

Shenzhen GTI Technology Co., Ltd.

1F,2 Block, Jiaquan Building, Guanlan High-tech Park Baoan District, Shenzhen, Guangdong, China. Tel: +86-755-27559792 Fax: +86-755-86116468

Report No.: GTI20140490F-4 Page 1 of 96

TEST REPORT

Product Name:	WCDMA Mobile Phone
Trademark:	NUU
Model/Type reference:	NU-3S
Listed Model(s):	NU-3S series
Model difference:	NU-3S other series model No. are all the same with main model NU-3S, except for body color, RAM and LOGO to meet different customer requirements
FCC ID:	2ADINNUUNU3S
Test Standards:	ANSI C95.1–1999 47CFR §2.1093 KDB 447498
Test Standards:	47CFR §2.1093 KDB 447498
Applicant:	47CFR §2.1093 KDB 447498
Applicant:	47CFR §2.1093 KDB 447498 Sun Cupid Technology (HK) Ltd. 16/F, CEO Tower, 77 Wing Hong St, Cheung Sha Wan, Kowloon, Hong Kong
Applicant: Address of Applicant	47CFR §2.1093 KDB 447498 Sun Cupid Technology (HK) Ltd. 16/F, CEO Tower, 77 Wing Hong St, Cheung Sha Wan, Kowloon, Hong Kong Oct.20, 2014

* In the configuration tested, the EUT complied with the standards specified above

GENERAL DESCRIPTION OF EUT					
Equipment:	WCDMA Mobile Phone				
Model Name:	NU-3S				
Manufacturer:	Sun Cupid Technology (Shenzhen) Ltd.				
Manufacturer Address:	10A, No.3 Bldg, China Academy of Sci & Tech Development, No.1 High-Tech South St. Nanshan district, Shenzhen, China.				
Power Source:	DC 3.7V from 2050mAh Li-ion battery				
Power Rating:	Input: 100-240VAC, 50/60Hz 0.2A MAX				
	Output: 5V===1.0A				

Thomas Morgan Compiled By: (Thomas Morgan) on Reviewed By: (Tony Wang) Approved By:

(Walter Chen)

This test report consists of 96 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by GTI. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to GTI within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit.

Table of Contents

Page

1.	SU	IMMARY	. 4
	1.1.	Test Standards	4
	1.2.	Summary of Maximum SAR Value	4
	1.3.	Test Facility	5
	1.4.	Measurement Uncertainty (300MHz-3GHz)	5
2.	GE	NERAL INFORMATION	7
	2.1.	Environmental conditions	7
	2.2.	GENERAL DESCRIPTION OF EUT	
	2.3.	Description of Test Modes	
	2.4.	Measurement Instruments List	-
3.		R MEASUREMENTS SYSTEM CONFIGURATION	
	3.1.	SAR MEASUREMENT SET-UP	10
	3.1. 3.2.	DASY5 E-FIELD PROBE SYSTEM	
	3.2. 3.3.	PHANTOMS	
	3.3. 3.4.	DEVICE HOLDER	
	3.4. 3.5.	SCANNING PROCEDURE	
	3.5. 3.6.	DATA STORAGE AND EVALUATION	
4.	TIS	SSUE SIMULATING LIQUID	
	4.1.	The composition of the tissue simulating liquid	
	4.2.	TISSUE CALIBRATION RESULT	16
	4.3.	Tissue Dielectric Parameters for Head and Body Phantoms	17
5.	SY	STEM CHECK	18
6.	EU	IT TEST POSITION	20
	6.1.	Define Two Imaginary Lines on the Handset	20
	6.2.	Снеек Position	20
	6.3.	TITLE POSITION	21
	6.4.	BODY WORN POSITION	21
	6.5.	SAR TESTING FOR TABLET	21
7.	М	EASUREMENT PROCEDURES	22
8.	TE	ST CONDITIONS AND RESULTS	26
	8.1.	Conducted Power Results	26
	8.2.	Antenna Location	29
	8.3.	TEST RESULTS	30
9.	SY	STEM CHECK RESULTS	37
10).	SAR TEST GRAPH RESULTS	43
11		CALIBRATION CERTIFICATE	53
12	2.	EUT TEST PHOTO	91
13	.	PHOTOGRAPHS OF EUT CONSTRUCTIONAL	96

1.1. Test Standards

IEEE Std C95.1, 1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz. It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

IEEE Std 1528[™]-2003: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

KDB 447498 D01 Mobile Portable RF Exposure v05r02: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

KDB 616217 D04 SAR for laptop and tablets v01: SAR Evaluation Considerations for Laptop,

Notebook, Netbook and Tablet Computers

KDB865664 D01 SAR measurement 100 MHz to 6 GHz v01: SAR Measurement Requirements for 100 MHz to 6 GHz

KDB865664 D02 SAR Reporting v01: RF Exposure Compliance Reporting and Documentation Considerations

KDB248227: SAR measurement procedures for 802.112abg transmitters

FCC Part 2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices

KDB648474 D04 SAR Handsets Multi Xmiter and Ant v01: SAR Evaluation Considerations for Wireless Handsets.

KDB941225 D06 Hot Spot SAR v01: SAR Evaluation Procedures for Portable Devices with Wireless **Router Capabilities**

KDB941225 D03 Test Reduction GSM GPRS EDGE V01: Recommended SAR Test Reduction Procedures for GSM/GPRS/EDGE

1.2. Summary of Maximum SAR Value

The maximum results of Specific Absorption Rate (SAR) found during testing for EUT are as follows:

Exposure Position	Frequency Band	Highest Tested 1g-SAR(W/Kg)	Highest Scaled Maximum SAR(W/Kg)		
	GSM 850	0.212	0.233		
	PCS 1900	0.132	0.147		
Head	WCDMA Band II	0.351	0.379		
	WCDMA Band V	0.207	0.217		
	WLAN2450	0.285	0.373		
	GSM 850	0.302	0.335		
	PCS 1900	0.300	0.309		
Body- worn	WCDMA Band II	0.638	0.689		
	WCDMA Band V	0.544	0.571		
	WLAN2450	0.436	0.571		

Highest tested and scaled SAR Summary

Exposure Position	Transmission Combination	Highest Simultaneous Maximum SAR(W/Kg)
	GSM 850+WLAN	0.606
Head	PCS 1900+WLAN	0.520
	WCDMA Band II+WLAN	0.752
	WCDMA Band V+WLAN	0.590
Body- worn	GSM 850+WLAN	0.906
	PCS 1900+WLAN	0.880
	WCDMA Band II+WLAN	1.260
	WCDMA Band V+WLAN	1.142

Highest Simultaneous transmission SAR Summary

Note:

- This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6W/Kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1, and had been tested in accordance with measurement methods and procedures specified in IEEE 1528-2003 and the relevant KDB files like KDB 941225 D01, KDB 941225 D03, KDB 865664 D02 etc.
- 2. This EUT owns two SIM cards, after we perform the pretest for these two SIM cards; we found the SIM 1 is the worst case, so its result is recorded in this report

1.3. Test Facility

1.3.1 Address of the test laboratory

Shenzhen General Testing & Inspection Technology Co., Ltd.

Add: 1F, 2 Block, Jiaquan Building, Guanlan High-tech Park Baoan District, Shenzhen, Guangdong, China.

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 9783A

The 3m alternate test site of Shenzhen GTI Technology Co., Ltd.EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Aug, 2011.

FCC-Registration No.: 214666

Shenzhen GTI Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 214666, Sep 19, 2011

1.4. Measurement Uncertainty (300MHz-3GHz)

No.	Error Description	Туре	Uncertai nty Value	Probably Distributi on	Div.	(Ci) 1g	(Ci) 10 g	Std. Unc. (1g)	Std. Unc. (10g)	Degre e of freedo m
	Measurement System									
1	Probe calibration	В	5.50%	Ν	1	1	1	5.50%	5.50%	8
2	Axial isotropy	В	4.70%	R	$\sqrt{3}$	0.7	0.7	1.90%	1.90%	∞

1F, 2 Block, Jiaquan Building, Guanlan High-tech Park Baoan District, Shenzhen, Guangdong, China

3	Hemispherical isotropy	В	9.60%	R	$\sqrt{3}$	0.7	0.7	3.90%	3.90%	8
4	Boundary Effects	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	8
5	Probe Linearity	В	4.70%	R	$\sqrt{3}$	1	1	2.70%	2.70%	8
6	Detection limit	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	8
7	RF ambient conditions-noise	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
8	RF ambient conditions-reflec tion	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	8
9	Response time	В	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	∞
10	Integration time	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	8
11	RF ambient	В	3.00%	R	$\sqrt{3}$	1	1	1.70%	1.70%	8
12	Probe positioned mech. restrictions	В	0.40%	R	$\sqrt{3}$	1	1	0.20%	0.20%	8
13	Probe positioning with respect to phantom shell	В	2.90%	R	$\sqrt{3}$	1	1	1.70%	1.70%	8
14	Max.SAR evaluation	В	3.90%	R	$\sqrt{3}$	1	1	2.30%	2.30%	8
			Test S	ample Relat	ed	1	1			
15	Test sample positioning	А	1.86%	Ν	1	1	1	1.86%	1.86%	8
16	Device holder uncertainty	А	1.70%	Ν	1	1	1	1.70%	1.70%	∞
17	Drift of output power	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	∞
			Phante	om and Set-	up					
18	Phantom uncertainty	В	4.00%	R	$\sqrt{3}$	1	1	2.30%	2.30%	8
19	Liquid conductivity (target)	В	5.00%	R	$\sqrt{3}$	0.64	0.4 3	1.80%	1.20%	8
20	Liquid conductivity (meas.)	A	0.50%	Ν	1	0.64	0.4 3	0.32%	0.26%	8
21	Liquid permittivity (target)	В	5.00%	R	$\sqrt{3}$	0.64	0.4 3	1.80%	1.20%	8
22	Liquid permittivity (meas.)	A	0.16%	Ν	1	0.64	0.4 3	0.10%	0.07%	8
Combined standard uncertainty	$u_{c} = \sqrt{\sum_{i=1}^{22} c_{i}^{2} u_{i}^{2}}$		/	/	/	/	/	10.20%	10.00 %	8
Expanded uncertainty (confidence interval of 95 %)	$u_e = 2u_c$		/	R	K= 2	/	/	20.40%	20.00 %	8

2. GENERAL INFORMATION

2.1. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	15°C -35°C
Relative Humidity:	35%-55 %
Air Pressure:	101 kPa

2.2. General Description of EUT

Product Name:	WCDMA Mobile Phone
Model/Type reference:	NU-3S
Test Device	Prototype
Power supply:	DC 3.7V from 2050mAh Li-ion battery
Adapter information:	Model: HNFG050100UU
	Input: 100-240VAC, 50/60Hz 0.2A MAX
	Output: 5V===1.0A
Hardware version:	UA1209 VER.A
Software version:	3S-US-01
2G	
Operation Band:	GSM850, PCS1900
Supported Type:	GSM/GPRS/EGPRS
Power Class:	GSM900:Power Class 4
	DCS1800:Power Class 1
Modulation Type:	GMSK for GSM/GPRS
	GMSK/8PSK(only downlink) for EGPRS
GSM Release Version	R99
GPRS Multislot Class	12
EGPRS Multislot Class	12
WCDMA	
Operation Band:	FDD Band II & Band V
Power Class:	Power Class 3
Modulation Type:	QPSK for WCDMA/HSUPA/HSDPA
WCDMA Release Version:	R8
HSDPA Release Version:	Category 14
HSUPA Release Version:	Category 6
DC-HSUPA Release Version:	Not Supported
WIFI	

Shenzhen General Testing & Inspection Technology Co., Ltd.

Supported type:	802.11b/802.11g/802.11n(H20)/802.11n(H40)
Modulation:	802.11b: DSSS 802.11g/802.11n(H20)/802.11n(H40): OFDM
Operation frequency:	802.11b/802.11g/802.11n(H20): 2412MHz~2462MHz 802.11n(H40): 2422MHz~2452MHz
Channel number:	802.11b/802.11g/802.11n(H20): 11 802.11n(H40): 7
Channel separation:	5MHz
Antenna type:	PIFA Antenna
Antenna gain:	1.60dBi
Bluetooth 3.0	
Version:	Supported BT3.0
Modulation:	GFSK, π/4DQPSK, 8DPSK
Operation frequency:	2402MHz~2480MHz
Channel number:	79
Channel separation:	1MHz
Antenna type:	PIFA Antenna
Antenna gain:	1.60dBi
Bluetooth 4.0	
Supported type:	Version 4.0 for low Energy
Modulation:	GFSK
Operation frequency:	2402MHz to 2480MHz
Channel number:	40
Channel separation:	2 MHz
Antenna type:	PIFA Antenna
Antenna gain:	1.60dBi

2.3. Description of Test Modes

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power the EUT has been tested under typical operating condition and The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

2.4. Measurement Instruments List

Test Equipment	Manufacturer	Type/Model	Serial Number	Calibrated until
Data Acquisition Electronics DAEx	SPEAG	DAE4	1315	Nov 24,2014
E-field Probe	SPEAG	EX3DV4	3842	Jun 05,2015
System Validation Dipole 835V2	SPEAG	D835V2	4d134	Dec 12,2014
System Validation Dipole D900V2	SPEAG	D900V2	1d129	Dec 12,2014
System Validation Dipole D1750V2	SPEAG	D1750V2	1062	Dec 11,2014
System Validation Dipole 1900V2	SPEAG	D1900V2	5d150	Dec 11,2014
System Validation Dipole 2450V2	SPEAG	D2450V2	884	Dec 10,2014
Dielectric Probe Kit	Agilent	85070E	US44020288	/
Power meter	Agilent	E4417A	GB41292254	Nov 25,2014
Power sensor	Agilent	8481H	MY41095360	Nov 25,2014
Network analyzer	Agilent	8753E	US37390562	Nov 24,2014
Universal Radio Communication Tester	ROHDE & SCHWARZ	CMU200	112012	Oct 22,2015

Note: 1. The Cal. Interval was one year.

3. SAR MEASUREMENTS SYSTEM CONFIGURATION

3.1. SAR MEASUREMENT SET-UP

The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stäubli RX family) with controller and software.

An arm extension for accommodating the data acquisition electronics (DAE).

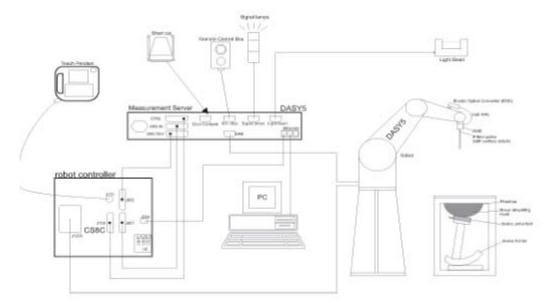
A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

A unit to operate the optical surface detector which is connected to the EOC.

The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.

The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003. DASY5 software and SEMCAD data evaluation software.


Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.

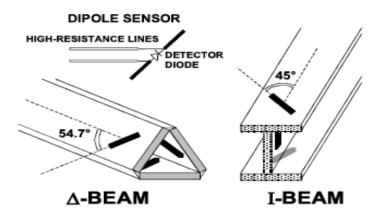
The generic twin phantom enabling the testing of left-hand and right-hand usage.

The device holder for handheld Mobile Phones.

Tissue simulating liquid mixed according to the given recipes.

System validation dipoles allowing to validate the proper functioning of the system.

3.2. DASY5 E-FIELD PROBE SYSTEM


The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification:	
Construction	Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE) ISO/IEC 17025 calibration service available.
Frequency	
Frequency	10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4 GHz)
Directivity	± 0.2 dB in HSL (rotation around probe axis)
	± 0.3 dB in tissue material (rotation normal to probe axis)
Dynamic Range	5 µW/g to > 100 mW/g;
	Linearity: ± 0.2 dB
Dimensions	Overall length: 337 mm (Tip: 20 mm)
	Tip diameter: 3.9 mm (Body: 12 mm)
	Distance from probe tip to dipole centers: 2.0 mm
Application	General dosimetry up to 4 GHz
	Dosimetry in strong gradient fields
	Compliance tests of Mobile Phones
Compatibility	DASY3, DASY4, DASY52 SAR and higher,
	EASY4/MRI

Isotropic E-Field Probe:

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

3.3. PHANTOMS

The phantom used for all tests i.e. for both system checks and device testing, was the twin-headed "SAM Phantom", manufactured by SPEAG. The SAM twin phantom is a fibreglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6mm).

