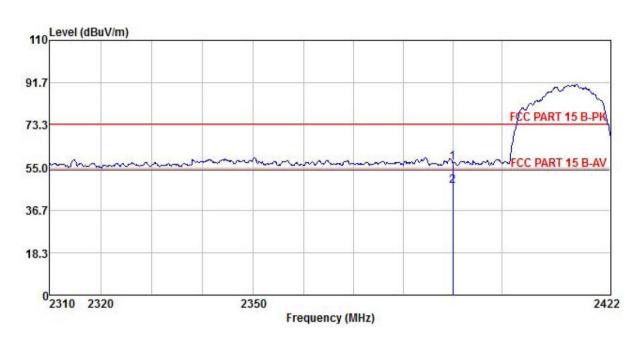
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.


Page 24 of 43

802.11n(HT20):

(-/	······································								
Product Name:	Tablet PC	Product Model:	T0801L						
Test By:	YT	Test mode:	802.11n(HT20) Tx mode						
Test Channel:	Lowest channel	Polarization:	Vertical						
Test Voltage:	DC 3.7V	Environment:	Temp: 24°C Huni: 57%						

	Freq		Antenna Factor						Remark
	MHz	dBu∇	dB/m	<u>d</u> B	<u>dB</u>	dBu√/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000								

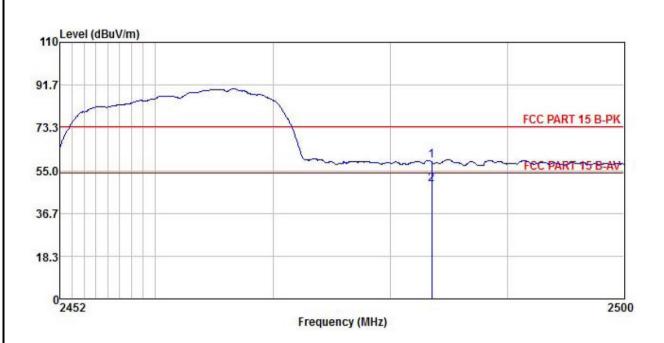

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	Tablet PC	Product Model:	T0801L
Test By:	YT	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	DC 3.7V	Environment:	Temp: 24°C Huni: 57%

	Freq MHz		Antenna Factor					
		dBu∇	<u>dB</u> /m	 <u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000							

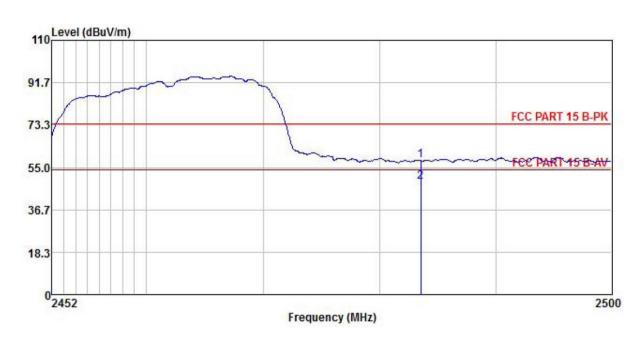

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 26 of 43

Project No.: JYTSZE2103070

Product Name:	Tablet PC	Product Model:	T0801L
Test By:	YT	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	DC 3.7V	Environment:	Temp: 24°C Huni: 57%

			Antenna Factor						
		dBu∇		₫₿	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
1 2	2483.500 2483.500								


Remark:

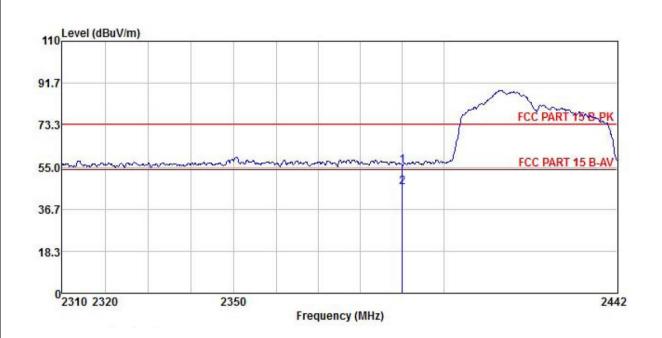
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 27 of 43

