

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE200709804

FCC REPORT (WIFI)

Applicant: Sun Cupid Technology (HK) Ltd.

Address of Applicant: 16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan,

Kowloon, Hong Kong.

Equipment Under Test (EUT)

Product Name: Mobile phone

Model No.: A1, A1+, 4080P

Trade mark: NUU

FCC ID: 2ADINNUUA1P2

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 27 Jul., 2020

Date of Test: 28 Jul., to 02 Sep., 2020

Date of report issued: 03 Sep., 2020

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	03 Sep., 2020	Original

Reviewed by: Date: 03 Sep., 2020

Project Engineer

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

3 Contents

			Page
1	cov	ER PAGE	1
2	VER	SION	2
3		ITENTS	
4		IERAL INFORMATION	
	4.1	CLIENT INFORMATION	4
	4.2	GENERAL DESCRIPTION OF E.U.T.	
	4.3	TEST ENVIRONMENT AND MODE, AND TEST SAMPLES PLANS	
	4.4	DESCRIPTION OF SUPPORT UNITS	
	4.5	MEASUREMENT UNCERTAINTY	
	4.6	LABORATORY FACILITY	
	4.7	LABORATORY LOCATION	5
	4.8	TEST INSTRUMENTS LIST	6
5	TES	T RESULTS AND MEASUREMENT DATA	7
	5.1	TEST CONFIGURATION OF EUT	7
	5.2	TEST SETUP BLOCK	7
	5.3	TEST RESULT SUMMARY	7
	5.4	ANTENNA REQUIREMENT	8
	5.5	CONDUCTED EMISSION	9
	5.6	BAND EDGE	
	5.6.1		
	5.7	Spurious Emission	
	5.7.1	Radiated Emission Method	29
6	TES	T SETUP PHOTO	37
7	FUT	CONSTRUCTIONAL DETAILS	38

4 General Information

4.1 Client Information

Applicant:	Sun Cupid Technology (HK) Ltd.	
Address:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong.	
Manufacturer:	Sun Cupid Technology (HK) Ltd.	
Address:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong.	
Factory:	Suncupid (ShenZhen) Electronic Ltd	
Address:	Baolong Industrial City, Longgang District, Shenzhen Hi-Tech Road, Building 1, A 7, China.	

4.2 General Description of E.U.T.

Product Name:	Mobile phone					
Model No.:	A1, A1+, 4080P					
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(HT20)) 2422MHz~2452MHz (802.11n(HT40))					
Channel numbers:	11 for 802.11b/802.11g/802.11(HT20) 7 for 802.11n(HT40)					
Channel separation:	5MHz					
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DS	SS)				
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiple	xing(OFDM)				
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps					
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Ml	bps, 36Mbps, 4	8Mbps, 54Mbps			
Data speed (IEEE 802.11n):	Up to 150Mbps					
Antenna Type:	Internal Antenna					
Antenna gain:	-0.91dBi					
Power supply:	Rechargeable Li-ion Battery DC3.7V, 13	300mAh				
AC adapter:	Model: HJ-0501000E1-US					
	Input: AC100-240V, 50/60Hz, 0.2A					
	Output: DC 5V, 1A					
Remark:	Model No.: A1+, A1, 4080P are exactly the same internally, the circuit design, layout, components used and internal wiring are the same, but the model name is different, each model There are three types of internal memory chips and operating memory chips. The difference between them lies in the different manufacturers.					
	Technical specifications Manufacturer name product name					
	EMMC lpDDR3 8Gb 178B NCLD3B2256M32-V01M lpDDR3 8Gb 178B MD3B2008G-M0	FORESEE ISOCOM	NCLD3B2256M32 MD3B2008G-M0			
		RAYSON	RS256M32LD3D1LMZ-125BT			
	eMMC 8GB SDINBDG4-8G	SANDISK	SDINBDG4-8G			
	U402 eMMC 153B 8GB MEMDNN008G	ISOCOM	MEMDNN008G			
	EMMC 153B 8GB FEMDNN008G-08A39 FORESEE FEMDNN008G-08A39					
Test Sample Condition:	The test samples were provided in good defects.	d working order	The test samples were provided in good working order with no visible defects.			

4.3 Test environment and mode, and test samples plans

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the ELIT is continuous transmitting with modulation

Report No: CCISE200709804

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.				
Mode	Data rate			
802.11b	1Mbps			
802.11g	6Mbps			
802.11n(HT20)	6.5Mbps			
802.11n(HT40)	13.5Mbps			

4.4 Description of Support Units

The EUT has been tested as an independent unit.