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

3.4. DEVICE HOLDER

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the DASY system.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder supplied by SPEAG

3.5. SCANNING PROCEDURE

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. \pm 5 %.

The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1 mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^{\circ}$.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot. Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centred around the maxima found in the preceding area scan.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as: • maximum search • extrapolation • boundary correction • peak search for averaged SAR During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Sheppard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Sheppard's method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

3.6. DATA STORAGE AND EVALUATION

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Normi, ai0, ai1, ai2
	- Conversion factor	ConvFi
	- Diode compression point	Dcpi
Device parameters	: - Frequency	f
	- Crest factor	cf
Media parameters:	- Conductivity	σ
	- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With	Vi = compensated signal of channel i	(i = x, y, z)
	Ui = input signal of channel i	(i = x, y, z)
	cf = crest factor of exciting field	(DASY parameter)
	dcpi = diode compression point	(DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

$$E- field probes: E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

$$H- field probes: H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$
With Vi = compensated signal of channel i (i = x, y, z) Normi = sensor sensitivity of channel i (i = x, y, z) [mV/(V/m)2] for E-field Probes
$$ConvF = sensitivity enhancement in solution aij = sensor sensitivity factors for H-field probes f = carrier frequency [GHz] Ei = electric field strength of channel i in V/m Hi = magnetic field strength of channel i in A/m$$

1F, 2 Block, Jiaquan Building, Guanlan High-tech Park Baoan District, Shenzhen, Guangdong, China

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$
with SAR = local specific absorption rate in mW/g
Etot = total field strength in V/m
 σ = conductivity in [mho/m] or [Siemens/m]
 ρ = equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

4. TISSUE SIMULATING LIQUID

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15cm. For head SAR testing the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in 4.2

4.1. The composition of the tissue simulating liquid

Ingredient	835MHz		1900MHz		2450MHz	
(% Weight)	Head	Body	Head	Body	Head	Body
Water	40.45	52.4	54.90	40.5	46.7	73.2
Salt	1.42	1.40	0.18	0.50	0.00	0.04
Sugar	57.6	45.0	0.00	0.00	0.00	0.00
HEC	0.40	1.00	0.00	0.50	0.00	0.00
Preventol	0.10	0.20	0.00	0.50	0.00	0.00
DGBE	0.00	0.00	44.92	0.00	53.3	26.7
TWEEN	0.00	0.00	0.00	0.00	0.00	0.00

4.2. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using COMOSAR Dielectric Probe Kit and R&S Network Analyzer ZVL6.

	Dielectric Parameters (±5%)					
Fr.	hea	d body		Tissue	Test time	
(MHz)	εr	δ[s/m]	εr	δ[s/m]	Temp [°C]	Test time
	39.425-43.575	0.855-0.945	52.44-57-96	0.9215-1.0185		
835	41.94	0.90	54.73	0.99	21	Nov.,11,2014

	Dielectric Parameters (±5%)					
Fr.	head		body		Tissue	Test time
(MHz)	٤r	δ[s/m]	εr	δ[s/m]	[° C]	Test time
	38.00-42.00	1.33-1.47	50.635-55.965	1.444-1.596		
1900	39.84	1.46	55.32	1.50	21	Nov.,11,2014

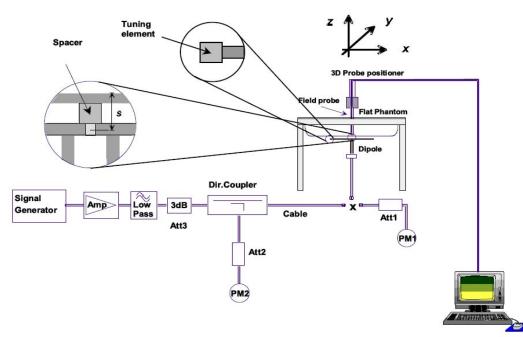
	Dielectric Parameters (±5%)					
Fr.	head		body		Tissue	
(MHz)	<mark>εг</mark> 37.24-41.16	δ[s/m] 1.71-1.89	<mark>81</mark> 50.065-55.335	<mark>δ[s/m]</mark> 1.8525-2.047	Temp [° C]	Test time
				5		
2450	39.30	1.84	54.33	1.94	21	Nov.,11,2014

4.3. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Target Frequency	h	lead	b	ody
(MHz)	٤r	σ (S/m)	٤r	σ (S/m)
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	1.01	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ϵr = relative permittivity, σ = conductivity and ρ = 1000 kg/m3)



5. System Check

The purpose of the system check is to verify that the system operates within its specifications at the device test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %).

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

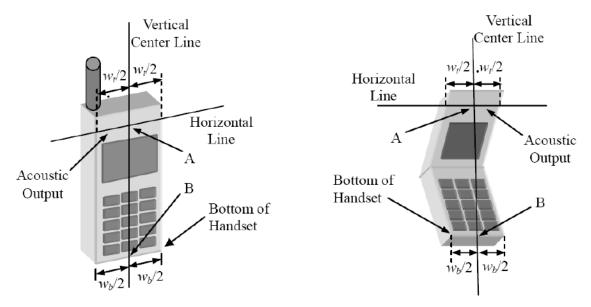
The output power on dipole port must be calibrated to 24 dBm (250mW) before dipole is connected.

Photo of Dipole Setup

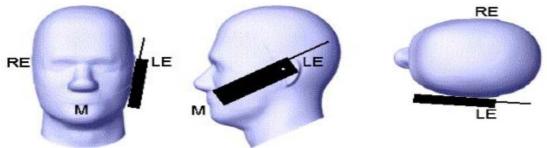
System Validation of Head 1g Average

Measurement is made at temperature 22.0 $^\circ\!\mathrm{C}$ and relative humidity 55%.						Magguramont
Verification	Frequency (MHz)Target valueMeasured 250mW valueNormalized 1W value(W/kg)(W/kg)0					Measurement Date
results	835	9.66	2.32	9.28	-3.93%	Nov.,11th,2014
	1900	38.30	9.60	38.40	0.26%	Nov.,11th,2014
	2450	51.70	12.47	49.88	-3.52%	Nov.,11th,2014

System Validation of Body 1g Average

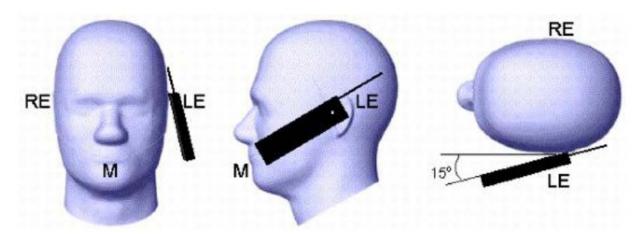

Measurement is made at temperature 22.0 ${}^\circ\!\mathrm{C}$ and relative humidity 55%.						Magguramont
Verification	Frequency (MHz)	Target value (W/kg)	Measured 250mW value (W/kg)	Normalized 1W value (W/kg)	Deviation	Measurement Date
results	835	9.36	2.27	9.08	-2.99%	Nov.,11th,2014
	1900	39.90	9.51	38.04	-4.66%	Nov.,11th,2014
	2450	51.80	12.53	50.12	-3.24%	Nov.,11th,2014

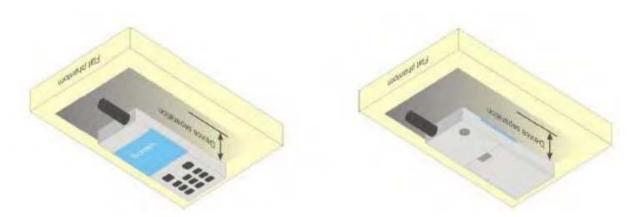
6. EUT TEST POSITION


6.1. Define Two Imaginary Lines on the Handset

- (1) The vertical centerline passes through two points on the front side of the handset the midpoint of the width wt of the handset at the level of the acoustic output, and the midpoint of the width wb of the handset.
- (2) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- (3) The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

6.2. Cheek Position


- (1) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center picec in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.
- (2) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost


6.3. Title Position

- (1) To position the device in the —cheek position described above.
- (2) While maintaining the device in the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until with the ear is lost.

6.4. Body Worn Position

- (1) To position the EUT parallel to the phantom surface.
- (2) To adjust the EUT parallel to the flat phantom.
- (3) To adjust the distance between the EUT surface and the flat phantom to 5mm. (Hotspot mode the distance of 10mm).

6.5. SAR Testing for Tablet

This device can be used also in full sized tablet exposure conditions, due to its size. Per FCC KDB 616217, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom. The SAR exclusion threshold in KDB 447498 D01v02r02 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent tablet edge is used to determine if SAR testing is requires for the adjacent edges, with the adjacent edge positioned against the phantom and the edge containing the antenna positioned perpendicular to the phantom.

7. Measurement Procedures

The measurement procedures are as follows:

7.1 Conducted power measurement

- a) For WWAN power measurement, use base station simulator connection with RF cable, at maximum power in each supported wireless interface and frequency band.
- b) Read the WWAN RF power level from the base station simulator.
- c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously Transmission, at maximum RF power in each supported wireless interface and frequency band.
- d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power.

7.2 SAR measurement

- a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel.
- b) Place the EUT in the positions as clause 12 demonstrates.
- c) Set scan area, grid size and other setting on the DASY software.
- d) Measure SAR results for the highest power channel on each testing position.
- e) Find out the largest SAR result on these testing positions of each band
- f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- a) Power reference measurement
- b) Area scan
- c) Zoom scan
- d) Power drift measurement

7.3 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

(a) Extraction of the measured data (grid and values) from the Zoom Scan

(b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)

(c) Generation of a high-resolution mesh within the measured volume

(e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface

(f) Calculation of the averaged SAR within masses of 1g and 10g.

7.4 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

7.5 Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

	\leq 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^\circ\pm1^\circ$	$20^{\circ} \pm 1^{\circ}$	
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	$\begin{array}{l} 3-4 \; \mathrm{GHz} : \leq 12 \; \mathrm{mm} \\ 4-6 \; \mathrm{GHz} : \leq 10 \; \mathrm{mm} \end{array}$	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Area scan parameters extracted from FCC KDB 865664 D01v01r03 SAR measurement 100 MHz to 6 GHz.

7.6 Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted from FCC KDB 865664 D01v01r03 SAR measurement 100 MHz to 6 GHz.

			\leq 3 GHz	> 3 GHz
		Indiana dan dan	≤ 2 GHz: ≤ 8 mm	$3 - 4 \text{ GHz} \le 5 \text{ mm}^*$
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}		$2 - 3$ GHz: ≤ 5 mm [*]	$4 - 6 \text{ GHz} \le 4 \text{ mm}^*$	
				3 – 4 GHz: ≤ 4 mm
Maximum zoom scan spatial resolution,	uniform	grid: $\Delta z_{Zoom}(n)$	$\leq 5 \text{ mm}$	$4 - 5 \text{ GHz} \le 3 \text{ mm}$
				$5-6$ GHz: ≤ 2 mm
		$\Delta z_{Zoom}(1)$: between		$3 - 4$ GHz: ≤ 3 mm
	graded grid	1 st two points closest to phantom surface	\leq 4 mm	4 – 5 GHz: ≤ 2.5 mm
normal to phantom surface				$5-6$ GHz: ≤ 2 mm
June -		∆z _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$	
				3 – 4 GHz: ≥ 28 mm
Minimum zoom scan volume	x, y, z		\geq 30 mm	$4-5$ GHz: ≥ 25 mm
volume				5 – 6 GHz: ≥ 22 mm
P1528-2011 for d * When zoom scan is	letails. required a	nd the <u>reported</u> SAR from	incidence to the tissue mediu the <i>area scan based 1-g SA</i> m zoom scan resolution may	R estimation procedures of

2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

7.7 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

7.8 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

7.9 Area Scan Based 1-g SAR

7.9.1 Requirement of KDB

According to the KDB447498 D01 v05, when the implementation is based the specific polynomial fit algorithm as presented at the 29th Bioelectromagnetics Society meeting (2007) and the estimated 1-g SAR is \leq 1.2 W/kg, a zoom scan measurement is not required provided it is also not needed for any other purpose; for example, if the peak SAR location required for simultaneous transmission SAR test exclusion can be determined accurately by the SAR system or manually to discriminate between distinctive peaks and scattered noisy SAR distributions from area scans.

There must not be any warning or alert messages due to various measurement concerns identified by the SAR system; for example, noise in measurements, peaks too close to scan boundary, peaks are too sharp, spatial resolution and uncertainty issues etc. The SAR system verification must also demonstrate that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR (See Annex B). When all the SAR results for each exposure condition in a frequency band and wireless mode are based on estimated 1-g SAR, the 1-g SAR for the highest SAR configuration must be determined by a zoom scan.

7.9.2 Fast SAR Algorithms

The approach is based on the area scan measurement applying a frequency dependent attenuation parameter. This attenuation parameter was empirically determined by analyzing a large number of phones. The MOTOROLA FAST SAR was developed and validated by the MOTOROLA Research Group in Ft. Lauderdale.

In the initial study, an approximation algorithm based on Linear fit was developed. The accuracy of the algorithm has been demonstrated across a broad frequency range (136-2450 MHz) and for both 1- and 10-g averaged SAR using a sample of 264 SAR measurements from 55 wireless handsets. For the sample size studied, the root-mean-squared errors of the algorithm are 1.2% and 5.8% for 1- and 10-g averaged SAR, respectively

In the second step, the same research group optimized the fitting algorithm to a Polynomial fit whereby the frequency validity was extended to cover the range 30-6000MHz. Details of this study can be found in the BEMS 2007 Proceedings.

Both algorithms are implemented in DASY software.

8. TEST CONDITIONS AND RESULTS

8.1. Conducted Power Results

Max Conducted power measurement results and power drift from tune-up tolerance provide by manufacturer:

The conducted power measurement results for GSM850/1900

Test Mode		Conducted Power (dBm)	
GSM850	Channel 251 (848.8MHz)	Channel 190 (836.6MHz)	Channel 128 (824.2MHz)
	32.39	32.57	32.41
GSM1900	Channel 810 (1909.8MHz)	Channel 661 (1880MHz)	Channel 512 (1850.2MHz)
	30.47	30.55	30.23

The conducted power measurement results for GPRS/EGPRS

Test Mode	Meas	ured Power	(dBm)	Calculation	Frame-A	veraged Pow	ver (dBm)	
GSM850		Test Channe	el 🛛	(dB)		Test Channe		
GPRS (GMSK)	251	190	128	(UB)	251	190	128	
1 Txslot	32.25	32.54	32.29	-9.03	23.22	23.51	23.26	
2 Txslot	30.45	30.56	30.48	-6.02	24.43	24.54	24.46	
3 Txslot	28.23	28.33	28.02	-4.26	23.97	24.07	23.76	
4 Txslot	25.54	25.24	25.45	-3.01	22.53	22.23	22.44	
Test Mode	Meas	ured Power	(dBm)	Calculation	Frame-Averaged Power (dBm)			
GSM850	-	Test Channe	el	(dB)	-	Test Channe		
EGPRS (GMSK)	251	190	128	(UB)	251	190	128	
1 Txslot	32.47	32.57	32.36	-9.03	22.74	22.81	22.62	
2 Txslot	30.36	30.44	30.33	-6.02	24.34	24.42	24.31	
3 Txslot	28.23	28.47	28.43	-4.26	23.97	24.21	24.17	
4 Txslot	26.32	26.23	26.47	-3.01	23.31	23.22	23.46	
Test Mode	Meas	ured Power	(dBm)		Frame-A	veraged Pow	ver (dBm)	
GSM1900	-	Test Channe	el		-	el		
GPRS (GMSK)	810	661	512	(dB)	810	661	512	
1 Txslot	30.31	30.65	30.24	-9.03	20.63	20.51	20.66	
2 Txslot	28.53	28.87	28.69	-6.02	22.51	22.85	22.67	
3 Txslot	26.56	26.11	26.32	-4.26	22.30	21.85	22.06	
4 Txslot	25.46	25.25	25.14	-3.01	22.45	22.24	22.13	
Test Mode	Meas	ured Power	(dBm)	Calaulatian	Frame-A	veraged Pow	ver (dBm)	
GSM1900	-	Test Channe	el de la companya de		-	Test Channe		
EGPRS (GMSK)	810	661	512	(dB)	810	661	512	
1 Txslot	30.25	30.78	30.14	-9.03	21.22	21.75	21.11	
2 Txslot	28.49	28.64	28.37	-6.02	22.47	22.62	22.35	
3 Txslot	26.36	26.54	26.22	-4.26	22.10	22.28	21.96	
4 Txslot	25.23	25.11	25.33	-3.01	22.22	22.10	22.32	

NOTES:

1) Division Factors

To average the power, the division factor is as follows:

- 1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB
- 2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB
- 3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB
- 4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB
- 2) According to the conducted power as above, the body measurements are performed with 2Txslots for GPRS850 and GPRS1900.
- 3) Note: According to the KDB941225 D03, "when SAR tests for EDGE or EGPRS mode is necessary, GMSK modulation should be used".

	hand	FDD B	and II result	(dBm)	FDD B	and V result	(dBm)		
ltem	band	•	Test Channe		Test Channel				
	ARFCN	9262	9400	9538	4132	4183	4233		
5.2(WCDMA)	١	23.54	23.66	23.24	23.23	23.78	23.47		
	1	22.33	22.43	22.38	22.44	22.55	22.36		
5.2AA	2	22.29	22.36	22.14	22.17	22.45	22.42		
(HSDPA)	3	21.49	21.78	21.30	21.22	21.66	21.21		
	4	21.42	21.33	21.22	21.33	21.33	21.25		
	1	22.22	22.56	22.32	22.36	22.87	22.50		
5 3 D	2	22.14	22.63	22.65	22.25	22.54	22.43		
5.2B	3	21.15	21.45	21.20	21.45	21.36	21.30		
(HSUPA)	4	21.26	21.47	21.15	21.22	21.47	21.35		
	5	22.36	22.23	22.56	22.31	22.55	22.32		

The conducted power measurement results for WCDMA

Note:

 Per KDB 941225 D02v02r02, RMC 12.2kbps setting is used to evaluate SAR. If HSDPA/HSUPA output power is < 0.25dB higher than RMC, or reported SAR with RMC 12.2kbps setting is≤1.2W/kg, HSDPA/HSUPA SAR evaluation can be excluded.

