

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE200709803

FCC REPORT

(Bluetooth)

Applicant: Sun Cupid Technology (HK) Ltd.

Address of Applicant: 16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan,

Kowloon, Hong Kong.

Equipment Under Test (EUT)

Product Name: Mobile phone

Model No.: A1, A1+, 4080P

Trade mark: NUU

FCC ID: 2ADINNUUA1P2

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 27 Jul., 2020

Date of Test: 28 Jul., to 02 Sep., 2020

Date of report issued: 03 Sep., 2020

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Report No: CCISE200709803

2 Version

Version No.	Date	Description
00	03 Sep., 2020	Original

Mike. DU
Test Engineer Tested by: Date: 03 Sep., 2020

Reviewed by: Date: 03 Sep., 2020

Project Engineer

3 Contents

	Page
1 COVER PAGE	1
2 VERSION	2
3 CONTENTS	3
4 GENERAL INFORMATION	4
4.1 CLIENT INFORMATION	
5 TEST RESULTS AND MEASUREMENT DATA	7
5.1 TEST CONFIGURATION OF EUT 5.2 TEST SETUP BLOCK 5.3 TEST RESULT SUMMARY 5.4 ANTENNA REQUIREMENT 5.5 CONDUCTED EMISSIONS 5.6 BAND EDGE 5.6.1 Radiated Emission Method 5.7 SPURIOUS EMISSION 5.7.1 Radiated Emission Method	
6 TEST SETUP PHOTO	30
7 FUT CONSTRUCTIONAL DETAILS	21

4 General Information

4.1 Client Information

Applicant:	Sun Cupid Technology (HK) Ltd.
Address:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong.
Manufacturer:	Sun Cupid Technology (HK) Ltd.
Address:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong.
Factory:	Suncupid (ShenZhen) Electronic Ltd
Address:	Baolong Industrial City, Longgang District, Shenzhen Hi-Tech Road, Building 1, A 7, China.

4.2 General Description of E.U.T.

4.2 General Descript	ion o	I E.U.I.		_	
Product Name:	Mobile	Mobile phone			
Model No.:	A1, A	A1, A1+, 4080P			
Operation Frequency:	2402	/Hz~2480MHz			
Transfer rate:	1/2/3	Mbits/s			
Number of channel:	79				
Modulation type:	GFSK	X, π/4-DQPSK, 8DPSK			
Modulation technology:	FHSS				
Antenna Type:	Intern	al Antenna			
Antenna gain:	-0.91	dBi			
Power supply:	Recha	argeable Li-ion Battery DC3.7V, 1300	0mAh		
AC adapter:	Model: HJ-0501000E1-US Input: AC100-240V, 50/60Hz, 0.2A Output: DC 5V, 1A				
Remark:	Model No.: A1+, A1, 4080P are exactly the same internally, the circuit design, layout, components used and internal wiring are the same, but the model name is different, each model There are three types of internal memory chips and operating memory chips. The difference between them lies in the different manufacturers.				
		Technical specifications	Manufacturer name	product name	
		EMMC IpDDR3 8Gb 178B NCLD3B2256M32-V01M		NCLD3B2256M32	
	U401		ISOCOM	MD3B2008G-M0	
			RAYSON	RS256M32LD3D1LMZ-125BT	
			SANDISK	SDINBDG4-8G	
			ISOCOM	MEMDNN008G	
	EMMC 153B 8GB FEMDNN008G-08A39 FORESEE FEMDNN008G-08A39				
Test Sample Condition:	The test samples were provided in good working order with no visible defects.				

4.3 Test environment and mode, and test samples plans

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test Modes:	
Non-hopping mode:	Keep the EUT in continuous transmitting mode with worst case data rate.
Hopping mode:	Keep the EUT in hopping mode.
Remark	GFSK (1 Mbps) is the worst case mode.

Report No: CCISE200709803

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.4 Description of Support Units

The EUT has been tested as an independent unit.

4.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

4.6 Additions to, deviations, or exclusions from the method

No

4.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

● A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Report No: CCISE200709803

4.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

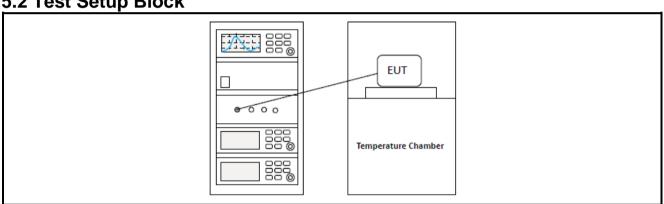
Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

4.9 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-21-2020	07-20-2021
Loop Antenna	SCHWARZBECK	FMZB1519B	044	03-07-2020	03-06-2021
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-20-2020	06-19-2021
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020
EMI Test Software	AUDIX	E3	Version: 6.110919b)
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2020	07-17-2021
Cable	HP	10503A	N/A	03-05-2020	03-04-2021
EMI Test Software	AUDIX	E3	\	ersion: 6.110919t/)



5 Test results and measurement data

5.1 Test Configuration of EUT

Operation	Operation Frequency each of channel for GFSK, π/4-DQPSK, 8DPSK						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		
Remark: Channel 0, 39 &78 selected for GFSK, π/4-DQPSK and 8DPSK.							

