

CFR 47 FCC PART 15 SUBPART C

TEST REPORT

For

LTE Smart Phone

FCC ID: 2ADINS6006L Model Name: S6006L, NUU X7, X7

Report Number: 4791221995-1-RF-3 Issue Date: July 24, 2024

Prepared for

Sun Cupid Technology (HK) Ltd.

16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

Page 2 of 103

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	July 24, 2024	Initial Issue	

REPORT NO.: 4791221995-1-RF-3 Page 3 of 103

Summary of Test Results

Test Item	Clause	Limit/Requirement	Result
Antenna Requirement	N/A	FCC 15.203	Pass
AC Power Line Conducted Emission	ANSI C63.10-2013 Clause 6.2	FCC Part 15.207	Pass
Conducted Output Power	ANSI C63.10-2013 Clause 7.8.5	FCC 15.247 (b) (1)	Pass
20 dB Bandwidth and 99% Occupied Bandwidth	ANSI C63.10-2013 Clause 6.9.2	FCC 15.247 (a) (1)	Pass
Carrier Hopping Channel Separation	ANSI C63.10-2013 Clause 7.8.2	FCC 15.247 (a) (1)	Pass
Number of Hopping Frequency	ANSI C63.10-2013 Clause 7.8.3	15.247 (a) (1) III	Pass
Time of Occupancy (Dwell Time)	ANSI C63.10-2013 Clause 7.8.4	15.247 (a) (1) III	Pass
Conducted Bandedge and Spurious Emission	ANSI C63.10-2013 Clause 6.10.4 & Clause 7.8.8	FCC 15.247 (d)	Pass
Radiated Band edge and Spurious Emission	ANSI C63.10-2013 Clause 6.3 & 6.5 & 6.6	FCC 15.247 (d) FCC 15.209 FCC 15.205	Pass
Duty Cycle	ANSI C63.10-2013, Clause 11.6	None; for reporting purposes only.	Pass

^{*}This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

^{*}The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART C> when <Simple Acceptance> decision rule is applied.

CONTENTS

1.	ATTES1	TATION OF TEST RESULTS	6
2.	TEST M	ETHODOLOGY	7
3.	FACILIT	TIES AND ACCREDITATION	7
4.	CALIBR	ATION AND UNCERTAINTY	8
4	1 . 1.	MEASURING INSTRUMENT CALIBRATION	8
4	1.2.	MEASUREMENT UNCERTAINTY	8
5.	EQUIPN	MENT UNDER TEST	9
5	5.1.	DESCRIPTION OF EUT	9
5	5.2.	CHANNEL LIST	.10
5	5.3.	MAXIMUM POWER	.11
5	5. <i>4</i> .	TEST CHANNEL CONFIGURATION	.11
5	5.5.	THE WORST-CASE CONFIGURATIONS	.12
5	5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	.12
5	5.7.	SUPPORT UNITS FOR SYSTEM TEST	.12
5	5.8.	SETUP DIAGRAM	13
6.	MEASU	RING EQUIPMENT AND SOFTWARE USED	14
7.	ANTEN	NA PORT TEST RESULTS	17
7	7.1.	CONDUCTED OUTPUT POWER	.17
7	7.2.	20 DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH	.18
7	7.3.	CARRIER HOPPING CHANNEL SEPARATION	.20
7	7.4.	NUMBER OF HOPPING FREQUENCY	.22
7	7.5.	TIME OF OCCUPANCY (DWELL TIME)	24
7	7.6.	CONDUCTED BANDEDGE AND SPURIOUS EMISSION	26
7	7.7.	DUTY CYCLE	28
8.	RADIAT	ED TEST RESULTS	29
8	3.1.	RESTRICTED BANDEDGE	.37
8	3.2.	SPURIOUS EMISSIONS(1 GHZ~3 GHZ)	42
8	3.3.	SPURIOUS EMISSIONS(3 GHZ~18 GHZ)	48
	3.4. GHZ)	SPURIOUS EMISSIONS(18 GHZ~26 GHZ)SPURIOUS EMISSIONS(30 MHZ~1 60	
8	3.5.	SPURIOUS EMISSIONS(9 KHZ~30 MHZ)	62
8	3.6.	SPURIOUS EMISSIONS(30 MHZ~1 GHZ)	65

9. ANTE	NNA REQUIREMENT	67
10.	AC POWER LINE CONDUCTED EMISSION	68
11.	TEST DATA	72
<i>11.1.</i> 11.1.1 11.1.2		72
<i>11.2.</i> 11.2.1 11.2.2		75
<i>11.3.</i> 11.3.1 11.3.2		78
<i>11.4.</i> 11.4.1 11.4.2		81
<i>11.5.</i> 11.5.1 11.5.2		83
<i>11.6.</i> 11.6.1 11.6.2		88
<i>11.7.</i> 11.7.1 11.7.2		90
<i>11.8.</i> 11.8.1 11.8.2		94
<i>11.9.</i> 11.9.1 11.9.2		101
APPENDI)	X: PHOTOGRAPHS OF TEST CONFIGURATION	103
V DDENIJI)	Y- PHOTOGRAPHS OF THE FIIT	103

Page 6 of 103

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Sun Cupid Technology (HK) Ltd.

Address: 16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan,

Kowloon, Hong Kong

Manufacturer Information

Company Name: Sun Cupid Technology (HK) Ltd.

16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Address:

Kowloon, Hong Kong

EUT Information

EUT Name: LTE Smart Phone

Model: S6006L

Series Model: NUU X7, X7

NUU X7, X7 have the same technical construction including

circuit diagram, PCB Layout, components and component layout,

all electrical construction and mechanical construction with Model Difference:

S6006L. The difference lies only the model number. all these changes do not degrade the unwanted emissions of the certified

product.

Sample Received Date: March 26, 2024

Sample Status: Normal Sample ID: 7066315

Date of Tested: May 5, 2024 to May 23, 2024

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
CFR 47 FCC PART 15 SUBPART C	Pass

APPLICABLE STANDARDS			
STANDARD	TEST RESULTS		
CFR 47 FCC PART 15 SUBPART C	Pass		

Prepared By:

Checked By:

James Qin

Denny Huang

Project Engineer

Senior Project Engineer

Approved By:

Stephen Guo

Operations Manager

Page 7 of 103

2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART C, KDB 558074 D01 15.247 Meas Guidance v05r02, 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2,ANSI C63.10-2013.

3. FACILITIES AND ACCREDITATION

·	
	A2LA (Certificate No.: 4102.01)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1187)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has been recognized to perform compliance testing on equipment subject
	to the Commission's Declaration of Conformity (DoC) and Certification
	rules
	ISED (Company No.: 21320)
Accreditation	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Certificate	has been registered and fully described in a report filed with ISED.
	The Company Number is 21320 and the test lab Conformity Assessment
	Body Identifier (CABID) is CN0046.
	VCCI (Registration No.: G-20192, C-20153, T-20155 and R-20202)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with VCCI, the
	Membership No. is 3793.
	Facility Name:
	Chamber D, the VCCI registration No. is G-20192 and R-20202
	Shielding Room B, the VCCI registration No. is C-20153 and T-20155

Note 1:

All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China.

Note 2:

The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3:

For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

Page 8 of 103

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty
Conduction emission	3.62 dB
Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz)	2.2 dB
Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz)	4.00 dB
Radiated Emission	5.78 dB (1 GHz ~ 18 GHz)
(Included Fundamental Emission) (1 GHz to 26 GHz)	5.23 dB (18 GHz ~ 26 GHz)
Duty Cycle	±0.028%
20dB Emission Bandwidth and 99% Occupied Bandwidth	±0.0196%
Carrier Frequency Separation	±1.9%
Maximum Conducted Output Power	±0.743 dB
Number of Hopping Channel	±1.9%
Time of Occupancy	±0.028%
Conducted Band-edge Compliance	±1.328 dB
Conducted Unwanted Emissions In Non-restricted	±0.746 dB (9 kHz ~ 1 GHz)
Frequency Bands	±1.328dB (1 GHz ~ 26 GHz)

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 9 of 103

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	LTE Smart Phone
Model	S6006L

Transaction of the control of the co			
Frequency Band:	2400 MHz to 2483.5 MHz		
Frequency Range:	2402 MHz to 2480 MHz		
Support Standards:	CFR 47 FCC PART 15 SUBPART C		
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)		
Type of Modulation:	GFSK, p/4DQPSK, 8DPSK		
Number of Channels:	79		
Antenna Type:	FPC Antenna		
Antenna Gain:	2.97 dBi		
Normal Test Voltage:	3.8 Vdc		
EUT Test software:	MTK		

EUT configurations:

Material type	First resources material i	nformation	Second resources material information		
	Part number	Supplier	Part number	Supplier	
MODU(Baseband chips)	MT6761V/WBA	MTK	MT8766V/WBA	MTK	

Page 10 of 103

5.2. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2422	40	2442	60	2462
01	2403	21	2423	41	2443	61	2463
02	2404	22	2424	42	2444	62	2464
03	2405	23	2425	43	2445	63	2465
04	2406	24	2426	44	2446	64	2466
05	2407	25	2427	45	2447	65	2467
06	2408	26	2428	46	2448	66	2468
07	2409	27	2429	47	2449	67	2469
08	2410	28	2430	48	2450	68	2470
09	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	/	/

Page 11 of 103

5.3. MAXIMUM POWER

Test Mode	Frequency (MHz)	Channel Number	Maximum Output Power (dBm)
GFSK	2402 ~ 2480	0-78[79]	5.77
8DPSK	2402 ~ 2480	0-78[79]	5.04

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
GFSK-DH5	CH 00(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz
8DPSK-3DH5	CH 00(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz
GFSK-DH5	Hopping	
8DPSK-3DH5	Hopping	

PACKET TYPE CONFIGURATION

Test Mode	Packet Type	Setting (Packet Length)		
	DH1	27		
GFSK	DH3	183		
	DH5	339		
	2-DH1	54		
∏/4-DQPSK	2-DH3	367		
	2-DH5	679		
	3-DH1	83		
8DPSK	3-DH3	552		
	3-DH5	1021		

Page 12 of 103

5.5. THE WORST-CASE CONFIGURATIONS

Bluetooth Mode	Modulation Technology	Modulation Type	Data Rate (Mbps)
BR	FHSS	GFSK	1Mbit/s
EDR	FHSS	8DPSK	3Mbit/s

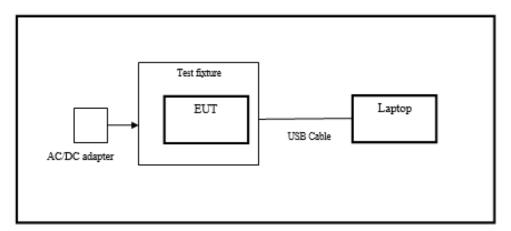
The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band						
Test So	oftware	MTK				
Modulation Type	Transmit Antenna	Test Software setting value				
Modulation Type	Number	CH 00	CH 39	CH 78		
GFSK	3	7	7	7		
8DPSK	3	7	7	7		

Note:

- 1. Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates.
- 2. Based on preliminary testing, there were no significant differences between the two models and therefore model [MT6761 version] was fully tested.

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
3	2402-2480	FPC Antenna	2.97


Test Mode	Transmit and Receive Mode	Description				
GFSK	⊠1TX, 1RX	Antenna 3 can be used as transmitting/receiving antenna.				
8DPSK	⊠1TX, 1RX	Antenna 3 can be used as transmitting/receiving antenna.				
Note: 1.BT&WLAN 2.4G, WLAN 2.4G & WLAN 5G can't transmit simultaneously. (declared by client)						

5.7. SUPPORT UNITS FOR SYSTEM TEST

The EUT has been tested as an independent unit

5.8. SETUP DIAGRAM

Page 14 of 103

6. MEASURING EQUIPMENT AND SOFTWARE USED

R&S TS 8997 Test System										
Equipment Manufact			turer	Model	No.	Serial No.	Last C	Cal.	Due. Date	
Power sensor, Power M	leter	F	R&S	;	OSP1	20	100921	Mar.25,	2024	Mar.24,2025
Vector Signal General	tor	F	R&S		SMBV1	00A	261637	Oct.12,	2023	Oct.11, 2024
Signal Generator		F	R&S		SMB10	00A	178553	Oct.12,	2023	Oct.11, 2024
Signal Analyzer		F	R&S		FSV4	0	101118	Oct.12,	2023	Oct.11, 2024
					Softwa	re				
Description			N	/lanuf	acturer		Nam	е		Version
For R&S TS 8997 Test	Syste	em	Roh	nde &	Schwar	z	EMC	32		10.60.10
Tonsend RF Test System										
Equipment	Man	ufactu	urer	Mod	del No.	Serial No.		Last Cal.		Due. Date
Wideband Radio Communication Tester		R&S		СМ	CMW500		155523	Oct.12,	2023	Oct.11, 2024
Wireless Connectivity Tester		R&S		СМ	CMW270 120		1.0002N75- 102	Sep.25,	2023	Sep.24, 2024
PXA Signal Analyzer	K	eysigh	nt	N9	030A	MY	′55410512	Oct.12,	2023	Oct.11, 2024
MXG Vector Signal Generator	K	eysigh	nt	N5	182B	MY	′56200284	Oct.12,	2023	Oct.11, 2024
MXG Vector Signal Generator	K	eysigh	nt	N5	172B	MY	′56200301	Oct.12,	2023	Oct.11, 2024
DC power supply	K	eysigh	nt	E3	642A	MY	′55159130	Oct.12,	2023	Oct.11, 2024
Temperature & Humidity Chamber	SAI	NMOC	DD	SG-8	G-80-CC-2		2088	Oct.12,	2023	Oct.11, 2024
Attenuator	Aglient 8		84	195B	28	14a12853	Oct.12,	2023	Oct.11, 2024	
RF Control Unit	То	Tonscend JS0		JSC	806-2	23E	380620666	Mar.25,	2024	Mar.24,2025
					Softwa	re				
Description		Manu	ıfact	urer			Name			Version
Tonsend SRD Test Syst	tem	Tor	nser	nd	JS1120-3 RF Test System V3.2.22				V3.2.22	

