

JianYan Testing Group Shenzhen Co., Ltd.

Report No.: JYTSZ-R12-2300942

FCC RF Test Report

Applicant: Sun Cupid Technology (HK) Ltd.

Address of Applicant: 16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan,

Kowloon, Hong Kong.

Equipment Under Test (EUT)

Product Name: Smart phone

Model No.: S6703L, A25, NUU A25

Trade Mark: NUU

FCC ID: 2ADINS6703L

Applicable Standards: FCC CFR Title 47 Part 15C (§15.247)

Test Enginee

Date of Sample Receipt: 18 Jul., 2023

Date of Test: 19 Jul., to 22 Aug., 2023

Date of Report Issued: 23 Aug., 2023

Test Result: PASS

Tested by: ______ Date: _____ 23 Aug., 2023

Reviewed by: _____ Date: ____ 23 Aug., 2023

Approved by: Date: 23 Aug., 2023

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

1 Version

Version No.	Date	Description
00	23 Aug., 2023	Original

2 Contents

			Page
C	over Pa	ge	1
1	Vers	sion	2
2	Con	tents	3
3		eral Information	
_	3.1	Client Information	
	3.2	General Description of E.U.T.	
	3.3	Test Mode and Test Environment	
	3.4	Description of Test Auxiliary Equipment	
	3.5	Measurement Uncertainty	
	3.6	Additions to, Deviations, or Exclusions from the Method	
	3.7	Laboratory Facility	
	3.8	Laboratory Location	
	3.9	Test Instruments List	
4		surement Setup and Procedure	
_		•	
	4.1	Test Channel	
	4.2	Test Setup	
	4.3	Test Procedure	
5	Test	t Results	11
	5.1	Summary	11
	5.1.	1 Clause and Data Summary	11
	5.1.2	2 Test Limit	12
	5.2	Antenna requirement	13
	5.3	AC Power Line Conducted Emission	14
	5.4	Emissions in Restricted Frequency Bands	16
	5.5	Emissions in Non-restricted Frequency Bands	24

3 General Information

3.1 Client Information

Applicant:	Sun Cupid Technology (HK) Ltd.		
Address:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong.		
Manufacturer/Factory:	Suncupid (ShenZhen) Electronic Ltd		
Address:	Baolong Industrial City, Longgang District, Shenzhen Hi-Tech Road, Building 1, A 7, China.		

3.2 General Description of E.U.T.

Product Name:	Smart phone				
Model No.:	S6703L, A25, NUU A25				
Operation Frequency:	LE 1M PHY:2402 MHz - 2480 MHz	LE 2M PHY :2404 MHz - 2478 MHz			
Channel Numbers:	40				
Channel Separation:	2MHz				
Modulation Technology:	GFSK				
Data Speed:	1 Mbps (LE 1M PHY), 2 Mbps (LE 2M	PHY)			
Antenna Type:	Internal Antenna				
Antenna Gain:	-1.2dBi (declare by applicant)				
Antenna transmit mode:	SISO (1TX, 1RX)				
Power Supply:	Rechargeable Li-ion Polymer Battery DC3.87V, 4900mAh				
AC Adapter:	Model: HJ-PD18W-US Input: AC100-240V, 50/60Hz, 0.8A Output: DC 5.0V==3.0A 15.0W OR 9.0 18.0W	0V2.0A 18.0W OR 12.0V1.5A			
Test Sample Condition:	The test samples were provided in good working order with no visible defects.				
Remark:	S6703L, A25, NUU A25 were identical layout, components used and internal name.	l inside, the electrical circuit design, wiring, with only difference being model			

Report No.: JYTSZ-R12-2300942

3.3 Test Mode and Test Environment

Test Mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Remark:

- 1. For AC power line conducted emission and radiated spurious emission (below 1GHz), pre-scan all data speed, found 1 Mbps (LE 1M PHY) was worse case mode.
- 2. Channel Low, Mid and High for each type band with rated data rate were chosen for full testing. The field strength of spurious radiation emission was measured as EUT stand-up position (H mode) and lie down position (E1, E2 mode) for these modes. Just the worst case position (H mode) shown in report.

Operating Environment:				
Temperature:	15℃ ~ 35℃			
Humidity:	20 % ~ 75 % RH			
Atmospheric Pressure:	1008 mbar			

3.4 Description of Test Auxiliary Equipment

The EUT has been tested as an independent unit.

3.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
Conducted Emission for LISN (9kHz ~ 10MHz)	1.9 dB
Conducted Emission for LISN (10MHz ~ 30MHz)	2.6 dB
Radiated Emission (1GHz ~ 6GHz) (3m FAR)	4.95dB
Radiated Emission (6GHz ~ 18GHz) (3m FAR)	5.23 dB
Radiated Emission (18GHz ~ 40GHz) (3m FAR)	5.32 dB
Radiated Emission (30MHz ~ 1GHz) (10m SAC)	3.7 dB

Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

3.6 Additions to, Deviations, or Exclusions from the Method

Nο

3.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-148-C1 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