Product Name:	Tablet PC	Product Model:	T0801L		
Test By:	YT	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	DC 3.7V	Environment:	Temp: 24°C Huni: 57%		

	Freq		Antenna Factor							
	MHz	dBu₹	dB/m	₫B	₫B	$\overline{dBuV/m}$	dBuV/m	₫B	* <u>(1000-0400-0110-0400-040</u>)	
1 2	2483.500 2483.500									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

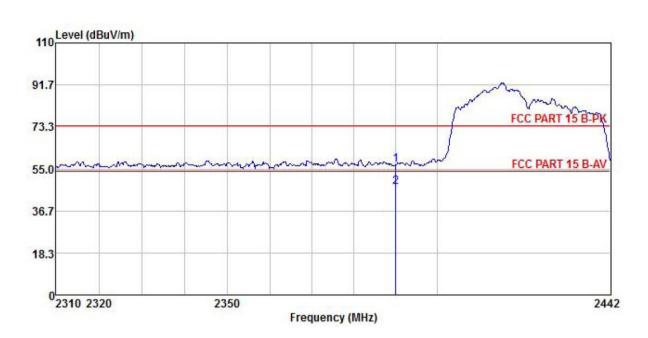

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 28 of 43

802.11n(HT40):

Product Name:	Tablet PC	Product Model:	T0801L
Test By:	YT	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	DC 3.7V	Environment:	Temp: 24℃ Huni: 57%

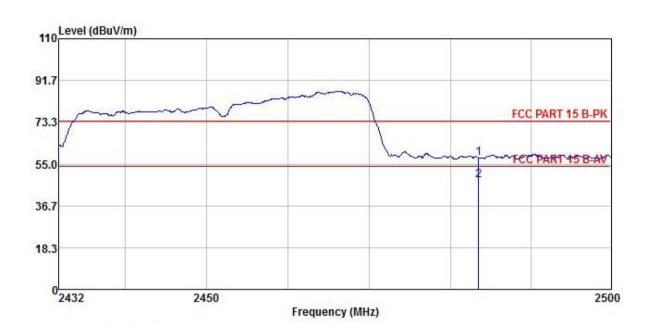
Freq		Antenna Factor					Over Limit	
MHz	dBu∇	<u>dB</u> /m	<u>dB</u>	dB	$\overline{dBuV/m}$	dBu∜/m	dB	<u></u>
2390.000 2390.000								


Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

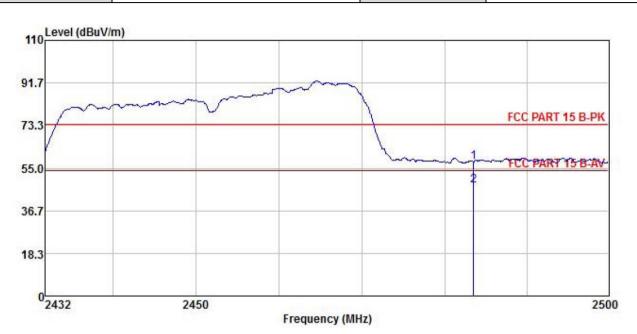
Product Name:	Tablet PC	Product Model:	T0801L
Test By:	YT	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	DC 3.7V	Environment:	Temp: 24℃ Huni: 57%



	Freq		Antenna Factor						Remark
	MHz	₫BuV	dB/m	₫B	₫B	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Tablet PC	Product Model:	T0801L		
Test By:	YT	Test mode:	802.11n(HT40) Tx mode		
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	DC 3.7V	Environment:	Temp: 24℃ Huni: 57%		


	Freq		Antenna Factor						
	MHz	dBu∜	$-\overline{dB}/\overline{m}$	<u>dB</u>	−−−dB	$\overline{\mathtt{dBuV/m}}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2483,500 2483,500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	Tablet PC	Product Model:	T0801L
Test By:	YT	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	DC 3.7V	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor					Over Limit	
	MHz	₫BuV	dB/m	₫B	₫B	$\overline{dBuV/m}$	dBu√/m	dB	
1 2	2483.500 2483.500				0.00 0.00				Peak Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