Page 15 of 103

Conducted Emissions								
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date			
EMI Test Receiver	R&S	ESR3	101961	Oct.13, 2023	Oct.12, 2024			
Two-Line V- Network	R&S	ENV216	101983	Oct.13, 2023	Oct.12, 2024			
Artificial Mains Networks	Schwarzbeck	NSLK 8126	8126465	Oct.13, 2023	Oct.12, 2024			
Software								
	Description		Manufacturer	Name	Version			
Test Software	for Conducted	Emissions	Farad	EZ-EMC	Ver. UL-3A1			

Radiated Emissions								
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date			
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Oct.12, 2023	Oct.11, 2024			
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130959	Aug.02, 2021	Aug.01, 2024			
Preamplifier	HP	8447D	2944A09099	Oct.12, 2023	Oct.11, 2024			
EMI Measurement Receiver	R&S	ESR26	101377	Oct.12, 2023	Oct.11, 2024			
Horn Antenna	TDK	HRN-0118	130940	July 20, 2021	July 19, 2024			
Preamplifier	TDK	PA-02-0118	TRS-305- 00067	Oct.12, 2023	Oct.11, 2024			
Horn Antenna	Schwarzbeck	BBHA9170	697	July 20, 2021	July 19, 2024			
Preamplifier	TDK	PA-02-2	TRS-307- 00003	Oct.12, 2023	Oct.11, 2024			
Preamplifier	TDK	PA-02-3	TRS-308- 00002	Oct.12, 2023	Oct.11, 2024			
Loop antenna	Schwarzbeck	1519B	80000	Dec.14, 2021	Dec.13, 2024			
Preamplifier	TDK	PA-02-001- 3000	TRS-302- 00050	Oct.12, 2023	Oct.11, 2024			
High Pass Filter	Wi	WHKX10- 2700-3000- 18000-40SS	23	Oct.12, 2023	Oct.11, 2024			
Highpass Filter	Wainwright	WHKX10- 5850-6500- 1800-40SS	4	Oct.12, 2023	Oct.11, 2024			
Band Reject Filter	Wainwright	WRCJV12- 5695-5725- 5850-5880- 40SS	4	Oct.12, 2023	Oct.11, 2024			
Band Reject Filter	Wainwright	WRCJV20- 5120-5150-	2	Oct.12, 2023	Oct.11, 2024			

		5350-5380- 60SS						
Band Reject Filter	Wainwright	WRCJV20- 5440-5470- 5725-5755- 60SS	1	Oct.12, 2023	Oct.11, 2024			
Band Reject Filter	Wainwright	WRCJV8- 2350-2400- 2483.5- 2533.5-40SS	4	Oct.12, 2023	Oct.11, 2024			
Band Reject Filter	Wainwright	WRCD5- 1879- 1879.85- 1880.15- 1881-40SS	1	Oct.12, 2023	Oct.11, 2024			
Notch Filter	Wainwright	WHJ10-882- 980-7000- 40SS	1	Oct.12, 2023	Oct.11, 2024			
Highpass Filter	Xingbo	XBLBQ- GTA68	211115-2-1	Oct.12, 2023	Oct.11, 2024			
Notch Filter (5905-6445 MHz)	Xingbo	XBLBQ- DZA175	210922-2-1	Oct.12, 2023	Oct.11, 2024			
Notch Filter (6425-6525 MHz)	Xingbo	XBLBQ- DZA176	210922-2-2	Oct.12, 2023	Oct.11, 2024			
Notch Filter (6825-7125 MHz)	Xingbo	XBLBQ- DZA177	210922-2-3	Oct.12, 2023	Oct.11, 2024			
Notch Filter (6525-6875 MHz)	Xingbo	XBLBQ- DZA178	210922-2-4	Oct.12, 2023	Oct.11, 2024			
Software								
	Description		Manufacturer	Name	Version			
Test Software	for Radiated E	Emissions	Farad	EZ-EMC	Ver. UL-3A1			

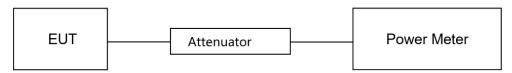
Other Instrument								
Equipment	Manufacturer Model No. Serial No. Last Cal. Due D							
Temperature humidity probe	OMEGA	ITHX-SD-5	18470007	Oct.21, 2023	Oct.20, 2024			
Barometer	Yiyi	Baro	N/A	Oct.19, 2023	Oct.18, 2024			
Attenuator	Agilent	8495B	2814a12853	Oct.12, 2023	Oct.11, 2024			

Page 17 of 103

7. ANTENNA PORT TEST RESULTS

7.1. CONDUCTED OUTPUT POWER

LIMITS


CFR 47 FCC Part15 (15.247), Subpart C			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC 15.247 (b) (1)	Peak Conducted Output Power	Hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel: 1 watt or 30 dBm; Hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel: 125 mW or 21 dBm	2400-2483.5

TEST PROCEDURE

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the peak output power, after any corrections for external attenuators and cables.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.3 ℃	Relative Humidity	60%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.8V

TEST DATE / ENGINEER

Test Date	May 6, 2024	Test By	Walker Yuan
-----------	-------------	---------	-------------

TEST RESULTS

Please refer to section "Test Data" - Appendix C

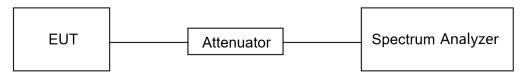
Page 18 of 103

7.2. 20 DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

LIMITS

CFR 47FCC Part15 (15.247) Subpart C			
Section Test Item Limit Frequency Range (MHz)			
CFR 47 FCC 15.247 (a) (1)	20 dB Bandwidth	None; for reporting purposes only.	2400-2483.5

TEST PROCEDURE


Refer to ANSI C63.10-2013 clause 6.9.2.

Connect the EUT to the spectrum analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test	
Detector	Peak	
RBW	For 20 dB Bandwidth: 1 % to 5 % of the 20 dB bandwidth For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth	
VBW	For 20 dB Bandwidth: approximately 3×RBW For 99 % Occupied Bandwidth: ≥ 3×RBW	
Span	Approximately 2 to 3 times the 20dB bandwidth	
Trace	Max hold	
Sweep	Auto couple	

a) Use the occupied bandwidth function of the instrument, allow the trace to stabilize and report the measured 99 % occupied bandwidth and 20 dB Bandwidth.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.3℃	Relative Humidity	60%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.8V

TEST DATE / ENGINEER

Test Date	May 6, 2024	Test By	Walker Yuan

Page 19 of 103

TEST RESULTS

Please refer to section "Test Data" - Appendix A&B

Page 20 of 103

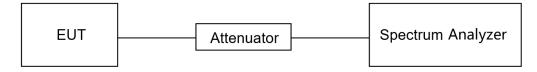
7.3. CARRIER HOPPING CHANNEL SEPARATION

LIMITS

CFR 47 FCC Part15 (15.247),			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC 15.247 (a) (1)	Carrier Frequency Separation	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel.	2400-2483.5

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.2.


Connect the EUT to the spectrum analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test	
Span	wide enough to capture the peaks of two adjacent channels	
Detector	Peak	
	Start with the RBW set to approximately 30 % of the channel spacing; adjust as necessary to best identify the center of each individual channel.	
VBW	≥RBW	
Trace	Max hold	
Sweep time	Auto couple	

Allow the trace to stabilize and use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Compliance of an EUT with the appropriate regulatory limit shall be determined.

TEST SETUP

Page 21 of 103

TEST ENVIRONMENT

Temperature	23.3 ℃	Relative Humidity	60%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.8V

TEST DATE / ENGINEER

Test Date	May 6, 2024	Test By	Walker Yuan
-----------	-------------	---------	-------------

TEST RESULTS

Please refer to section "Test Data" - Appendix D

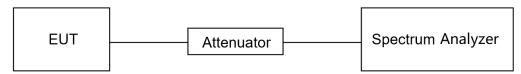
Page 22 of 103

7.4. NUMBER OF HOPPING FREQUENCY

LIMITS

CFR 47 FCC Part15 (15.247), Subpart C			
Section Test Item Limit			
CFR 47 15.247 (a) (1) III	Number of Hopping Frequency	at least 15 hopping channels	

TEST PROCEDURE


Refer to ANSI C63.10-2013 clause 7.8.3.

Connect the EUT to the spectrum Analyzer and use the following settings:

Detector	Peak
RBW	To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
VBW	≥RBW
Span	The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
Trace	Max hold
Sweep time	Auto couple

Set EUT to transmit maximum output power and switch on frequency hopping function. then set enough count time (larger than 5000 times) to get all the hopping frequency channel displayed on the screen of spectrum analyzer, count the quantity of peaks to get the number of hopping channels.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.3℃	Relative Humidity	60%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.8V

Page 23 of 103

TEST DATE / ENGINEER

Test Date	May 6, 2024	Test By	Walker Yuan

TEST RESULTS

Please refer to section "Test Data" - Appendix F

Page 24 of 103

7.5. TIME OF OCCUPANCY (DWELL TIME)

LIMITS

CFR 47 FCC Part15 (15.247), Subpart C				
Section Test Item Limit				
CFR 47 15.247 (a) (1) III	Time of Occupancy (Dwell Time)	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed.		

TEST PROCEDURE

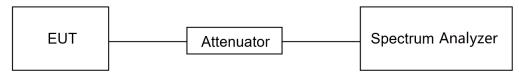
Refer to ANSI C63.10-2013 clause 7.8.4.

Connect the EUT to the spectrum Analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	1 MHz
VBW	≥RBW
Span	Zero span, centered on a hopping channel
Trace	Max hold
Sweep time	As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel

Use the marker-delta function to determine the transmit time per hop (Burst Width). If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

For FHSS Mode (79 Channel):


DH1/3DH1 Dwell Time: Burst Width * (1600/2) * 31.6 / (channel number) DH3/3DH3 Dwell Time: Burst Width * (1600/4) * 31.6 / (channel number) DH5/3DH5 Dwell Time: Burst Width * (1600/6) * 31.6 / (channel number)

For AFHSS Mode (20 Channel):

DH1/3DH1 Dwell Time: Burst Width * (800/2) * 8 / (channel number) DH3/3DH3 Dwell Time: Burst Width * (800/4) * 8 / (channel number) DH5/3DH5 Dwell Time: Burst Width * (800/6) * 8 / (channel number)

TEST SETUP

TEST ENVIRONMENT

Temperature	23.3℃	Relative Humidity	60%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.8V

TEST DATE / ENGINEER

Test Date	May 6, 2024	Test By	Walker Yuan

TEST RESULTS

Please refer to section "Test Data" - Appendix E

Page 26 of 103

7.6. CONDUCTED BANDEDGE AND SPURIOUS EMISSION

LIMITS

CFR 47 FCC Part15 (15.247), Subpart C			
Section Test Item Limit			
CFR 47 FCC §15.247 (d)	Conducted Spurious Emission	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	

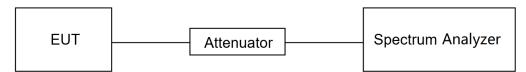
TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.6 and 7.8.8.

Connect the EUT to the spectrum analyzer and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.


Change the settings for emission level measurement:

Span	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum

TEST SETUP

TEST ENVIRONMENT

Temperature	23.3℃	Relative Humidity	60%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.8V

TEST DATE / ENGINEER

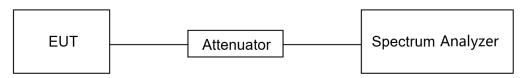
	l		
Test Date	May 6, 2024	Test Bv	Walker Yuan
וופטו שמופ	11VIAV 0. 2024	I I COL DV	waikei iuaii
	······ / -, ·		

TEST RESULTS

Please refer to section "Test Data" - Appendix G&H

Page 28 of 103

7.7. DUTY CYCLE


LIMITS

None; for reporting purposes only.

TEST PROCEDURE

Refer to ANSI C63.10-2013 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.3℃	Relative Humidity	60%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.8V

TEST DATE / ENGINEER

Test Date	May 6, 2024	Test By	Walker Yuan
1 oot Date	ividy 0, 202 i	1 COL Dy	vvailloi i daii

TEST RESULTS

Please refer to section "Test Data" - Appendix I

Page 29 of 103

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz-1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz			
Frequency Range	Field Strength Limit	Field Strength Limit	
(MHz)	(uV/m) at 3 m	(dBuV/m) at 3 m
(1411 12)	(uv/iii) at 3 iii	Quasi-Peak	
30 - 88	100	40	
88 - 216	150	43.5	
216 - 960	200	46	
Above 960	500	54	
Above 1000	500	Peak	Average
Above 1000	500	74	54

FCC Emissions radiated outside of the specified frequency bands below 30 MHz			
Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters)			
0.009-0.490	2400/F(kHz)	300	
0.490-1.705	24000/F(kHz)	30	
1.705-30.0	30	30	

Page 30 of 103

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyzer

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.
- 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.
- 6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the

Page 31 of 103

applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

- 7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.
- 8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X kHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

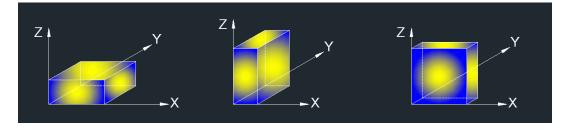
Page 32 of 103

Below 1 GHz and above 30 MHz

The setting of the spectrum analyzer

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.