3.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community,

Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://jyt.lets.com

3.9 Test Instruments List

Radiated Emission(3m FAR):							
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
3m FAR	YUNYI	9m*6m*6m	WXJ097	06-15-2023	06-14-2028		
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ097-2	07-13-2023	07-12-2024		
Biconical Antenna	Schwarzbeck	VUBA9117	WXJ002-1	07-02-2021	07-01-2024		
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ097-3	07-14-2023	07-13-2024		
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-3	01-09-2023	01-08-2024		
Horn Antenna	Schwarzbeck	BBHA9170	WXJ002-5	01-09-2023	01-08-2024		
Horn Antenna	Schwarzbeck	BBHA9170	WXJ002-6	01-09-2023	01-08-2024		
Pre-amplifier (1GHz ~ 18GHz)	YUNYI	PAM-118N	WXJ097-6	05-14-2023	05-13-2024		
Pre-amplifier (18GHz ~ 40GHz)	RF System	TRLA-180400G45B	WXJ002-7	01-11-2023	01-10-2024		
Spectrum Analyzer	Rohde & Schwarz	FSP 30	WXJ004	01-10-2023	01-09-2024		
Spectrum Analyzer	KEYSIGHT	N9010B	WXJ081-1	06-13-2023	06-12-2024		
Coaxial Cable (1GHz ~ 18GHz)	JYTSZ	JYT3M-18G-NN-8M	WXG097-2	08-01-2023	07-31-2024		
Coaxial Cable (18GHz ~ 40GHz)	JYTSZ	JYT3M-40G-SS-8M	WXG097-3	08-01-2023	07-31-2024		
High Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N/A			
Low Band Reject Filter Group	Tonscend	JS0806-F	WXJ097-4	N/A			
Test Software	Tonscend	TS+		Version: 5.0.0			

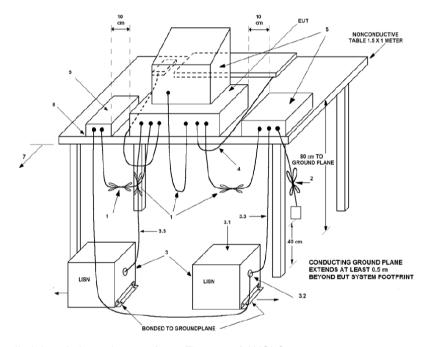
Radiated Emission(10m SAC):							
Test Equipment	Manufacturer	nufacturer Model No. Ma		Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
10m SAC	ETS	RFSD-100-F/A	WXJ090	04-28-2021	04-27-2024		
BiConiLog Antenna	SCHWARZBECK	VULB 9168	WXJ090-1	01-17-2023	01-16-2024		
BiConiLog Antenna	SCHWARZBECK	VULB 9168	WXJ090-2	01-10-2023	01-09-2024		
EMI Test Receiver	R&S	ESR 3	WXJ090-3	01-10-2023	01-09-2024		
EMI Test Receiver	R&S	ESR 3	WXJ090-4	01-11-2023	01-09-2024		
Low Pre-amplifier	Bost	LNA 0920N	WXJ090-6	01-10-2023	01-09-2024		
Low Pre-amplifier	Bost	LNA 0920N	WXJ090-7	01-10-2023	01-09-2024		
Cable	Bost	JYT10M-1G-NN-10M	WXG002-7	01-18-2023	01-17-2024		
Cable	Bost	JYT10M-1G-NN-10M	WXG002-8	01-18-2023	01-17-2024		
Test Software	R&S	EMC32	Version: 10.50.40				

Conducted Emission:							
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
EMI Test Receiver	Rohde & Schwarz	ESR3	WXJ003-2	07-03-2023	07-04-2024		
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	01-10-2023	01-09-2024		
LISN	Rohde & Schwarz	ESH3-Z5	WXJ005-1	01-11-2023	01-10-2024		
LISN Coaxial Cable (9kHz ~ 30MHz)	JYTSZ	JYTCE-1G-NN-2M	WXG003-1	02-22-2023	02-21-2024		
RF Switch	TOP PRECISION	RSU0301	WXG003	N/A			
Test Software	AUDIX	E3	\	Version: 6.110919b			

Conducted Method:						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
Spectrum Analyzer	Keysight	N9010B	WXJ004-3	10-17-2022	10-16-2023	
Temperature Humidity Chamber	ZHONG ZHI	CZ-A-80D	WXJ032-3	01-09-2023	01-08-2025	
Power Detector Box	MWRFTEST	MW100-PSB	WXJ007-4	10-17-2022	10-16-2023	
DC Power Supply	Keysight	E3642A	WXJ025-2	-2 N/A		
RF Control Unit	MWRFTEST	MW100-RFCB	WXG006	N/A		
Test Software	MWRFTEST	MTS 8310		Version: 2.0.0.0		