4.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

4.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

4.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.110~116, Building B, Jinyuan Business Building, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

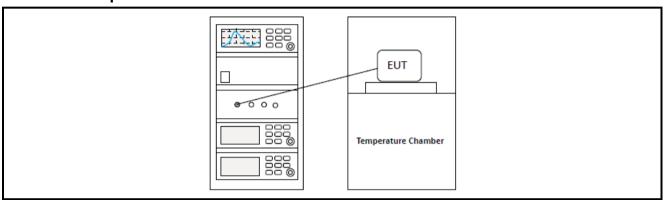
Page 5 of 38

4.8 Test Instruments list

Radiated Emission:	Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due date		
2.0	0.1-1.10			(mm-dd-yy)	(mm-dd-yy)		
3m SAC	SAEMC	9m*6m*6m	966	07-21-2020	07-20-2021		
Loop Antenna	SCHWARZBECK	FMZB1519B	044	03-07-2020	03-06-2021		
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021		
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021		
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-20-2020	06-19-2021		
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020		
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919b)		
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021		
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021		
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021		
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020		
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021		
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021		
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021		
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021		
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A		
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0				

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2020	07-17-2021
Cable	HP	10503A	N/A	03-05-2020	03-04-2021
EMI Test Software	AUDIX	E3	Version: 6.110919b		

5 Test results and Measurement Data


5.1 Test Configuration of EUT

Operation Frequency each of channel for 802.11b/g/n(HT20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

- 1. For 802.11n-HT40 mode, the channel number is from 3 to 9;
- 2. Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel. Channel 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest Channel.

5.2 Test Setup Block

5.3 Test Result Summary

Test Items		Section in CFR 47	Test Data	Result	
Antenna requirement		15.203 & 15.247 (b)	See Section 5.4	Pass	
AC Powe	r Line Conducted Emission	15.207	See Section 5.5	Pass	
Condu	cted Peak Output Power	15.247 (b)(3)	Appendix A – 2.4G Wi-Fi	Pass	
6dB Emission Bandwidth 99% Occupied Bandwidth		15.247 (a)(2)	Appendix A – 2.4G Wi-Fi	Pass	
Power Spectral Density		15.247 (e)	Appendix A – 2.4G Wi-Fi	Pass	
David Edua	Conducted Emission Method	15.247 (d)	Appendix A – 2.4G Wi-Fi	Pass	
Band Edge	Radiated Emission Method		See Section 5.6.1		
Spurious	Conducted Emission Method	45,005,8,45,000	Appendix A – 2.4G Wi-Fi	i Pass	
Emission	Radiated Emission Method	15.205 & 15.209	See Section 5.7.1		
 Pass: The EUT complies with the essential requirements in the standard. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer). 				ems is	
Test Method:	1. ANSI C63.10-2013 2. KDB 558074 D01 15.247 Meas	ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02			

Report No: CCISE200709804

5.4 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

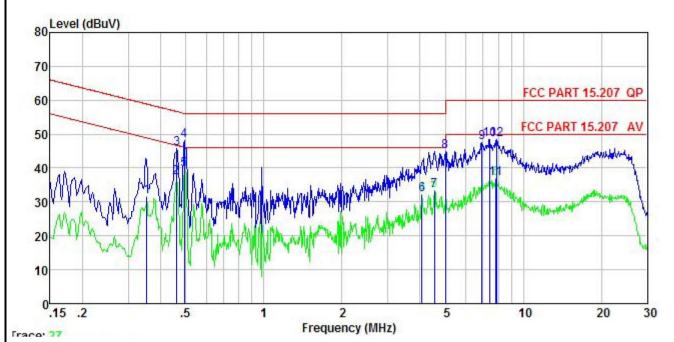
The Wi-Fi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is -0.91 dBi.