Above 1 GHz

The setting of the spectrum analyzer

RBW	1 MHz
VBW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 1.5 m above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
- 6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.7. ON TIME AND DUTY CYCLE.

X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Note 2: The EUT was fully exercised with external accessories during the test. In the case of multiple accessory external ports, an external accessory shall be connected to one of each type of port.

Page 34 of 103

For Restricted Bandedge:

Note:

- 1. Measurement = Reading Level + Correct Factor.
- 2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.
- 3. PK=Peak: Peak detector.
- 4. AV=Average: VBW=1/Ton, where: Ton is the transmitting duration.
- 5. For the transmitting duration, please refer to clause 7.7.
- 6. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.
- 7. Both horizontal and vertical have been tested, only the worst data was recorded in the report.
- 8. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious emission (9 kHz ~ 30 MHz):

Note:

- 1. Measurement = Reading Level + Correct Factor.
- 2. If the peak values are less than the QP limit, the QP result is deemed to comply with QP limit.
- 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.
- 4. All modes have been tested, but only the worst data was recorded in the report.
- 5. $dBuA/m = dBuV/m 20Log10[120\pi] = dBuV/m 51.5$

For Radiate Spurious Emission (30 MHz ~ 1 GHz):

Note:

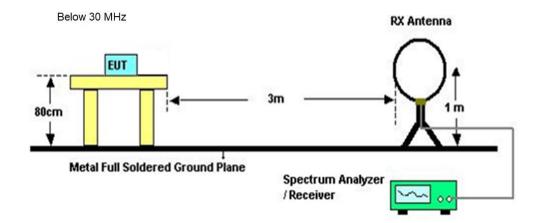
- 1. Result Level = Read Level + Correct Factor.
- 2. If the peak values are less than the QP limit, the QP result is deemed to comply with QP limit.
- 3. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious Emission (1 GHz ~ 3 GHz):

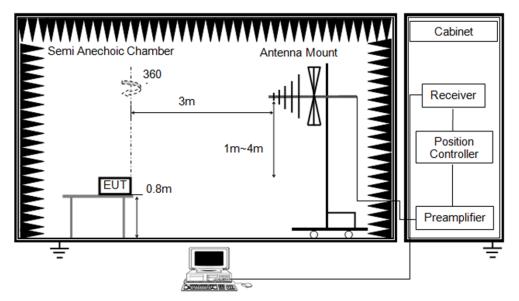
- 1. Measurement = Reading Level + Correct Factor.
- 2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.
- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 5. For the transmitting duration, please refer to clause 7.7.
- 6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
- 7. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 8. All modes have been tested, but only the worst data was recorded in the report.

Page 35 of 103

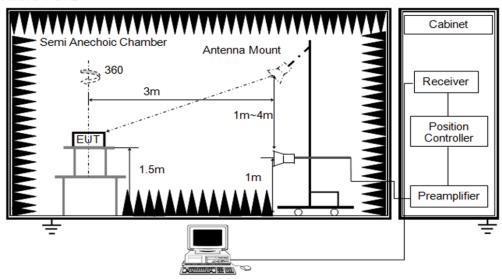
For Radiate Spurious Emission (3 GHz ~ 18 GHz):


- 1. Peak Result = Reading Level + Correct Factor.
- 2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.
- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 5. For the transmitting duration, please refer to clause 7.7.
- 6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
- 7. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 8. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious emission (18 GHz ~ 26 GHz):


Note:

- 1. Measurement = Reading Level + Correct Factor.
- 2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.
- 3. Peak: Peak detector.
- 4. All modes have been tested, but only the worst data was recorded in the report.


TEST SETUP

Below 1 GHz and above 30 MHz

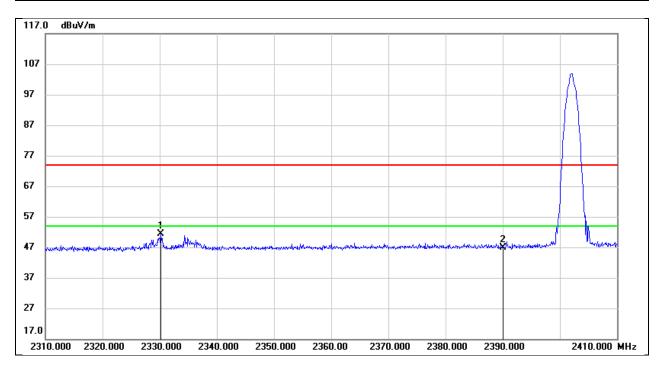
Above 1 GHz

TEST ENVIRONMENT

Temperature	24 ℃	Relative Humidity	55%
Atmosphere Pressure	101kPa	Test Voltage	

TEST DATE / ENGINEER

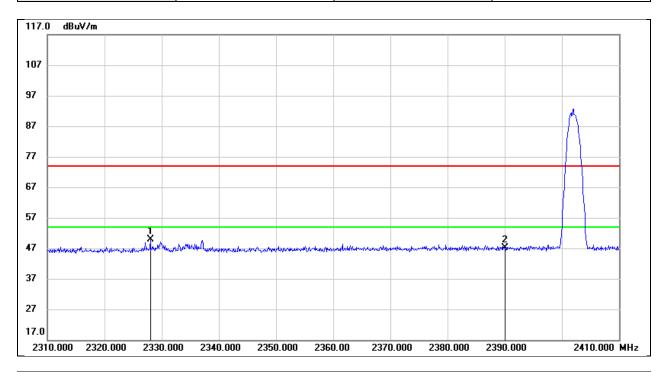
Test Date	May 23, 2024	Test By	James Qin


TEST RESULTS

Page 37 of 103

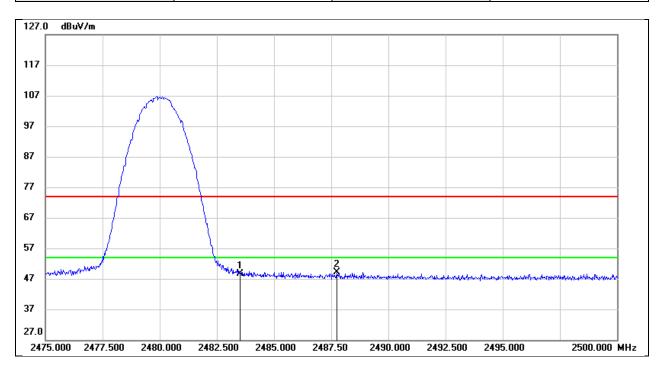
8.1. RESTRICTED BANDEDGE

Test Mode:	GFSK PK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

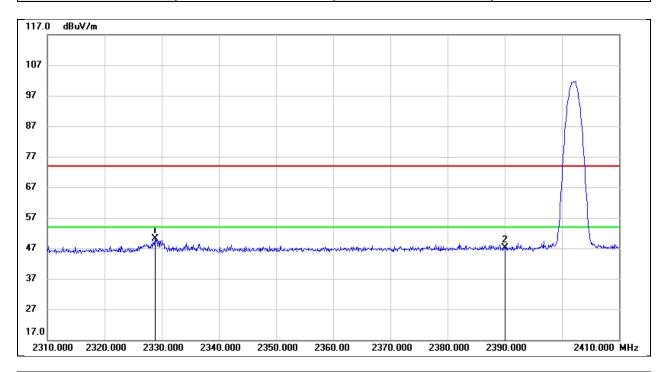

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2330.200	18.81	32.60	51.41	74.00	-22.59	peak
2	2390.000	13.89	32.92	46.81	74.00	-27.19	peak

Note:

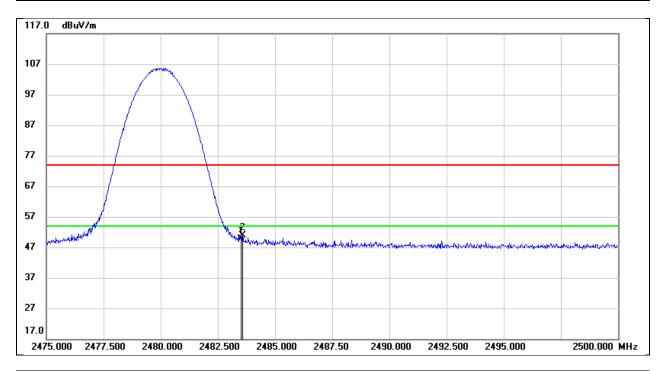
based on preliminary testing, there were no significant differences between the two models and therefore model [MT6761 version] was fully tested.


Test Mode:	GFSK PK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	AC 120V_60Hz

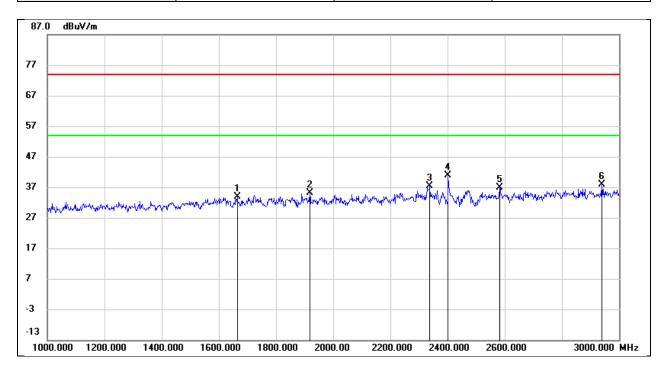
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2328.000	17.23	32.58	49.81	74.00	-24.19	peak
2	2390.000	14.13	32.92	47.05	74.00	-26.95	peak


Test Mode:	GFSK PK	Frequency(MHz):	2480
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	15.78	32.94	48.72	74.00	-25.28	peak
2	2487.750	16.16	32.94	49.10	74.00	-24.90	peak

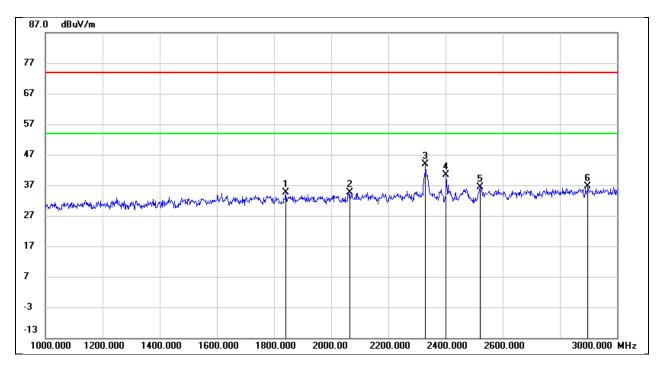

Test Mode:	8DPSK PK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2328.800	17.54	32.58	50.12	74.00	-23.88	peak
2	2390.000	14.13	32.92	47.05	74.00	-26.95	peak

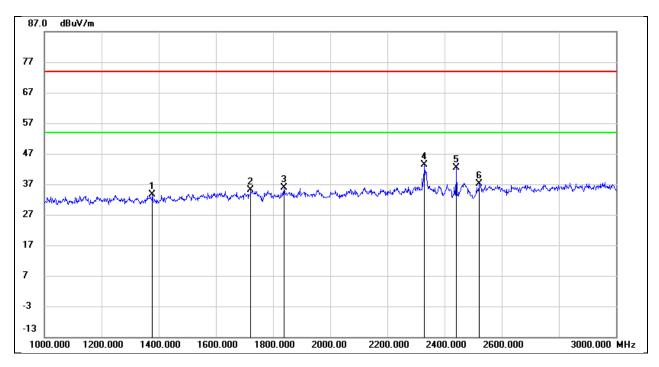

Test Mode:	8DPSK PK	Frequency(MHz):	2480
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	16.66	32.94	49.60	74.00	-24.40	peak
2	2483.575	17.83	32.94	50.77	74.00	-23.23	peak

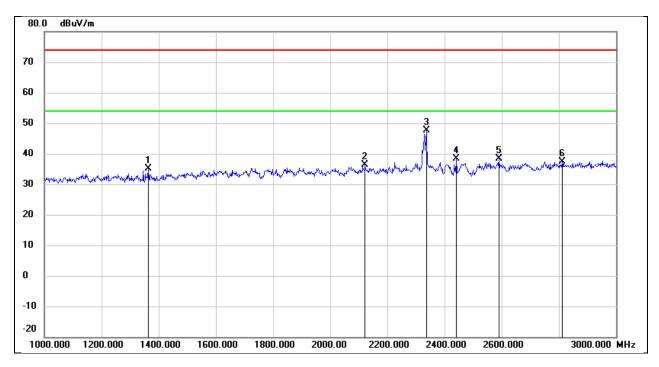
8.2. SPURIOUS EMISSIONS(1 GHZ~3 GHZ)


