

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE200709802

FCC REPORT

Applicant: Sun Cupid Technology (HK) Ltd.

Address of Applicant: 16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan,

Kowloon, Hong Kong.

Equipment Under Test (EUT)

Product Name: Mobile phone

Model No.: A1, A1+, 4080P

Trade mark: NUU

FCC ID: 2ADINNUUA1P2

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 27 Jul., 2020

Date of Test: 28 Jul., to 02 Sep., 2020

Date of report issued: 03 Sep., 2020

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	03 Sep., 2020	Original

Tested by: Mike DU Date: 03 Sep., 2020

Test Engineer

Reviewed by:

Date: 03 Sep., 2020

Project Engineer

3 Contents

			Page
1	cov	ER PAGE	1
2	VER	SION	2
3		TENTS	
4		ERAL INFORMATION	
	4.1	CLIENT INFORMATION	
	4.2	GENERAL DESCRIPTION OF E.U.T.	
	4.3	TEST ENVIRONMENT AND MODE, AND TEST SAMPLES PLANS	5
	4.4	DESCRIPTION OF SUPPORT UNITS	
	4.5	MEASUREMENT UNCERTAINTY	5
	4.6	LABORATORY FACILITY	5
	4.7	LABORATORY LOCATION	5
	4.8	TEST INSTRUMENTS LIST	6
5	TES	T RESULTS AND MEASUREMENT DATA	7
	5.1	TEST CONFIGURATION OF EUT	7
	5.2	TEST SETUP BLOCK	7
	5.3	TEST RESULT SUMMARY	7
	5.4	ANTENNA REQUIREMENT:	8
	5.5	CONDUCTED EMISSION	
	5.6	BAND EDGE	
	5.6.1		
	5.7	SPURIOUS EMISSION	
	5.7.1	Radiated Emission Method	17
6	TES	T SETUP PHOTO	22
7	FIIT	CONSTRUCTIONAL DETAILS	24

4 General Information

4.1 Client Information

Applicant:	Sun Cupid Technology (HK) Ltd.	
Address:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong.	
Manufacturer:	Sun Cupid Technology (HK) Ltd.	
Address:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong.	
Factory:	Suncupid (ShenZhen) Electronic Ltd	
Address:	Baolong Industrial City, Longgang District, Shenzhen Hi-Tech Road, Building 1, A 7, China.	

4.2 General Description of E.U.T.

Product Name:	Mobile phone				
Model No.:	A1, A1+, 4080P				
Operation Frequency:	2402-2480 MHz				
Channel numbers:	40				
Channel separation:	2 MHz				
Modulation technology:	GFSK				
Data speed :	1Mbps				
Antenna Type:	Internal Antenna				
Antenna gain:	-0.91 dBi				
Power supply:	Rechargeable Li-ion Battery DC3.7V, 1300mAh				
AC adapter:	Model: HJ-0501000E1-US Input: AC100-240V, 50/60Hz, 0.2A Output: DC 5V, 1A				
Remark:	Model No.: A1+, A1, 4080P are exactly the same internally, the circuit design, layout, components used and internal wiring are the same, but the model name is different, each model There are three types of internal memory chips and operating memory chips. The difference between them lies in the different manufacturers.				
	Technical specifications Manufacturer name product name				
	EMMC lpDDR3 8Gb 178B NCLD3B2256M32-V01M FORESEE NCLD3B2256M32				
	U401 IpDDR3 8Gb 178B MD3B2008G-M0 ISOCOM MD3B2008G-M0				
	LPDDR3 8Gb 178B RS256M32LD3D1LMZ-125BT RAYSON RS256M32LD3D1LMZ-125BT				
	eMMC 8GB SDINBDG4-8G SANDISK SDINBDG4-8G				
	U402 eMMC 153B 8GB MEMDNN008G ISOCOM MEMDNN008G				
	EMMC 153B 8GB FEMDNN008G-08A39 FORESEE FEMDNN008G-08A39				
Test Sample Condition:	The test samples were provided in good working order with no visible defects.				

Report No: CCISE200709802

4.3 Test environment and mode, and test samples plans

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Transmitting mode	Keep the EUT in continuous transmitting with modulation			

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

4.4 Description of Support Units

The EUT has been tested as an independent unit.