4 Measurement Setup and Procedure

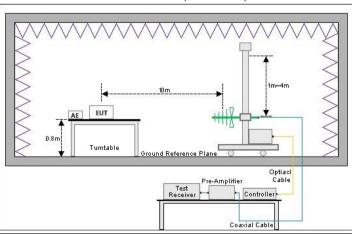
4.1 Test Channel


According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

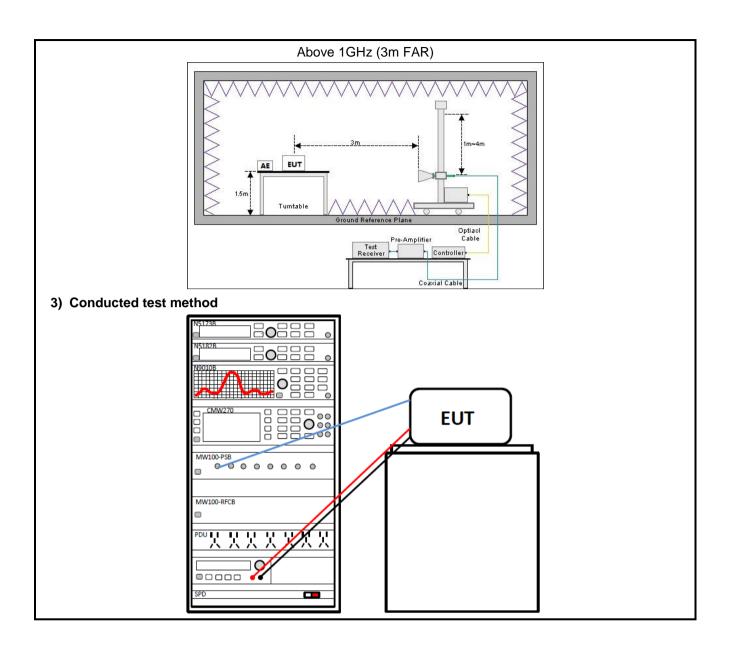
Lowest channel		Middle channel		Highest channel	
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	20	2442	39	2480
1	2404	20	2442	38	2478

Note: For LE 2M PHY, channels 1, 12, 39 have been removed. Therefore, at LE 2M PHY, channels 1, 20, and 38 were selected to correspond to the lowest, middle, and highest channels respectively for testing

4.2 Test Setup


1) Conducted emission measurement:

Note: The detailed descriptions please refer to Figure 8 of ANSI C63.4:2014.


2) Radiated emission measurement:

Below 1GHz (10m SAC)

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-148-C1 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

4.3 Test Procedure

Test method	Test step
Conducted emission	The E.U.T and simulators are connected to the main power through a line
Conducted Cimission	impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH
	coupling impedance for the measuring equipment.
	The peripheral devices are also connected to the main power through a LISN
	that provides a 50ohm/50uH coupling impedance with 50ohm termination.
	(Please refer to the block diagram of the test setup and photographs).
	3. Both sides of A.C. line are checked for maximum conducted interference. In
	order to find the maximum emission, the relative positions of equipment and
	all of the interface cables must be changed according to ANSI C63.10 on
	conducted measurement.
Radiated emission	For below 1GHz:
	The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a n semi anechoic chamber. The measurement distance from the EUT to
	the receiving antenna is 10 m.
	2. EUT works in each mode of operation that needs to be tested, and having
	the EUT continuously working, respectively on 3 axis (X, Y & Z) and
	considered typical configuration to obtain worst position. The highest signal
	levels relative to the limit shall be determined by rotating the EUT from 0° to
	360° and with varying the measurement antenna height between 1 m and 4
	m in vertical and horizontal polarizations.
	3. Open the test software to control the test antenna and test turntable. Perform
	the test, save the test results, and export the test data.
	For above 1GHz:
	1. The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a
	3 m fully anechoic room. The measurement distance from the EUT to the
	receiving antenna is 3 m.
	2. EUT works in each mode of operation that needs to be tested, and having
	the EUT continuously working, respectively on 3 axis (X, Y & Z) and
	considered typical configuration to obtain worst position. The highest signal
	levels relative to the limit shall be determined by rotating the EUT from 0° to
	360° and with varying the measurement antenna height between 1 m and 4
	m in vertical and horizontal polarizations.
	3. Open the test software to control the test antenna and test turntable. Perform
Conducted test method	the test, save the test results, and export the test data.
Conducted test method	The BLE antenna port of EUT was connected to the test port of the test system through an RF cable.
	Z. The EUT is keeping in continuous transmission mode and tested in all
	modulation modes.
	Open the test software, prepare a test plan, and control the system through
	the software. After the test is completed, the test report is exported through
	the test software.

5 Test Results

5.1 Summary

5.1.1 Clause and Data Summary

Test items	Standard clause	Test data	Result
Antenna Requirement	15.203 15.247 (b)(4)	See Section 5.2	Pass
AC Power Line Conducted Emission	15.207	See Section 5.3	Pass
Conducted Output Power	15.247 (b)(3)	Appendix A – BLE-1M PHY Appendix A – BLE-2M PHY	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A – BLE-1M PHY Appendix A – BLE-2M PHY	Pass
Power Spectral Density	15.247 (e)	Appendix A – BLE-1M PHY Appendix A – BLE-2M PHY	Pass
Band-edge Emission Conduction Spurious Emission	15.247 (d)	Appendix A – BLE-1M PHY Appendix A – BLE-2M PHY	Pass
Emissions in Restricted Frequency Bands	15.205 15.247 (d)	See Section 5.4	Pass
Emissions in Non-restricted Frequency Bands	15.209 15.247(d)	See Section 5.5	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