		WLA	N		
Mode	Channel	Frequency (MHz)	Worst case Data rate of		Output Power Bm)
			worst case	Peak	Average
	1	2412	1Mbps	16.97	14.32
802.11b	6	2437	1Mbps	17.56	14.83
	11	2462	1Mbps	17.15	14.80
	1	2412	6Mbps	18.86	13.25
802.11g	6	2437	6Mbps	18.95	13.33
	11	2462	6Mbps	18.47	13.29
	1	2412	6.5 Mbps	18.43	12.63
802.11n(20MHz)	6	2437	6.5 Mbps	18.55	12.47
	11	2462	6.5 Mbps	18.36	12.66
	3	2422	13.5 Mbps	17.26	11.87
802.11n(40MHz)	6	2437	13.5 Mbps	17.65	11.94
	9	2452	13.5 Mbps	17.35	11.91

Note:

1) Per KDB 248227 D01 v01r02, choose the highest output power channel to test SAR and determine further SAR exclusion.

2) For each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 1/4dB higher than those measured at the lowest data rate.

3) Following KDB 248227 D01 v01r02, 802.11g, 802.11n-HT20 and 802.11n-HT40 output power is less than

1/4dB higher than 11b mode, thus the SAR can be excluded.

	Bluetooth											
Mode	Channel	Frequency (MHz)	Conducted Peak Output Power (dBm)									
	00	2402	-2.47									
LBE	19	2440	-2.10									
	39	2480	-2.26									
	00	2402	1.91									
GFSK	39	2441	1.89									
	78	2480	2.23									
	00	2402	1.25									
π/4DQPSK	39	2441	1.31									
	78	2480	1.68									
	00	2402	1.35									
8DPSK	39	2441	1.31									
	78	2480	1.16									

Note:

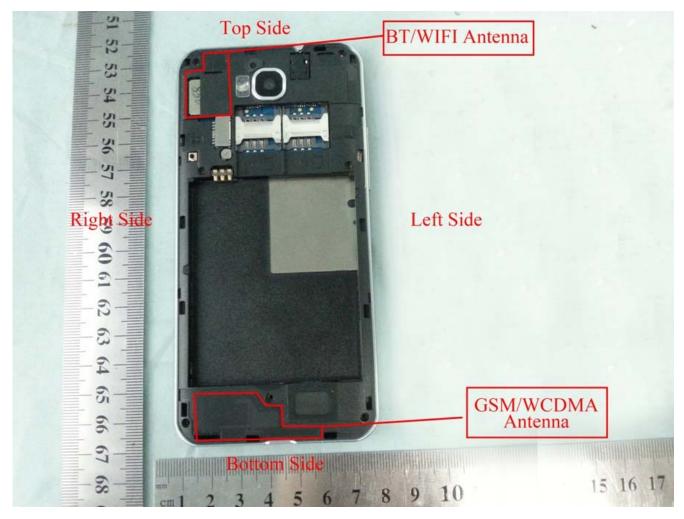
Per KDB 447498 D01v05r02, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] . [$\sqrt{f}(GHz)$] \leq 3 for 1-g SAR and] \leq 7.5 for 10-g extremity SAR

•f(GHz) is the RF channel transmit frequency in GHz

•Power and distance are rounded to the nearest mW and mm before calculation

•The result is rounded to one decimal place for comparison


Bluetooth Max Power Allowed (dBm)	Bluetooth Max Power Allowed (mW)	Calculated Value	Separation Distance (mm)	Frequency (GHz)	Exclusion thresholds
2.5	2	0.6	0	2.48	3

Note:

Per KDB 447498 D01v05r02, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. The test exclusion threshold is 0.6 which is \leq 3, SAR testing is not required.

8.2. Antenna Location

SAR Measurement Positions

According to the KDB941225 D06 Hot Spot SAR v01, the edges with less than 2.5 cm distance to the antennas need to be tested for SAR.

SAR measurement positions										
Mode Front Rear Left edge Right edge Top edge Bottom edge										
Main antenna(GSM/WCDMA)	Yes	Yes	Yes	Yes	No	Yes				
WLAN	Yes	Yes	No	Yes	Yes	No				

8.3. TEST RESULTS

8.3.1 SAR Test Results Summary Test position and configuration

Head SAR was performed with the device configured in the positions according to IEEE1528, and Body SAR was performed with the device 0mm from the phantom; Body SAR was also performed with the headset attached and without.

Operation Mode ·

- According to KDB 447498 D01 v05r02 ,for each exposure position, if the highest 1-g SAR is \leq 0.8 W/kg, testing for low and high channel is optional.
- Per KDB 865664 D01 v01r01, for each frequency band, if the measured SAR is ≥0.8W/Kg, testing for repeated SAR measurement is required, that the highest measured SAR is only to be tested. When the SAR results are near the limit, the following procedures are required for each device to verify these types of SAR measurement related variation concerns by repeating the highest measured SAR configuration in each frequency band.
- 1) When the original highest measured SAR is ≥ 0.8 W/Kg, repeat that measurement once.
- Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is >1.20 or when the original or repeated measurement is ≥1.45 W/Kg.
- Perform a third repeated measurement only if the original, first and second repeated measurement is ≥1.5 W/Kg and ratio of largest to smallest SAR for the original, first and second measurement is ≥1.20. ·
- Body-worn exposure conditions are intended to voice call operations, therefore GSM voice call mode is selected to be test.
- According to KDB 648474 D04 v01r01, when the reported SAR for a body-worn accessory measured without a headset connected to the handset is ≤1.2W/Kg, SAR testing with a headset connected is not required.
- According to 941225 D06, when the overall device length and width are >9cm×5cm, Hotspot mode with a test separation distance of 10mm. For device with form factors smaller than 9cm×5cm, Hotspot mode with a test separation distance of 5mm. Body SAR was also performed with the headset attached and without.
- According to 248227 D01, SAR is not required for 802.11g channels when the maximum average output power is less than 1/4dB higher than measured on the corresponding 802.11b channels.
- Maximum Scaling SAR in order to calculate the Maximum SAR values to test under the standard Peak Power, Calculation method is as follows: Maximum Scaling SAR =tested SAR (Max.) × [maximum turn-up power (mw)/ maximum measurement output power(mw)]

8.3.2 Standalone SAR

••••	••••••	•• •												
	SAR Values (GSM850-Head)													
	Test quency	Side	Test	Maximum Allowed	Conducted Power	Measurement SAR over	Power	Scaling	Reported SAR over	SAR limit	Ref. Plot			
Ch	MHz	olde	Position	Power (dBm)	(dBm)	1g(W/kg)	drift	Factor	1g(W/kg)	1g (W/kg)	#			
190	836.60	Left	Touch	33.00	32.57	0.158	-0.10	1.10	0.174	1.60				
190	836.60	Left	Tilt	33.00	32.57	0.082	-0.08	1.10	0.090	1.60				
190	836.60	Right	Touch	33.00	32.57	0.212	-0.09	1.10	0.233	1.60	1			
190	836.60	Right	Tilt	33.00	32.57	0.105	-0.11	1.10	0.116	1.60				

SAR Values (GSM850-Body)

	Test quency	Mode	Test	Maximum Allowed	Conducte	Measurem ent SAR	Power	Scaling	Reported	SAR limit	Ref.
Ch	MHz	(number of timeslots)	Position	Power (dBm)	Power (dBm)	over 1g(W/kg)	drift	Factor	SAR over 1g(W/kg)	1g (W/kg)	Plot #
190	836.60	GPRS (2)	Front	31.00	30.56	0.146	-0.11	1.11	0.162	1.60	
190	836.60	GPRS (2)	Rear	31.00	30.56	0.302	0.16	1.11	0.335	1.60	2
190	836.60	GPRS (2)	Left	31.00	30.56	0.247	-0.07	1.11	0.274	1.60	
190	836.60	GPRS (2)	Right	31.00	30.56	0.205	0.09	1.11	0.228	1.60	
190	836.60	GPRS (2)	Bottom	31.00	30.56	0.214	-0.05	1.11	0.238	1.60	
190	836.60	EGPRS(2)	Rear	31.00	30.44	0.262	0.04	1.14	0.299	1.60	

Note:

1) The distance between the EUT and the phantom bottom is 0mm.

 According to KDB447498, when the 1-g SAR for the mid-band channel or the channel with highest output power satisfies the following conditions, testing of the other channels in the band is not required. ≤0.8W/Kg and transmission band ≤100MHz;

 $\leq 0.6W/Kg$ and 100MHz \leq transmission band $\leq 200MHz$;

 $\leq 0.4W/Kg$ and transmission band >200MHz

SAR Values (GSM1900-Head)

	Test quency	Side	Test	Maximum Allowed	Conducted Power	Measurement SAR over	Power	Scaling	Reported SAR over	SAR limit	Ref. Plot
Ch	MHz	500	Position	Power (dBm)	(dBm)	1g(W/kg)	drift	Factor	1g(W/kg)	1g (W/kg)	#
661	1880.0	Left	Touch	31.00	30.55	0.118	-0.11	1.11	0.131	1.60	
661	1880.0	Left	Tilt	31.00	30.55	0.065	-0.06	1.11	0.072	1.60	
661	1880.0	Right	Touch	31.00	30.55	0.132	0.11	1.11	0.147	1.60	3
661	1880.0	Right	Tilt	31.00	30.55	0.086	-0.09	1.11	0.095	1.60	

SAR Values (GSM1900-Body)

	Test quency	Mode (number of	Test	Maximum Allowed	Conducted Power	Measurement SAR	Power	Scaling	Reported SAR over	SAR limit	Ref. Plot
Ch	MHz	timeslots)	Position	Power (dBm)	(dBm)	over 1g(W/kg)	drift	Factor	1g(W/kg)	1g (W/kg)	#
661	1880.0	GPRS (2)	Front	29.00	28.87	0.187	-0.09	1.03	0.193	1.60	
661	1880.0	GPRS (2)	Rear	29.00	28.87	0.300	0.13	1.03	0.309	1.60	4
661	1880.0	GPRS (2)	Left	29.00	28.87	0.193	0.05	1.03	0.199	1.60	
661	1880.0	GPRS (2)	Right	29.00	28.87	0.206	-0.04	1.03	0.212	1.60	
661	1880.0	GPRS (2)	Bottom	29.00	28.87	0.293	-0.03	1.03	0.302	1.60	
661	1880.0	EGPRS (2)	Rear	29.00	28.64	0.280	0.07	1.09	0.305	1.60	

Note:

1) The distance between the EUT and the phantom bottom is 0mm.

 According to KDB447498, when the 1-g SAR for the mid-band channel or the channel with highest output power satisfies the following conditions, testing of the other channels in the band is not required. ≤0.8W/Kg and transmission band ≤100MHz;

 $\leq 0.6W/Kg$ and $100MHz \leq transmission band \leq 200MHz;$

≤ 0.4W/Kg and transmission band >200MHz

SAR Values (WCDMA Band II-Head)

	Test quency	Side	Test	Maximum Allowed	Conducted Power	Measurement SAR over	Power	Scaling	Reported SAR over	SAR limit	Ref. Plot
Ch	MHz	Side	Position	Power (dBm)	(dBm)	1g(W/kg)	drift	Factor	1g(W/kg)	1g (W/kg)	#
9400	1880	Left	Touch	24.00	23.66	0.338	-0.05	1.08	0.365	1.60	
9400	1880	Left	Tilt	24.00	23.66	0.236	-0.06	1.08	0.255	1.60	
9400	1880	Right	Touch	24.00	23.66	0.351	-0.05	1.08	0.379	1.60	5
9400	1880	Right	Tilt	24.00	23.66	0.263	0.11	1.08	0.284	1.60	

SAR Values (WCDMA Band II-Body)

	Test quency	Mode (number	Test	Maximum Allowed	Conducted Power	Measurement SAR	Power	Scaling	Reported SAR	SAR limit	Ref. Plot
Ch	MHz	of timeslots)	Position	Power (dBm)	(dBm)	over 1g(W/kg)	drift	Factor	over 1g(W/kg)	1g (W/kg)	#
9400	1880	RMC	Front	24.00	23.66	0.325	-0.11	1.08	0.351	1.60	
9400	1880	RMC	Rear	24.00	23.66	0.638	-0.06	1.08	0.689	1.60	6
9400	1880	RMC	Left	24.00	23.66	0.424	-0.08	1.08	0.458	1.60	
9400	1880	RMC	Right	24.00	23.66	0.236	-0.08	1.08	0.255	1.60	
9400	1880	RMC	Bottom	24.00	23.66	0.565	-0.09	1.08	0.61	1.60	

Note:

1) The distance between the EUT and the phantom bottom is 0mm.

 According to KDB447498, when the 1-g SAR for the mid-band channel or the channel with highest output power satisfies the following conditions, testing of the other channels in the band is not required. ≤0.8W/Kg and transmission band ≤100MHz;

≤0.6W/Kg and 100MHz ≤transmission band ≤200MHz;

 \leq 0.4W/Kg and transmission band >200MHz

SAR Values (WCDMA Band V-Head)

Test Frequency Side		Test	Maximum Allowed	Conducted Power	Measurement SAR over	Power	Scaling	Reported SAR over	SAR limit	Ref. Plot	
Ch	MHz	Side	Position	Power (dBm)	(dBm)	1g(W/kg)	drift	Factor	1g(W/kg)	1g (W/kg)	#
4183	836.60	Left	Touch	24.00	23.78	0.178	-0.05	1.05	0.187	1.60	
4183	836.60	Left	Tilt	24.00	23.78	0.116	-0.06	1.05	0.122	1.60	
4183	836.60	Right	Touch	24.00	23.78	0.207	0.09	1.05	0.217	1.60	7
4183	836.60	Right	Tilt	24.00	23.78	0.143	0.11	1.05	0.150	1.60	

SAR Values (WCDMA Band V-Body)

	Fest quency	Mode (number	Test	Maximum Allowed	Conducted Power	Measurement SAR	Power	Scaling	Reported SAR	SAR limit	Ref. Plot		
Ch	MHz	of timeslots)	Position	Power (dBm)	(dBm)	over 1g(W/kg)	drift	Factor	over 1g(W/kg)	1g (W/kg)	#		
4183	836.60	RMC	Front	24.00	23.78	0.248	-0.11	1.05	0.26	1.60			
4183	836.60	RMC	Rear	24.00	23.78	0.544	-0.03	1.05	0.571	1.60	8		
4183	836.60	RMC	Left	24.00	23.78	0.145	-0.08	1.05	0.152	1.60			
4183	836.60	RMC	Right	24.00	23.78	0.215	-0.08	1.05	0.226	1.60			
4183	836.60	RMC	Bottom	24.00	23.78	0.166	-0.09	1.05	0.179	1.60			

Note:

3) The distance between the EUT and the phantom bottom is 0mm.