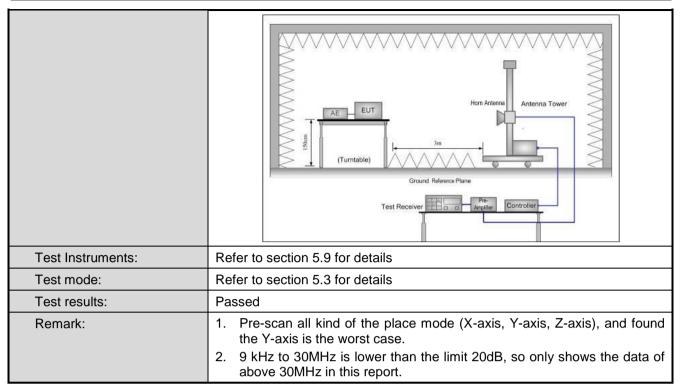
Page 32 of 43

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.						
Test setup:	NS1173R						
Test Instruments:	Refer to section 5.9 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						
Measurement Data:	Refer to Appendix A - 2.4G WIFI						

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

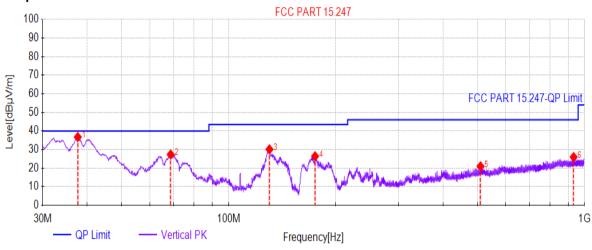


6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Se	ction 15.	.209 an	nd 15.205			
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m						
Receiver setup:	Frequency Detec		ctor	RBW	V	'BW Remark	
	30MHz-1GHz	Quasi-	peak	120KHz 30)KHz	Quasi-peak Value
	Above 1GHz	Pea		1MHz	31	ИHz	Peak Value
		RM					Average Value
Limit:	Frequency		Limi	t (dBuV/m @3	m)		Remark
	30MHz-88MH			40.0			uasi-peak Value
	88MHz-216MH			43.5			uasi-peak Value
	216MHz-960M			46.0			uasi-peak Value
	960MHz-1GH	Z		54.0			uasi-peak Value
	Above 1GHz	<u>.</u>		54.0 74.0		· '	Average Value Peak Value
Test Procedure:	The table was highest radiated. 2. The EUT was antenna, which tower. 3. The antenna ground to det horizontal and measuremen. 4. For each sus and then the and the rota to maximum reas. 5. The test-rece Specified Bar. 6. If the emission limit specified the EUT would the radiated the second the second the second the second the second to the second toward the second toward the second toward toward the second toward toward the second toward the second toward toward the second toward toward the second the second toward the second toward the second toward the second the second toward the second the second toward the second toward the second toward the second the second toward the second toward the second toward the second	above 10 s rotated tion. s set 3 m ch was method vertical t. pected e antenna able was ading. iver system width was method to be repwould be would be set to the system of the system.	GHz) at 360 de eters a nounted varied he max li polariz missior was turned em was with Maf the El sting crorted. Ge re-tes	way from the don the top of from one medimum value of the top of t	eter to of the as arress from the Mode work of the mode w	ta 3 mile the professions ing pear	eter chamber. Position of the e-receiving Cheight antenna neters above the trength. Both e set to make the to its worst case ter to 4 meters degrees to find the ection and dB lower than the peak values of that did not have ak, quasi-peak or
Test setup:	Below 1GHz Turn Table Ground I	3m ·				Ant	tenna Tower Search ntenna

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 34 of 43

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



Measurement Data (worst case): Below 1GHz:

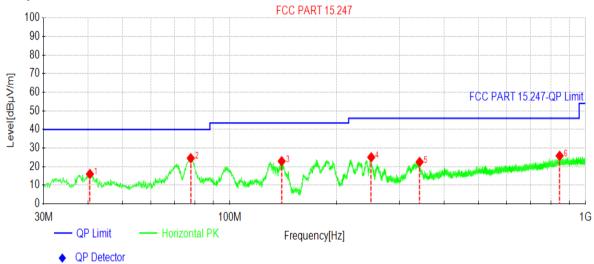
Test Report

Project Information									
Customer:		EUT:	Tablet PC						
Model:	T0801L	SN:							
Mode:	WIFI	Voltage:	DC 3.7V						
Environment:	Temp: 23.3°C; Humi:53%	Engineer:	HZK						
Remark:									
	Test	Standard:							