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

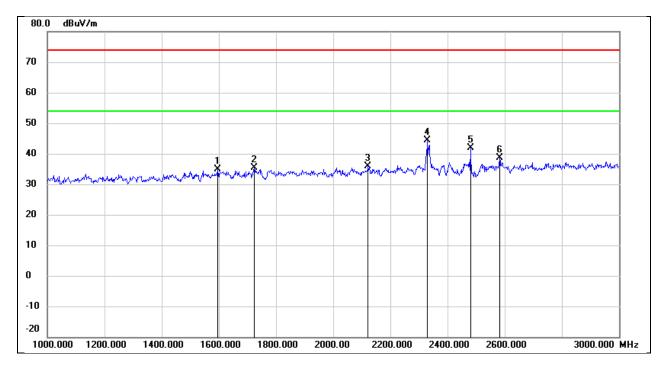
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1664.000	44.70	-10.88	33.82	74.00	-40.18	peak
2	1918.000	45.25	-10.17	35.08	74.00	-38.92	peak
3	2338.000	45.22	-7.85	37.37	74.00	-36.63	peak
4	2402.000	48.37	-7.40	40.97	74.00	-33.03	peak
5	2582.000	44.40	-7.64	36.76	74.00	-37.24	peak
6	2940.000	43.93	-6.16	37.77	74.00	-36.23	peak


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	AC 120V_60Hz

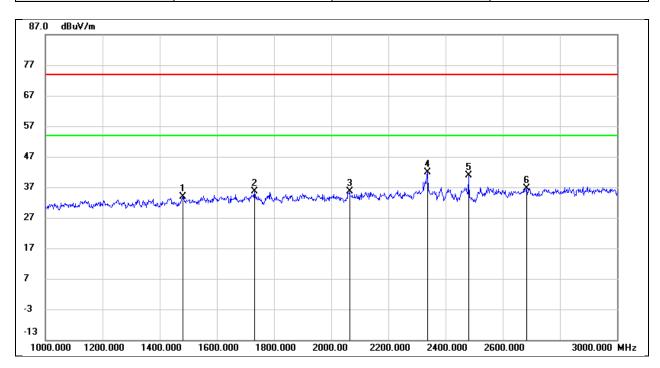
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1840.000	44.75	-10.21	34.54	74.00	-39.46	peak
2	2064.000	44.34	-9.72	34.62	74.00	-39.38	peak
3	2330.000	51.76	-7.92	43.84	74.00	-30.16	peak
4	2402.000	47.68	-7.40	40.28	74.00	-33.72	peak
5	2520.000	43.92	-7.54	36.38	74.00	-37.62	peak
6	2898.000	43.05	-6.35	36.70	74.00	-37.30	peak


Test Mode:	GFSK	Frequency(MHz):	2441
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1378.000	46.08	-12.43	33.65	74.00	-40.35	peak
2	1722.000	45.71	-10.61	35.10	74.00	-38.90	peak
3	1838.000	46.16	-10.22	35.94	74.00	-38.06	peak
4	2330.000	51.22	-7.92	43.30	74.00	-30.70	peak
5	2442.000	49.92	-7.44	42.48	74.00	-31.52	peak
6	2522.000	44.74	-7.53	37.21	74.00	-36.79	peak

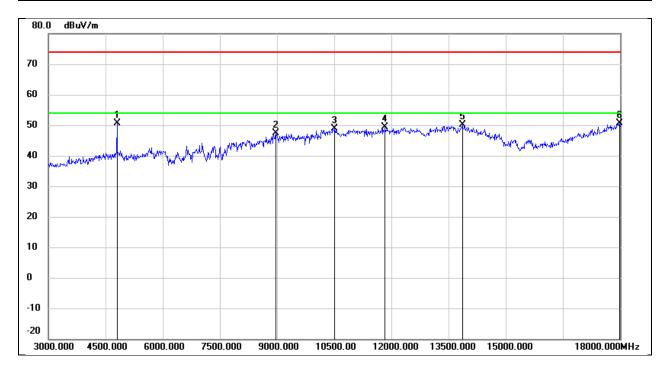

Test Mode:	GFSK	Frequency(MHz):	2441
Polarity:	Vertical	Test Voltage:	AC 120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1364.000	47.65	-12.45	35.20	74.00	-38.80	peak
2	2122.000	45.73	-9.35	36.38	74.00	-37.62	peak
3	2336.000	55.51	-7.87	47.64	74.00	-26.36	peak
4	2442.000	45.93	-7.44	38.49	74.00	-35.51	peak
5	2590.000	45.94	-7.67	38.27	74.00	-35.73	peak
6	2812.000	44.17	-6.75	37.42	74.00	-36.58	peak


Test Mode:	GFSK	Frequency(MHz):	2480
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1596.000	45.97	-11.19	34.78	74.00	-39.22	peak
2	1724.000	46.04	-10.59	35.45	74.00	-38.55	peak
3	2122.000	45.24	-9.35	35.89	74.00	-38.11	peak
4	2330.000	52.21	-7.92	44.29	74.00	-29.71	peak
5	2480.000	49.38	-7.47	41.91	74.00	-32.09	peak
6	2582.000	46.20	-7.64	38.56	74.00	-35.44	peak

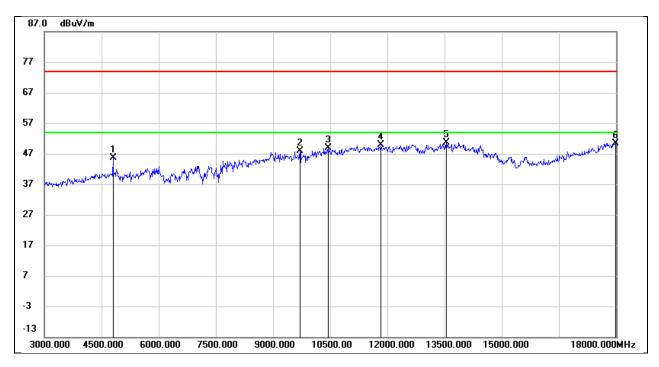
Test Mode:	GFSK	Frequency(MHz):	2480
Polarity:	Vertical	Test Voltage:	AC 120V_60Hz



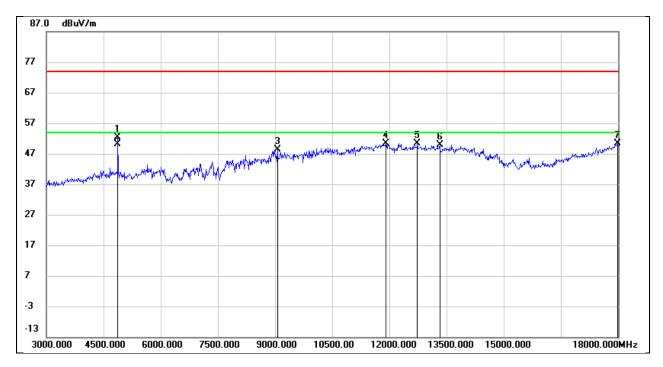
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1480.000	45.68	-11.88	33.80	74.00	-40.20	peak
2	1732.000	46.25	-10.55	35.70	74.00	-38.30	peak
3	2064.000	45.30	-9.72	35.58	74.00	-38.42	peak
4	2336.000	49.64	-7.87	41.77	74.00	-32.23	peak
5	2480.000	48.30	-7.47	40.83	74.00	-33.17	peak
6	2684.000	43.96	-7.31	36.65	74.00	-37.35	peak

REPORT NO.: 4791221995-1-RF-3 Page 48 of 103

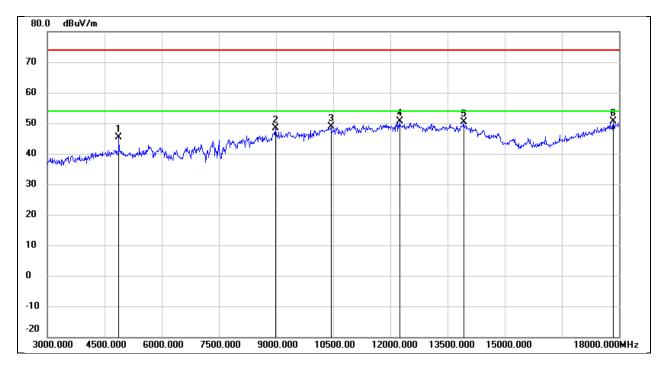
8.3. SPURIOUS EMISSIONS(3 GHZ~18 GHZ)


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

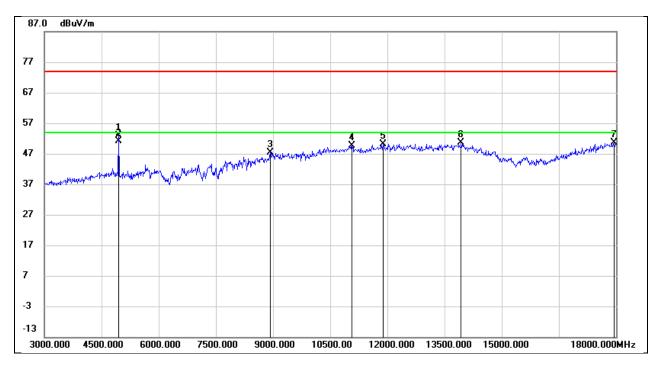
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4800.000	50.23	0.46	50.69	74.00	-23.31	peak
2	8970.000	36.70	10.75	47.45	74.00	-26.55	peak
3	10515.000	35.15	13.74	48.89	74.00	-25.11	peak
4	11835.000	31.55	17.79	49.34	74.00	-24.66	peak
5	13860.000	27.54	22.68	50.22	74.00	-23.78	peak
6	17985.000	23.96	26.77	50.73	74.00	-23.27	peak


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	AC 120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4800.000	45.21	0.46	45.67	74.00	-28.33	peak
2	9705.000	36.64	11.30	47.94	74.00	-26.06	peak
3	10440.000	35.26	13.56	48.82	74.00	-25.18	peak
4	11835.000	32.13	17.79	49.92	74.00	-24.08	peak
5	13545.000	28.98	21.68	50.66	74.00	-23.34	peak
6	17985.000	23.65	26.77	50.42	74.00	-23.58	peak

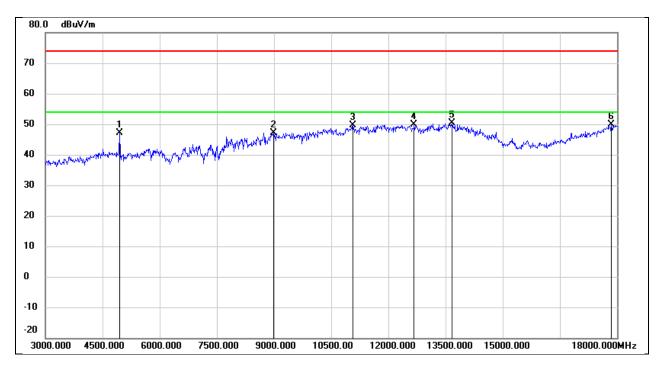

Test Mode:	GFSK	Frequency(MHz):	2441
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	51.88	0.61	52.49	74.00	-21.51	peak
2	4875.000	49.64	0.61	50.25	54.00	-3.75	AVG
3	9060.000	37.56	10.82	48.38	74.00	-25.62	peak
4	11910.000	32.19	18.11	50.30	74.00	-23.70	peak
5	12735.000	31.70	18.77	50.47	74.00	-23.53	peak
6	13320.000	28.88	20.91	49.79	74.00	-24.21	peak
7	17985.000	23.55	26.77	50.32	74.00	-23.68	peak


Test Mode:	GFSK	Frequency(MHz):	2441
Polarity:	Vertical	Test Voltage:	AC 120V_60Hz

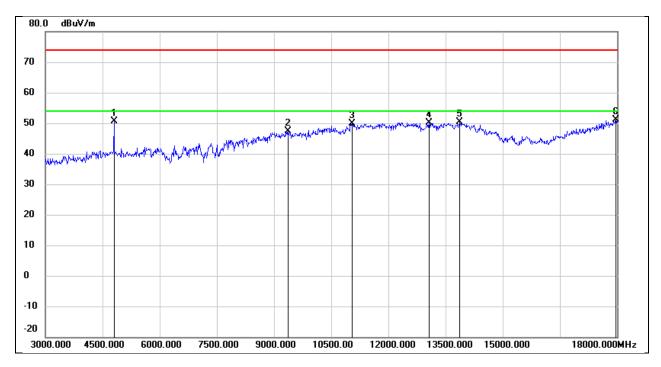
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	44.68	0.61	45.29	74.00	-28.71	peak
2	8985.000	37.32	10.97	48.29	74.00	-25.71	peak
3	10440.000	35.28	13.56	48.84	74.00	-25.16	peak
4	12240.000	32.25	18.46	50.71	74.00	-23.29	peak
5	13920.000	27.57	22.71	50.28	74.00	-23.72	peak
6	17850.000	24.25	26.28	50.53	74.00	-23.47	peak

Test Mode:	GFSK	Frequency(MHz):	2480
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

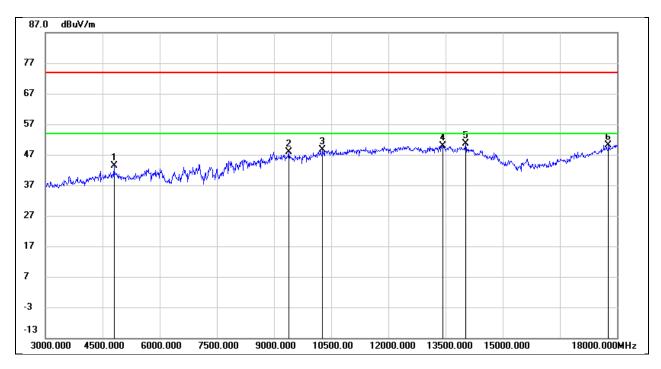

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4950.000	52.17	0.74	52.91	74.00	-21.09	peak
2	4950.000	50.46	0.74	51.20	54.00	-2.80	AVG
3	8925.000	37.22	10.14	47.36	74.00	-26.64	peak
4	11070.000	34.62	15.08	49.70	74.00	-24.30	peak
5	11880.000	32.16	17.97	50.13	74.00	-23.87	peak
6	13935.000	27.99	22.72	50.71	74.00	-23.29	peak
7	17940.000	23.94	26.61	50.55	74.00	-23.45	peak

Note:

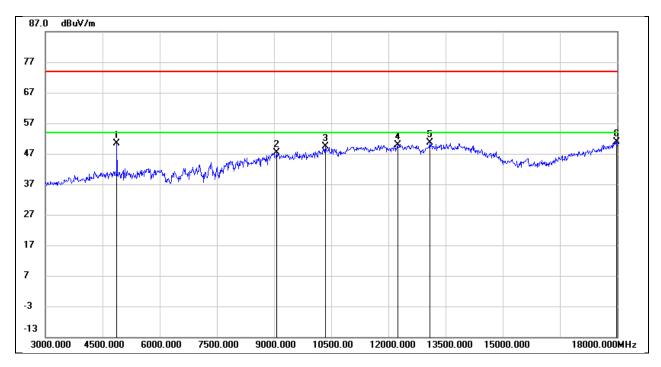
1. based on preliminary testing, there were no significant differences between the two models and therefore model [MT6761 version] was fully tested.