 According to KDB447498, when the 1-g SAR for the mid-band channel or the channel with highest output power satisfies the following conditions, testing of the other channels in the band is not required. ≤0.8W/Kg and transmission band ≤100MHz;

≤0.6W/Kg and 100MHz ≤transmission band ≤200MHz;

 \leq 0.4W/Kg and transmission band >200MHz

				34	AR values (VLANZ450-He	au)				
	Test Frequency		Test	Maximu m	Conducte d	Measureme	Power	Scalin	Reported SAR	SAR limit	Ref.
Ch	MHz	Side	Position	Allowed Power (dBm)	Power (dBm)	nt SAR over 1g(W/kg)	drift	g Factor	over1g (W/kg)	1g (W/kg)	Plot #
6	2437	Left	Touch	16.00	14.83	0.274	-0.08	1.31	0.359	1.60	
6	2437	Left	Tilt	16.00	14.83	0.122	-0.11	1.31	0.160	1.60	
6	2437	Right	Touch	16.00	14.83	0.285	-0.08	1.31	0.373	1.60	9
6	2437	Right	Tilt	16.00	14.83	0.135	-0.15	1.31	0.177	1.60	

SAR Values (WI AN2450-Head)

SAR Values (WLAN2450-Body)

Test F	requency	Test	Maximum	Conducted	Measuremen	Powe		Reported	SAR limit	Ref.
Ch	MHz	Positio	Allowed Power (dBm)	Power (dBm)	t SAR over 1g(W/kg)	r drift	Scaling Factor	SAR over1g (W/kg)	1g (W/kg)	Plot #
6	2437	Front	16.00	14.83	0.293	-0.06	1.31	0.384	1.60	
6	2437	Rear	16.00	14.83	0.436	-0.06	1.31	0.571	1.60	10
6	2437	Right	16.00	14.83	0.378	-0.09	1.31	0.495	1.60	
6	2437	Тор	16.00	14.83	0.269	0.07	1.31	0.352	1.60	

Note:

1) 2) The distance between the EUT and the phantom bottom is 0mm. According to KDB447498, when the 1-g SAR for the mid-band channel or the channel with highest output power satisfies the following conditions, testing of the other channels in the band is not required. ≤0.8W/Kg and transmission band ≤100MHz; ≤0.6W/Kg and 100MHz ≤transmission band ≤200MHz;

≤ 0.4W/Kg and transmission band >200MHz

8.3.2 Simultaneous SAR Evaluation

Application Simultaneous Transmission information:

NO.	Simultaneous Transmission Configurations	Ph	one	Note	
NO.		Head	Body	note	
1	GSM(Voice) + WLAN2.4GHz(data)	Yes	-	-	
2	WCDMA(Voice) + WLAN2.4GHz(data)	Yes	-	-	
3	GSM(Voice) + Bluetooth(data)	Yes	-	-	
4	WCDMA((Voice) + Bluetooth(data)	Yes	-	-	
5	GPRS/EDGE(Data) + WLAN2.4GHz(data)	-	Yes	2.4GHz Hotspot	
6	WCDMA(Data) + WLAN2.4GHz(data)	-	Yes	2.4GHz Hotspot	
7	GPRS/EDGE(Data) + Bluetooth(data)	-	Yes	Bluetooth Tethering	
8	WCDMA(Data) + Bluetooth(data)	-	Yes	Bluetooth Tethering	

NOTE:

- 1) WLAN2.4GHz and Bluetooth share the same antenna, and cannot transmit simultaneously.
- 2) The Reported SAR summation is calculated based on the same configuration and test position.
- 3) Per KDB 447498 D01v05r02, simultaneous transmission SAR is compliant if,
 - a) Scalar SAR summation < 1.6W/kg.
 - b) SPLSR = (SAR1 + SAR2)^{1.5} / (min. separation distance, mm), and the peak separation distance is determined from the square root of \[(x1-x2)² + (y1-y2)² + (z1-z2)²], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan
 - c) If SPLSR \leq 0.04, simultaneously transmission SAR measurement is not necessary
 - d) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg
- 4) For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01v05r02 based on the formula below.
 - a) (max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] .[√ f(GHz)/ x] W/kg for test separation distances ≤ 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.
 - b) When the minimum separation distance is < 5mm, the distance is used 5mm to determine SAR test exclusion.
 - c) 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm.
 - d) Bluetooth estimated SAR is conservatively determined by 5mm separation, for all applicable exposure positions.

Bluetooth	Bluetooth	Exposure	Estimated	
Max Power Allowed (dBm)	Max Power Allowed(mW)	Position	SAR (W/kg)	
2.5	2	All Positions	0.084	

		GSM/WCDMA &	& WLAN Mode		
Desition	Max.WWAN	Max. WLAN	SAR	Limit	SPLSR≦0.04
Position	SAR	SAR	Summation	(W/kg)	(Yes/No)
GSM850+WLAN	(W/Kg)	W/Kg)			, ,
Left Cheek		0.250	0.522		N/A
Left Tilt	0.174	0.359 0.160	0.533 0.250		N/A N/A
	0.233				N/A N/A
Right Cheek		0.373	0.606		
Right Tilt	0.116	0.177	0.293		N/A
Body front	0.162	0.384	0.546	1.60	N/A
Body Rear	0.335	0.571	0.906		N/A
Body Left	0.274	0.405	0.700		N/A
Body Right	0.228	0.495	0.723		N/A
Body top		0.352			N/A
Body Bottom	0.238				N/A
PCS1900+WLA		· · · ·			
Left Cheek	0.131	0.359	0.490		N/A
Left Tilt	0.072	0.160	0.232		N/A
Right Cheek	0.147	0.373	0.520		N/A
Right Tilt	0.095	0.177	0.272		N/A
Body front	0.193	0.384	0.577	1.60	N/A
Body Rear	0.309	0.571	0.880	1.00	N/A
Body Left	0.199				N/A
Body Right	0.212	0.495	0.707		N/A
Body top		0.352			N/A
Body Bottom	0.302				N/A
WCDMA Band I	I+WLAN 2.4G-DTS				
Left Cheek	0.365	0.359	0.724		N/A
Left Tilt	0.255	0.160	0.415		N/A
Right Cheek	0.379	0.373	0.752		N/A
Right Tilt	0.284	0.177	0.461		N/A
Body front	0.351	0.384	0.735	1.60	N/A
Body Rear	0.689	0.571	1.260	1.00	N/A
Body Left	0.458				N/A
Body Right	0.255	0.495	0.750		N/A
Body top		0.352			N/A
Body Bottom	0.610				N/A
	/+WLAN 2.4G-DTS				1
Left Cheek	0.187	0.359	0.546		N/A
Left Tilt	0.122	0.160	0.282		N/A
Right Cheek	0.217	0.373	0.590	1.60	N/A
Right Tilt	0.150	0.177	0.327		N/A
Body front	0.260	0.384	0.644		N/A
Body Rear	0.571	0.571	1.142		N/A
Body Left	0.152				N/A
Body Right	0.226	0.495	0.721		N/A
Body top	0.220	0.352			N/A
	0.179	0.002			N/A

Note:

- 1) According to KDB 447498 D01 General RF Exposure Guidance v05, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.
- 2) SPLSR mean is "The SAR to Peak Location Separation Ratio".

GSM/WCDMA & BT Mode Max.WWAN Max. BT Limit SPLSR≦0.04 SAR Position SAR SAR (W/kg) Summation (Yes/No) (W/Kg) W/Kg) GSM850+BT 2.4G-DSS Left Cheek 0.174 N/A 0.084 0.258 0.09 Left Tilt 0.084 0.174 N/A **Right Cheek** 0.233 N/A 0.084 0.317 0.116 N/A **Right Tilt** 0.200 0.084 Body front 0.162 0.084 N/A 0.246 1.60 Body Rear 0.335 0.084 0.419 N/A 0.274 N/A Body Left 0.084 0.358 N/A Body Right 0.228 0.084 0.312 Body top 0.084 N/A Body Bottom 0.238 0.322 N/A 0.084 PCS1900+BT 2.4G-DSS 0.131 0.215 N/A Left Cheek 0.084 N/A Left Tilt 0.072 0.084 0.156 **Right Cheek** 0.147 N/A 0.231 0.084 **Right Tilt** 0.095 0.084 0.179 N/A 0.193 N/A Body front 0.277 0.084 1.60 0.309 N/A Body Rear 0.084 0.393 Body Left 0.199 0.084 0.283 N/A N/A Body Right 0.212 0.296 0.084 Body top 0.084 N/A 0.302 Body Bottom 0.084 0.386 N/A WCDMA Band II+BT 2.4G-DSS Left Cheek 0.365 0.084 0.449 N/A Left Tilt 0.255 N/A 0.084 0.339 0.379 N/A **Right Cheek** 0.084 0.463 **Right Tilt** 0.284 N/A 0.084 0.368 Body front 0.351 N/A 0.084 0.435 1.60 0.773 **Body Rear** 0.689 N/A 0.084 0.458 N/A Body Left 0.084 0.542 Body Right 0.255 0.084 0.339 N/A Body top N/A 0.084 Body Bottom 0.610 N/A 0.694 0.084 WCDMA Band V+BT 2.4G-DSS Left Cheek 0.187 N/A 0.271 0.084 Left Tilt 0.122 0.206 N/A 0.084 N/A **Right Cheek** 0.217 0.084 0.301 **Right Tilt** 0.150 0.234 N/A 0.084 Body front 0.260 N/A 0.084 0.344 1.60 Body Rear 0.571 0.655 N/A 0.084 Body Left 0.152 0.084 0.236 N/A Body Right 0.226 0.084 0.310 N/A Body top 0.084 N/A 0.179 N/A **Body Bottom** 0.263 0.084

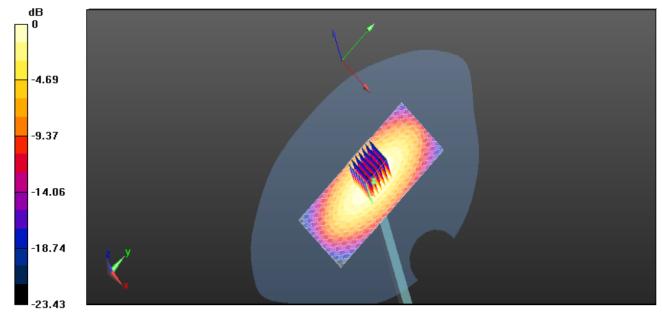
Note:

1) According to KDB 447498 D01 General RF Exposure Guidance v05, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.

2) SPLSR mean is "The SAR to Peak Location Separation Ratio".

9. System Check Results

System Performance Check at 835 MHz Head


DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d134 Date/Time: 11/11/2014 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 835 MHz; σ = 0.90 S/m; ε r = 41.94; ρ = 1000 kg/m3 Phantom section: Flat Section DASY5 Configuration: Probe: ES3DV3 - SN3842; ConvF (8.83, 8.83, and 8.83); Calibrated: 06/06/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1315; Calibrated: 25/11/2013 Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.5 (6469) **Area Scan (61x91x1):** Measurement grid: dx=15.00 mm, dy=15.00 mm Maximum value of SAR (interpolated) = 2.58 mW/g **Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

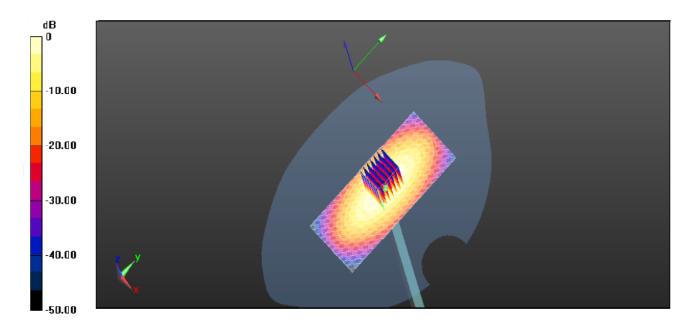
Reference Value = 52.994 V/m; Power Drift = 0.082 dB

Peak SAR (extrapolated) = 3.542 W/kg

SAR(1 g) = 2.32 mW/g; SAR(10 g) = 1.49 mW/g

Maximum value of SAR (measured) = 2.59 mW/g

0 dB = 2.58mW/g=8.23dB mW/g


System Performance Check 835MHz Head 250mW

System Performance Check at 835 MHz Body

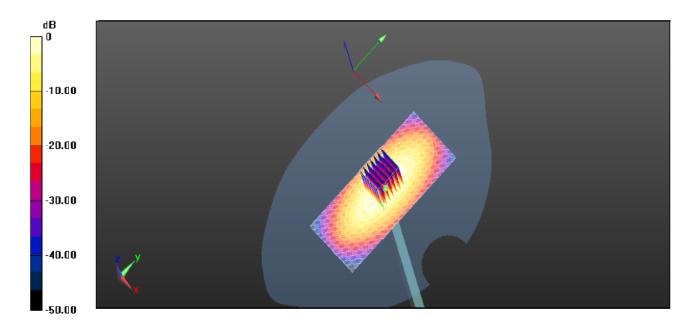
DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d134 Date/Time: 11/11/2014 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 835 MHz; σ = 0.99 S/m; ϵ_r = 54.73; ρ = 1000 kg/m³ Phantom section: Flat Section **DASY5** Configuration: Probe: ES3DV3 - SN3842; ConvF (9.09, 9.09, and 9.09); Calibrated: 06/06/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1315; Calibrated: 25/11/2013 Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.5 (6469) Area Scan (61x91x1): Measurement grid: dx=15.00 mm, dy=15.00 mm Maximum value of SAR (interpolated) = 2.15 mW/g Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 46.528 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.262 W/kg

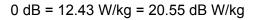
SAR(1 g) = 2.27 mW/g; SAR(10 g) = 1.50 mW/g

Maximum value of SAR (measured) = 3.24 mW/g

0 dB = 3.24 mW/g = 11.24 dB mW/g

System Performance Check 835MHz Body 250mW



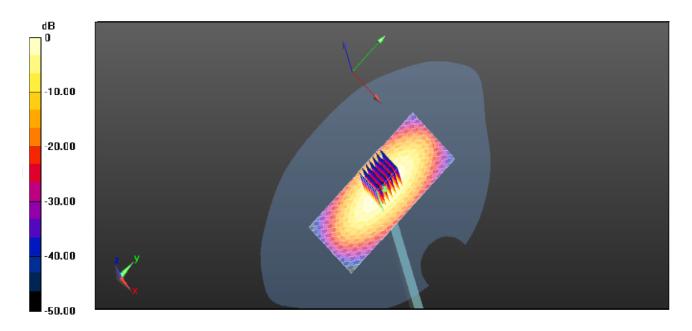

System Performance Check at 1900 MHz Head

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d150 Date/Time: 11/11/2014 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1900 MHz; σ = 1.46 S/m; ϵ r = 39.84; ρ = 1000 kg/m³ Phantom section: Flat Section **DASY5** Configuration: Probe: ES3DV3 - SN3842; ConvF(7.55, 7.55, 7.55); Calibrated: 06/06/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1315; Calibrated: 25/11/2013 Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469) Area Scan (61x91x1): Measurement grid: dx=15.00 mm, dy=15.00 mm Maximum value of SAR (interpolated) = 10.65 W/kg Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.818 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 12.352 W/kg