5.1.2 Test Limit

Test items			Limit						
		Frequency		Limit (d	iΒμV)				
		(MHz)	Quas	si-Peak	Average				
AC Power Line Conducted		0.15 - 0.5	66 to	56 Note 1	56 to 46 Note 1				
Emission		0.5 – 5	į.	56	46				
		5 – 30		60	50				
		Note 1: The limit level in dBµV Note 2: The more stringent limi			m of frequency.				
Conducted Output Power		systems using digital m l 5725-5850 MHz bands		the 902-928	MHz, 2400-2483.5 MH	łz,			
6dB Emission Bandwidth	The	e minimum 6 dB bandwid	dth shall be a	at least 500 k	Hz.				
99% Occupied Bandwidth	N/A								
Power Spectral Density	inte	digitally modulated syst intional radiator to the ar id during any time interv	ntenna shall i	not be greate	er than 8 dBm in any 3				
Band-edge Emission Conduction Spurious Emission	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply								
	limi whi	ts specified in §15.209(a	(b)(3) of this dB instead of a) is not requ ands, as defi	veraging over section, the 20 dB. Atter ired. In addit ined in §15.2	er a time interval, as attenuation required unuation below the generation, radiated emission (205(a), must also comp	cted nder eral s			
	limi whi	ts specified in §15.209(a ch fall in the restricted b	(b)(3) of this dB instead of a) is not requ ands, as defi	section, the section, the 20 dB. Atterired. In additioned in §15.20s defined in §15.20s	er a time interval, as attenuation required unuation below the generation, radiated emission (205(a), must also composa) (see §15.205(c)).	cted nder eral s			
	limi whi	ts specified in §15.209(a ch fall in the restricted be the radiated emission I	(b)(3) of this IB instead of a) is not requands, as definits specifie	section, the section, the 20 dB. Atterired. In additioned in §15.20s defined in §15.20s	er a time interval, as attenuation required unuation below the generation, radiated emission (205(a), must also comp	cted nder eral s			
	limi whi	ts specified in §15.209(a ch fall in the restricted be the radiated emission l	(b)(3) of this IB instead of a) is not requands, as definits specifie	section, the section, the 20 dB. Atterired. In additined in §15.209 db in §15.209	er a time interval, as attenuation required unuation below the generation, radiated emission (205(a), must also composa) (see §15.205(c)).	cted nder eral s			
Emissions in Restricted	limi whi	ts specified in §15.209(a ch fall in the restricted b the radiated emission I Frequency (MHz)	(b)(3) of this IB instead of IB instead of IB instead of IB is not requands, as definites specific Limit (d	section, the section, the 20 dB. Atterired. In additioned in §15.20sed	er a time interval, as attenuation required unuation below the generation, radiated emission (205(a), must also composite (see §15.205(c)).	cted nder eral s			
Emissions in Restricted Frequency Bands	limi whi	ts specified in §15.209(a ch fall in the restricted b the radiated emission I Frequency (MHz) 30 – 88 88 – 216 216 – 960	(b)(3) of this IB instead of I	section, the 20 dB. Atterired. In additioned in §15.209 BµV/m) @ 10m 30.0	er a time interval, as attenuation required unuation below the generion, radiated emission (05(a), must also composa) (see §15.205(c)). Detector Quasi-peak	cted nder eral s			
	limi whi	ts specified in §15.209(a ch fall in the restricted b the radiated emission I Frequency (MHz) 30 – 88 88 – 216	(b)(3) of this IB instead of I	section, the 20 dB. Atterired. In additioned in §15.209 (BµV/m) @ 10m 30.0 33.5	er a time interval, as attenuation required unuation below the generion, radiated emission (205(a), must also compo(a) (see §15.205(c)). Detector Quasi-peak Quasi-peak	cted nder eral s			
	limi whit with	ts specified in §15.209(a ch fall in the restricted b the radiated emission I Frequency (MHz) 30 – 88 88 – 216 216 – 960	(b)(3) of this IB instead of I	section, the section, the 20 dB. Atterired. In additioned in §15.209 db	er a time interval, as attenuation required unuation below the generion, radiated emission (205(a), must also compo(a) (see §15.205(c)). Detector Quasi-peak Quasi-peak Quasi-peak	cted nder eral s			
Frequency Bands Emissions in Non-restricted	limi whit with	ts specified in §15.209(a ch fall in the restricted b to the radiated emission I Frequency (MHz) 30 – 88 88 – 216 216 – 960 960 – 1000 Note: The more stringent limit a	(b)(3) of this IB instead of I	section, the section, the 20 dB. Atterired. In additioned in §15.209 db	er a time interval, as attenuation required unuation below the generation, radiated emission (205(a), must also compo(a) (see §15.205(c)). Detector Quasi-peak Quasi-peak Quasi-peak Quasi-peak Quasi-peak	cted nder eral s			
Frequency Bands	limi whit with	ts specified in §15.209(a ch fall in the restricted b to the radiated emission I Frequency (MHz) 30 – 88 88 – 216 216 – 960 960 – 1000	(b)(3) of this IB instead of I	section, the section, the 20 dB. Atterired. In additioned in §15.209 dd	er a time interval, as attenuation required unuation below the generation, radiated emission (205(a), must also compo(a) (see §15.205(c)). Detector Quasi-peak Quasi-peak Quasi-peak Quasi-peak Quasi-peak	cted nder eral s			
Frequency Bands Emissions in Non-restricted	limi whit with	ts specified in §15.209(a ch fall in the restricted b to the radiated emission I Frequency (MHz) 30 – 88 88 – 216 216 – 960 960 – 1000 Note: The more stringent limit a	(b)(3) of this IB instead of A) is not requands, as definites specifies Limit (d 3m 40.0 43.5 46.0 54.0 pplies at transitio	section, the section, the 20 dB. Atterired. In additioned in §15.209 dd	er a time interval, as attenuation required unuation below the generion, radiated emission (205(a), must also compo(a) (see §15.205(c)). Detector Quasi-peak Quasi-peak Quasi-peak Quasi-peak Quasi-peak	cted nder eral s			