Test Mode:	GFSK	Frequency(MHz):	2480
Polarity:	Vertical	Test Voltage:	AC 120V_60Hz

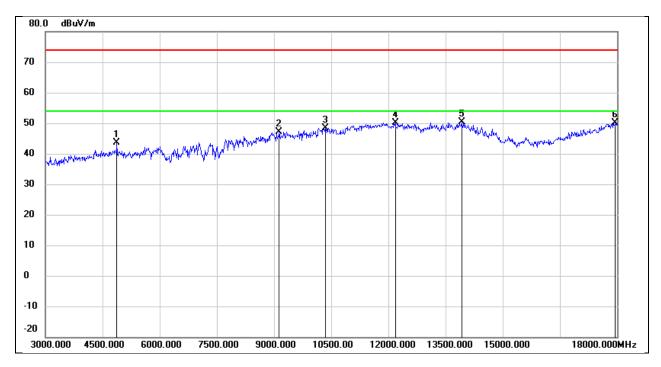
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4950.000	46.50	0.74	47.24	74.00	-26.76	peak
2	8985.000	36.21	10.97	47.18	74.00	-26.82	peak
3	11070.000	34.63	15.08	49.71	74.00	-24.29	peak
4	12675.000	31.27	18.54	49.81	74.00	-24.19	peak
5	13665.000	28.29	21.98	50.27	74.00	-23.73	peak
6	17850.000	23.54	26.28	49.82	74.00	-24.18	peak


Test Mode:	8DPSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

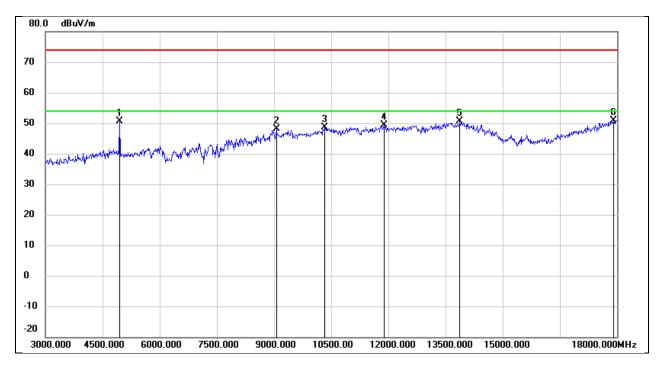
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4800.000	50.13	0.46	50.59	74.00	-23.41	peak
2	9375.000	36.99	10.40	47.39	74.00	-26.61	peak
3	11040.000	34.94	15.01	49.95	74.00	-24.05	peak
4	13065.000	30.77	19.42	50.19	74.00	-23.81	peak
5	13860.000	27.62	22.68	50.30	74.00	-23.70	peak
6	17970.000	24.43	26.72	51.15	74.00	-22.85	peak


Test Mode:	8DPSK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	AC 120V_60Hz

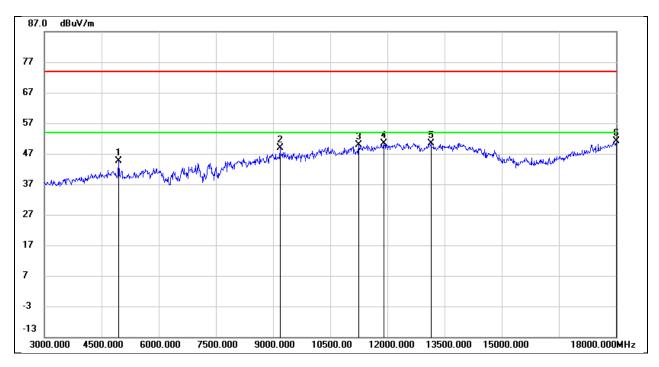
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4800.000	42.83	0.46	43.29	74.00	-30.71	peak
2	9390.000	37.36	10.43	47.79	74.00	-26.21	peak
3	10275.000	35.84	12.84	48.68	74.00	-25.32	peak
4	13425.000	28.42	21.52	49.94	74.00	-24.06	peak
5	14025.000	27.83	22.68	50.51	74.00	-23.49	peak
6	17775.000	24.34	25.86	50.20	74.00	-23.80	peak


Test Mode:	8DPSK	Frequency(MHz):	2441
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	49.78	0.61	50.39	74.00	-23.61	peak
2	9075.000	36.57	10.74	47.31	74.00	-26.69	peak
3	10350.000	36.07	13.21	49.28	74.00	-24.72	peak
4	12240.000	31.33	18.46	49.79	74.00	-24.21	peak
5	13080.000	31.10	19.50	50.60	74.00	-23.40	peak
6	17985.000	24.15	26.77	50.92	74.00	-23.08	peak

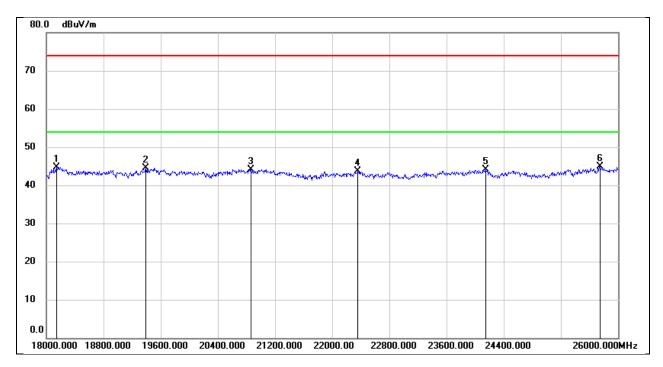

Test Mode:	8DPSK	Frequency(MHz):	2441
Polarity:	Vertical	Test Voltage:	AC 120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	42.97	0.61	43.58	74.00	-30.42	peak
2	9135.000	36.79	10.39	47.18	74.00	-26.82	peak
3	10350.000	35.14	13.21	48.35	74.00	-25.65	peak
4	12180.000	31.80	18.33	50.13	74.00	-23.87	peak
5	13920.000	27.65	22.71	50.36	74.00	-23.64	peak
6	17955.000	23.44	26.66	50.10	74.00	-23.90	peak


Test Mode:	8DPSK	Frequency(MHz):	2480
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4950.000	49.85	0.74	50.59	74.00	-23.41	peak
2	9060.000	37.28	10.82	48.10	74.00	-25.90	peak
3	10335.000	35.50	13.14	48.64	74.00	-25.36	peak
4	11880.000	31.29	17.97	49.26	74.00	-24.74	peak
5	13875.000	27.83	22.68	50.51	74.00	-23.49	peak
6	17910.000	24.46	26.50	50.96	74.00	-23.04	peak

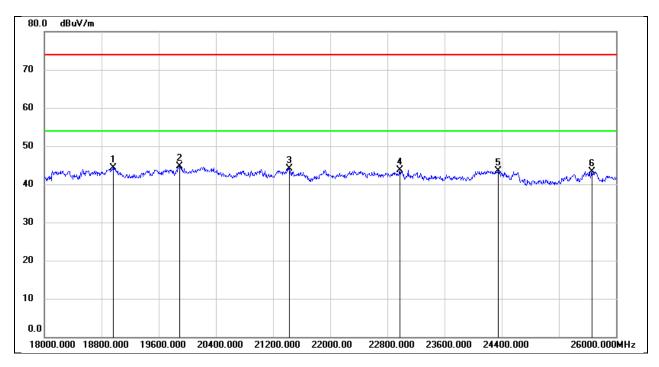
Test Mode:	8DPSK	Frequency(MHz):	2480
Polarity:	Vertical	Test Voltage:	AC 120V_60Hz



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4950.000	43.98	0.74	44.72	74.00	-29.28	peak
2	9180.000	38.87	10.13	49.00	74.00	-25.00	peak
3	11250.000	34.17	15.67	49.84	74.00	-24.16	peak
4	11910.000	32.34	18.11	50.45	74.00	-23.55	peak
5	13140.000	30.63	19.80	50.43	74.00	-23.57	peak
6	18000.000	24.26	26.83	51.09	74.00	-22.91	peak

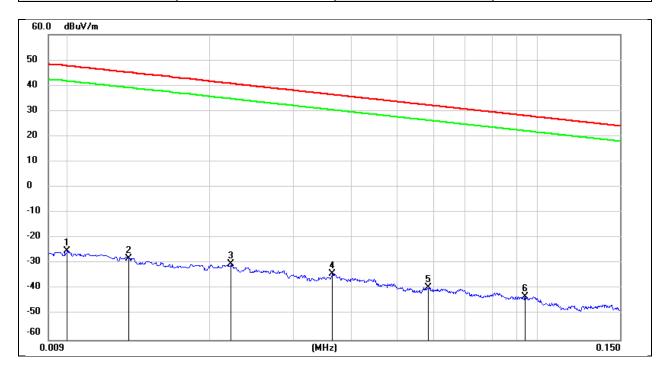
Page 60 of 103

SPURIOUS EMISSIONS(18 GHZ~26 GHZ)SPURIOUS 8.4. EMISSIONS(30 MHZ~1 GHZ)


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18144.000	50.27	-5.48	44.79	74.00	-29.21	peak
2	19392.000	50.12	-5.57	44.55	74.00	-29.45	peak
3	20864.000	49.10	-5.00	44.10	74.00	-29.90	peak
4	22360.000	47.75	-4.07	43.68	74.00	-30.32	peak
5	24152.000	46.89	-2.80	44.09	74.00	-29.91	peak
6	25744.000	45.50	-0.64	44.86	74.00	-29.14	peak

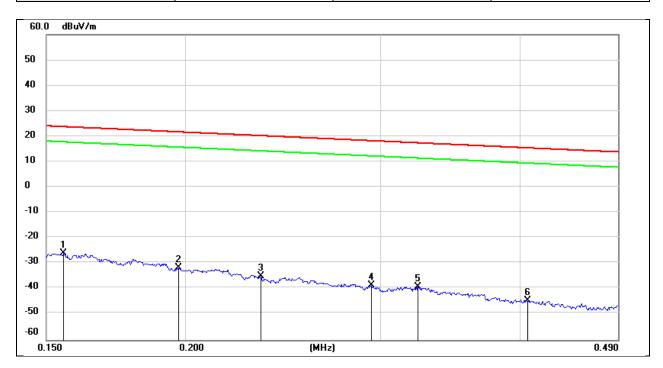
Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	AC 120V_60Hz



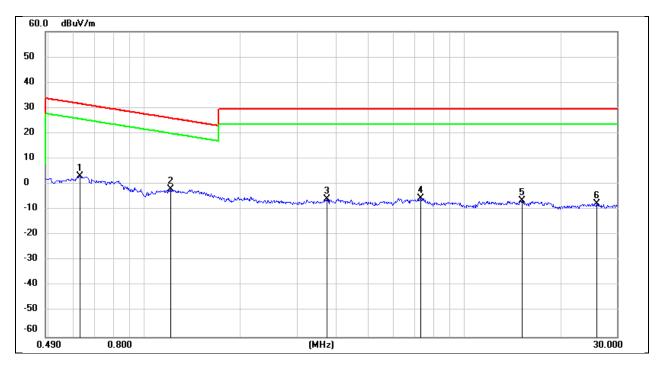
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18960.000	49.51	-5.25	44.26	74.00	-29.74	peak
2	19888.000	50.15	-5.36	44.79	74.00	-29.21	peak
3	21432.000	48.74	-4.71	44.03	74.00	-29.97	peak
4	22976.000	47.26	-3.46	43.80	74.00	-30.20	peak
5	24352.000	46.12	-2.62	43.50	74.00	-30.50	peak
6	25664.000	44.39	-1.01	43.38	74.00	-30.62	peak