4.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

4.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

4.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

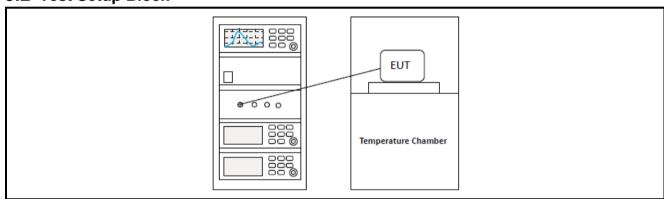
Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.110~116, Building B, Jinyuan Business Building, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

4.8 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due date
				(mm-dd-yy)	(mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-21-2020	07-20-2021
Loop Antenna	SCHWARZBECK	FMZB1519B	044	03-07-2020	03-06-2021
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-20-2020	06-19-2021
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020
EMI Test Software	AUDIX	E3	Version: 6.110919b)
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0		

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2020	07-17-2021
Cable	HP	10503A	N/A	03-05-2020	03-04-2021
EMI Test Software	AUDIX	E3	Version: 6.110919b		



5 Test results and Measurement Data

5.1 Test Configuration of EUT

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz
In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency						est frequency, the	
Note:	Note: middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.					st. Channel No. 0,	

5.2 Test Setup Block

5.3 Test Result Summary

5.5 Test Result Summary						
	Test Items	Section in CFR 47	Test Data	Result		
Ar	ntenna requirement	15.203 & 15.247 (b)	See Section 5.4	Pass		
AC Powe	r Line Conducted Emission	15.207	See Section 5.5	Pass		
Conduc	cted Peak Output Power	15.247 (b)(3)	Appendix – BLE	Pass		
6dB Emission Bandwidth 99% Occupied Bandwidth		15.247 (a)(2)	Appendix – BLE	Pass		
Power Spectral Density		15.247 (e)	Appendix – BLE	Pass		
Dand Edge	Conducted Emission Method	45 247 (-1)	Appendix – BLE	Pass		
Band Edge	Radiated Emission Method	15.247 (d)	See Section 5.6.1			
Spurious	Conducted Emission Method	15 205 8 15 200	Appendix – BLE	Door		
Emission	Radiated Emission Method	15.205 & 15.209	See Section 5.7.1	Pass		
Remark:	 Pass: The EUT complies with the essential requirements in the standard. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer). 					
Test Method:	1. ANSI C63.10-2013 2. KDB 558074 D01 15.247 Meas Guidance v05r02					

5.4 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

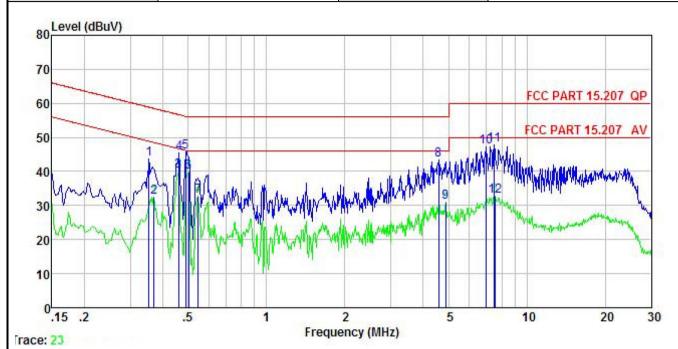
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

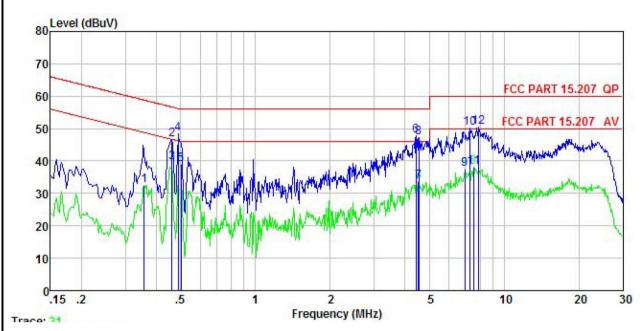
The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is -0.91 dBi.