Test Graph

QP Detector

Suspe	Suspected Data List										
NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity			
1	37.6638	36.71	-17.05	40.00	3.29	100	179	Vertical			
2	68.7069	27.30	-18.71	40.00	12.70	100	119	Vertical			
3	130.211	30.09	-19.30	43.50	13.41	100	228	Vertical			
4	174.932	26.37	-18.83	43.50	17.13	100	337	Vertical			
5	510.295	20.92	-9.50	46.00	25.08	100	259	Vertical			
6	932.287	25.95	-3.85	46.00	20.05	100	337	Vertical			


Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test Report

10011100011									
Project Information									
Customer:		EUT:	Tablet PC						
Model:	T0801L	SN:							
Mode:	WIFI	Voltage:	DC 3.7V						
Environment:	Temp: 23.3°C; Humi:53%	Engineer:	HZK						
Remark:									
	Test	Standard:							

Test Graph

Suspe	Suspected Data List											
NO.	NO. Freq. Level Factor [dBµV/m] [dB]		Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity					
1	40.4770	15.98	-16.86	40.00	24.02	100	92	Horizontal				
2	77.7288	24.51	-19.35	40.00	15.49	100	225	Horizontal				
3	140.009	22.88	-19.86	43.50	20.62	100	176	Horizontal				
4	249.921	25.00	-15.29	46.00	21.00	100	250	Horizontal				
5	341.886	22.49	-13.25	46.00	23.51	100	148	Horizontal				
6	845.948	25.79	-4.26	46.00	20.21	100	109	Horizontal				

Page 37 of 43

Above 1GHz

	802.11b										
Test channel: Lowest channel											
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	51.52	30.81	6.81	2.46	41.82	49.78	74.00	-24.22	Vertical		
4824.00	52.39	30.81	6.81	2.46	41.82	50.65	74.00	-23.35	Horizontal		
				Detector:	Average V	alue					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	40.25	30.81	6.81	2.46	41.82	38.51	54.00	-15.49	Vertical		
4824.00	41.37	30.81	6.81	2.46	41.82	39.63	54.00	-14.37	Horizontal		
							•				

	Test channel: Middle channel										
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	52.65	30.93	6.85	2.47	41.84	51.06	74.00	-22.94	Vertical		
4874.00	53.40	30.93	6.85	2.47	41.84	51.81	74.00	-22.19	Horizontal		
				Detector:	Average V	alue					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	41.52	30.93	6.85	2.47	41.84	39.93	54.00	-14.07	Vertical		
4874.00	42.79	30.93	6.85	2.47	41.84	41.20	54.00	-12.80	Horizontal		

	Test channel: Highest channel											
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4924.00	53.32	31.05	6.89	2.48	41.86	51.88	74.00	-22.12	Vertical			
4924.00	54.19	31.05	6.89	2.48	41.86	52.75	74.00	-21.25	Horizontal			
				Detector:	Average V	alue						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4924.00	41.45	31.05	6.89	2.48	41.86	40.01	54.00	-13.99	Vertical			
4924.00	42.79	31.05	6.89	2.48	41.86	41.35	54.00	-12.65	Horizontal			

Remark:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

	802.11g											
	Test channel: Lowest channel											
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4824.00	52.32	30.81	6.81	2.46	41.82	50.58	74.00	-23.42	Vertical			
4824.00	53.47	30.81	6.81	2.46	41.82	51.73	74.00	-22.27	Horizontal			
				Detector:	Average V	alue						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4824.00	40.62	30.81	6.81	2.46	41.82	38.88	54.00	-15.12	Vertical			
4824.00	39.69	30.81	6.81	2.46	41.82	37.95	54.00	-16.05	Horizontal			

	Test channel: Middle channel										
	Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	51.42	30.93	6.85	2.47	41.84	49.83	74.00	-24.17	Vertical		
4874.00	52.37	30.93	6.85	2.47	41.84	50.78	74.00	-23.22	Horizontal		
				Detector:	Average Va	alue					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	42.62	30.93	6.85	2.47	41.84	41.03	54.00	-12.97	Vertical		
4874.00	41.79	30.93	6.85	2.47	41.84	40.20	54.00	-13.80	Horizontal		