SAR(1 g) = 9.60 W/kg; SAR(10 g) = 4.99 W/kg

Maximum value of SAR (measured) = 12.43 W/kg

System Performance Check 1900MHz Head 250mW



System Performance Check at 1900 MHz Body

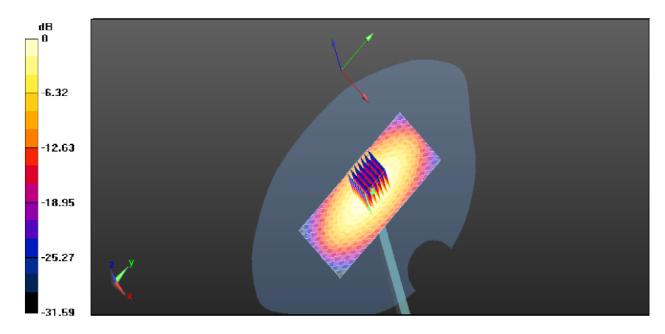
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d150 Date/Time: 11/11/2014 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1900 MHz; σ = 1.50 S/m; ϵ r =55.32; ρ = 1000 kg/m³ Phantom section: Flat Section **DASY5** Configuration: Probe: ES3DV3 - SN3842; ConvF(7.43, 7.43, 7.43); Calibrated: 06/06/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1315; Calibrated: 25/11/2013 Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469) Area Scan (61x91x1): Measurement grid: dx=15.00 mm, dy=15.00 mm Maximum value of SAR (interpolated) = 11.46 mW/g Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 83.816 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 16.826 W/kg

SAR(1 g) = 9.51 mW/g; SAR(10 g) = 5.15 mW/g

Maximum value of SAR (measured) = 16.34 mW/g

0 dB = 16.34 mW/g = 24.35 dB mW/g

System Performance Check 1900MHz Body 250mW


System Performance Check at 2450 MHz Head

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 884 Date/Time: 11/11/2014 Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2450 MHz; σ = 1.84 S/m; ϵ_r = 39.30; ρ = 1000 kg/m³ Phantom section: Flat Section DASY5 Configuration: Probe: ES3DV3 - SN3842; ConvF (7.26, 7.26, and 7.26); Calibrated: 06/06/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1315; Calibrated: 25/11/2013 Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469) **Area Scan (61x91x1):** Measurement grid: dx=15.00 mm, dy=15.00 mm Maximum value of SAR (interpolated) = 14.9 mW/g **Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.714 V/m; Power Drift = -0.05 dB

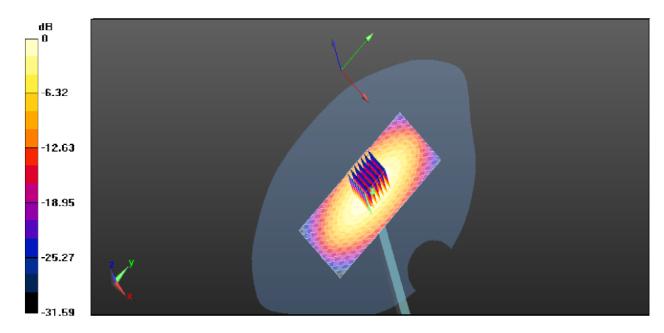
Peak SAR (extrapolated) = 26.08 mW/g

SAR (1 g) = 12.47 mW/g; SAR (10 g) = 5.75 mW/g

Maximum value of SAR (measured) = 14.8 mW/g

0 dB = 14.9 mW/g = 23.46 dB mW/g

System Performance Check 2450MHz Head 250mW


System Performance Check at 2450 MHz Body

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 884 Date/Time: 11/11/2014 Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2450 MHz; $\sigma = 1.94$ S/m; $\epsilon_r = 54.33$; $\rho = 1000$ kg/m³ Phantom section: Flat Section DASY5 Configuration: Probe: ES3DV3 - SN3842; ConvF (6.93, 6.93, and 6.93); Calibrated: 06/06/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1315; Calibrated: 25/11/2013 Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469) **Area Scan (61x91x1):** Measurement grid: dx=15.00 mm, dy=15.00 mm Maximum value of SAR (interpolated) = 13.15 mW/g **Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.986 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 16.08 mW/g

SAR(1 g) = 12.53 mW/g; SAR(10 g) = 5.64 mW/g

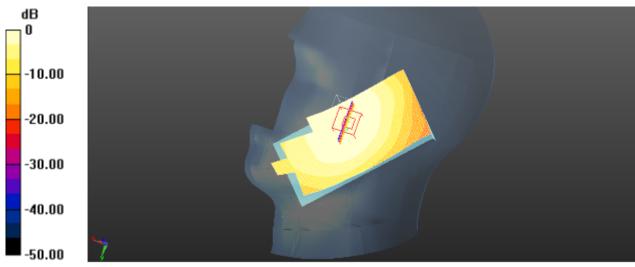
Maximum value of SAR (measured) = 16.08 mW/g

0 dB = 16.08 mW/g = 24.67 dB mW/g

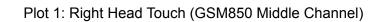
System Performance Check 2450MHz Body 250mW

10.SAR Test Graph Results

GSM850 Right Head Touch Middle Channel Date/Time: 11/11/2014 Communication System: Customer System; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.89$ S/m; $\varepsilon_r = 41.48$; $\rho = 1000$ kg/m³ Phantom section: Right Section DASY5 Configuration: Probe: ES3DV3 - SN3842; ConvF (8.83, 8.83, and 8.83); Calibrated: 06/06/2014; Electronics: DAE4 Sn1315; Calibrated: 25/11/2013 Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824) **Area Scan (51x101x1):** Interpolated grid: dx=1.50 mm, dy=1.50 mm Maximum value of SAR (interpolated) = 0.216 W/kg


Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.903V/m; Power Drift = -0.09 dB


Peak SAR (extrapolated) = 0.258 W/kg

SAR (1 g) = 0.212 W/kg; SAR (10 g) = 0.164 W/kg

Maximum value of SAR (measured) = 0.223 W/kg

0 dB = 0.216 W/kg = -13.31 dB W/kg

GSM850 GPRS 2TS Body Rear Side Middle Channel

Date/Time: 11/11/2014

Communication System: Customer System; Frequency: 836.6 MHz; Duty Cycle: 1:4.1

Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.96 S/m; ϵ_r = 55.86; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3842; ConvF (9.09, 9.09, and 9.09); Calibrated: 06/06/2014;

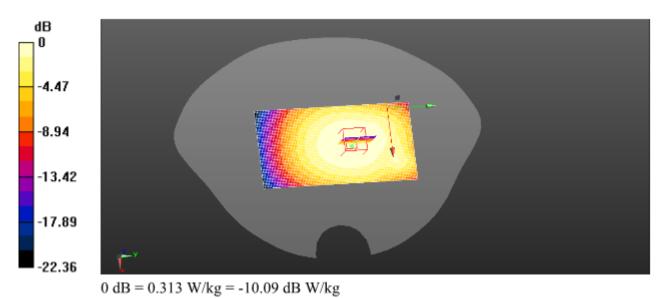
Electronics: DAE4 Sn1315; Calibrated: 25/11/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x101x1): Interpolated grid: dx=1.50 mm, dy=1.50 mm

Maximum value of SAR (interpolated) = 0.313 W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.032 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.361 W/kg

SAR (1 g) = 0.302 W/kg; SAR (10 g) = 0.234 W/kg

Maximum value of SAR (measured) = 0.314 W/kg

GSM1900 Right Head Touch Middle Channel

Date/Time: 11/11/2014

Communication System: Customer System; Frequency: 1880.0 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 1880.0 MHz; σ = 1.45 S/m; ϵ_r = 39.74; ρ = 1000 kg/m³

Phantom section: Right Section

DASY5 Configuration:

Probe: ES3DV3 - SN3842; ConvF (7.55, 7.55, 7.55); Calibrated: 06/06/2014;

Sensor-Surface: 4mm (Mechanical Surface Detection)

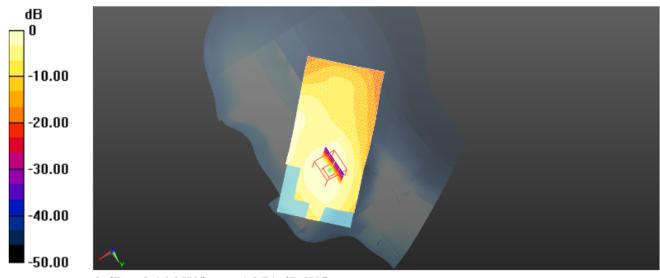
Electronics: DAE4 Sn1315; Calibrated: 25/11/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x101x1): Interpolated grid: dx=1.50 mm, dy=1.50 mm

Maximum value of SAR (interpolated) = 0.146 W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.248 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.202 W/kg

SAR(1 g) = 0.132 W/kg; SAR(10 g) = 0.082 W/kg

Maximum value of SAR (measured) = 0.145 W/kg

0 dB = 0.146 W/kg = -16.71 dB W/kg

Plot 3: Right Head Touch (GSM1900 Middle Channel)

GSM1900 GPRS 2TS Body Rear Side Middle Channel

Date/Time: 11/11/2014

Communication System: Customer System; Frequency: 1880.0 MHz; Duty Cycle: 1:4.1

Medium parameters used (interpolated): f = 1880.0 MHz; σ = 1.57 S/m; ϵ_r = 51.14; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3842; ConvF (7.43, 7.43, 7.43); Calibrated: 06/06/2014;

Sensor-Surface: 4mm (Mechanical Surface Detection)

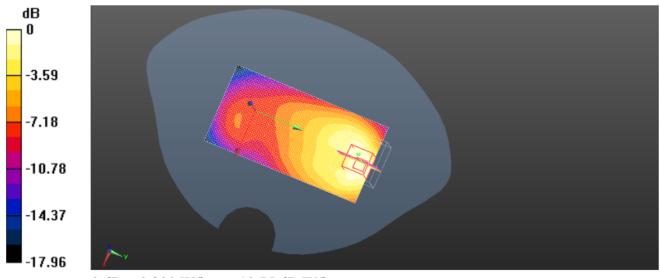
Electronics: DAE4 Sn1315; Calibrated: 25/11/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x101x1): Interpolated grid: dx=1.50 mm, dy=1.50 mm

Maximum value of SAR (interpolated) = 0.290 W/kg


Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.310 V/m; Power Drift =0.13 dB

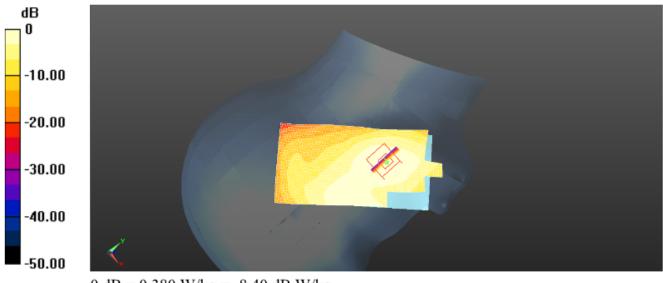
Peak SAR (extrapolated) = 0.507 W/kg

SAR(1 g) = 0.300 W/kg; SAR(10 g) = 0.169 W/kg

Maximum value of SAR (measured) = 0.314 W/kg

0 dB = 0.290 W/kg = -10.75 dB W/kg

WCDMA Band II RMC Right Head Touch Middle Channel


Date/Time: 11/11/2014 Communication System: Customer System; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1880 MHz; σ = 1.45 S/m; ε_r = 39.74; ρ = 1000 kg/m³ Phantom section: Right Section DASY5 Configuration: Probe: ES3DV3 - SN3842; ConvF (7.55, 7.55, and 7.55); Calibrated: 06/06/2014; Electronics: DAE4 Sn1315; Calibrated: 25/11/2013 Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824) **Area Scan (51x101x1):** Interpolated grid: dx=1.50 mm, dy=1.50 mm Maximum value of SAR (interpolated) = 0.380 W/kg **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.795 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.535 W/kg

SAR(1 g) = 0.351 W/kg; SAR(10 g) = 0.216 W/kg

Maximum value of SAR (measured) = 0.381 W/kg

WCDMA Band II RMC Body Rear Side Middle Channel

Date/Time: 11/11/2014

Communication System: Customer System; Frequency: 1880.0 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1880.0 MHz; σ = 1.57 S/m; ϵ_r = 51.14; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3842; ConvF (7.43, 7.43, and 7.43); Calibrated: 06/06/2014;

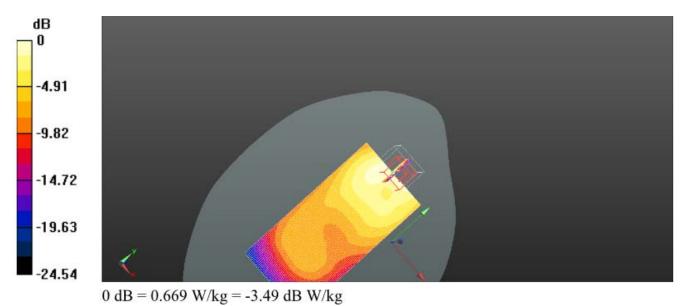
Electronics: DAE4 Sn1315; Calibrated: 25/11/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x101x1): Measurement grid: dx=1.50 mm, dy=1.50 mm

Maximum value of SAR (interpolated) = 0.669 W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

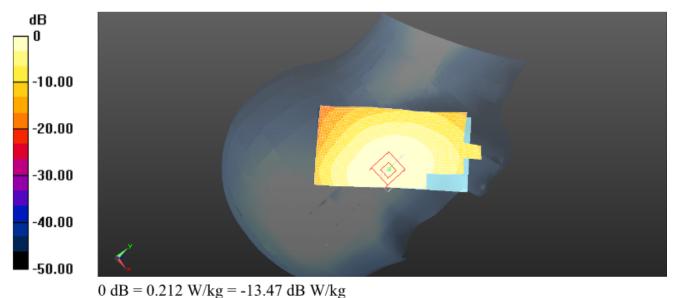
Reference Value = 8.131 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 1.064 W/kg

SAR(1 g) = 0.638 W/kg; SAR(10 g) = 0.363 W/kg

Maximum value of SAR (measured) = 0.681 W/kg

WCDMA Band V RMC Right Head Touch Middle Channel


Date/Time: 11/11/2014 Communication System: Customer System; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.89 S/m; ϵ_r = 41.48; ρ = 1000 kg/m³ Phantom section: Right Section DASY5 Configuration: Probe: ES3DV3 - SN3842; ConvF (8.83, 8.83, and 8.83); Calibrated: 06/06/2014; Electronics: DAE4 Sn1315; Calibrated: 25/11/2013 Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824) **Area Scan (51x101x1):** Interpolated grid: dx=1.50 mm, dy=1.50 mm Maximum value of SAR (interpolated) = 0.212 W/kg **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.952 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.247 W/kg

SAR(1 g) = 0.207 W/kg; SAR(10 g) = 0.159 W/kg

Maximum value of SAR (measured) = 0.217 W/kg

WCDMA Band V RMC Body Rear Side Middle Channel

Date/Time: 11/11/2014

Communication System: Customer System; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.96 S/m; ϵ_r = 55.86; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3842; ConvF (9.09, 9.09, and 9.09); Calibrated: 06/06/2014;

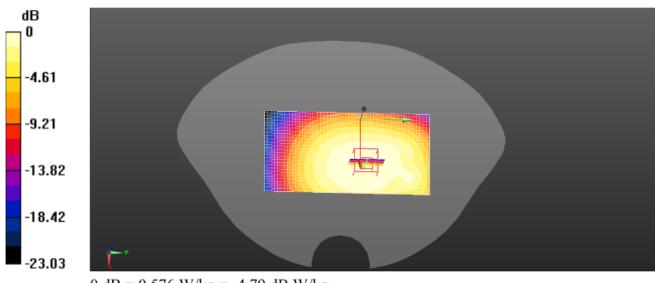
Electronics: DAE4 Sn1315; Calibrated: 25/11/2013

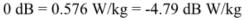
Phantom: SAM 1; Type: SAM;

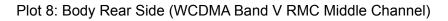
Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x101x1): Interpolated grid: dx=1.50 mm, dy=1.50 mm

Maximum value of SAR (interpolated) = 0.576 W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 22.585 V/m; Power Drift = -0.03 dB


Peak SAR (extrapolated) = 0. 662 W/kg

SAR(1 g) = 0. 544 W/kg; SAR(10 g) = 0. 419 W/kg

Maximum value of SAR (measured) = 0.572 W/kg

Right Head Touch (WLAN2450 Middle Channel-Channel 6-2437MHz (1Mbps))

Date/Time: 11/11/2014

Communication System: Customer System; Frequency: 2437.0 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437.0 MHz; σ = 1.79 S/m; ϵ_r = 39.12; ρ = 1000 kg/m³

Phantom section: Right Section:

DASY5 Configuration:

Probe: ES3DV3 - SN3842; ConvF (7.26, 7.26, and 7.26); Calibrated: 06/06/2014;