5.5 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	7			
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz				
Limit:	Fragues 21, 122 22 (A411=)	Limit (dBuV)		
	Frequency range (MHZ)	Frequency range (MHz) Quasi-peak Av			
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithn	n of the frequency.			
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement. 				
Test setup:	Reference Plane				
	AUX Equipment E.U.T Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Ne	EMI Receiver	– AC power		
T (1)	Test table height=0.8m				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details	i			
Test results:	Passed				

Measurement Data:

Product name:	Mobile phone	Product model:	A1
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Cable Loss	Aux Factor	Level	Limit Line	Over Limit	Remark
	MHz	₫₿uѶ	<u>dB</u>	<u>ab</u>	<u>dB</u>	dBu∀	₫₿uѶ	<u>d</u> B	
1	0.354 0.369	33.46 22.08	-0.51 -0.50	10.73 10.73		43.82 32.54		-15.05	QP Average
3	0.459	29.79	-0.45	10.74	-0.06	40.02	46.71	-6.69	Average
2 3 4 5 6 7	0.461 0.489	35.17 35.81	-0.45 -0.44	10.74 10.76	-0.26	45.40 45.87	56.19	-11.27 -10.32	QP
ь 7	0.502 0.546	29.86 22.95	-0.43 -0.46	10.76 10.76	-0.36	39.84 32.89		-13.11	Average Average
8 9	4.574 4.874	32.77 20.47	-0.40 -0.39	10.87 10.85		43.27 31.00	100 C	-12.73 -15.00	QP Average
10 11	6.951 7.486	35.69 36.11	-0.56 -0.59	10.80 10.83	0 STANTANT &	47.23 47.79	60.00	-12.77 -12.21	
12	7.526	20.94	-0.59	10.83	1.46	32.64	50.00	-17.36	Average

Notes

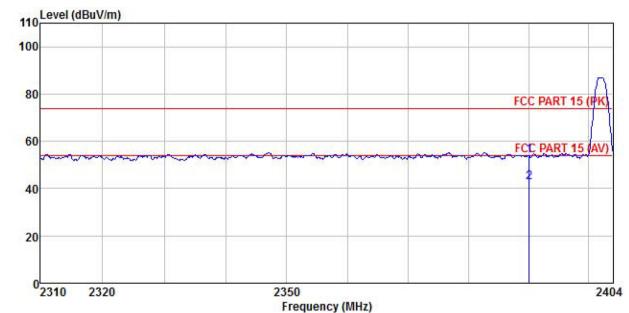
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Product name:	Mobile phone	Product model:	A1
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Aux Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∇	<u>ab</u>		<u>ab</u>	dBu₹	dBu⊽	<u>ab</u>	
1	0.358	22.48	-0.65	10.73	-0.03	32.53	48.78	-16.25	Average
2	0.461	36.53	-0.64	10.74	0.00	46.63	56.67	-10.04	QP
3	0.461	29.43	-0.64	10.74	0.00	39.53	46.67	-7.14	Average
4	0.489	38.36	-0.65	10.76	0.02	48.49	56.19		
5	0.502	28.88	-0.65	10.76	0.03	39.02	46.00	-6.98	Average
1 2 3 4 5 6 7 8 9	4.430	36.92	-0.64	10.87	0.58	47.73	56.00		
7	4.525	22.68	-0.64	10.87	0.60	33.51			Average
8	4.549	36.30	-0.64	10.87	0.60	47.13	56.00		
9	6.951	26.49	-0.75	10.80	0.84	37.38	50.00	-12.62	Average
10	7.290	39.34	-0.75	10.82	0.90	50.31	60.00		
11	7.526	27.09	-0.76	10.83		38.11	50.00		Average
12	7.893	39.27	-0.76	10.84	1.02	50.37	60.00	-9.63	

Notes:

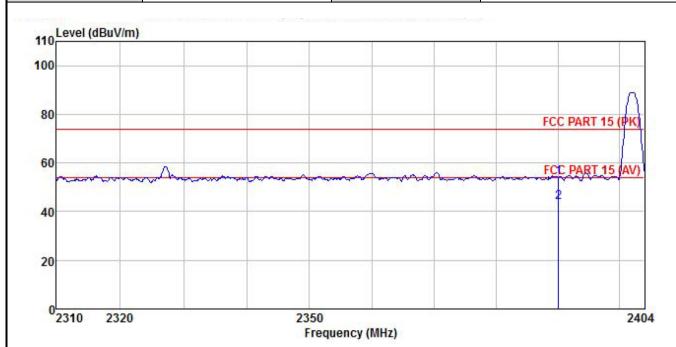
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.