REPORT NO.: 4791221995-1-RF-3 Page 62 of 103

8.5. SPURIOUS EMISSIONS(9 KHZ~30 MHZ)

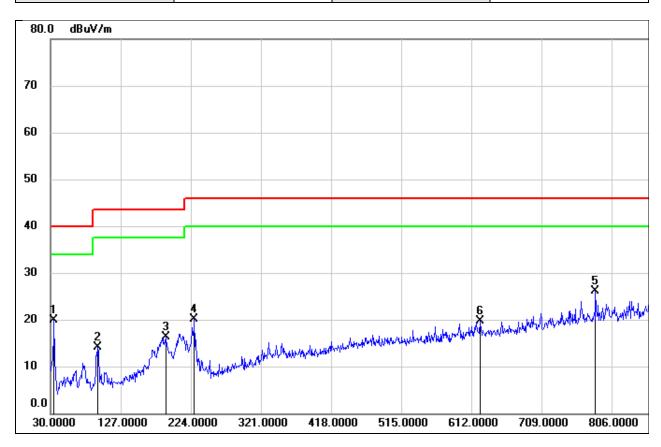

Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0100	76.22	-101.40	-25.18	47.60	-72.78	peak
2	0.0134	73.46	-101.39	-27.93	45.06	-72.99	peak
3	0.0221	71.13	-101.35	-30.22	40.71	-70.93	peak
4	0.0364	67.38	-101.42	-34.04	36.38	-70.42	peak
5	0.0585	61.97	-101.52	-39.55	32.26	-71.81	peak
6	0.0942	58.83	-101.75	-42.92	28.12	-71.04	peak


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1554	75.77	-101.65	-25.88	23.77	-49.65	peak
2	0.1973	70.08	-101.71	-31.63	21.70	-53.33	peak
3	0.2340	66.70	-101.77	-35.07	20.22	-55.29	peak
4	0.2942	63.32	-101.85	-38.53	18.23	-56.76	peak
5	0.3240	62.87	-101.88	-39.01	17.39	-56.40	peak
6	0.4066	57.52	-101.96	-44.44	15.42	-59.86	peak

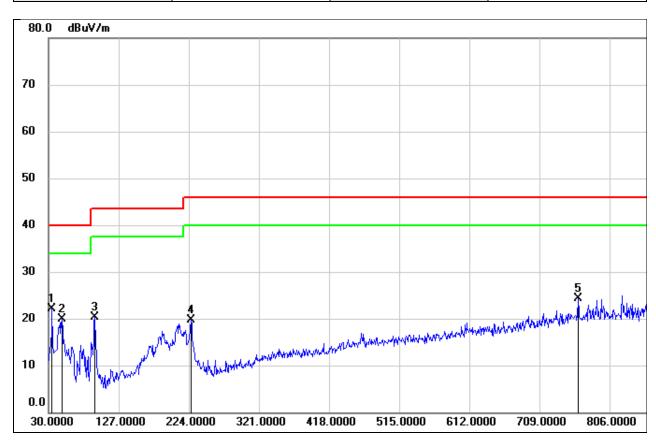
Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.6298	65.17	-62.09	3.08	31.62	-28.54	peak
2	1.2056	60.15	-62.17	-2.02	25.98	-28.00	peak
3	3.7100	55.70	-61.41	-5.71	29.54	-35.25	peak
4	7.3361	55.58	-61.17	-5.59	29.54	-35.13	peak
5	15.1859	54.55	-61.01	-6.46	29.54	-36.00	peak
6	25.8978	52.76	-60.36	-7.60	29.54	-37.14	peak

REPORT NO.: 4791221995-1-RF-3 Page 65 of 103

8.6. SPURIOUS EMISSIONS(30 MHZ~1 GHZ)


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	34.8500	34.62	-14.75	19.87	40.00	-20.13	QP
2	94.9900	30.64	-16.59	14.05	43.50	-29.45	QP
3	189.0800	28.47	-12.20	16.27	43.50	-27.23	QP
4	228.8500	33.40	-13.39	20.01	46.00	-25.99	QP
5	783.6900	29.22	-3.20	26.02	46.00	-19.98	QP
6	623.6400	25.80	-6.18	19.62	46.00	-26.38	QP

Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	AC 120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	34.8500	36.90	-14.75	22.15	40.00	-17.85	QP
2	48.4300	35.44	-15.44	20.00	40.00	-20.00	QP
3	94.0199	36.99	-16.65	20.34	43.50	-23.16	QP
4	226.9100	33.01	-13.32	19.69	46.00	-26.31	QP
5	762.3500	27.74	-3.38	24.36	46.00	-21.64	QP
6	900.0900	27.33	-1.34	25.99	46.00	-20.01	QP

Page 67 of 103

9. ANTENNA REQUIREMENT

REQUIREMENT

Please refer to FCC part 15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC part 15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DESCRIPTION

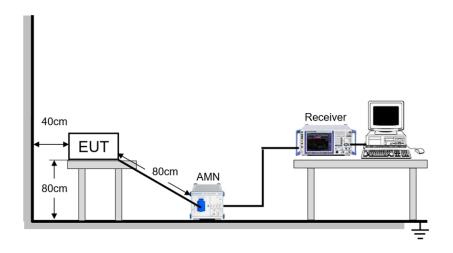
Pass

10. AC POWER LINE CONDUCTED EMISSION

LIMITS

Please refer to CFR 47 FCC §15.207 (a)

FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00


TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 6.2.

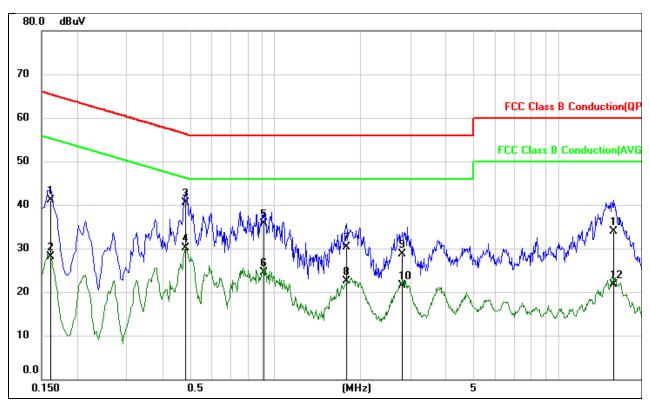
The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

TEST SETUP

Page 69 of 103

TEST ENVIRONMENT


Temperature	23.6℃	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V

TEST DATE / ENGINEER

Test Date	May 15, 2024	Test By	James Qin
-----------	--------------	---------	-----------

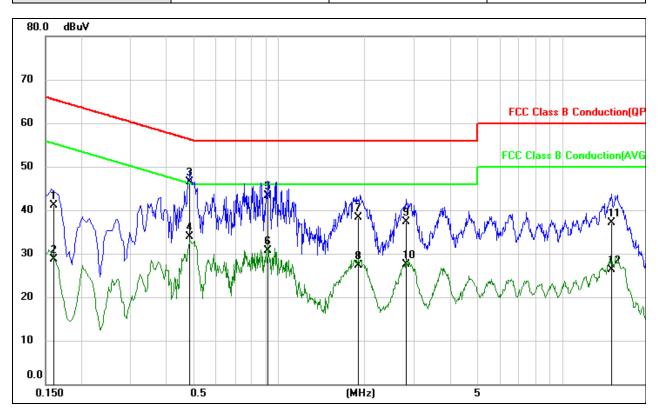
TEST RESULTS

Test Mode:	GFSK	Frequency(MHz):	2402
Line:	Line		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1618	30.85	10.32	41.17	65.37	-24.20	QP
2	0.1618	17.83	10.32	28.15	55.37	-27.22	AVG
3	0.4834	30.23	10.24	40.47	56.28	-15.81	QP
4	0.4834	19.89	10.24	30.13	46.28	-16.15	AVG
5	0.9091	25.54	10.09	35.63	56.00	-20.37	QP
6	0.9091	14.45	10.09	24.54	46.00	-21.46	AVG
7	1.7917	20.28	9.96	30.24	56.00	-25.76	QP
8	1.7917	12.46	9.96	22.42	46.00	-23.58	AVG
9	2.8234	18.63	10.05	28.68	56.00	-27.32	QP
10	2.8234	11.48	10.05	21.53	46.00	-24.47	AVG
11	15.5139	23.32	10.57	33.89	60.00	-26.11	QP
12	15.5139	11.18	10.57	21.75	50.00	-28.25	AVG

Page 70 of 103

Note:


- 1. Result = Reading + Correct Factor.
- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz \sim 150 kHz), 9 kHz (150 kHz \sim 30 MHz).
- 4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

Note: All the modes have been tested, only the worst data was recorded in the report.

REPORT NO.: 4791221995-1-RF-3 Page 71 of 103

Test Mode:	GFSK	Frequency(MHz):	2402
Line:	Neutral		

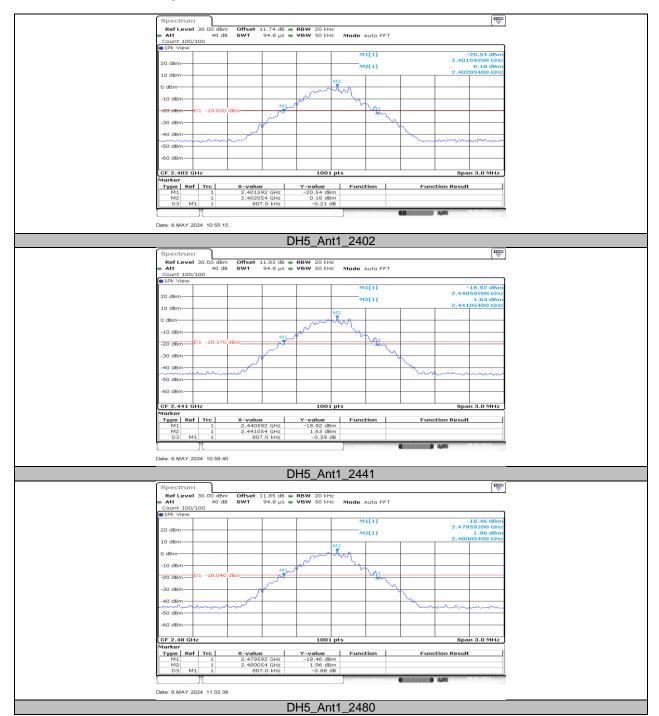
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1611	30.84	10.22	41.06	65.41	-24.35	QP
2	0.1611	18.55	10.22	28.77	55.41	-26.64	AVG
3	0.4833	36.52	10.05	46.57	56.28	-9.71	QP
4	0.4833	23.80	10.05	33.85	46.28	-12.43	AVG
5	0.9175	33.36	9.88	43.24	56.00	-12.76	QP
6	0.9175	20.74	9.88	30.62	46.00	-15.38	AVG
7	1.8941	28.26	10.02	38.28	56.00	-17.72	QP
8	1.8941	17.36	10.02	27.38	46.00	-18.62	AVG
9	2.8043	27.21	10.15	37.36	56.00	-18.64	QP
10	2.8043	17.28	10.15	27.43	46.00	-18.57	AVG
11	14.8345	26.49	10.63	37.12	60.00	-22.88	QP
12	14.8345	15.67	10.63	26.30	50.00	-23.70	AVG

Note:

- 1. Result = Reading + Correct Factor.
- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).
- 4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

Note: All the modes have been tested, only the worst data was recorded in the report.

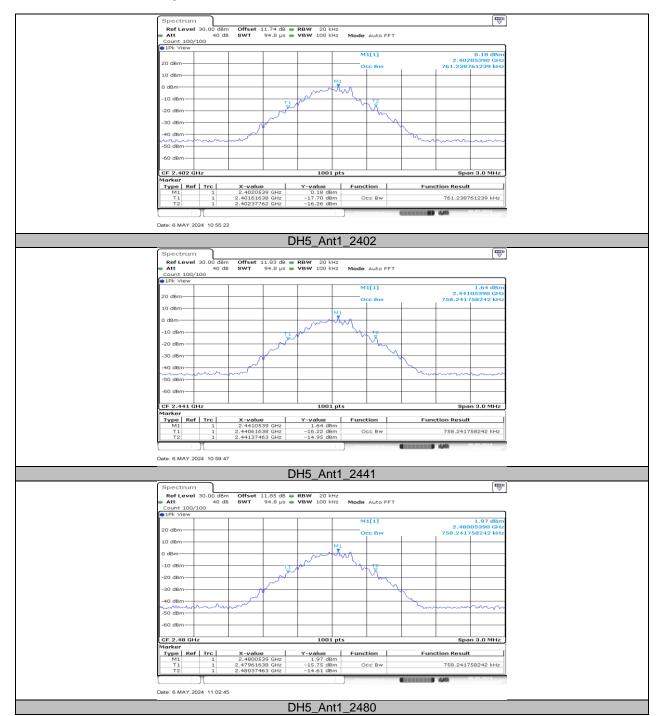
Page 72 of 103


11. TEST DATA

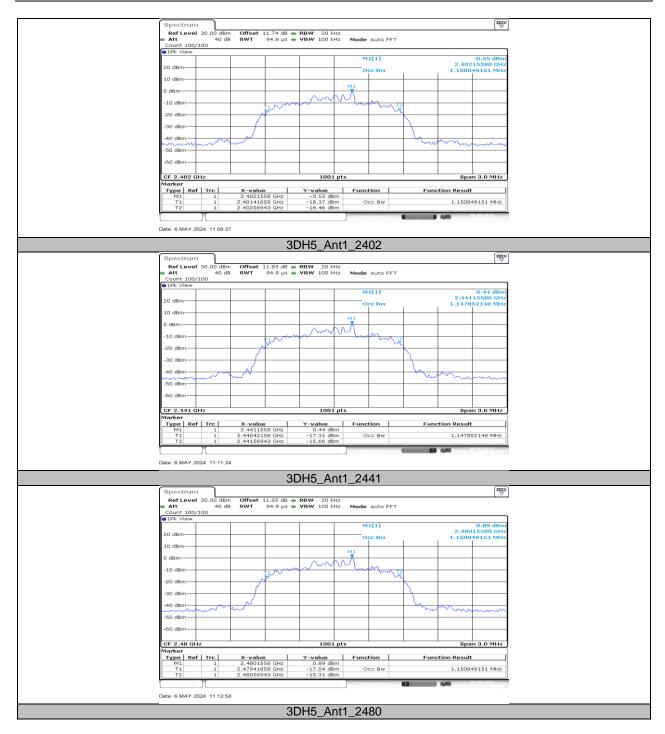
11.1. APPENDIX A: 20DB EMISSION BANDWIDTH 11.1.1. Test Result