5.2 Test Setup Block

5 3 Test Result Summary

2.3 1621 V	esuit Summary				
Test Items		Section in CFR 47	Test Data	Result	
Ar	ntenna requirement	15.203 & 15.247 (b)	See Section 5.4	Pass	
AC Power	r Line Conducted Emission	15.207	See Section 5.5	Pass	
Conduc	cted Peak Output Power	15.247 (b)(1)	Appendix A – BT	Pass	
20dE	3 Occupied Bandwidth	15.247 (a)(1)	Appendix A – BT	Pass	
Carrier	Frequencies Separation	15.247 (a)(1)	Appendix A – BT	Pass	
Норг	oing Channel Number	15.247 (a)(1)	Appendix A – BT	Pass	
	Dwell Time	15.247 (a)(1)	Appendix A – BT	Pass	
D. J.E.L.	Conducted Emission Method	45.047.(1)	Appendix A – BT		
Band Edge	Radiated Emission Method	15.247 (d)	See Section 5.6.1	Pass	
Spurious	Conducted Emission Method	45 005 0 45 000	Appendix A – BT	D	
Emission	Radiated Emission Method	15.205 & 15.209	See Section 5.7.1	Pass	
Remark:	 Pass: The EUT complies with the essential requirements in the standard. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer). 				
Test Method:	1. ANSI C63.10-2013 2. KDB 558074 D01 15.247 Meas Guidance v05r02				

Report No: CCISE200709803

5.4 Antenna Requirement

Standard requirement: FCC Part 15 C Section 15.203 & 247(b)

15.203 requirement:

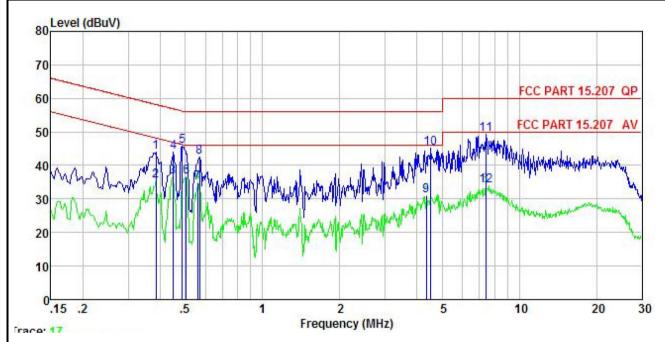
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

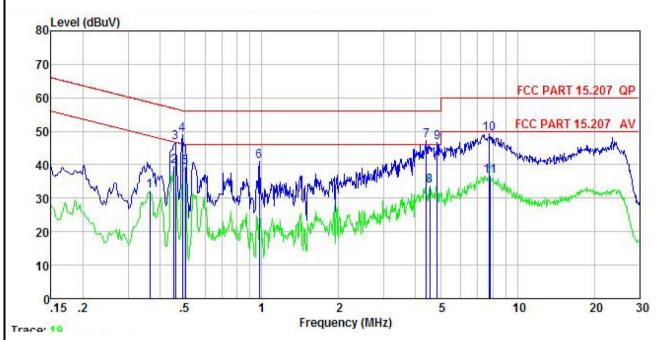
The Bluetooth antenna is an Internal antenna which permanently attached, and the best case gain of the antenna is -0.91 dBi.


5.5 Conducted Emissions

Test Requirement:	FCC Part 15 C Section 15.	207			
Test Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz			
Class / Severity:	Class B				
Receiver setup:	RBW=9 kHz, VBW=30 kHz	z, Sweep time=auto			
Limit:	Frequency range (MHz)	Limit (c	dBuV)		
		Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
Test setup:	* Decreases with the logar	•			
	AUX Equipment Test table/Insulation plane Remark E.U.T Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Networt Test table height=0.8m				
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement. 				
Test Instruments:	Refer to section 5.9 for det	Refer to section 5.9 for details			
Test mode:	Hopping mode				
Test results:	Pass				

Measurement Data:

Product name:	Mobile phone	Product model:	A1
Test by:	Mike	Test mode:	BT Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Cable Loss	Aux Factor	Level	Limit Line	Over Limit	Remark
<u>11</u>	MHz	dBu∇	<u>ab</u>		<u>ab</u>	—dBu⊽	dBu∇	<u>ab</u>	
1	0.385	33.47	-0.49	10.72		44.03	58.17	-14.14	QP
2	0.385	25.01	-0.49	10.72	0.33	35.57	48.17	-12.60	Average
3	0.447	26.19	-0.46	10.74	0.05	36.52	46.93	-10.41	Average
4	0.449	33.76	-0.45	10.74	0.02	44.07	56.89	-12.82	QP
5	0.486	35.61	-0.44	10.76	-0.26	45.67	56.23	-10.56	QP
6	0.505	26.67	-0.43	10.76	-0.35	36.65	46.00	-9.35	Average
7	0.558	24.96	-0.46	10.76	-0.37	34.89	46.00	-11.11	Average
1 2 3 4 5 6 7 8 9	0.570	32.44	-0.47	10.76	-0.37	42.36	56.00	-13.64	QP
9	4.338	20.63	-0.40	10.88	0.00	31.11	46.00	-14.89	Average
10	4.525	34.67	-0.40	10.87	0.02	45.16	56.00	-10.84	QP
11	7.407	37.64	-0.59	10.82	1.43	49.30	60.00	-10.70	QP
12	7.407	22.23	-0.59	10.82	1.43	33.89	50.00	-16.11	Äverage

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

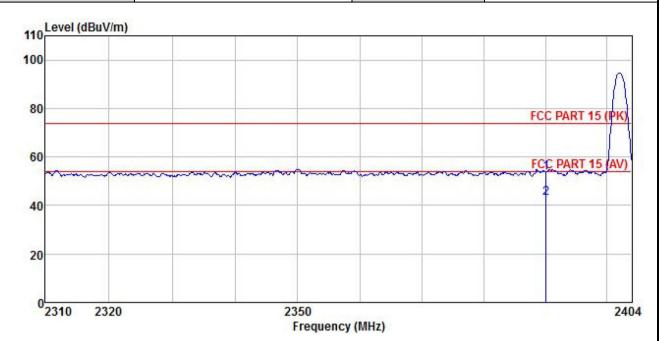
Product name:	Mobile phone	Product model:	A1
Test by:	Mike	Test mode:	BT Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Aux Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∇	<u>dB</u>	<u>dB</u>	<u>dB</u>	dBu∀	dBu∜	<u>dB</u>	
1	0.365	22.01	-0.64	10.73	-0.04	32.06	48.61	-16.55	Average
2	0.454	29.40	-0.64	10.74	-0.01	39.49	46.80	-7.31	Average
3	0.459	36.41	-0.64	10.74	0.00	46.51	56.71	-10.20	QP
1 2 3 4 5 6 7 8 9	0.489	38.92	-0.65	10.76	0.02	49.05	56.19	-7.14	QP
5	0.502	29.20	-0.65	10.76	0.03	39.34	46.00	-6.66	Average
6	0.979	30.80	-0.68	10.86	0.08	41.06	56.00	-14.94	QP
7	4.407	36.30	-0.64	10.87	0.58	47.11	56.00	-8.89	QP
8	4.549	22.74	-0.64	10.87	0.60	33.57	46.00	-12.43	Average
9	4.848	35.70	-0.64	10.86	0.65	46.57	56.00	-9.43	QP
10	7.769	38.22	-0.76	10.84	0.99	49.29	60.00	-10.71	QP
11	7.810	25.39	-0.76	10.84	1.01	36.48	50.00	-13.52	Average

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

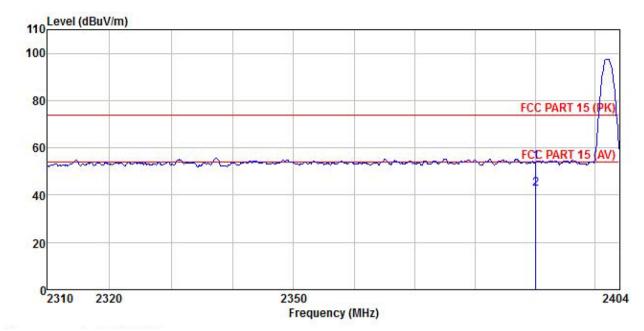
5.6 Band Edge


5.6.1 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.	209 a	and 15.205					
Test Frequency Range:	2310 MHz to 23	90 MHz an	nd 24	83.5 MHz to 2	500 M	Hz			
Test Distance:	3m								
Receiver setup:	Frequency	Detecto	or	RBW	V	BW	Remark		
	Above 4CII-	Peak		1MHz	3MHz		Peak Value		
	Above 1GHz	RMS		1MHz	31	ИНz	Average Value		
Limit:	Frequenc	су	Lim	it (dBuV/m @3	3m)		Remark		
	Above 1G	Hz		54.00		Av	erage Value		
	Above 10	112		74.00		F	Peak Value		
Test setup:	Horn Anienna Antenna Tower Ground Reference Plane Test Receiver Test Receiver Test Receiver								
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or 								
Test Instruments:	Refer to section	•		and then repo					
Test mode:	Non-hopping mode								
Test results:	Passed						_		