Report No.: JYTSZ-R12-2300942

5.2 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(b)(4)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

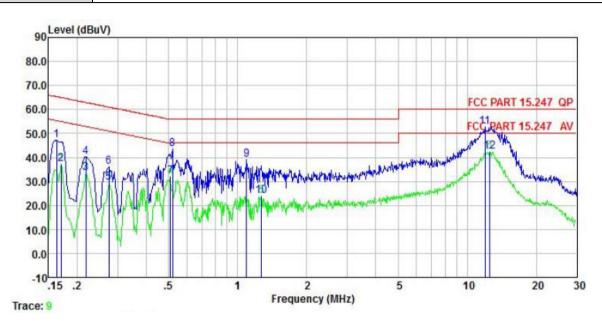
(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:


The BLE antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is -1.2 dBi. See product internal photos for details.

5.3 AC Power Line Conducted Emission

Product name:	Smart phone	Product model:	S6703L
Test by:	Ray	Test mode:	BLE Tx (LE 1M PHY)
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz		

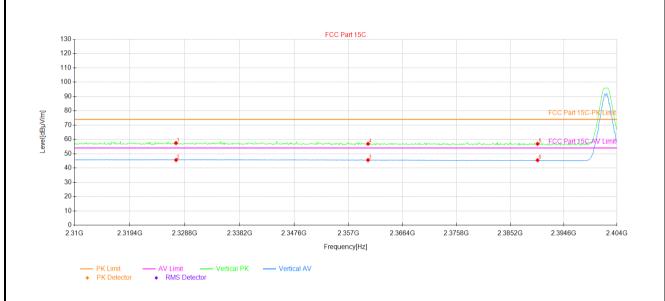

	Freq	Read Level	LISN Factor			Level	Limit Line	Over Limit	Remark
-	MHz	dBu∀	dB	<u>dB</u>	d₿	dBu₹	₫₿u₹	<u>dB</u>	
1	0.162	24.32	0.04	10.50	0.01	34.87	55.34	-20.47	Average
2	0.162	37.01	0.04	10.50	0.01	47.56	65.34	-17.78	QP
3	0.206	32.62	0.05	10.50	0.04	43.21	63.36	-20.15	QP
4	0.219	19.12	0.05	10.50	0.03	29.70	52.88	-23.18	Average
2 3 4 5 6 7 8 9	0.266	28.53	0.06	10.50	0.02	39.11	61.25	-22.14	QP
6	0.377	18.24	0.06	10.50	0.03	28.83	48.34	-19.51	Average
7	0.497	29.80	0.05	10.50	0.03	40.38	56.05	-15.67	QP
8	0.535	20.77	0.05	10.50	0.03	31.35	46.00	-14.65	Average
9	1.359	16.18	0.07	10.50	0.12	26.87			Average
10	1.527	28.12	0.08	10.50	0.15	38.85		-17.15	
11	12.716	41.02	0.26	10.50	0.11	51.89	60.00		
12	13.057	27.21	0.26	10.50	0.11	38.08	50.00		Average

Remark:

1. Level = Read level + LISN Factor + Cable Loss.

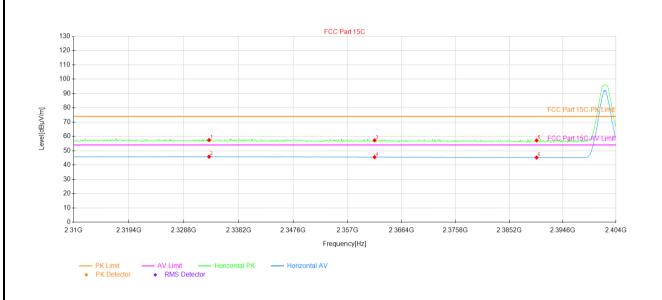
Product name:	Smart phone	Product model:	S6703L
Test by:	Ray	Test mode:	BLE Tx (LE 1M PHY)
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz		

	Freq	Read Level		Aux2 Factor	Cable Loss		Limit Line	Over Limit	Remark
3	MHz	dBu∜	₫B	dB	<u>dB</u>	dBu∛	dBu∜	<u>dB</u>	
1	0.162	36.59	0.06	10.50	0.01	47.16	65.34	-18.18	QP
2	0.170	26.60	0.06	10.50	0.01	37.17	54.94	-17.77	Average
3	0.219	22.89	0.05	10.50	0.03	33.47	52.88	-19.41	Average
4	0.219	29.66	0.05	10.50	0.03	40.24	62.88	-22.64	QP
1 2 3 4 5 6 7 8 9	0.274	18.87	0.05	10.50	0.02	29.44	50.98	-21.54	Average
6	0.274	25.54	0.05	10.50	0.02	36.11	60.98	-24.87	QP
7	0.510	21.34	0.04	10.50	0.03	31.91	46.00	-14.09	Average
8	0.521	32.83	0.04	10.50	0.03	43.40	56.00	-12.60	QP
9	1.094	28.36	0.06	10.50	0.07	38.99	56.00	-17.01	QP
10	1.269	13.43	0.06	10.50	0.10	24.09	46.00	-21.91	Average
11	11.933	41.92	0.24	10.50	0.10	52.76	60.00	-7.24	QP
12	12.516	31.45	0.24	10.50	0.11	42.30	50.00	-7.70	Average