	Test channel: Highest channel											
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4924.00	54.52	31.05	6.89	2.48	41.86	53.08	74.00	-20.92	Vertical			
4924.00	53.39	31.05	6.89	2.48	41.86	51.95	74.00	-22.05	Horizontal			
				Detector:	Average V	alue						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4924.00	42.52	31.05	6.89	2.48	41.86	41.08	54.00	-12.92	Vertical			
4924.00	41.73	31.05	6.89	2.48	41.86	40.29	54.00	-13.71	Horizontal			

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

				802.1	11n(HT20)				
			Te		I: Lowest c	hannel			
			- 10		r: Peak Val				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4824.00	53.62	30.81	6.81	2.46	41.82	51.88	74.00	-22.12	Vertical
4824.00	54.12	30.81	6.81	2.46	41.82	52.38	74.00	-21.62	Horizontal
				Detector:	Average V	alue			,
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4824.00	40.50	30.81	6.81	2.46	41.82	38.76	54.00	-15.24	Vertical
4824.00	41.46	30.81	6.81	2.46	41.82	39.72	54.00	-14.28	Horizontal
			Te		l: Middle cl				
				Detector	: Peak Val	ue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	53.32	30.93	6.85	2.47	41.84	51.73	74.00	-22.27	Vertical
4874.00	52.49	30.93	6.85	2.47	41.84	50.90	74.00	-23.10	Horizontal
				Detector:	Average V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	41.50	30.93	6.85	2.47	41.84	39.91	54.00	-14.09	Vertical
4874.00	43.78	30.93	6.85	2.47	41.84	42.19	54.00	-11.81	Horizontal
			Te	st channel	l: Highest c	hannel			
				Detector	: Peak Val	ue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4924.00	54.52	31.05	6.89	2.48	41.86	53.08	74.00	-20.92	Vertical
4924.00	53.39	31.05	6.89	2.48	41.86	51.95	74.00	-22.05	Horizontal
				Detector:	Average V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4924.00	41.52	31.05	6.89	2.48	41.86	40.08	54.00	-13.92	Vertical
4924.00	42.79	31.05	6.89	2.48	41.86	41.35	54.00	-12.65	Horizontal

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: JYTSZE2103070

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

	802.11n(HT40)										
	Test channel: Lowest channel										
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4844.00	54.50	30.87	6.83	2.46	41.83	52.83	74.00	-21.17	Vertical		
4844.00	53.61	30.87	6.83	2.46	41.83	51.94	74.00	-22.06	Horizontal		
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4844.00	41.52	30.87	6.83	2.46	41.83	39.85	54.00	-14.15	Vertical		
4844.00	40.19	30.87	6.83	2.46	41.83	38.52	54.00	-15.48	Horizontal		
			Te	est channe	l: Middle cl	nannel					
				Detector	: Peak Val	ue					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	52.32	30.93	6.85	2.47	41.84	50.73	74.00	-23.27	Vertical		
4874.00	53.34	30.93	6.85	2.47	41.84	51.75	74.00	-22.25	Horizontal		

Frequency (MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Limit (dB)	Polarization	
4874.00	52.32	30.93	6.85	2.47	41.84	50.73	74.00	-23.27	Vertical	
4874.00	53.34	30.93	6.85	2.47	41.84	51.75	74.00	-22.25	Horizontal	
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4874.00	42.69	30.93	6.85	2.47	41.84	41.10	54.00	-12.90	Vertical	
4874.00	41.78	30.93	6.85	2.47	41.84	40.19	54.00	-13.81	Horizontal	

	Test channel: Highest channel										
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4904.00	53.65	30.99	6.87	2.48	41.85	52.14	74.00	-21.86	Vertical		
4904.00	54.37	30.99	6.87	2.48	41.85	52.86	74.00	-21.14	Horizontal		
				Detector:	Average V	alue					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4904.00	42.65	30.99	6.87	2.48	41.85	41.14	54.00	-12.86	Vertical		
4904.00	41.73	30.99	6.87	2.48	41.85	40.22	54.00	-13.78	Horizontal		

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.