Test Mode	Antenna	Frequency[MHz]	20db EBW[MHz]	FL[MHz]	FH[MHz]
		2402	0.81	2401.59	2402.40
DH5	DH5 Ant1	2441	0.81	2440.59	2441.40
		2480	0.81	2479.59	2480.40
		2402	1.25	2401.36	2402.61
3DH5	Ant1	2441	1.25	2440.36	2441.61
		2480	1.25	2479.36	2480.61

11.1.2. Test Graphs



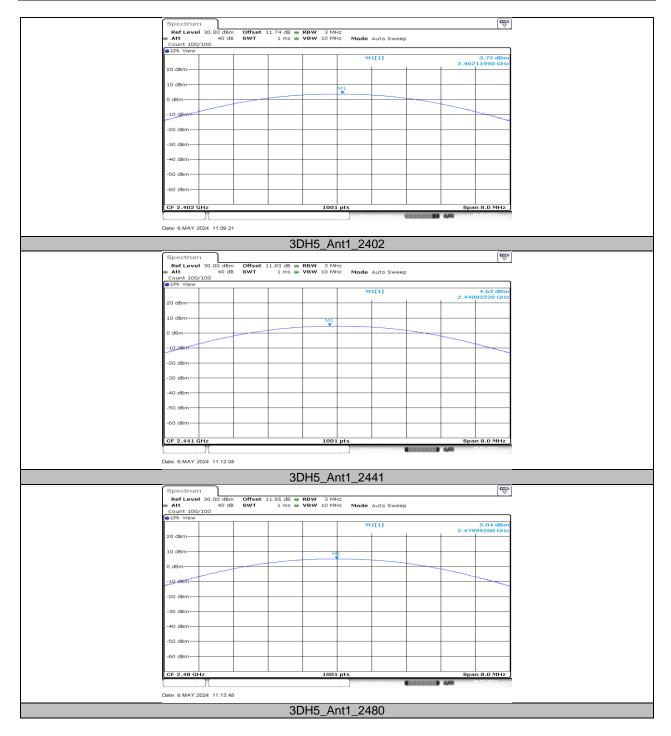
11.2. APPENDIX B: OCCUPIED CHANNEL BANDWIDTH 11.2.1. Test Result


Test Mode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]
		2402	0.761	2401.6164	2402.3776
DH5 Ant1	2441	0.758	2440.6164	2441.3746	
	2480	0.758	2479.6164	2480.3746	
		2402	1.151	2401.4186	2402.5694
3DH5	Ant1	2441	1.148	2440.4216	2441.5694
		2480	1.151	2479.4186	2480.5694

11.2.2. Test Graphs

Page 78 of 103

11.3. APPENDIX C: MAXIMUM CONDUCTED OUTPUT POWER 11.3.1. Test Result


Test Mode	Antenna	Frequency[MHz]	Result[dBm]	Limit[dBm]	Verdict
		2402	4.05	≤30	PASS
DH5	Ant1	2441	5.44	≤30	PASS
		2480	5.77	≤30	PASS
		2402	3.72	≤20.97	PASS
3DH5	Ant1	2441	4.63	≤20.97	PASS
		2480	5.04	≤20.97	PASS

11.3.2. Test Graphs

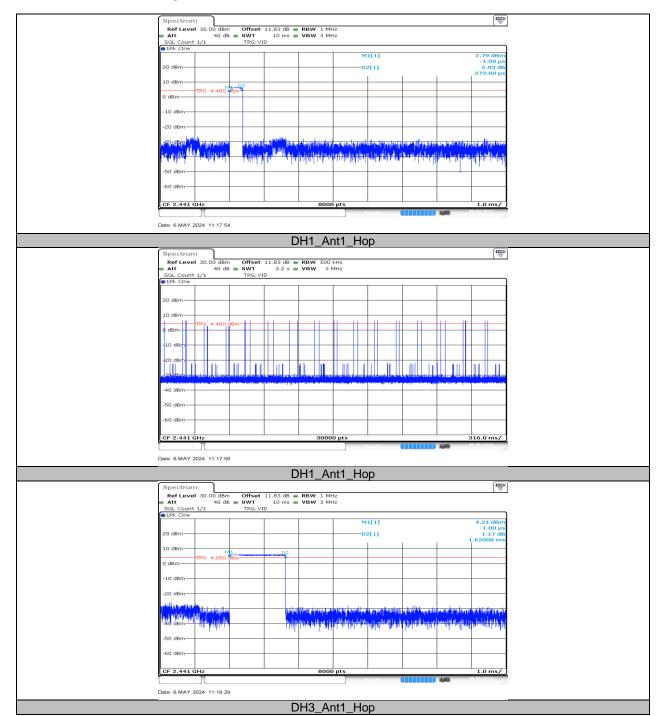
Page 81 of 103

11.4. APPENDIX D: CARRIER FREQUENCY SEPARATION 11.4.1. Test Result

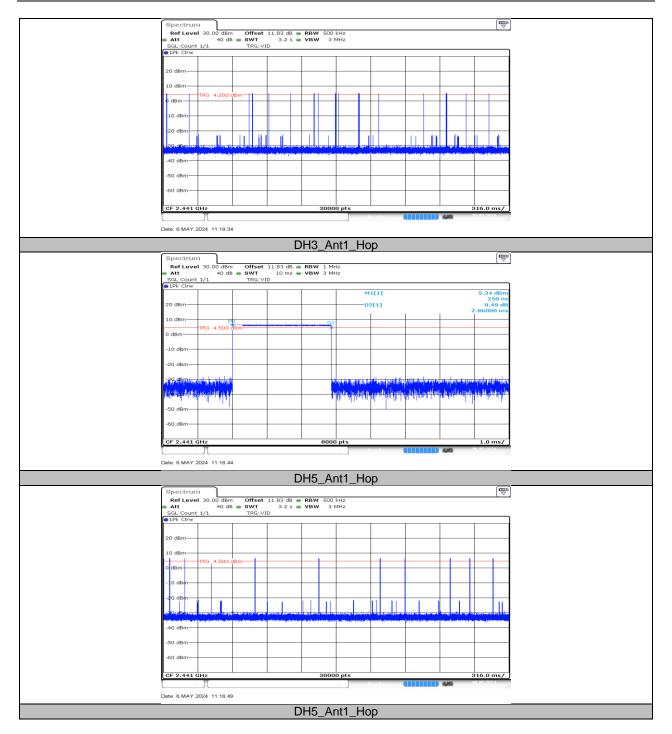
Test Mode	Antenna	Frequency[MHz]	Result[MHz]	Limit[MHz]	Verdict
DH5	Ant1	Нор	1.014	≥0.025	PASS
3DH5	Ant1	Нор	1.003	≥0.025	PASS

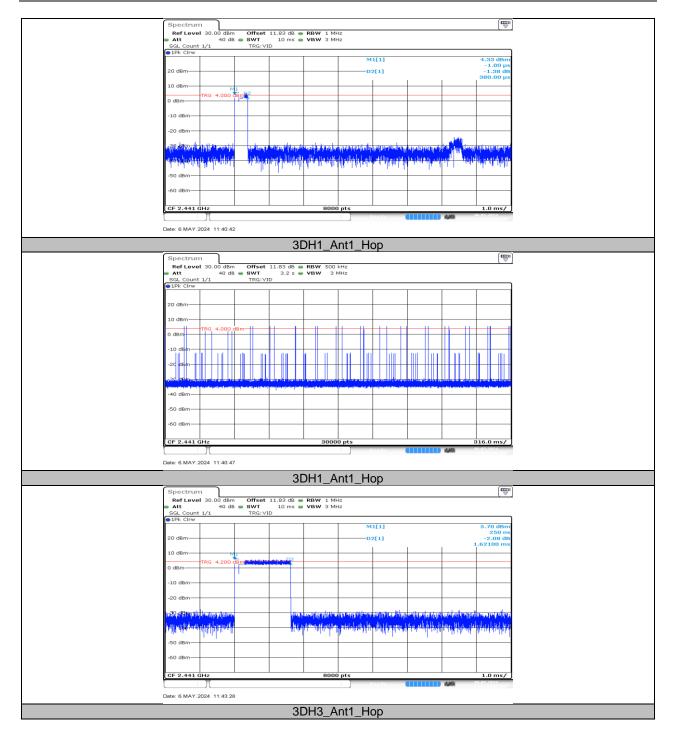
11.4.2. Test Graphs

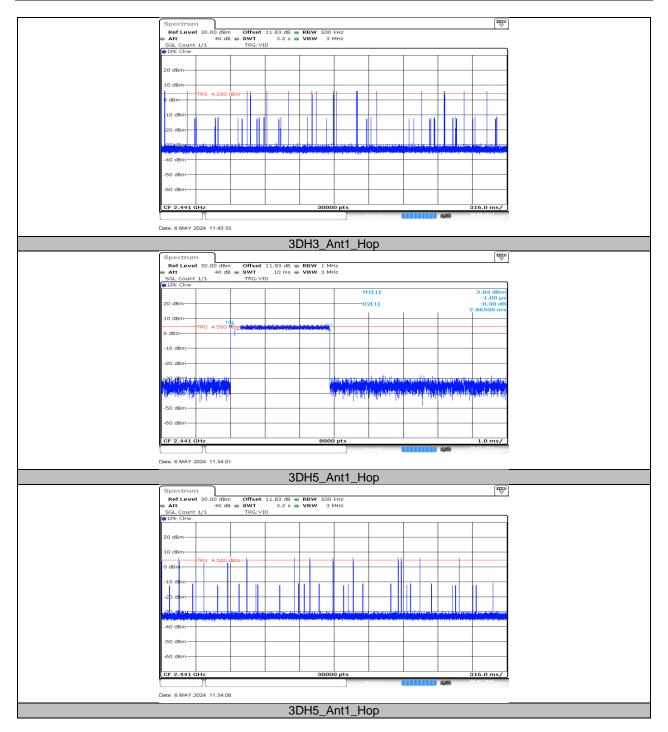
Page 83 of 103

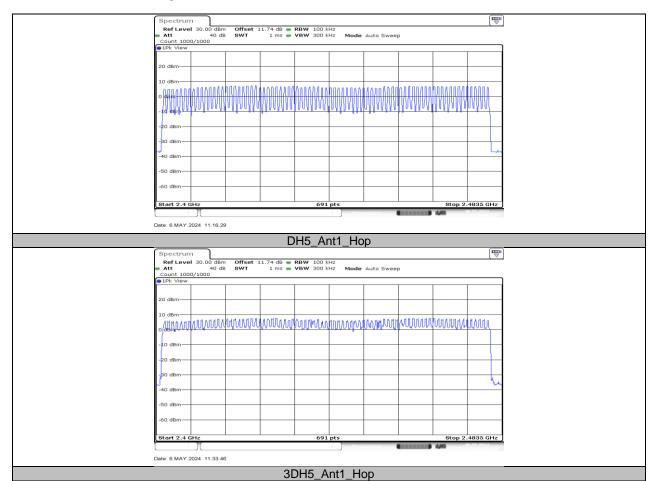

11.5. APPENDIX E: TIME OF OCCUPANCY

11.5.1. Test Result


Test Mode	Antenna	Frequency[MHz]	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.373	320	0.119	≤0.4	PASS
DH3	Ant1	Нор	1.620	190	0.308	≤0.4	PASS
DH5	Ant1	Нор	2.860	110	0.315	≤0.4	PASS
3DH1	Ant1	Нор	0.380	330	0.125	≤0.4	PASS
3DH3	Ant1	Нор	1.621	190	0.308	≤0.4	PASS
3DH5	Ant1	Нор	2.865	130	0.372	≤0.4	PASS


11.5.2. Test Graphs

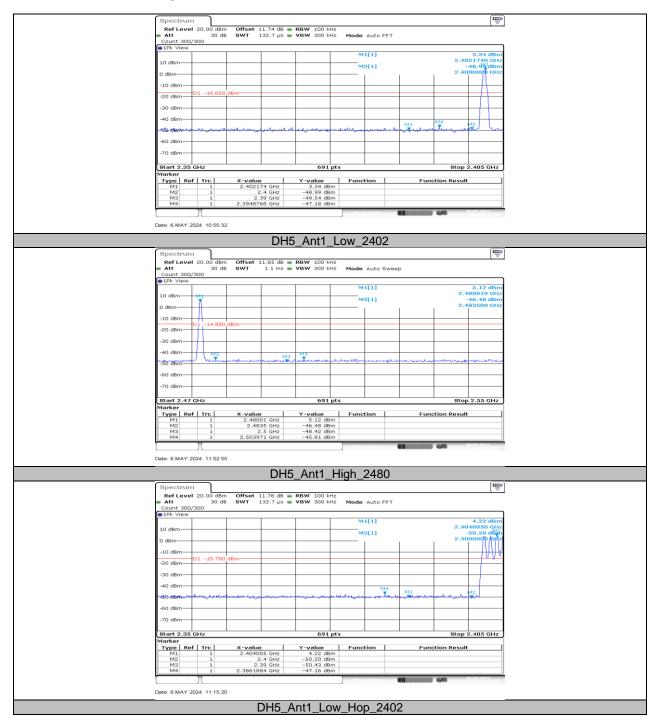



Page 88 of 103

11.6. APPENDIX F: NUMBER OF HOPPING CHANNELS 11.6.1. Test Result

Test Mode	Antenna	Frequency[MHz]	Result[Num]	Limit[Num]	Verdict
DH5	Ant1	Нор	79	≥15	PASS
3DH5	Ant1	Нор	79	≥15	PASS