Sensor-Surface: 4mm (Mechanical Surface Detection)

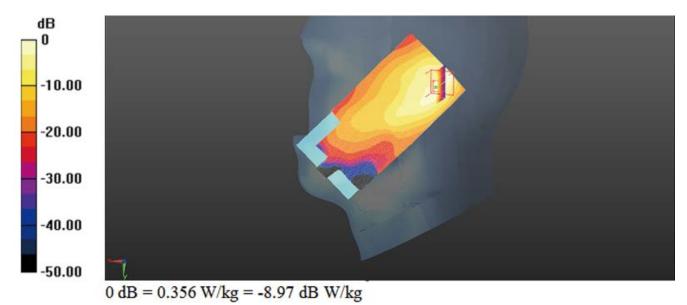
Electronics: DAE4 Sn1315; Calibrated: 25/11/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x101x1): Measurement grid: dx=1.50 mm, dy=1.50 mm

Maximum value of SAR (interpolated) = 0.356W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.559 V/m; Power Drift =- 0.08 dB

Peak SAR (extrapolated) = 0.325 W/kg

SAR(1 g) = 0.285 W/kg; SAR(10 g) = 0.132 W/kg

Maximum value of SAR (measured) = 0.354 W/kg

Plot 9: Right Head Touch (WLAN2450 Middle Channel-Channel 6-2437MHz (1Mbps))

Body- worn Rear Side (WLAN2450 Middle Channel-Channel 6-2437MHz (1Mbps))

Date/Time: 11/11/2014

Communication System: Customer System; Frequency: 2437.0 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437.0 MHz; σ = 1.96 S/m; ϵ_r = 52.65; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3842; ConvF (6.93, 6.93, and 6.93); Calibrated: 06/06/2014;

Sensor-Surface: 4mm (Mechanical Surface Detection)

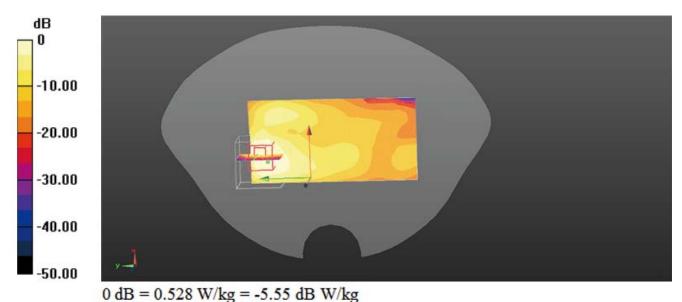
Electronics: DAE4 Sn1315; Calibrated: 25/11/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x101x1): Measurement grid: dx=1.50 mm, dy=1.50 mm

Maximum value of SAR (interpolated) = 0.528 W/kg


Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.947 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.559 W/kg

SAR(1 g) = 0.436 W/kg; SAR(10 g) = 0.325 W/kg

Maximum value of SAR (measured) = 0.524 W/kg

Plot 10: Body- worn Rear Side (WLAN2450 Middle Channel-Channel 6-2437MHz (1Mbps))

11. CALIBRATION CERTIFICATE

11.1 PROBE CALIBRATION CERTICATE

Calibration Laboratory of SWIS,S Schweizerischer Kalibrierdienst S Schmid & Partner Service suisse d'étalonnage C CRI/BRA 3C-MR Engineering AG Servizio svizzero di taratura S Zeughausstrasse 43, 8004 Zurich, Switzerland Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Certificate No: EX3-3831_Jun14 CIQ-SZ (Auden) Client CALIBRATION CERTIFICATE EX3DV4 - SN:3842 Object QA CAL-01.v8, QA CAL-12.v7, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure(s) Calibration procedure for dosimetric E-field probes June 6, 2014 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI) The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70% Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Cal Date (Certificate No.) Primary Standards ID GB41293874 04-Apr-14 (No. 217-01733) Apr-15 Power meter E4419B 04-Apr-14 (No. 217-01733) Apr-15 Power sensor E4412A MY41498087 04-Apr-14 (No. 217-01737) Apr-15 SN: S5054 (3c) Reference 3 dB Attenuator Apr-15 04-Apr-14 (No. 217-01735) Reference 20 dB Attenuator SN: S5277 (20x) 04-Apr-14 (No. 217-01738) Apr-15 SN: \$5129 (30b) Reference 30 dB Attenuator 28-Dec-13 (No ES3-3013 Dec13) Dec-15 Reference Probe ES3DV2 SN: 3013 31-Jan-14 (No. DAE4-660 Jan13) Jan-15 SN: 660 DAE4 Secondary Standards Check Date (in house) Scheduled Check ID US3642U01700 4-Aug-99 (in house check Apr-13) In house check: Apr-15 RF generator HP 8648C In house check: Oct-14 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-13) Name Signature Function Jeton Kastrati Laboratory Technician Calibrated by: Technical Manager Approved by Katja Pokovic issued: June 6, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-3831_Jun14 Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

GNISS BRI

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid
sensitivity in free space
sensitivity in TSL / NORMx,y,z
diode compression point
crest factor (1/duty_cycle) of the RF signal
modulation dependent linearization parameters
or rotation around probe axis
9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close
- proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3831_Jun13

Page 2 of 11

EX3DV4 - SN:3842

June 6, 2014

Probe EX3DV4

SN:3842

Manufactured: Repaired: Calibrated: October 25, 2011 June 3, 2014 June 6, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3831_Jun13

Page 3 of 11

EX3DV4-SN:3842

June 6, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3842

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.35	0.52	0.42	± 10.1 %
DCP (mV) ^B	104.7	100.4	100.5	

Modulation Calibration Parameters

UID	Communication System Name		A	В	С	D	VR	Unc ^E
			dB	dBõV		dB	mV	(k=2)
0 CW	CW	X	0.0	0.0	1.0	0.00	132.3	±3.5 %
		Y	0.0	0.0	1.0		162.7	
		Z	0.0	0.0	1.0		147.6	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

⁸ Numerical linearization parameter: uncertainty not required. ^e Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the

Certificate No: EX3-3831_Jun13

Page 4 of 11

June 6, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3842

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	43.5	0.87	10.00	10.00	10.00	0.15	1.10	± 13.4 %
835	41.5	0.91	8.83	8.83	8.83	0.28	1.07	± 12.0 %
900	41.5	0.97	8.78	8.78	8.78	0.32	1.00	± 12.0 %
1810	40.0	1.40	7.68	7.68	7.68	0.38	0.88	± 12.0 %
1900	40.0	1.40	7.55	7.55	7.55	0.50	0.77	± 12.0 %
2450	39.2	1.80	7.26	7.26	7.26	0.71	0.63	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: EX3-3831_Jun13

Page 5 of 11

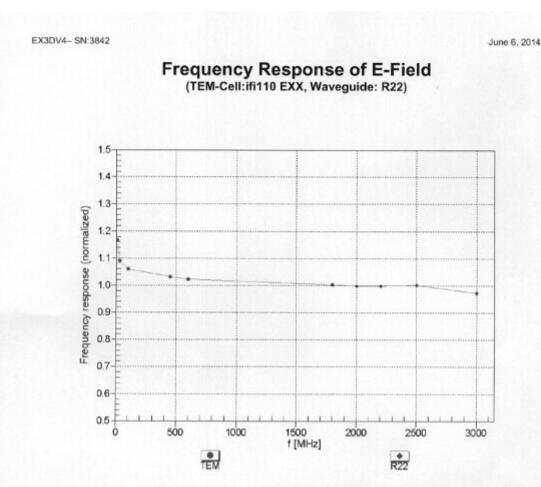
EX3DV4- SN:3842

June 6, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3842

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	56.7	0.94	10.34	10.34	10.34	0.09	1.00	± 13.4 %
835	55.2	0.98	9.09	9.09	9.09	0.42	0.84	± 12.0 %
900	55.0	1.05	9.16	9.16	9.16	0.47	0.79	± 12.0 %
1810	53.3	1.52	7.78	7.78	7.78	0.50	0.81	± 12.0 %
1900	53.3	1.52	7.43	7.43	7.43	0.29	1.07	± 12.0 %
2450	52.7	1.95	6.93	6.93	6.93	0.80	0.59	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

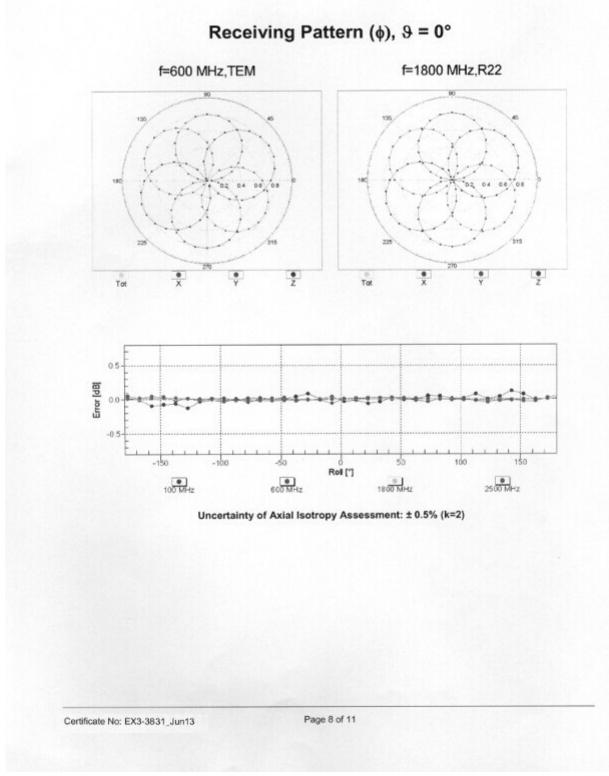

^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: EX3-3831_Jun13

Page 6 of 11

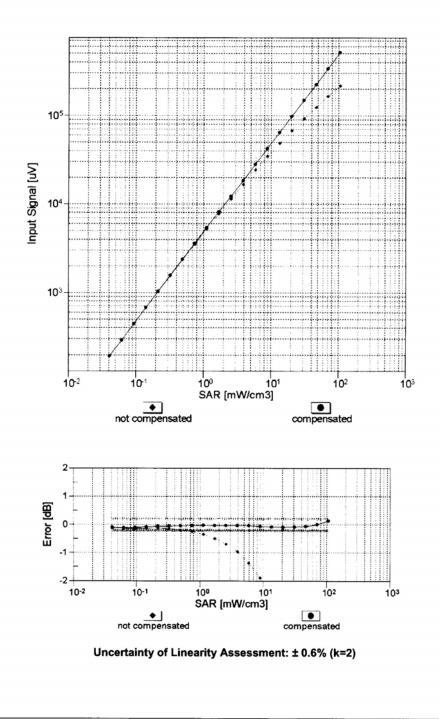
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Certificate No: EX3-3831_Jun13

Page 7 of 11

EX3DV4- SN:3842

June 6, 2014

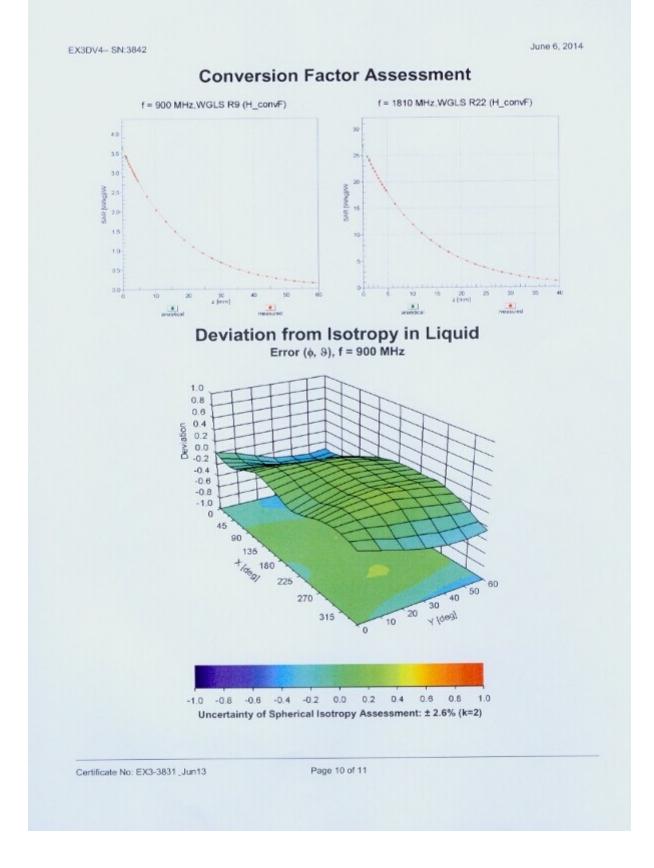


Page 61 of 96

EX3DV4-- SN:3842

June 6, 2014

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)



Certificate No: EX3-3831_Jun13

Page 9 of 11

EX3DV4- SN:3842

June 6, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3842

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-117.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3831_Jun13

Page 11 of 11

11.2 D835V2 Dipole Calibration Certificate

TMX	in Collaboration	eag	MRA CONAS
Add: No.52 Huayuanbei Ro Tel: +86-10-62304633-2079 E-mail: Info@emcite.com		Beijing, 100191, China 2304633-2504	校准 CNAS L0442
Client CIQ SZ (Aud	en)	Certificate No: J1	3-2-3049
CALIBRATION CEI	RTIFICATE	and the second	
Object	D835V2 - 9	SN: 4d134	
Calibration Procedure(s)	TMC-OS-E	-02-194	
		procedure for dipole validation	kits
Calibration date:	December	13, 2013	
and humidity<70%.		osed laboratory facility: enviror	nment temperature(22±3)℃
Calibration Equipment used (N Primary Standards		(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRVD	102083	11-Sep-13 (TMC, No.JZ13-44	3) Sep-14
Power sensor NRV-Z5	100595	11-Sep-13 (TMC, No. JZ13-44	13) Sep -14
Reference Probe ES3DV3	SN 3149	5- Sep-13 (SPEAG, No.ES3-3	149_Sep13) Sep-14
DAE4	SN 777	22-Feb-13 (SPEAG, DAE4-77	
Signal Generator E4438C	MY49070393	13-Nov-13 (TMC, No.JZ13-39	
Network Analyzer E8362B	MY43021135	19-Oct-13 (TMC, No.JZ13-27	B) Oct-14
N	ame	Function	Signature
Collibrated by:			Signature
Ζη	ao Jing	SAR Test Engineer	470,
Reviewed by: Qi	Dianyuan	SAR Project Leader	STOR
Approved by: Lu	Bingsong	Deputy Director of the laborat	on Anth
		lss ed except in full without written	ued: December 17, 2013

Certificate No: J13-2-3049

Page 1 of 8

Shenzhen General Testing & Inspection Technology Co., Ltd.