5.5 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.2	FCC Part 15 C Section 15.207			
Test Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz			
Class / Severity:	Class B				
Receiver setup:	RBW=9 kHz, VBW=30 kHz				
Limit:	Limit (dBuV)				
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarit	hm of the frequency.			
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement. 				
Test setup:	LISN	st	er — AC power		
Test Instruments:	Refer to section 5.9 for deta	nils			
Test mode:	Refer to section 5.3 for deta	nils			
Test results:	Passed				

Measurement Data:

Product name:	Mobile phone	Product model:	A1
Test by:	Mike	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Cable Loss	Aux Factor	Level	Limit Line	Over Limit	Remark
<u> </u>	MHz	dBu∇			<u>dB</u>	dBu∀	dBu∇	<u>dB</u>	
1	0.350	31.99	-0.51	10.73	0.10	42.31	58.96	-16.65	QP
2	0.369	22.81	-0.50	10.73	0.23	33.27	48.52	-15.25	Average
3	0.459	29.90	-0.45	10.74	-0.06	40.13	46.71	-6.58	Average
1 2 3 4 5 6 7 8 9	0.461	34.98	-0.45	10.74	-0.06	45.21	56.67	-11.46	QP
5	0.494	35.71	-0.43	10.76	-0.32	45.72	56.10	-10.38	QP
6	0.497	30.16	-0.43	10.76	-0.32	40.17	46.05	-5.88	Average
7	0.538	22.58	-0.45	10.76	-0.36	32.53	46.00	-13.47	Average
8	0.582	21.60	-0.48	10.76	-0.37	31.51	46.00	-14.49	Average
9	4.874	32.44	-0.39	10.85	0.07	42.97	56.00	-13.03	QP
l O	6.914	35.28	-0.55	10.80	1.27	46.80	60.00	-13.20	QP
l 1	7.290	34.71	-0.58	10.82	1.40	46.35	60.00	-13.65	QP
12	7.769	20.69	-0.61	10.84	1.50	32.42	50.00	-17.58	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

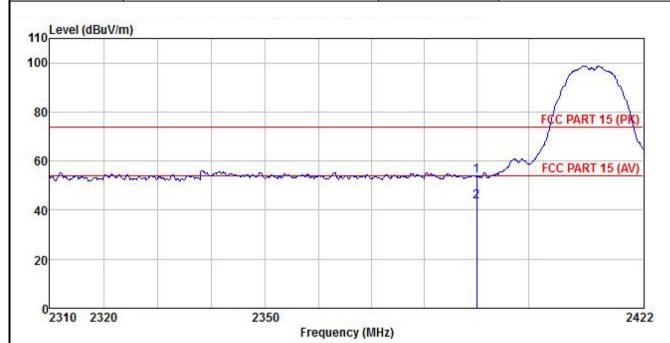
Product name:	Mobile phone	Product model:	A1
Test by:	Mike	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Aux Factor	Level	Limit Line	Over Limit	Remark
100	MHz	dBu∀	<u>ab</u>	<u>ab</u>	<u>ab</u>	dBu∀	dBu⊽	<u>ab</u>	
1	0.354	21.18	-0.51	10.73	0.14	31.54	48.87	-17.33	Average
2	0.459	26.86	-0.45	10.74	-0.06	37.09	46.71	-9.62	Average
3	0.461	35.52	-0.45	10.74	-0.06	45.75	56.67	-10.92	QP
4	0.494	38.22	-0.43	10.76	-0.32	48.23	56.10	-7.87	QP
2 3 4 5 6	0.494	29.59	-0.43	10.76	-0.32	39.60	46.10	-6.50	Average
6	4.070	21.67	-0.41	10.89	-0.04	32.11	46.00		Average
7	4.549	22.79	-0.40	10.87	0.02	33.28			Average
7 8 9	5.005	34.23	-0.39	10.85	0.08	44.77		-15.23	
9	6.914	36.14	-0.55	10.80	1.27	47.66	60.00	-12.34	QP
10	7.407	36.89	-0.59	10.82	1.43	48.55	60.00	-11.45	QP
11	7.852	25.05	-0.61	10.84	1.53	36.81		-13.19	17-2-4-C
12	7.893	36.71	-0.61	10.84	1.53	48.47		-11.53	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