GFSK Mode:

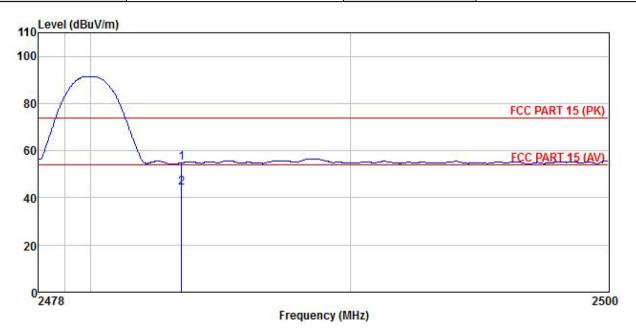
Product Name:	Mobile phone	Product Model:	A1
Test By:	Mike	Test mode:	DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


Freq		Antenna Factor						
MHz	dBu∜	<u>dB</u> /π	 	dB	$\overline{dBuV/m}$	dBuV/m	dB	
2390.000 2390.000								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

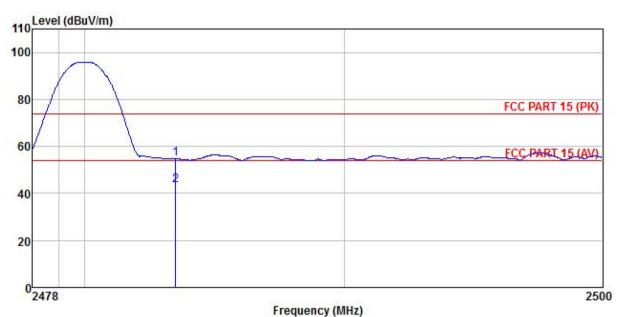
Product Name:	Mobile phone	Product Model:	A1
Test By:	Mike	Test mode:	DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



	Freq		Antenna Factor				Limit Line		
	MHz	dBu∜	<u>dB</u> /m	 <u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

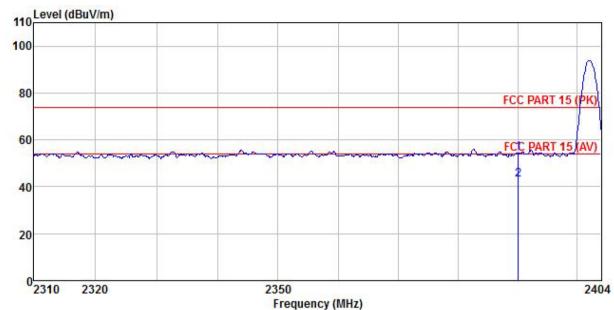
Product Name:	Mobile phone	Product Model:	A1
Test By:	Mike	Test mode:	DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



Freq			Cable Aux Preamp Loss Factor Factor					
MHz	dBu∜	<u>dB</u> /π	 <u>ab</u>	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dB}\overline{uV/m}$	<u>dB</u>	
2483,500 2483,500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Mobile phone	Product Model:	A1
Test By:	Mike	Test mode:	DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


Freq	ReadAntenna Freq Level Factor		Cable Loss	Cable Aux Preamp Loss Factor Factor			Limit Line	Over Limit	Remark
MHz	dBu∀	<u>dB</u> /m	₫B	<u>d</u> B	<u>ab</u>	$\overline{dBuV/m}$	dBu∜/m	dB	
2483.500 2483.500									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

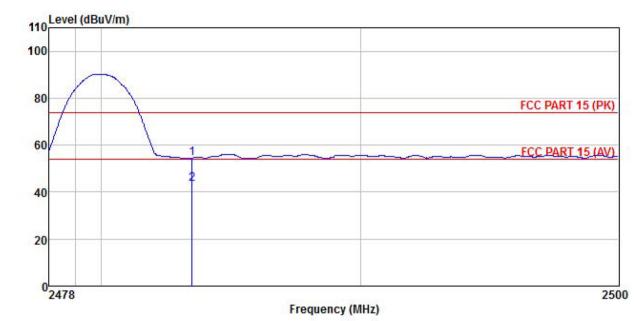
π/4-DQPSK mode

Product Name:	Mobile phone	Product Model:	A1
Test By:	Mike	Test mode:	2DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq	Read Level	Antenna Factor	Cable Loss	Aux Factor	Preamp Factor	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∀	<u>dB</u> /m		<u>db</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
	2390.000 2390.000									

Remark:

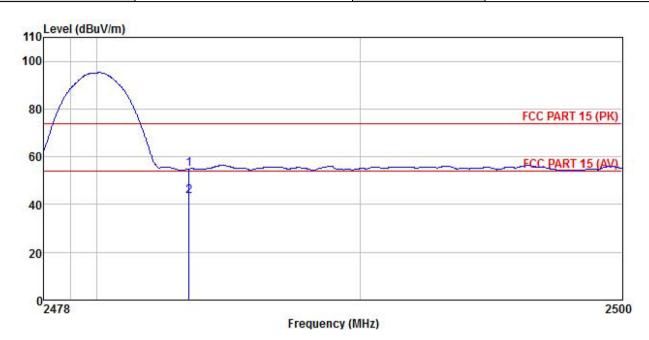
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



oduct	Name:	Mok	ile phone				Product Model:		A1		
est By:		Mik	е				Test mod	le:	2DH	11 Tx mod	le
est Cha	annel:	Low	est chann	el			Polarizati	ion:	Hor	izontal	
est Vol	tage:	AC	120/60Hz				Environm	nent:	Ten	np: 24℃	Huni: 57%
I	evel (dBuV/r	n)									
100		,									
80										FCC PA	RT 15 (PK)
60	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~		Mary Mary		y				FCC PA	RT 15 (AV)
40							7.0			2	
20											1
0 2	310 2320	0			2350 Free	quency (N	1Hz)				240
	Freq	Read! Level	intenna Factor	Cable Loss	Aux Factor	Preamp Factor	Level	Limit Line	Over Limit	Remark	
===	MHz	dBu₹	<u>dB</u> /π		<u>ab</u>	<u>ab</u>	dBuV/m	dBu√/m	<u>dB</u>		***
		20.92	27.03	4.28	1.68	0.00	53.91	74 00	-20.09	Peak	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

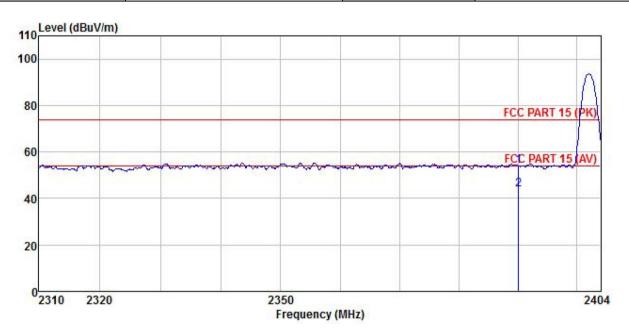
Product Name:	Mobile phone	Product Model:	A1
Test By:	Mike	Test mode:	2DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



	Freq	ReadAnte Freq Level Fac				Aux Preamp Factor Factor			Over Limit	Remark
2	MHz	—dBu∜	<u>dB</u> /m		<u>ab</u>	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>	
	2483.500 2483.500									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

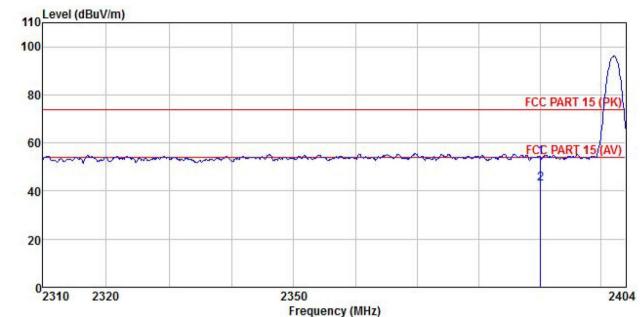
Product Name:	Mobile phone	Product Model:	A1
Test By:	Mike	Test mode:	2DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


ReadAntenna Freq Level Factor		Antenna Factor	Cable Aux Preamp Loss Factor Factor			Limit Level Line		Over Limit	Remark
MHz	dBu∇	<u>dB</u> /m	d <u>B</u>	<u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
2483.500 2483.500									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

8DPSK mode

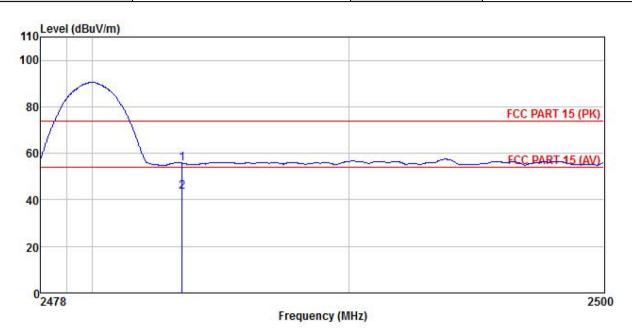
Product Name:	Mobile phone	Product Model:	A1
Test By:	Mike	Test mode:	3DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