5.6 Band Edge

5.6.1 Radiated Emission Method

T (D : .	FOO Dark 45 C	0.04: 45:	005 1 45 000				
Test Requirement:			205 and 15.209				
Test Frequency Range:		2390 MHz an	d 2483.5MHz to 2	2500 MHz			
Test Distance:	3m	T		T			
Receiver setup:	Frequency	Detector	RBW	VBW	Remark		
	Above 1GHz	Peak RMS	1MHz 1MHz	3MHz 3MHz	Peak Value		
Limit:	Frequer		_imit (dBuV/m @:		Average Value Remark		
Liitit.			54.00		verage Value		
	Above 10	HZ	74.00	Peak Value			
Test Procedure:	the groun to determ 2. The EUT antenna, tower. 3. The anter the groun Both horizen make the 4. For each case and meters are to find the Specified 6. If the emite the limits of the EU have 10 ce	ad at a 3 meterine the position was set 3 meterine which was menna height is ad to determine zontal and vertical and vertical and the rota tate maximum representation of the rota tate and the rota tate maximum representation of the rota tate and the rota tate maximum representation of the rota tate and the rota tate maximum representation of the rota tate of th	varied from one in the the maximum varical polarization int. Inission, the EUT enna was tuned to ble was turned from the was set to Pervith Maximum How the EUT in peak in testing could be exported. Otherwis	able was rotal radiation. he interferent of a variable meter to four value of the first of the anter was arrange of heights from 0 degrees ak Detect Full Mode. It mode was 1 estopped and se the emissione by one uniter the stopped and se the emissione by one uniter the stopped and se the emissione by one uniter the interference of the stopped and se the emissione by one uniter the stopped and the	ted 360 degrees ce-receiving e-height antenna meters above ield strength. nna are set to d to its worst m 1 meter to 4 s to 360 degrees nction and 0 dB lower than d the peak values ons that did not sing peak, quasi-		
Test setup:	AE INDEST	Test Receive	Horn Antenna 3m Antenna Pre- Amplifer Con	Antenna Tower			
Test Instruments:	Refer to section	on 5.9 for deta	ails				
Test mode:	Refer to section	on 5.3 for deta	ails				
Test results:	Passed						

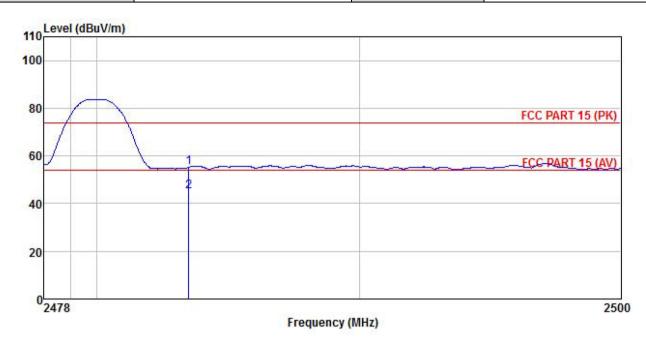
Product Name:	Mobile phone	Product Model:	A1
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



	Freq	Read Level	Antenna Factor	Cable Loss	Aux Factor	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	₫₿u₹	<u>dB</u> /m	₫B	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1 2	2390.000 2390.000									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

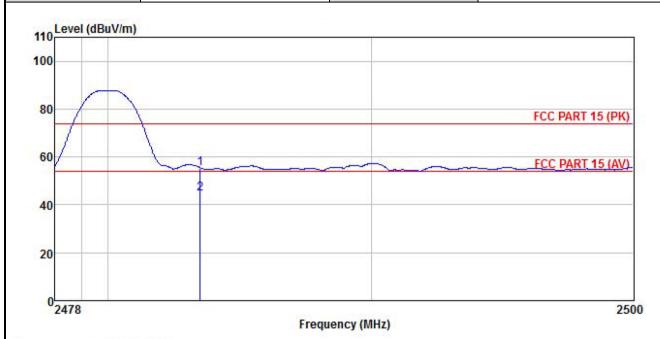
Product Name:	Mobile phone	Product Model:	A1
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