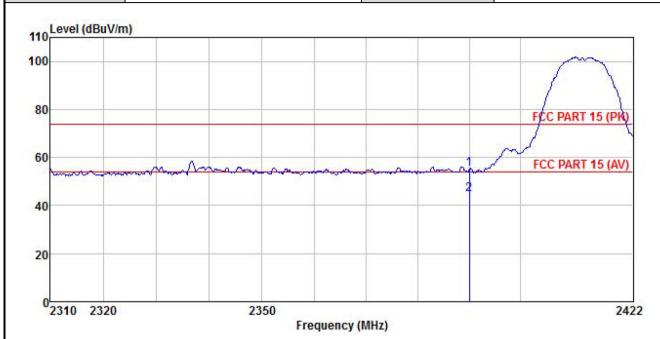
5.6 Band Edge


5.6.1 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205								
Test Frequency Range:	2310 MHz to 2390) MHz and 24	83.5 MHz to 2	500 MHz					
Test Distance:	3m								
Receiver setup:	Frequency	Detector	RBW	VBW	Remark				
	Above 1GHz	Peak	1MHz	3MHz					
		RMS	1MHz nit (dBuV/m @	3MHz	Average Value Remark				
Limit:	Frequency		54.00	3111)	Average Value				
	Above 1GH	z —	74.00		Peak Value				
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 								
Test setup:		AE EUT (Turntable)	Ground Reference Plane	Antenna Antenn	a Tower				
Test Instruments:	Refer to section 5	.9 for details							
Test mode:	Refer to section 5	.3 for details							
Test results:	Passed								

802.11b mode:

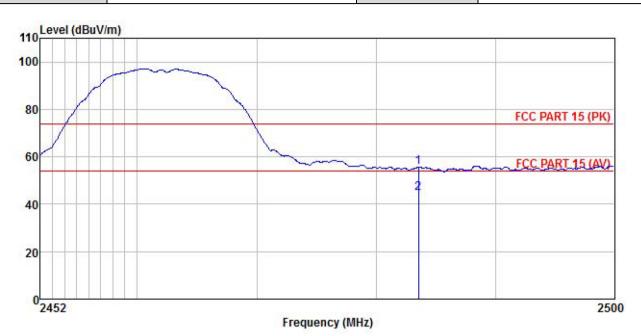
Product Name:	Mobile phone	Product Model:	A1
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


Freq		Antenna Factor						
MHz	dBu∇	<u>dB</u> /π	 <u>ab</u>	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
2390.000 2390.000								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

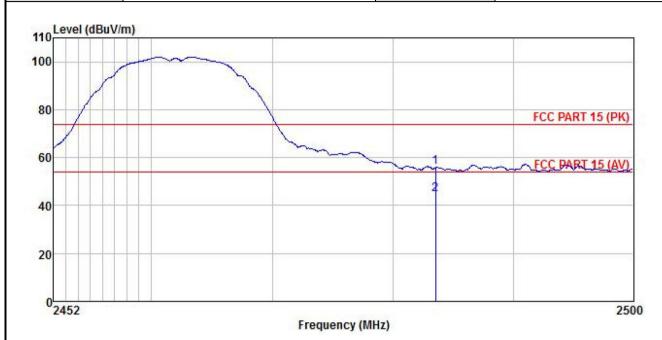
Product Name:	Mobile phone	Product Model:	A1
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



Freq		Antenna Factor					Over Limit	
MHz	dBu∜	— <u>d</u> B/m	 <u>ab</u>	<u>dB</u>	dBuV/m	dBuV/m		
2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

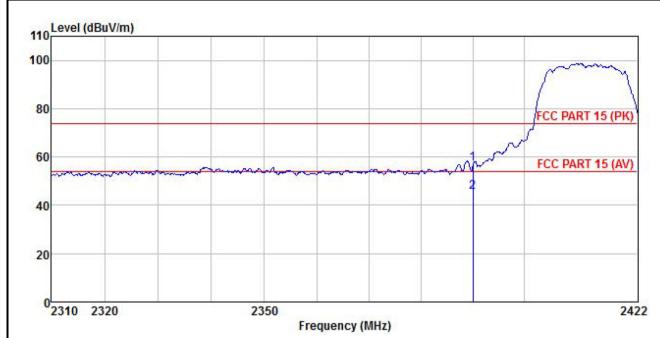
Product Name:	Mobile phone	Product Model:	A1		
Test By:	Mike	Test mode:	802.11b Tx mode		
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		



	Freq		Antenna Factor							Remark	
	MHz	dBu∇	— <u>d</u> B/π	<u>d</u> B	<u>ab</u>	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>		- Co
1 2	2483.500 2483.500										

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

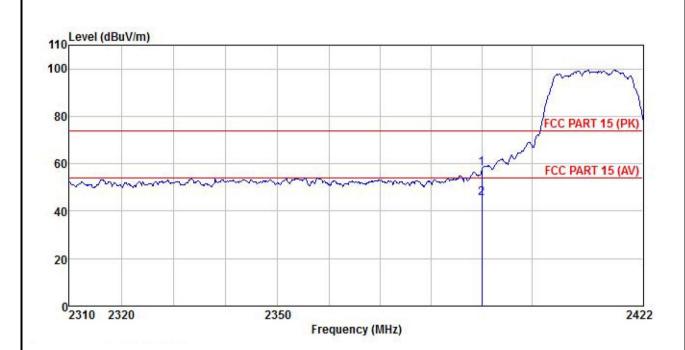
Product Name:	Mobile phone	Product Model:	A1
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