Freq	Read Level	Antenna Factor	Cable Loss	Aux Factor	Preamp Factor	Level	Limit Line	Over Limit	Remark
MHz	dBu∜	<u>−−</u> <u>dB</u> /m	<u>d</u> B	<u>d</u> B	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
2390.000 2390.000									

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

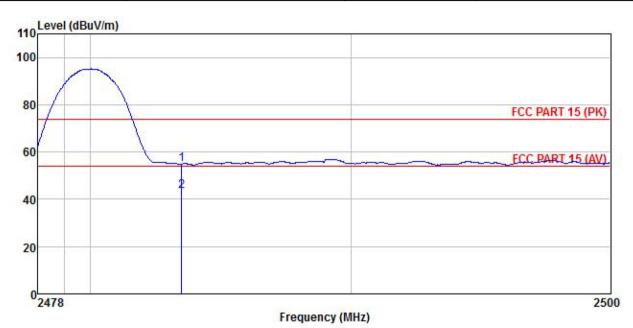
Product Name:	Mobile phone	Product Model:	A1
Test By:	Mike	Test mode:	3DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



	Freq	ReadAntenna Freq Level Factor						Over Limit	Remark
	MHz	dBu∜	<u>d</u> B/π	 <u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Mobile phone	Product Model:	A1
Test By:	Mike	Test mode:	3DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



	Freq	Read. Level	Antenna Factor	Cable Loss	Aux Factor	Preamp Factor	Level	Limit Line	Over Limit	
	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
1 2	2483.500 2483.500									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Mobile phone	Product Model:	A1
Test By:	Mike	Test mode:	3DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Freq	Read Level	Antenna Factor	Cable Loss	Aux Factor	Preamp Factor	Level	Limit Line	Over Limit	Remark	
MHz	dBu∜	<u>dB</u> /π		<u>ab</u>	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>		
2483.500 2483.500										

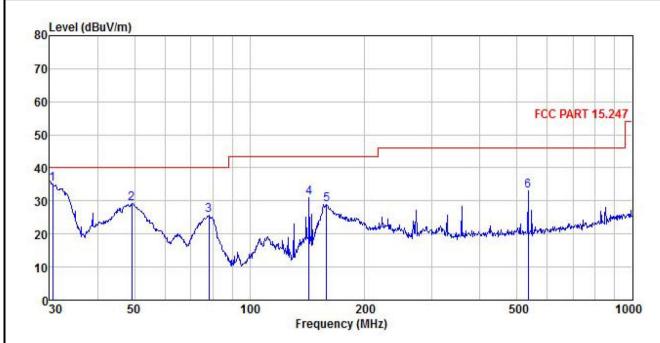
1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

5.7 Spurious Emission

5.7.1 Radiated Emission Method

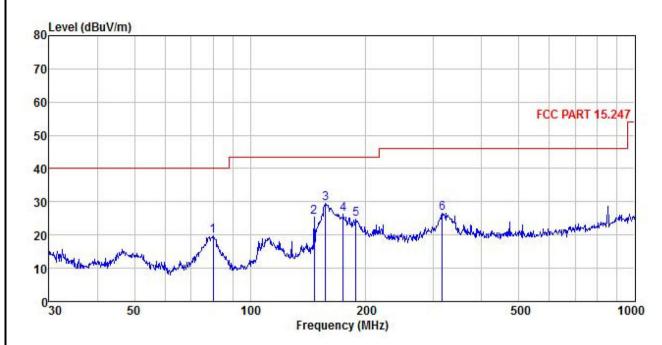
T 15	500 D . 45 0 0		000				1			
Test Requirement:	FCC Part 15 C Section 15.209									
Test Frequency Range:	9 kHz to 25 GHz									
Test Distance:	3m	1								
Receiver setup:	Frequency	Detecto	or	RBW	VBW	/	Remark			
	30MHz-1GHz	Quasi-pe	eak	120kHz	300kF	łz	Quasi-peak Value			
	Above 1GHz	Peak	ak 1MHz		3MH:	Z	Peak Value			
	710000 10112	Average Value								
Limit:	Frequenc	Remark								
	30MHz-88N	ИHz		40.0		Q	uasi-peak Value			
	88MHz-216	MHz		43.5		Q	uasi-peak Value			
	216MHz-960	MHz		46.0		Q	uasi-peak Value			
	960MHz-10	GHz		54.0		Q	uasi-peak Value			
	Above 1GI	⊔ ₇ ∟		54.0		,	Average Value			
	Above 1GI	112		74.0			Peak Value			
Test setup:	Below 1GHz Antenna Tower Search Antenna RF Test Receiver Tum Table Ground Plane									
Total Drawed in		AE EUT (Turntable)	Test R	Ground Reference Plane	Pre- Amplifier Cont.					
Test Procedure:	1. The EUT was /1.5m(above was rotated 3 radiation.	1GHz) abo	ve th	ne ground at	a 3 met	er cha	amber. The table			