	Freq				Cable Aux Preamp Loss Factor Factor					
	MHz	dBu∜	— <u>d</u> B/m		<u>ab</u>	<u>ab</u>	dBuV/m	dBuV/m	<u>ab</u>	
1 2	2390.000 2390.000	21.15 10.95	27.03 27.03	4.28 4.28	1.68 1.68	0.00 0.00	54.14 43.94	74.00 54.00	-19.86 -10.06	Peak Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Mobile phone	Product Model:	A1
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



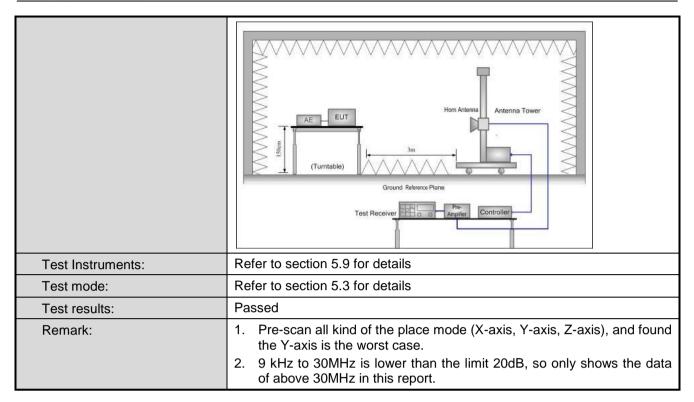
	Freq		Antenna Factor					Limit Line		
	MHz	dBu∜	<u>dB</u> /m	<u>d</u> B	<u>ab</u>	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500						55.35 44.92			

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Mobile phone	Product Model:	A1
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Freq		Antenna Factor							
MHz	—dBu∜	— <u>d</u> B/π	<u>ap</u>	<u>ab</u>	<u>ab</u>	$\overline{\mathtt{dBuV/m}}$	dBuV/m	<u>dB</u>	
2483,500 2483,500									

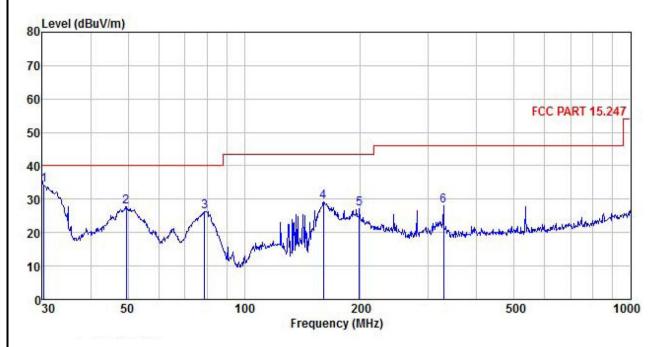
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



5.7 Spurious Emission

5.7.1 Radiated Emission Method

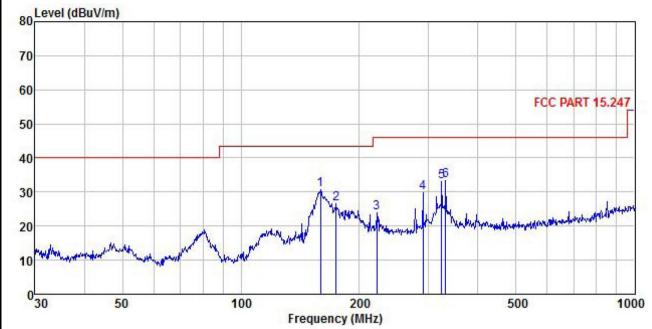
Test Requirement:	FCC Part 15 C Section 15.205 and 15.209								
Test Frequency Range:	9kHz to 25GHz								
Test Distance:	3m	1							
Receiver setup:	Frequency	Detector	RBW	VB	SW.	Remark			
·	30MHz-1GHz	Quasi-peak	120KHz	3001	KHz Quasi-peak Value				
	Above 1GHz	Peak	1MHz	3M	3MHz Peak Val				
	Above 10112	RMS	1MHz	3M	Hz	Average Value			
Limit:	Frequency	/ L	imit (dBuV/m @	3m)		Remark			
	30MHz-88M	Hz	40.0			Quasi-peak Value			
	88MHz-216N		43.5			Quasi-peak Value			
	216MHz-960N	•	46.0			Quasi-peak Value			
	960MHz-1G	Hz	54.0		C	Quasi-peak Value			
	Above 1GF	lz	54.0			Average Value			
			74.0		<u> </u>	Peak Value table 0.8m(below			
	 1GHz)/1.5m(above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 								
Test setup:	Below 1GHz Tum Table Ground Plane Above 1GHz	4m 4m 0.8m 1m			Antenna Search Antenn Test ceiver —	1			