1. Level = Read level + LISN Factor + Cable Loss.

5.4 Emissions in Restricted Frequency Bands

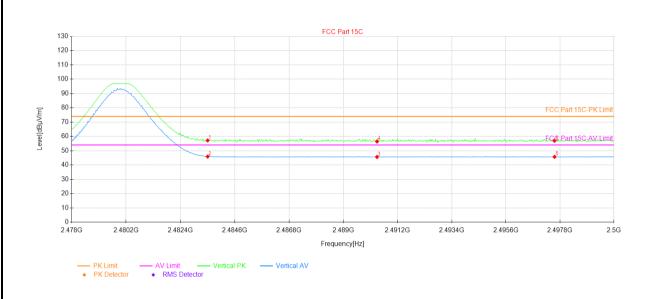
Product Name:	Smart phone	Product Model:	S6703L
Test By:	Ray	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	DC 3.87V		


Suspo	Suspected Data List									
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle[°]	Polarity	
1	2327.30	23.26	34.19	57.45	74.00	16.55	150	291	Vertical	
2	2327.30	11.40	34.19	45.59	54.00	8.41	150	71	Vertical	
3	2360.38	11.36	34.19	45.55	54.00	8.45	150	324	Vertical	
4	2360.38	22.71	34.19	56.90	74.00	17.10	150	343	Vertical	
5	2390.00	22.74	34.13	56.87	74.00	17.13	150	8	Vertical	
6	2390.00	11.31	34.13	45.44	54.00	8.56	150	354	Vertical	

Remark

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

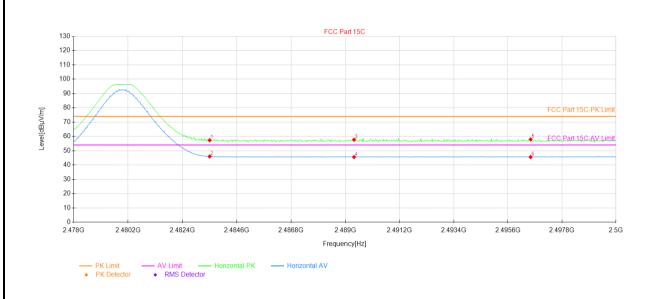
Product Name:	Smart phone	Product Model:	S6703L
Test By:	Ray	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	DC 3.87V		



Susp	Suspected Data List									
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle[°]	Polarity	
1	2333.12	23.18	34.22	57.40	74.00	16.60	150	151	Horizontal	
2	2333.12	11.55	34.22	45.77	54.00	8.23	150	255	Horizontal	
3	2361.70	23.05	34.19	57.24	74.00	16.76	150	255	Horizontal	
4	2361.70	11.31	34.19	45.50	54.00	8.50	150	270	Horizontal	
5	2390.00	23.01	34.13	57.14	74.00	16.86	150	315	Horizontal	
6	2390.00	11.07	34.13	45.20	54.00	8.80	150	3	Horizontal	

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

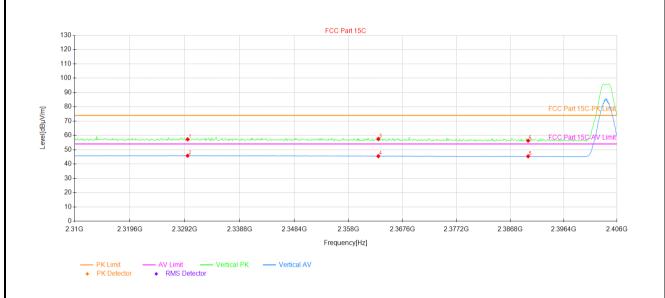
Product Name:	Smart phone	Product Model:	S6703L
Test By:	Ray	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	DC 3.87V		



Susp	Suspected Data List									
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle[°]	Polarity	
1	2483.50	22.67	34.51	57.18	74.00	16.82	150	228	Vertical	
2	2483.50	11.41	34.51	45.92	54.00	8.08	150	228	Vertical	
3	2490.36	11.10	34.52	45.62	54.00	8.38	150	134	Vertical	
4	2490.36	21.92	34.52	56.44	74.00	17.56	150	336	Vertical	
5	2497.58	11.18	34.53	45.71	54.00	8.29	150	104	Vertical	
6	2497.58	22.42	34.53	56.95	74.00	17.05	150	276	Vertical	

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

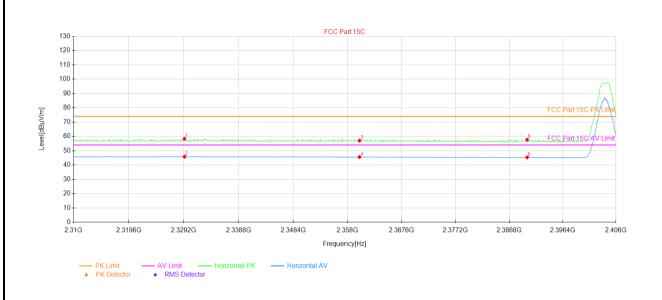
Product Name:	Smart phone	Product Model:	S6703L
Test By:	Ray	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	DC 3.87V		