	Freq		Antenna Factor				Limit Line		
	MHz	dBu∜	— <u>d</u> B/m	 <u>d</u> B	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

802.11g mode:

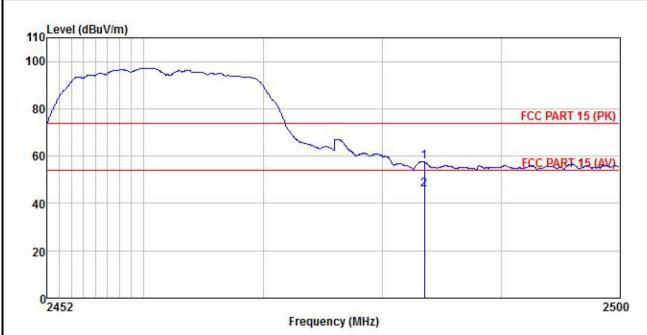
Product Name:	Mobile phone	Product Model:	A1		
Test By:	Mike	Test mode:	802.11g Tx mode		
Test Channel:	Lowest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		


	Freq		Antenna Factor						
=	MHz	dBu∜	<u>dB</u> /m	 <u>ab</u>	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	<u>ab</u>	
	2390.000 2390.000								

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

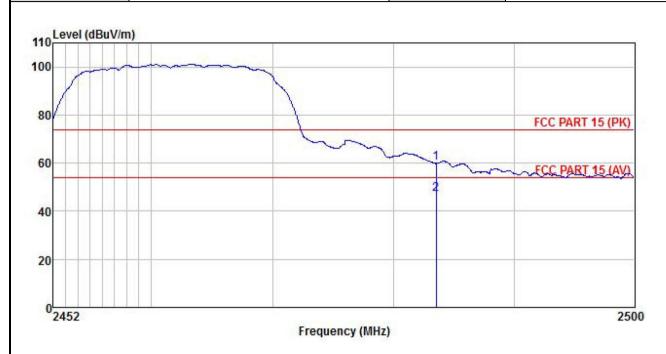
Product Name:	Mobile phone	Product Model:	A1
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



	Freq			ReadAntenna Cable Level Factor Loss					Over Limit	
	MHz	dBu∜	<u>dB</u> /m		<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

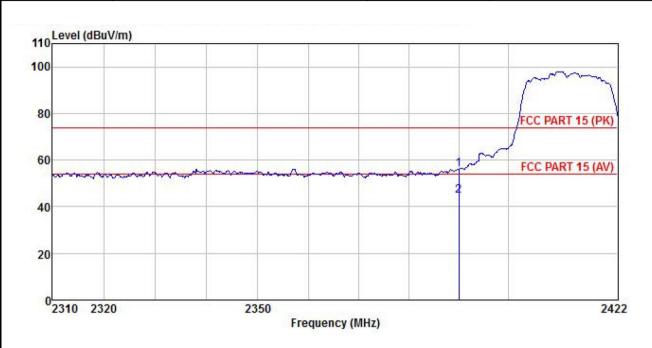
Product Name:	Mobile phone	Product Model:	A1
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



	Freq		Antenna Factor					Limit Line		
2	MHz	dBu∜	<u>dB</u> /π	<u>d</u> B	<u>ab</u>	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
	2483,500 2483,500									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

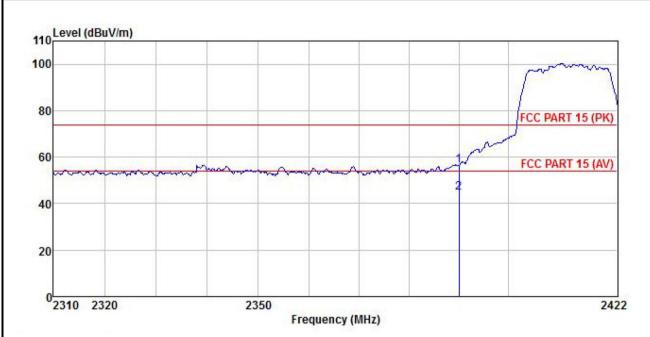
Product Name:	Mobile phone	Product Model:	A1		
Test By:	Mike	Test mode:	802.11g Tx mode		
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		