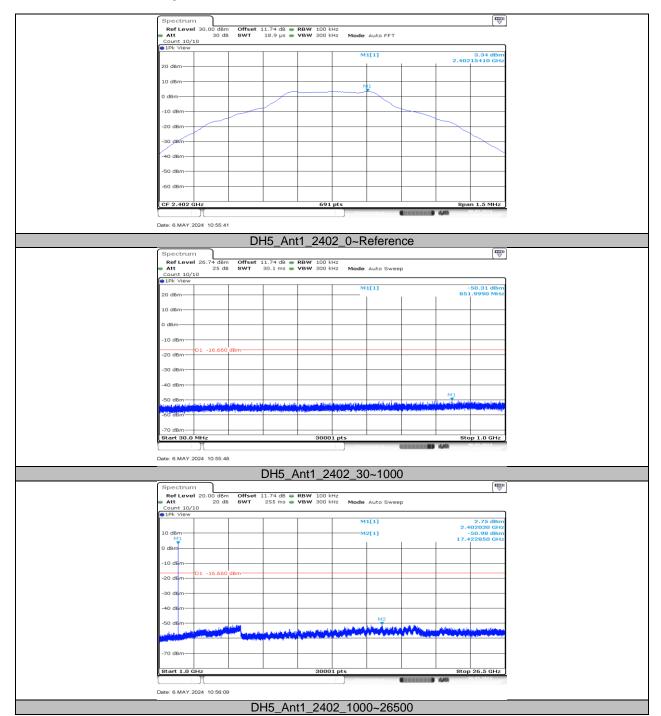
11.6.2. Test Graphs


Page 90 of 103

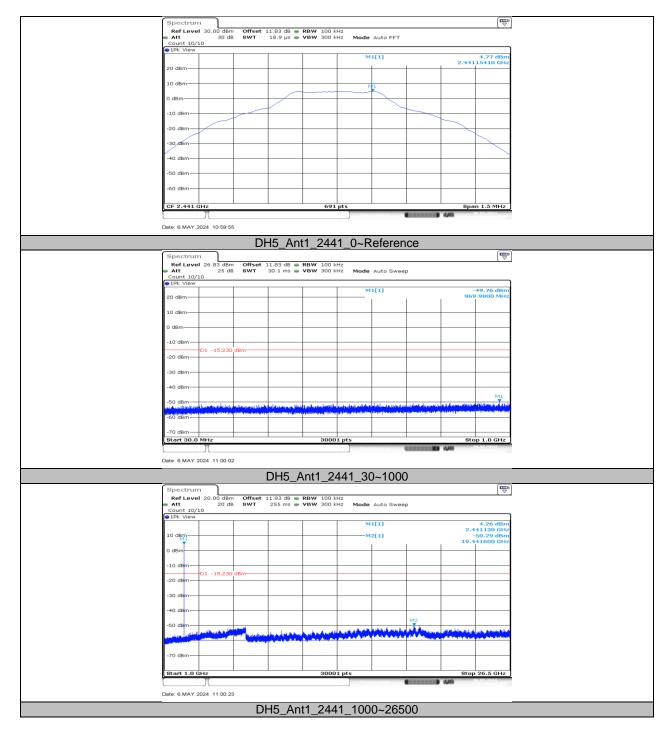
11.7. APPENDIX G: BAND EDGE MEASUREMENTS 11.7.1. Test Result

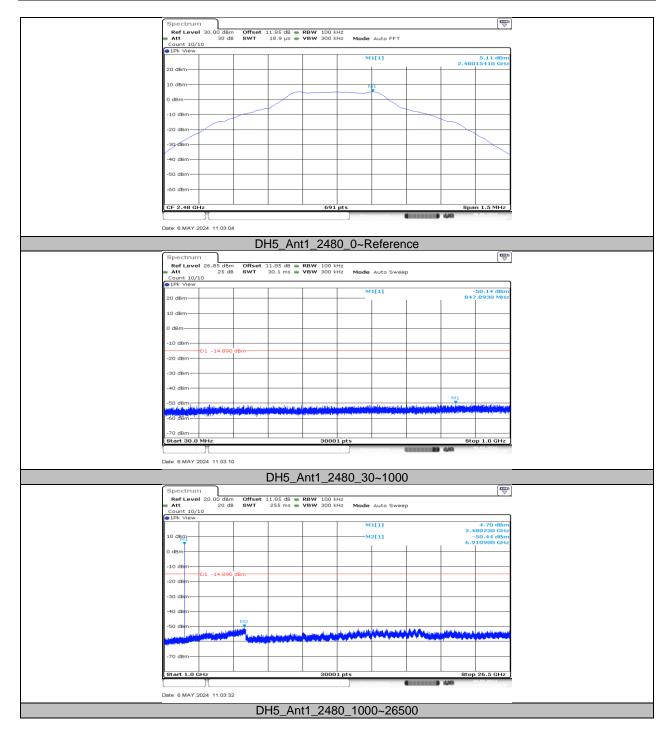

Test Mode	Antenna	ChName	Frequency [MHz]	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
		Low	2402	3.34	-47.18	≤-16.66	PASS
DH5	DUE Anti	High	2480	5.12	-45.81	≤-14.88	PASS
DH5 AIIII	Ant1	Low	Hop_2402	4.22	-47.16	≤-15.78	PASS
		High	Hop_2480	6.49	-43	≤-13.51	PASS
		Low	2402	3.10	-47.08	≤-16.9	PASS
2045	A m+1	High	2480	4.63	-45.04	≤-15.37	PASS
3DH5	Ant1	Low	Hop_2402	5.79	-46.25	≤-14.21	PASS
		High	Hop_2480	7.36	-44.65	≤-12.64	PASS

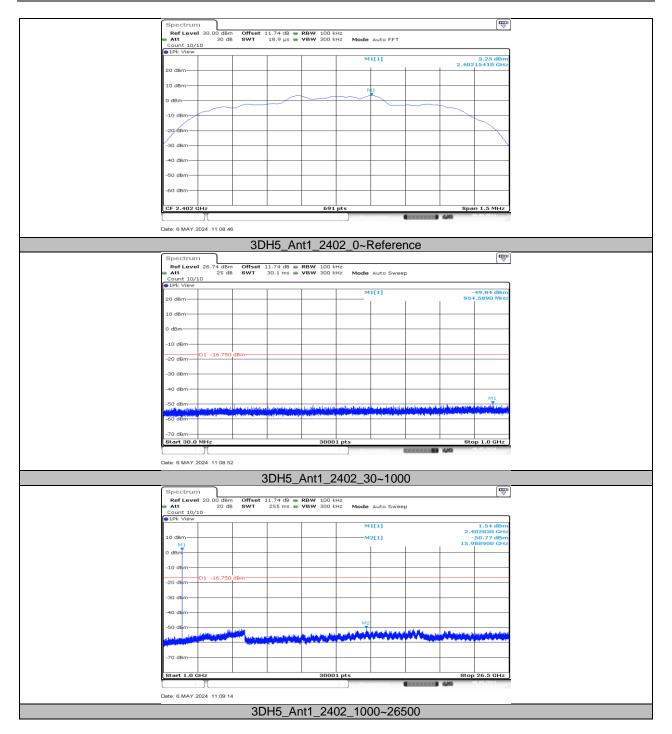
11.7.2. Test Graphs

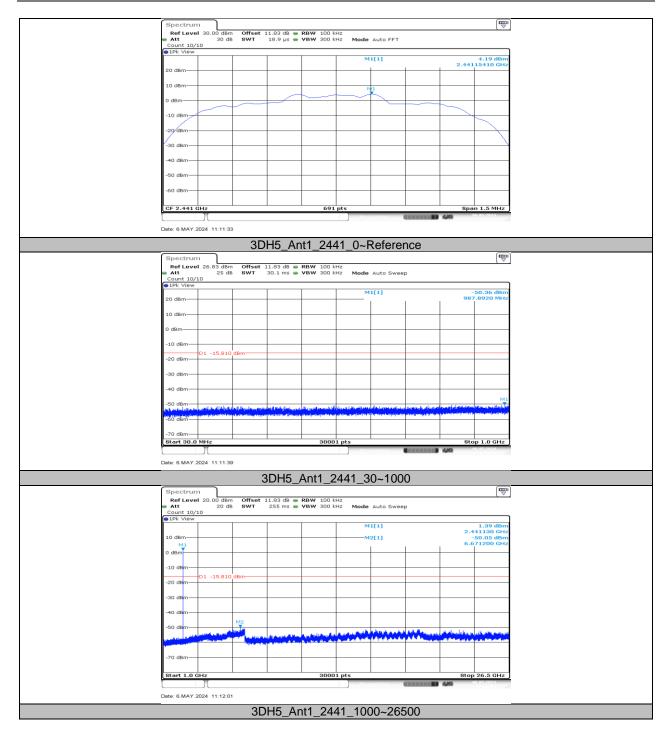

Page 94 of 103

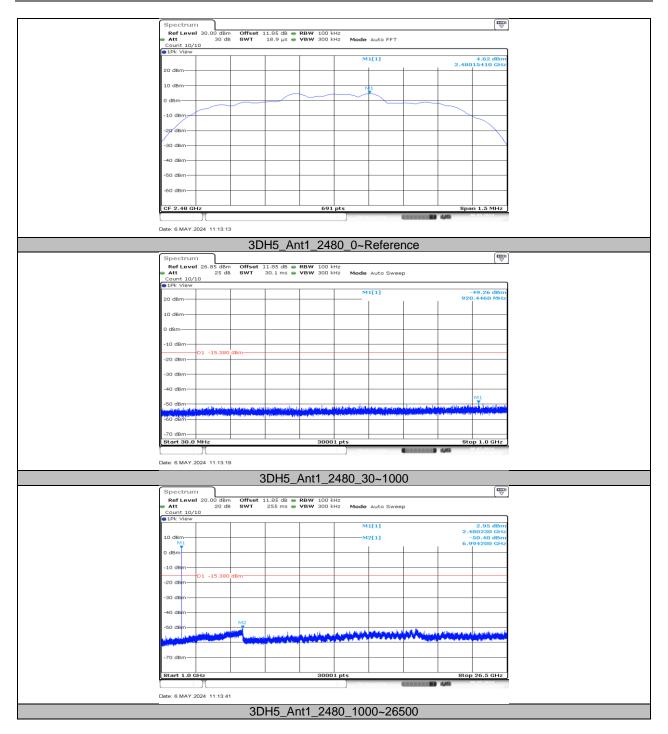
11.8. APPENDIX H: CONDUCTED SPURIOUS EMISSION 11.8.1. Test Result


Test Mode	Antenna	Frequency[MHz]	FreqRange [MHz]	Result [dBm]	Limit [dBm]	Verdict
			Reference	3.34		PASS
		2402	30~1000	-50.31	≤-16.66	PASS
			1000~26500	-50.98	≤-16.66	PASS
	DH5 Ant1		Reference	4.77		PASS
DH5		2441	30~1000	-49.76	≤-15.23	PASS
			1000~26500	-50.29	≤-15.23	PASS
		2480	Reference	5.11		PASS
			30~1000	-50.14	≤-14.89	PASS
			1000~26500	-50.44	≤-14.89	PASS
		2402	Reference	3.25		PASS
			30~1000	-49.84	≤-16.75	PASS
			1000~26500	-50.77	≤-16.75	PASS
			Reference	4.19		PASS
3DH5	Ant1	2441	30~1000	-50.36	≤-15.81	PASS
			1000~26500	-50.05	≤-15.81	PASS
			Reference	4.62		PASS
		2480	30~1000	-49.26	≤-15.38	PASS
			1000~26500	-50.4	≤-15.38	PASS


11.8.2. Test Graphs







Page 101 of 103

11.9. APPENDIX I: DUTY CYCLE 11.9.1. Test Result

Test Mode	Antenna	Frequency[MHz]	ON Time [ms]	Period [ms]	Х	DC [%]	xFactor	Limit	Verdict
DH5	Ant1	2402	2.87	3.74	0.7674	76.74	1.15		
3DH5	Ant1	2402	2.87	3.73	0.7694	76.94	1.14		

Note:

Duty Cycle Correction Factor=10log (1/x).


Where: x is Duty Cycle (Linear)

Where: T is On Time

If that calculated VBW is not available on the analyzer then the next higher value should be used.

11.9.2. Test Graphs

Page 103 of 103

APPENDIX: PHOTOGRAPHS OF TEST CONFIGURATION

Referred to 4791221995-1_Appendix_EUTPhoto_External

APPENDIX: PHOTOGRAPHS OF THE EU	APPE	NDIX:	PHOT	OGRA	PHS	OF T	THE	EU	T
---------------------------------	-------------	-------	------	------	------------	------	-----	----	---

Referred to 4791221995-1_Appendix_EUTPhoto_External

END OF REPORT