1F, 2 Block, Jiaquan Building, Guanlan High-tech Park Baoan District, Shenzhen, Guangdong, China

Tel.: (86)755-27588991 Fax: (86)755-86116468 Http://www.sz-ctc.com.cn

 Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: Info@emcite.com
 Http://www.emcite.com

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms
 oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: J13-2-3049

Page 2 of 8

In Collaboration with e

CALIBRATION LABORATORY

 Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: Info@emcite.com
 Http://www.emcite.com

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.7.1137
Extrapolation	Advanced Extrapolation	
Phantom	Twin Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.7 ± 6 %	0.88 mho/m ± 6 %
Head TSL temperature change during test	<0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.38 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.66 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.55 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.27 mW /g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	56.3 ± 6 %	0.97 mho/m ± 6 %
Body TSL temperature change during test	<0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.32 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.36 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.54 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.20 mW /g ± 20.4 % (k=2)

Certificate No: J13-2-3049

Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.5Ω + 3.14jΩ	
Return Loss	- 28.1dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.2Ω + 2.90jΩ	
Return Loss	- 30.4dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.241 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

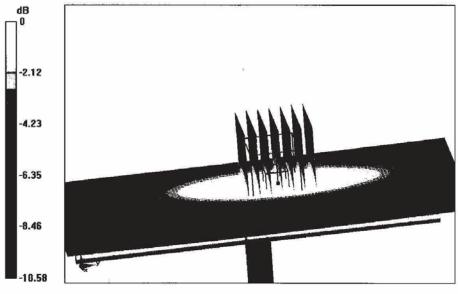
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

4M14	
Manufactured by	SPEAG
•	

Certificate No: J13-2-3049

Page 4 of 8



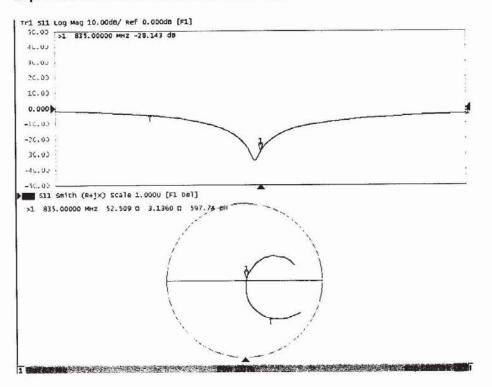
Test Laboratory: TMC, Beijing, China **DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d134** Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; σ = 0.884 mho/m; εr = 41.65; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration:

- Probe: ES3DV3 SN3149; ConvF(6.21,6.21,6.21); Calibrated: 2013/9/5
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 22/2/2013
- Phantom: SAM 1186;Type: QD000P40CC;
- Measurement SW: DASY52 52.8.7(1137); SEMCAD X Version 14.6.10 (7164)

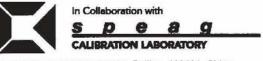
Dipole Calibration for Head Tissue/Pin=250mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 48.581 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.57 W/kg SAR(1 g) = 2.38 W/kg; SAR(10 g) = 1.55 W/kg Maximum value of SAR (measured) = 2.80 W/kg

0 dB = 2.80 W/kg = 4.47 dBW/kg

Certificate No: J13-2-3049


Page 5 of 8

Date: 12.11.2013


Impedance Measurement Plot for Head TSL

Certificate No: J13-2-3049

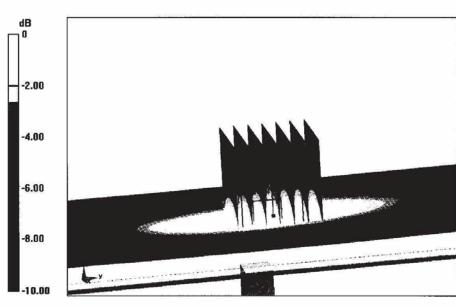
Page 6 of 8

Http://www.emcite.com

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com

Date: 12.13.2013

DASY5 Validation Report for Body TSL Test Laboratory: TMC, Beijing, China


DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d134 Communication System: CW; Frequency: 835 MHz; Medium parameters used: f = 835 MHz; σ = 0.965 mho/m; ϵ r = 56.32; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3149; ConvF(5.98,5.98,5.98); Calibrated: 2013/9/5
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 22/2/2013
- Phantom: SAM 1186; Type: QD000P40CC;
- Measurement SW: DASY52 52.8.7(1137); SEMCAD X Version 14.6.10 . (7164)

Dipole Calibration for Body Tissue/Pin=250mW, d=15mm/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.271 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.38 W/kg SAR(1 g) = 2.32 W/kg; SAR(10 g) = 1.54 W/kg Maximum value of SAR (measured) = 2.69 W/kg

0 dB = 2.69 W/kg = 4.30 dBW/kg


Certificate No: J13-2-3049

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: J13-2-3049

Page 8 of 8

11.3 D1900V2 DIPOLE CALIBRATION CERTICATE

Add: No.52 Huayuanb Tel: +86-10-62304633- E-mail: Info@emcite.co			权准 CNAS L04
Client CIQ SZ (/	The Se Martin Hills Can 1803	Certificate No: J13-2-3052	the second second
CALIBRATION C	PERTIFICATE		
Object	D1900V2	- SN: 5d 150	
Calibration Procedure(s)	TMC-OS-E	02-194	
		procedure for dipole validation kits	
Calibration date:	December	12, 2013	
방법 전 가지 않는 것 같아요. 것에서 없는 것이 없는 것이 없는 것이 없다.	영양 가지 거 집안 이 집안 못 같아. 아이지 않는 것이다.	eability to national standards, which realize t ts and the uncertainties with confidence pro	101 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
given on the following pag	ges and are part of the	ts and the uncertainties with confidence pro certificate. losed laboratory facility: environment tempera	bability are
given on the following pag All calibrations have bee and humidity<70%.	ges and are part of the n conducted in the cl ed (M&TE critical for c	ts and the uncertainties with confidence pro e certificate. losed laboratory facility: environment tempera calibration)	bability are
given on the following pag All calibrations have been and humidity<70%. Calibration Equipment use	ges and are part of the n conducted in the cl ed (M&TE critical for c	ts and the uncertainties with confidence pro e certificate. losed laboratory facility: environment tempera calibration)	bability are ature(22±3)℃
viven on the following pag All calibrations have been and humidity<70%. Calibration Equipment use Primary Standards	ges and are part of the n conducted in the cl ed (M&TE critical for o ID # Cal Date 102083	ts and the uncertainties with confidence pro ecertificate. losed laboratory facility: environment tempera calibration) (Calibrated by, Certificate No.) Scheduled	bability are ature(22±3)℃ I Calibration
viven on the following pages All calibrations have been and humidity<70%. Calibration Equipment use Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3D	ges and are part of the n conducted in the cl ed (M&TE critical for o ID # Cal Date 102083 100595 V3 SN 3149	ts and the uncertainties with confidence pro ecertificate. losed laboratory facility: environment tempera calibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-13 (TMC, No.JZ13-443) 11-Sep-13 (TMC, No.JZ13-443) 5- Sep-13 (SPEAG, No.ES3-3149_Sep13)	t Calibration Sep-14 Sep-14 Sep-14
viven on the following page All calibrations have been and humidity<70%. Calibration Equipment use Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3DV DAE4	ges and are part of the n conducted in the cl ed (M&TE critical for o ID # Cal Date 102083 100595 V3 SN 3149 SN 777	ts and the uncertainties with confidence pro ecrificate. losed laboratory facility: environment tempera calibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-13 (TMC, No.JZ13-443) 11-Sep-13 (TMC, No.JZ13-443) 5- Sep-13 (SPEAG, No.ES3-3149_Sep13) 22-Feb-13 (SPEAG, DAE4-777_Feb13)	Calibration Sep-14 Sep-14 Sep-14 Feb-14
viven on the following page All calibrations have been and humidity<70%. Calibration Equipment use Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3DV DAE4 Signal Generator E443	ges and are part of the n conducted in the cl ed (M&TE critical for o ID # Cal Date 100595 V3 SN 3149 SN 777 38C MY49070393	ts and the uncertainties with confidence pro ecrificate. losed laboratory facility: environment tempera calibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-13 (TMC, No.JZ13-443) 11-Sep-13 (TMC, No.JZ13-443) 5- Sep-13 (SPEAG, No.ES3-3149_Sep13) 22-Feb-13 (SPEAG, DAE4-777_Feb13) 13-Nov-13 (TMC, No.JZ13-394)	Calibration Sep-14 Sep-14 Sep-14 Feb -14 Nov-14
given on the following pag All calibrations have been and humidity<70%. Calibration Equipment use Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3DV DAE4	ges and are part of the n conducted in the cl ed (M&TE critical for o ID # Cal Date 100595 V3 SN 3149 SN 777 38C MY49070393	ts and the uncertainties with confidence pro ecrificate. losed laboratory facility: environment tempera calibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-13 (TMC, No.JZ13-443) 11-Sep-13 (TMC, No.JZ13-443) 5- Sep-13 (SPEAG, No.ES3-3149_Sep13) 22-Feb-13 (SPEAG, DAE4-777_Feb13)	Calibration Sep-14 Sep-14 Sep-14 Feb-14
given on the following pag All calibrations have been and humidity<70%. Calibration Equipment use Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3DV DAE4 Signal Generator E443	ges and are part of the n conducted in the cl ed (M&TE critical for o ID # Cal Date 100595 V3 SN 3149 SN 777 38C MY49070393	ts and the uncertainties with confidence pro ecrificate. losed laboratory facility: environment temperal calibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-13 (TMC, No.JZ13-443) 11-Sep-13 (TMC, No.JZ13-443) 5- Sep-13 (SPEAG, No.ES3-3149_Sep13) 22-Feb-13 (SPEAG, No.ES3-3149_Sep13) 22-Feb-13 (SPEAG, No.ES3-3149_Sep13) 13-Nov-13 (TMC, No.JZ13-394) 19-Oct-13 (TMC, No.JZ13-276)	ature(22±3)°C d Calibration Sep-14 Sep-14 Sep-14 Feb -14 Nov-14 Oct-14 ignature
given on the following pag All calibrations have been and humidity<70%. Calibration Equipment use Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3DV DAE4 Signal Generator E443	es and are part of the n conducted in the cl ed (M&TE critical for o ID # Cal Date 102083 100595 V3 SN 3149 SN 777 38C MY49070393 28 MY49070393	ts and the uncertainties with confidence pro ecrificate. losed laboratory facility: environment temperal calibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-13 (TMC, No.JZ13-443) 11-Sep-13 (TMC, No.JZ13-443) 5- Sep-13 (SPEAG, No.ES3-3149_Sep13) 22-Feb-13 (SPEAG, No.ES3-3149_Sep13) 22-Feb-13 (SPEAG, No.ES3-3149_Sep13) 13-Nov-13 (TMC, No.JZ13-394) 19-Oct-13 (TMC, No.JZ13-276)	d Calibration Sep-14 Sep-14 Sep-14 Feb -14 Nov-14 Oct-14
given on the following pag All calibrations have been and humidity<70%. Calibration Equipment use Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3DV DAE4 Signal Generator E443 Network Analyzer E8362	ges and are part of the n conducted in the cl ed (M&TE critical for o ID # Cal Date 100595 V3 SN 3149 SN 777 38C MY49070393 28 MY43021135 Name	ts and the uncertainties with confidence pro- certificate. losed laboratory facility: environment temperal calibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-13 (TMC, No.JZ13-443) 11-Sep-13 (TMC, No.JZ13-443) 5- Sep-13 (SPEAG, No.ES3-3149_Sep13) 22-Feb-13 (SPEAG, DAE4-777_Feb13) 13-Nov-13 (TMC, No.JZ13-394) 19-Oct-13 (TMC, No.JZ13-278) Function S	ature(22±3)°C d Calibration Sep-14 Sep-14 Sep-14 Feb -14 Nov-14 Oct-14 ignature

Certificate No: J13-2-3052

Page 1 of 8

E-mail: Info@emcite.com

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: J13-2-3052

Page 2 of 8

20.2 mW /g ± 20.4 % (k=2)

	S D	ion with Ce a a				
	CALIBRATIC	N LABORATORY				
E-mail: Info@emcite.com H asurement Conditions	ax: +86-10-6 http://www.en	52304633-2504 ncite.com	hina			
DASY system configuration, as far as DASY Version	not given or	DASY52	-		52 8 7 1137	
Extrapolation	Advand	ced Extrapolation				
Phantom	т	win Phantom	-			
Distance Dipole Center - TSL		10 mm		with Spacer		
Zoom Scan Resolution	dx, dy, dz = 5 mm			1,524		
Frequency	190	0 MHz ± 1 MHz				
ad TSL parameters he following parameters and calculat	ions were a	oplied				
		Temperature	Permitt	ivity	Conductivity	
Nominal Head TSL parameters		22.0 *C	40.0		1.40 mho/m	
Measured Head TSL parameters		(22.0 ± 0.2) *C	38.9 ±	6 %	1.42 mho/m ± 6 9	
Head TSL temperature change du	ring test	<0.5 *C				
R result with Head TSL	0		1	-		
SAR averaged over 1 cm3 (1 g) of	Head TSL	Condi	tion		100	
SAR measured		250 mW ir	250 mW input power		9.71 mW/g	
SAR for nominal Head TSL parameters		normalize	normalized to 1W		38.3 mW /g ± 20.8 % (k=2	
SAR averaged over 10 cm ³ (10 g)	of Head TS	L Condi	tion			
SAR measured		and the second sec	250 mW input power		and a state of the	
SAR measured		250 mW ir	put power		5.08 mW/g	

Body TSL parameters The following parameters and calculations were applied.

SAR for nominal Head TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.7 ± 6 %	1.53 mho/m ± 6 %
Body TSL temperature change during test	<0.5 °C		

normalized to 1W

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.98 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	39.9 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.26 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	21.0 mW /g ± 20.4 % (k=2)

Certificate No: J13-2-3052

Page 3 of 8

E-mail: Info@emcite.com

Http://www.emcite.com

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.3Ω+ 3.17jΩ
Return Loss	- 30.0dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.8Ω+ 3.92jΩ
Return Loss	- 27.7dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.048 ns
cicolinal being (one allocation)	1.040 118

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

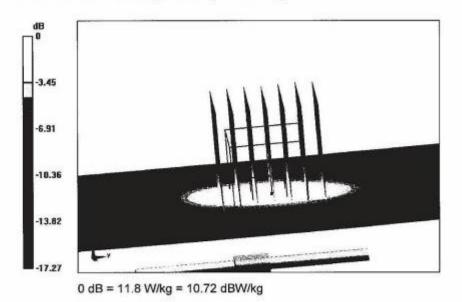
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
manufactured by	OFENO

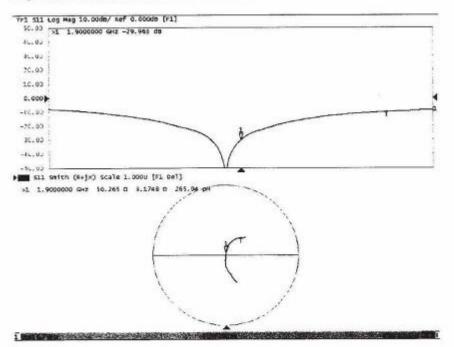
Certificate No: J13-2-3052


Page 4 of 8

Dipole Calibration for Head Tissue/Pin=250mW, d=10mm/Zoom Scan

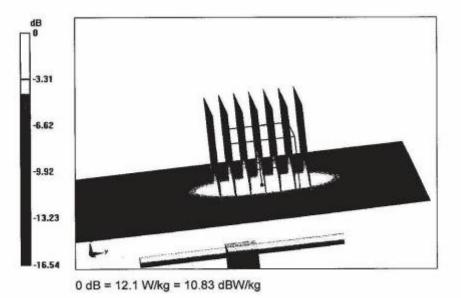
(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 90.054 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 17.9 W/kg SAR(1 g) = 9.71 W/kg; SAR(10 g) = 5.08 W/kg Maximum value of SAR (measured) = 11.8 W/kg

Certificate No: J13-2-3052


Page 5 of 8

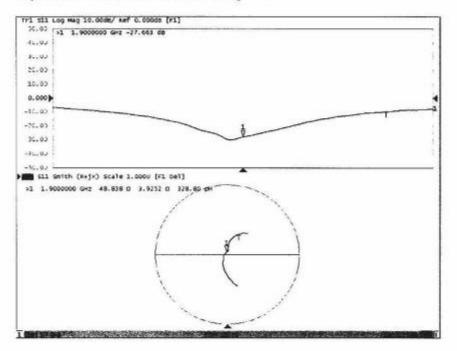
Impedance Measurement Plot for Head TSL

Certificate No: J13-2-3052


Page 6 of 8

DASY52 52.8.7(1137); SEMCAD X Version 14.6.10 (7164)

Dipole Calibration for Body Tissue/Pin=250mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 83.606 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 17.7 W/kg SAR(1 g) = 9.98 W/kg; SAR(10 g) = 5.26 W/kg Maximum value of SAR (measured) = 12.1 W/kg