Measurement Data (worst case):

Below 1GHz:

Product Name:	Mobile phone	Product Model:	A1
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


	Freq		Antenna Factor			Preamp Factor		Limit Line	Over Limit	Remark
-	MHz	dBu∀	<u>dB</u> /m		<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
1	30.317	51.99	11.85	0.40	0.00	29.98	34.26	40.00	-5.74	QP
2	49.533	44.00	13.17	0.38	0.00	29.82	27.73	40.00	-12.27	QP
2	78.965	43.00	12.53	0.47	0.00	29.65	26.35	40.00	-13.65	QP
4	160.346	42.08	15.51	0.63	0.00	29.13	29.09	43.50	-14.41	QP
5	198.588	37.07	18.16	0.72	0.00	28.84	27.11	43.50	-16.39	QP
6	327.887	37.04	18.76	0.90					-17.81	10 10 TO 10

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Product Name:	Mobile phone	Product Model:	A1
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%
Level (dBuV/m)			

	Freq		Antenna Factor					Limit	Limit	Remark
-	MHz	—dBu∜	<u>dB</u> /m	<u>d</u> B	<u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	159.225	43.69	15.38	0.63	0.00	29.14	30.56	43.50	-12.94	QP
2	174.424	38.18	16.76	0.67	0.00	29.02	26.59	43.50	-16.91	QP
3	221.392	33.44	18.39	0.74	0.00	28.70	23.87	46.00	-22.13	QP
4	290.017	38.90	18.66	0.85	0.00	28.47	29.94	46.00	-16.06	QP
5	323.320	42.05	18.75	0.89	0.00	28.50	33.19	46.00	-12.81	QP
6	331.355	42.22	18.76	0.90	0.00	28.52	33.36	46.00	-12.64	QP

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz

	Test channel: Lowest channel										
	Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804.00	49.52	30.78	6.80	2.44	41.81	47.73	74.00	-26.27	Vertical		
4804.00	48.11	30.78	6.80	2.44	41.81	46.32	74.00	-27.68	Horizontal		
				Detector:	Average Va	alue					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804.00	41.52	30.78	6.80	2.44	41.81	39.73	54.00	-14.27	Vertical		
4804.00	39.66	30.78	6.80	2.44	41.81	37.87	54.00	-16.13	Horizontal		

	Test channel: Middle channel										
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4884.00	47.96	30.96	6.86	2.47	41.84	46.41	74.00	-27.59	Vertical		
4884.00	48.21	30.96	6.86	2.47	41.84	46.66	74.00	-27.34	Horizontal		
				Detector:	Average Va	alue					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4884.00	40.13	30.96	6.86	2.47	41.84	38.58	54.00	-15.42	Vertical		
4884.00	41.24	30.96	6.86	2.47	41.84	39.69	54.00	-14.31	Horizontal		

Test channel: Highest channel											
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4960.00	48.62	31.11	6.91	2.49	41.87	47.26	74.00	-26.74	Vertical		
4960.00	47.81	31.11	6.91	2.49	41.87	46.45	74.00	-27.55	Horizontal		
				Detector:	Average Va	alue					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4960.00	41.02	31.11	6.91	2.49	41.87	39.66	54.00	-14.34	Vertical		
4960.00	40.36	31.11	6.91	2.49	41.87	39.00	54.00	-15.00	Horizontal		

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss + Aux Factor - Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.