Susp	Suspected Data List									
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle[°]	Polarity	
1	2483.50	22.79	34.51	57.30	74.00	16.70	150	126	Horizontal	
2	2483.50	11.43	34.51	45.94	54.00	8.06	150	163	Horizontal	
3	2489.35	23.14	34.51	57.65	74.00	16.35	150	48	Horizontal	
4	2489.35	11.04	34.51	45.55	54.00	8.45	150	200	Horizontal	
5	2496.52	23.34	34.52	57.86	74.00	16.14	150	144	Horizontal	
6	2496.52	11.01	34.52	45.53	54.00	8.47	150	259	Horizontal	

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

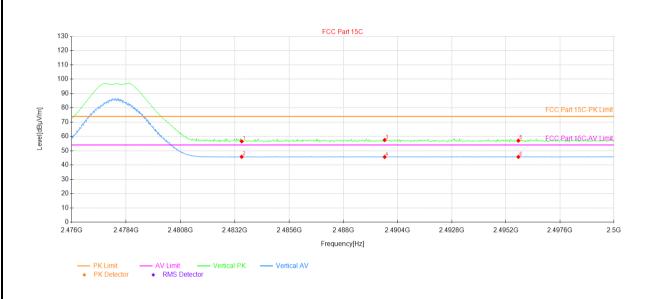
Product Name:	Smart phone	Product Model:	S6703L
Test By:	Ray	Test mode:	BLE Tx (LE 2M PHY)
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	DC 3.87V		



Suspe	Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle[°]	Polarity
1	2329.68	23.03	34.22	57.25	74.00	16.75	150	247	Vertical
2	2329.68	11.57	34.22	45.79	54.00	8.21	150	52	Vertical
3	2363.28	23.33	34.19	57.52	74.00	16.48	150	116	Vertical
4	2363.28	11.27	34.19	45.46	54.00	8.54	150	180	Vertical
5	2390.00	11.24	34.13	45.37	54.00	8.63	150	8	Vertical
6	2390.00	22.14	34.13	56.27	74.00	17.73	150	321	Vertical

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

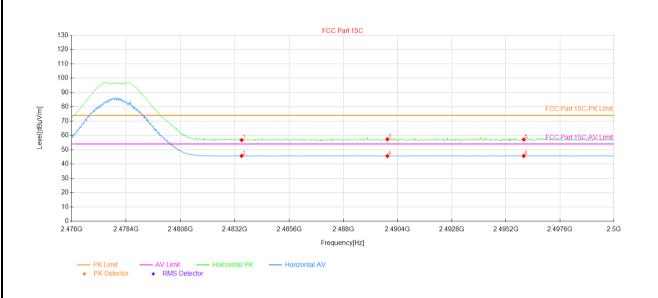
Product Name:	Smart phone	Product Model:	S6703L
Test By:	Ray	Test mode:	BLE Tx (LE 2M PHY)
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	DC 3.87V		



Susp	Suspected Data List									
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle[°]	Polarity	
1	2329.30	24.11	34.22	58.33	74.00	15.67	150	181	Horizontal	
2	2329.30	11.56	34.22	45.78	54.00	8.22	150	322	Horizontal	
3	2360.11	22.86	34.20	57.06	74.00	16.94	150	17	Horizontal	
4	2360.11	11.39	34.20	45.59	54.00	8.41	150	266	Horizontal	
5	2390.00	23.47	34.13	57.60	74.00	16.40	150	210	Horizontal	
6	2390.00	11.23	34.13	45.36	54.00	8.64	150	358	Horizontal	

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Product Name:	Smart phone	Product Model:	S6703L
Test By:	Ray	Test mode:	BLE Tx (LE 2M PHY)
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	DC 3.87V		

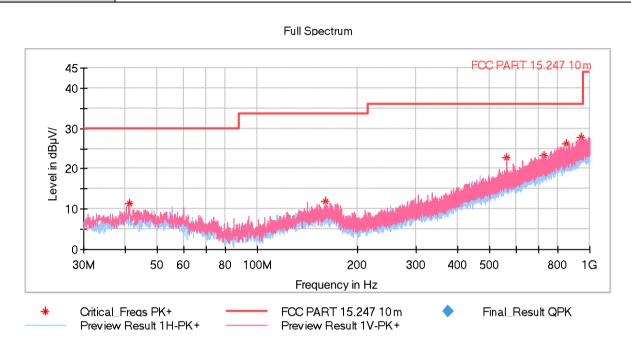


Suspe	Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle[°]	Polarity
1	2483.50	22.04	34.51	56.55	74.00	17.45	150	327	Vertical
2	2483.50	11.22	34.51	45.73	54.00	8.27	150	105	Vertical
3	2489.82	22.94	34.52	57.46	74.00	16.54	150	220	Vertical
4	2489.82	11.10	34.52	45.62	54.00	8.38	150	30	Vertical
5	2495.75	22.48	34.52	57.00	74.00	17.00	150	186	Vertical
6	2495.75	11.14	34.52	45.66	54.00	8.34	150	360	Vertical