Test Instruments: Test mode: Test results: Remark:	Refer to section 5.9 for details Non-hopping mode Pass 1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 2. 9 kHz to 30 MHz is noise floor and lower than the limit 20dB, so only
	limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	 For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the
	 The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

Measurement Data (worst case):

Below 1GHz:

Product Name:	Mobile phone	Product Model:	A1
Test By:	Mike	Test mode:	BT Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


	Freq			ReadAntenna Cable Aux Preamp evel Factor Loss Factor Factor			Limit Line	Over Limit Remark	Remark	
_	MHz	dBu∜	<u>dB</u> /π		<u>ab</u>	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>	
1	30.531	52.84	11.89	0.39	0.00	29.98	35.14	40.00	-4.86	QP
2 3 4 5	49.187	45.67	13.15	0.38	0.00	29.83	29.37	40.00	-10.63	QP
3	78.139	42.48	12.32	0.47	0.00	29.65	25.62	40.00	-14.38	QP
4	142.824	45.92	13.86	0.60	0.00	29.26	31.12	43.50	-12.38	QP
5	158.668	42.29	15.26	0.63	0.00	29.14	29.04	43.50	-14.46	QP
6	533.832	41.39	19.54	1.14	0.00	29.05	33.02	46.00	-12.98	QP

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Product Name:	Mobile phone	Product Model:	A1
Test By:	Mike	Test mode:	BT Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Freq							Limit Line	Over Limit	Remark
MHz	dBu∜			<u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
80.081	36.14	12.80	0.47	0.00	29.64	19.77	40.00	-20.23	QP
146.888	39.87	14.06	0.61	0.00	29.24	25.30	43.50	-18.20	QP
157.007	43.06	14.89	0.63	0.00	29.16	29.42	43.50	-14.08	QP
174.424	37.81	16.76	0.67	0.00	29.02	26.22	43.50	-17.28	QP
188.413	35.69	17.34	0.70	0.00	28.91	24.82	43.50	-18.68	QP
315.481	35.42	18.73	0.88	0.00					
1	MHz 80.081 46.888 157.007 174.424 188.413	Freq Level MHz dBuV 80.081 36.14 46.888 39.87 157.007 43.06 174.424 37.81 188.413 35.69	Freq Level Factor MHz dBuV dB/m 80.081 36.14 12.80 46.888 39.87 14.06 157.007 43.06 14.89 174.424 37.81 16.76 188.413 35.69 17.34	Freq Level Factor Loss MHz dBuV dB/m dB 80.081 36.14 12.80 0.47 146.888 39.87 14.06 0.61 157.007 43.06 14.89 0.63 174.424 37.81 16.76 0.67 188.413 35.69 17.34 0.70	Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 80.081 36.14 12.80 0.47 0.00 146.888 39.87 14.06 0.61 0.00 157.007 43.06 14.89 0.63 0.00 174.424 37.81 16.76 0.67 0.00 188.413 35.69 17.34 0.70 0.00	Freq Level Factor Loss Factor Factor MHz dBuV dB/m dB dB dB 80.081 36.14 12.80 0.47 0.00 29.64 146.888 39.87 14.06 0.61 0.00 29.24 157.007 43.06 14.89 0.63 0.00 29.16 174.424 37.81 16.76 0.67 0.00 29.02 188.413 35.69 17.34 0.70 0.00 28.91	MHz dBuV dB/m dB dB dB dBuV/m 80.081 36.14 12.80 0.47 0.00 29.64 19.77 146.888 39.87 14.06 0.61 0.00 29.24 25.30 157.007 43.06 14.89 0.63 0.00 29.16 29.42 174.424 37.81 16.76 0.67 0.00 29.02 26.22 188.413 35.69 17.34 0.70 0.00 28.91 24.82	Freq Level Factor Loss Factor Factor Level Line MHz dBuV dB/m dB dB dB dB dBuV/m dBuV/m 80.081 36.14 12.80 0.47 0.00 29.64 19.77 40.00 46.888 39.87 14.06 0.61 0.00 29.24 25.30 43.50 57.007 43.06 14.89 0.63 0.00 29.16 29.42 43.50 74.424 37.81 16.76 0.67 0.00 29.02 26.22 43.50 88.413 35.69 17.34 0.70 0.00 28.91 24.82 43.50 74.424 37.81 35.69 17.34 0.70 0.00 28.91 24.82 43.50 74.424 37.81 35.69 17.34 0.70 0.00 28.91 24.82 43.50 75.425	Freq Level Factor Loss Factor Factor Level Line Limit MHz dBuV dB/m dB dB dB dBuV/m dBuV/m dB 80.081 36.14 12.80 0.47 0.00 29.64 19.77 40.00 -20.23 46.888 39.87 14.06 0.61 0.00 29.24 25.30 43.50 -18.20 157.007 43.06 14.89 0.63 0.00 29.16 29.42 43.50 -14.08 174.424 37.81 16.76 0.67 0.00 29.02 26.22 43.50 -17.28 188.413 35.69 17.34 0.70 0.00 28.91 24.82 43.50 -18.68 174.424 37.81 16.76 0.67 0.00 28.91 24.82 43.50 -18.68 174.424 37.81 35.69 17.34 0.70 0.00 28.91 24.82 43.50 -18.68 175.407 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 186.408 0.67