Certificate No: J13-2-3052

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: J13-2-3052

Page 8 of 8

11.4 D2450V2 Dipole Calibration Ceriticate

		e a a				
	CALIBRATIC	N LABORATORY	E MONAS			
Add: No.52 Huayuant Tel: +86-10-62304633 E-mail: Info@emcite.c		Beijing, 100191, China	校 准 CNAS L04			
Client CIQ SZ	(Auden)	Certificate No: J13-2-305	3			
CALIBRATION	1 131 131 11 12 12	i de la triferi d'alta	de tra			
Object	D2450V2	- SN: 884				
Calibration Procedure(s)	TMC OS	E 02 104				
		TMC-OS-E-02-194 Calibration procedure for dipole validation kits				
Calibration date:	Decembe	r 11, 2013				
		e certificate. Iosed laboratory facility: environment ter	nnaraturo/22,230			
and humidity<70%.			nporature(2223) C			
Calibration Equipment us	ed (M&TE critical for o	calibration)	duled Calibration			
Calibration Equipment us	ed (M&TE critical for o	calibration) (Calibrated by, Certificate No.) Sche	duled Calibration			
Calibration Equipment us Primary Standards	ed (M&TE critical for of ID# Cal Date	calibration) (Calibrated by, Certificate No.) Sche 11-Sep-13 (TMC, No.JZ13-443)	duled Calibration			
Calibration Equipment us Primary Standards Power Meter NRVD	ed (M&TE critical for of ID # Cal Date 102083 100595	calibration) (Calibrated by, Certificate No.) Sche	duled Calibration Sep-14 Sep -14			
Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-Z5	ed (M&TE critical for of ID # Cal Date 102083 100595	calibration) (Calibrated by, Certificate No.) Sche 11-Sep-13 (TMC, No.JZ13-443) 11-Sep-13 (TMC, No. JZ13-443)	duled Calibration Sep-14 Sep -14 13) Sep-14			
Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3D\	ed (M&TE critical for o ID # Cal Date 102083 100595 V3 SN 3149 SN 777	calibration) (Calibrated by, Certificate No.) Sche 11-Sep-13 (TMC, No.JZ13-443) 11-Sep-13 (TMC, No. JZ13-443) 5- Sep-13 (SPEAG, No.ES3-3149_Sep	duled Calibration Sep-14 Sep -14 13) Sep-14			
Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3D DAE4	ed (M&TE critical for o ID # Cal Date 102083 100595 V3 SN 3149 SN 777 38C MY49070393	calibration) (Calibrated by, Certificate No.) Sche 11-Sep-13 (TMC, No.JZ13-443) 11-Sep-13 (TMC, No. JZ13-443) 5- Sep-13 (SPEAG, No.ES3-3149_Sep 22-Feb-13 (SPEAG, DAE4-777_Feb13)	duled Calibration Sep-14 Sep -14 13) Sep-14 Feb -14			
Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3D DAE4 Signal Generator E443	ed (M&TE critical for o ID # Cal Date 102083 100595 V3 SN 3149 SN 777 38C MY49070393 2B MY43021135	calibration) (Calibrated by, Certificate No.) Sche 11-Sep-13 (TMC, No.JZ13-443) 11-Sep-13 (TMC, No. JZ13-443) 5- Sep-13 (SPEAG, No.ES3-3149_Sep 22-Feb-13 (SPEAG, DAE4-777_Feb13) 13-Nov-13 (TMC, No.JZ13-394) 19-Oct-13 (TMC, No.JZ13-278)	duled Calibration Sep-14 Sep -14 13) Sep-14 Feb -14 Nov-14 Oct-14			
Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3D DAE4 Signal Generator E443 Network Analyzer E8362	ed (M&TE critical for of ID # Cal Date 102083 100595 V3 SN 3149 SN 777 38C MY49070393 28 MY43021135	calibration) (Calibrated by, Certificate No.) Sche 11-Sep-13 (TMC, No.JZ13-443) 11-Sep-13 (TMC, No. JZ13-443) 5- Sep-13 (SPEAG, No.ES3-3149_Sep 22-Feb-13 (SPEAG, DAE4-777_Feb13) 13-Nov-13 (TMC, No.JZ13-394) 19-Oct-13 (TMC, No.JZ13-278) Function	duled Calibration Sep-14 Sep -14 13) Sep-14 Feb -14 Nov-14			
Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3DV DAE4 Signal Generator E443 Network Analyzer E8362	ed (M&TE critical for o ID # Cal Date 102083 100595 V3 SN 3149 SN 777 38C MY49070393 2B MY43021135	calibration) (Calibrated by, Certificate No.) Sche 11-Sep-13 (TMC, No.JZ13-443) 11-Sep-13 (TMC, No. JZ13-443) 5- Sep-13 (SPEAG, No.ES3-3149_Sep 22-Feb-13 (SPEAG, DAE4-777_Feb13) 13-Nov-13 (TMC, No.JZ13-394) 19-Oct-13 (TMC, No.JZ13-278)	duled Calibration Sep-14 Sep -14 13) Sep-14 Feb -14 Nov-14 Oct-14			
Power sensor NRV-Z5 Reference Probe ES3D/ DAE4 Signal Generator E443	ed (M&TE critical for of ID # Cal Date 102083 100595 V3 SN 3149 SN 777 38C MY49070393 28 MY43021135	calibration) (Calibrated by, Certificate No.) Sche 11-Sep-13 (TMC, No.JZ13-443) 11-Sep-13 (TMC, No. JZ13-443) 5- Sep-13 (SPEAG, No.ES3-3149_Sep 22-Feb-13 (SPEAG, DAE4-777_Feb13) 13-Nov-13 (TMC, No.JZ13-394) 19-Oct-13 (TMC, No.JZ13-278) Function	duled Calibration Sep-14 Sep -14 13) Sep-14 Feb -14 Nov-14 Oct-14			
Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3DV DAE4 Signal Generator E443 Network Analyzer E8362	ed (M&TE critical for of ID # Cal Date 102083 100595 V3 SN 3149 SN 777 38C MY49070393 28 MY43021135 Name Zhao Jing	calibration) (Calibrated by, Certificate No.) Sche 11-Sep-13 (TMC, No.JZ13-443) 11-Sep-13 (TMC, No.JZ13-443) 5- Sep-13 (SPEAG, No.ES3-3149_Sep 22-Feb-13 (SPEAG, DAE4-777_Feb13) 13-Nov-13 (TMC, No.JZ13-394) 19-Oct-13 (TMC, No.JZ13-278) Function SAR Test Engineer	duled Calibration Sep-14 Sep -14 13) Sep-14 Feb -14 Nov-14 Oct-14			
Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3DV DAE4 Signal Generator E443 Network Analyzer E8362 Calibrated by: Reviewed by:	ed (M&TE critical for o ID # Cal Date 102083 100595 V3 SN 3149 SN 777 38C MY49070393 28 MY49070393 MY43021135 Name Zhao Jing Qi Dianyuan	Calibration) (Calibrated by, Certificate No.) Sche 11-Sep-13 (TMC, No.JZ13-443) 11-Sep-13 (TMC, No.JZ13-443) 5- Sep-13 (SPEAG, No.ES3-3149_Sep 22-Feb-13 (SPEAG, DAE4-777_Feb13) 13-Nov-13 (TMC, No.JZ13-394) 19-Oct-13 (TMC, No.JZ13-278) Function SAR Test Engineer SAR Project Leader	duled Calibration Sep-14 Sep -14 13) Sep-14 Feb -14 Nov-14 Oct-14			

Certificate No: J13-2-3053

Page 1 of 8

E-mail: Info@emcite.com

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

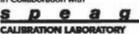
- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.


The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: J13-2-3053

Page 2 of 8

Add: No.52 Huayuanbei Road, Haldian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

Measurement Conditions

DASY Version	DASY52	52.8.7.1137
Extrapolation	Advanced Extrapolation	
Phantom	Twin Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.82 mho/m ± 6 %
Head TSL temperature change during test	<0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	51.7 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.05 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.1 mW /g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

4	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.8 ± 6 %	1.94 mho/m ± 6 %
Body TSL temperature change during test	<0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.9 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.8 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.98 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	24.0 mW /g ± 20.4 % (k=2)

Certificate No: J13-2-3053

Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	46.8Ω+ 3.76jΩ
Return Loss	- 25.9dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	55.2Ω+ 2.38jΩ	
Return Loss	- 25.4dB	

General Antenna Parameters and Design

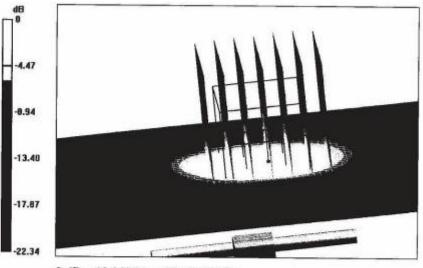
	1	
Electrical Delay (one direction)	1.199 ns	- 1

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

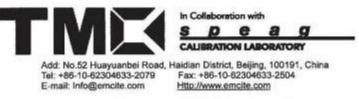
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

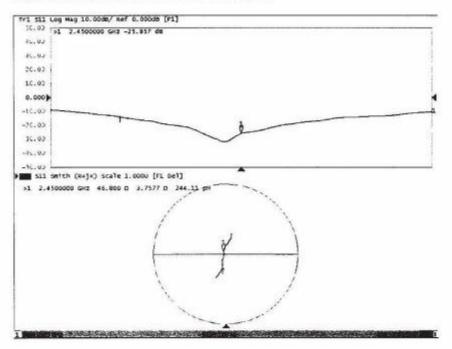

Manufactured by	SPEAG
-----------------	-------

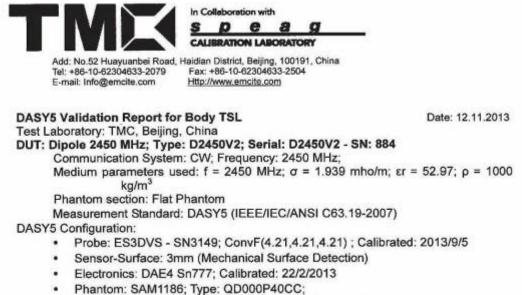
Certificate No: J13-2-3053

Page 4 of 8

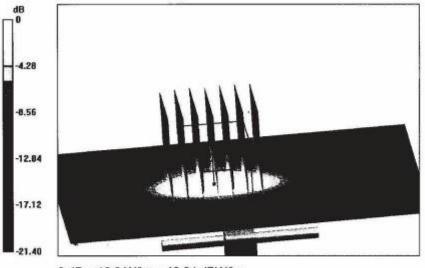

0 dB = 16.2 W/kg = 12.10 dBW/kg

Certificate No: J13-2-3053


Page 5 of 8


Impedance Measurement Plot for Head TSL

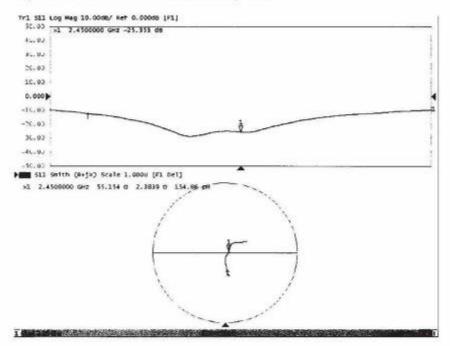
Certificate No: J13-2-3053


Page 6 of 8

DASY52 52.8.7(1137); SEMCAD X Version 14.6.10 (7164)

Dipole Calibration for Body Tissue/Pin=250mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 84.687 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 27.1 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 5.98 W/kg Maximum value of SAR (measured) = 16.0 W/kg

0 dB = 16.0 W/kg = 12.04 dBW/kg


Certificate No: J13-2-3053

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: J13-2-3053

Page 8 of 8

11.5 DAE4 CALIBRATION CERTICATE

Tel: +86-10-623 E-mail: info@e		: +86-10-62304633-2504 5://www.emcite.com		"Malalalation"	权 准 CNAS L044
Client : CIQ	SZ (Auden)	• :	Certificate	No: J13-2-3	048
CALIBRATION	CERTIFICA	TE		学家 :金	
Object	DAE4	- SN: 1315			
Calibration Procedure(s)	TMC-	OS-E-01-198			
		ration Procedure for the	e Data Acquis	sition Electroni	cs
Calibration date:	Nove	mber 25, 2013			
measurements(SI). The pages and are part of the	measurements an e certificate.	traceability to national d the uncertainties with c	onfidence prot	oability are give	n on the following
measurements(SI). The pages and are part of the	measurements an e certificate. een conducted in sed (M&TE critical	d the uncertainties with c	onfidence prot	oability are give	n on the following ature(22±3)℃ and
measurements(SI). The in pages and are part of the All calibrations have be humidity<70%. Calibration Equipment us	measurements an e certificate. een conducted in sed (M&TE critical	d the uncertainties with c the closed laboratory for calibration)	onfidence prot facility: enviro prtificate No.)	pability are given	n on the following ature(22±3)℃ and Calibration
measurements(SI). The in pages and are part of the All calibrations have be numidity<70%. Calibration Equipment us Primary Standards	measurements an e certificate. een conducted in sed (M&TE critical ID # C	d the uncertainties with c the closed laboratory for calibration) al Date(Calibrated by, Ce	onfidence prot facility: enviro prtificate No.)	oability are give	n on the following ature(22±3)°C and Calibration
neasurements(SI). The inages and are part of the inages and are part of the inumidity<70%. Calibration Equipment us Primary Standards Documenting Process Calibrator 753	measurements an e certificate. een conducted in sed (M&TE critical ID # C 1971018	d the uncertainties with c the closed laboratory for calibration) al Date(Calibrated by, Ce 01-July-13 (TMC, No:J	onfidence prot facility: enviro prtificate No.) W13-049)	oability are given	n on the following ature(22±3)°C and Calibration
measurements(SI). The in pages and are part of the All calibrations have be numidity<70%. Calibration Equipment us Primary Standards	measurements an e certificate. een conducted in sed (M&TE critical ID # C 1971018 Name	d the uncertainties with c the closed laboratory for calibration) al Date(Calibrated by, Ce 01-July-13 (TMC, No:J Function	onfidence prot facility: enviro wtificate No.) W13-049)	oability are given	n on the following ature(22±3)℃ and Calibration

Certificate No: J13-2-3048

Page 1 of 3

Glossary: DAE

Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: J13-2-3048

Page 2 of 3

DC Voltage Measurement

High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV ,	full range =	-1+3mV

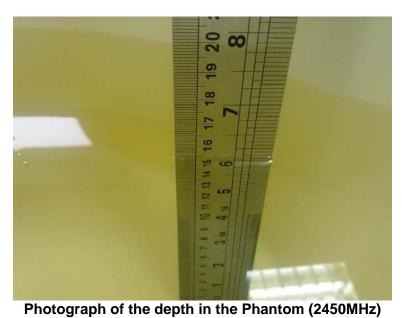
Calibration Factors	x	Y	Z
High Range	403.915 ± 0.15% (k=2)	405.171 ± 0.15% (k=2)	404.667 ± 0.15% (k=2)
Low Range	3.98903 ± 0.7% (k=2)	3.94180 ± 0.7% (k=2)	3.93862 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system 162.5° ± 1 °
--

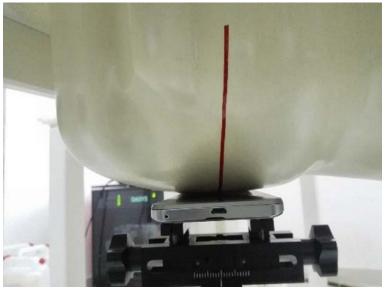
Certificate No: J13-2-3048

Page 3 of 3

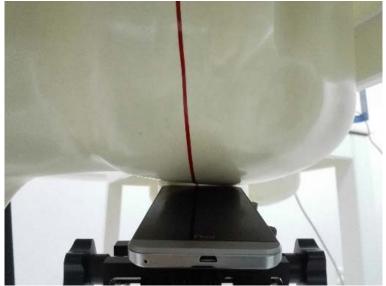


Photograph of the depth in the Phantom (835MHz)

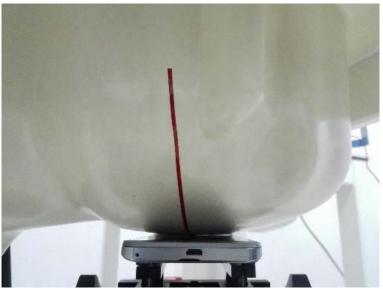
Photograph of the depth in the Head Phantom (1900MHz)



Shenzhen General Testing & Inspection Technology Co., Ltd. 1F, 2 Block, Jiaquan Building, Guanlan High-tech Park Baoan District, Shenzhen, Guangdong, China Tel.: (86)755-27588991 Fax: (86)755-86116468 Http://www.sz-ctc.com.cn



Right Head Tilt Setup Photo



Right Head Touch Setup Photo

Left Head Tilt Setup Photo

Left Head Touch Setup Photo

0mm Body-worn Rear Setup Photo

0mm Body-worn Front Side Setup Photo

0mm Body-worn Left SideSetup Photo

0mm Body-worn Right Side Setup Photo

0mm Body-worn Top Side Setup Photo

0mm Body-worn Bottom Side Setup Photo

13. PHOTOGRAPHS OF EUT CONSTRUCTIONAL

Reference to the test report No. GTI20140490F-1