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Product Name:	Smart phone	Product Model:	S6703L
Test By:	Ray	Test mode:	BLE Tx (LE 2M PHY)
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	DC 3.87V		

Susp	Suspected Data List									
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle[°]	Polarity	
1	2483.50	22.22	34.51	56.73	74.00	17.27	150	260	Horizontal	
2	2483.50	11.15	34.51	45.66	54.00	8.34	150	267	Horizontal	
3	2489.94	22.81	34.52	57.33	74.00	16.67	150	73	Horizontal	
4	2489.94	11.08	34.52	45.60	54.00	8.40	150	88	Horizontal	
5	2495.99	22.59	34.52	57.11	74.00	16.89	150	252	Horizontal	
6	2495.99	11.10	34.52	45.62	54.00	8.38	150	152	Horizontal	


1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

5.5 Emissions in Non-restricted Frequency Bands

Below 1GHz:

Product Name:	Smart phone	Product Model:	S6703L
Test By:	Ray	Test mode:	BLE Tx (LE 1M PHY)
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical & Horizontal
Test Voltage:	DC 3.87V		

Critical_Freqs

Frequency (MHz)	MaxPeak (dB μ V/m)	Limit (dB µ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
41.155000	11.32	30.00	18.68	100.0	٧	332.0	-15.4
160.319500	11.94	33.50	21.56	100.0	٧	107.0	-14.9
562.530000	22.71	36.00	13.29	100.0	٧	200.0	-7.6
726.654000	23.31	36.00	12.69	100.0	٧	338.0	-4.2
847.516000	26.19	36.00	9.81	100.0	٧	107.0	-2.1
941.848500	27.81	36.00	8.19	100.0	٧	279.0	-0.1

Remark:

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Above 1GHz:

		В	LE Tx (LE 1M PH	IY)		
		Test o	hannel: Lowest cl	hannel		
		D	etector: Peak Valu	ue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4804.00	57.02	-7.63	49.39	74.00	24.61	Vertical
4804.00	56.48	-7.63	48.85	74.00	25.15	Horizontal
		De	tector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4804.00	47.11	-7.63	39.48	54.00	14.52	Vertical
4804.00	47.79	-7.63	40.16	54.00	13.84	Horizontal

Test channel: Middle channel								
	Detector: Peak Value							
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization		
4884.00	57.27	-8.59	48.68	74.00	25.32	Vertical		
4884.00	56.90	-8.59	48.31	74.00	25.69	Horizontal		
	Detector: Average Value							
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization		
4884.00	47.33	-8.59	38.74	54.00	15.26	Vertical		
4884.00	48.14	-8.59	39.55	54.00	14.45	Horizontal		

Test channel: Highest channel							
Detector: Peak Value							
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization	
4960.00	56.57	-8.03	48.54	74.00	25.46	Vertical	
4960.00	56.13	-8.03	48.10	74.00	25.90	Horizontal	
	Detector: Average Value						
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization	
4960.00	47.03	-8.03	39.00	54.00	15.00	Vertical	
4960.00	47.91	-8.03	39.88	54.00	14.12	Horizontal	

Remark:

^{1.} Level = Reading + Factor.

^{2.} Test Frequency up to 25GHz, and the emission levels of other frequencies are lower than the limit 20dB, not show in test report.

	BLE Tx (LE 2M PHY)							
Test channel: Lowest channel								
Detector: Peak Value								
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization		
4808.00	57.34	-7.63	49.71	74.00	24.29	Vertical		
4808.00	56.78	-7.63	49.15	74.00	24.85	Horizontal		
		Det	ector: Average Va	alue				
Frequency	Read Level	Factor	Level	Limit	Margin	Polarization		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)			
4808.00	47.45	-7.63	39.82	54.00	14.18	Vertical		
4808.00	47.86	-7.63	40.23	54.00	13.77	Horizontal		
		Toot	channel: Middle ch	nannal .				
			etector: Peak Val					
Fraguency	Read Level	Factor	Level	Limit	Margin			
Frequency (MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	Margin (dB)	Polarization		
4884.00	57.11	-8.59	48.52	74.00	25.48	Vertical		
4884.00	56.27	-8.59	47.68	74.00	26.32	Horizontal		
			ector: Average Va					
Frequency	Read Level	Factor	Level	Limit	Margin			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Polarization		
4884.00	47.41	-8.59	38.82	54.00	15.18	Vertical		
4884.00	48.10	-8.59	39.51	54.00	14.49	Horizontal		
			1	1		1		
		Test c	hannel: Highest c	hannel				
Detector: Peak Value								
Frequency	Read Level	Factor	Level	Limit	Margin	Polarization		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	1 Glanzation		
4956.00	57.06	-8.03	49.03	74.00	24.97	Vertical		
4956.00	56.12	-8.03	48.09	74.00	25.91	Horizontal		
	Detector: Average Value							
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization		
4956.00	46.63	-8.03	38.60	54.00	15.40	Vertical		
4956.00	48.25	-8.03	40.22	54.00	13.78	Horizontal		

-----End of report-----

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-148-C1 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

^{1.} Level = Reading + Factor.

^{2.} Test Frequency up to 25GHz, and the emission levels of other frequencies are lower than the limit 20dB, not show in test report.