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz:

Above IGHZ	•		Т	oot obonn	al: Lowest of	hannal							
	Test channel: Lowest channel Detector: Peak Value												
	I				İ	Je							
Frequency	Read	Antenna	Cable	Aux	Preamp	Level	Limit	Over	5				
(MHz)	Level	Factor	Loss	Factor	Factor	(dBuV/m)	Line	Limit	Polarization				
, ,	(dBuV)	(dB/m)	(dB)	(dB)	(dB)	40.00	(dBuV/m)	(dB)					
4804.00	49.85	30.78	6.80	2.44	41.81	48.06	74.00	-25.94	Vertical				
4804.00	48.37	30.78	6.80	2.44	41.81	46.58	74.00	-27.42	Horizontal				
Detector: Average Value													
Frequency	Read	Antenna	Cable	Aux	Preamp	Level	Limit	Over					
(MHz)	Level	Factor	Loss	Factor	Factor	(dBuV/m)	Line	Limit	Polarization				
, ,	(dBuV)	(dB/m)	(dB)	(dB)	(dB)	,	(dBuV/m)	(dB)					
4804.00	40.15	30.78	6.80	2.44	41.81	38.36	54.00	-15.64	Vertical				
4804.00	39.67	30.78	6.80	2.44	41.81	37.88	54.00	-16.12	Horizontal				
			Т	est chann	el: Middle ch	nannel							
				Detecto	r: Peak Val	ue							
	Read	Antenna	Cable	Aux	Preamp	Laval	Limit	Over					
Frequency (MHz)	Level	Factor	Loss	Factor	Factor	Level (dBuV/m)	Line	Limit	Polarization				
(1711-12)	(dBuV)	(dB/m)	(dB)	(dB)	(dB)		(dBuV/m)	(dB)					
4882.00	48.88	30.96	6.86	2.47	41.84	47.33	74.00	-26.67	Vertical				
4882.00	47.15	30.96	6.86	2.47	41.84	45.60	74.00	-28.40	Horizontal				
				Detector:	Average Va	alue							
Fraguenov	Read	Antenna	Cable	Aux	Preamp	Lovol	Limit	Over					
Frequency (MHz)	Level	Factor	Loss	Factor	Factor	Level (dBuV/m)	Line	Limit	Polarization				
(1711 12)	(dBuV)	(dB/m)	(dB)	(dB)	(dB)	(ubu v/III)	(dBuV/m)	(dB)					
4882.00	40.32	30.96	6.86	2.47	41.84	38.77	54.00	-15.23	Vertical				
4882.00	41.17	30.96	6.86	2.47	41.84	39.62	54.00	-14.38	Horizontal				
			Te	est channe	el: Highest c	hannel							
				Detecto	r: Peak Val	ue							
_	Read	Antenna	Cable	Aux	Preamp		Limit	Over					
Frequency	Level	Factor	Loss	Factor	Factor	Level	Line	Limit	Polarization				
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)					
4960.00	48.95	31.11	6.91	2.49	41.87	47.59	74.00	-26.41	Vertical				
4960.00	49.37	31.11	6.91	2.49	41.87	48.01	74.00	-25.99	Horizontal				
				Detector:	Average Va	alue							
F	Read	Antenna	Cable	Aux	Preamp		Limit	Over					
Frequency	Level	Factor	Loss	Factor	Factor	Level	Line	Limit	Polarization				

Remark:

(MHz)

4960.00

4960.00

(dBuV)

39.60

40.21

(dB)

2.49

2.49

(dB)

41.87

41.87

(dB/m)

31.11

31.11

(dB)

6.91

6.91

Project No.: CCISE2007098

Vertical

Horizontal

(dB)

-15.76

-15.15

(dBuV/m)

54.00

54.00

(dBuV/m)

38.24

38.85

Final Level = Receiver Read level + Antenna Factor + Cable Loss + Aux Factor - Preamplifier Factor.

The emission levels of other frequencies are lower than the limit 20dB and not show in test report.