	Freq	ReadAntenn Level Facto		enna Cable ctor Loss				Limit Line		
	MHz	dBu∜	<u>dB</u> /m		<u>dB</u>	dB	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

802.11n(HT20):

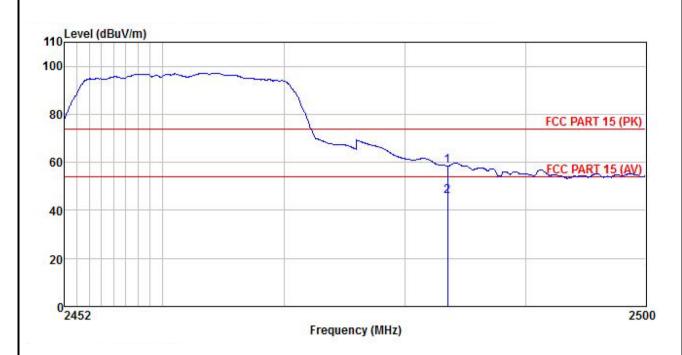
Product Name:	Mobile phone	Product Model:	A1
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


	Freq	Read Freq Level			Preamp Factor		Limit Line		
	MHz	—dBu∜	— <u>d</u> B/m	 <u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>ab</u>	
1 2	2390.000 2390.000								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

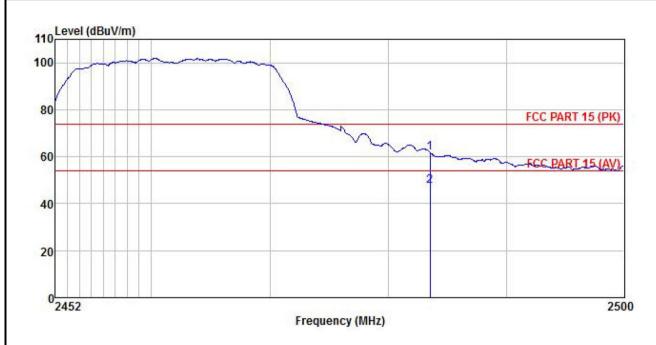
Product Name:	Mobile phone	Product Model:	A1
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


Freq		Antenna Factor					
MHz	dBu∇	— <u>d</u> B/m	 <u>ab</u>	<u>ab</u>	dBuV/m	dBuV/m	
2390.000 2390.000							

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

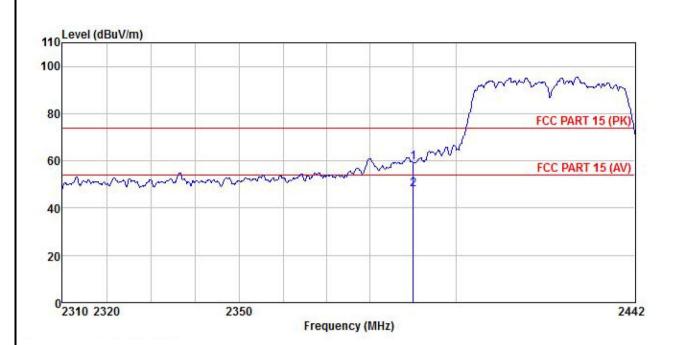
Product Name:	Mobile phone	Product Model:	A1
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



Freq		Antenna Factor						
MHz	dBu∇	— <u>d</u> B/m	 <u>ab</u>	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

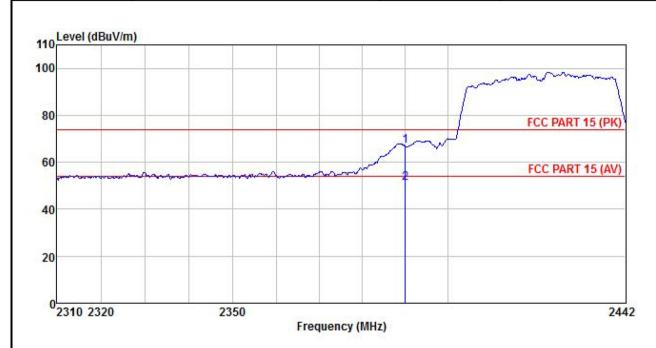
Product Name:	Mobile phone	Product Model:	A1
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


	Freq	ReadA Level	ntenna Factor	Cable Loss	Aux Factor	Preamp Factor	Level	Limit Line	Over Limit	Remark
•	MHz	dBu₹	dB/π		dB	B	dBuV/m	dBuV/m	B	
	2483.500 2483.500									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

802.11n(HT40):

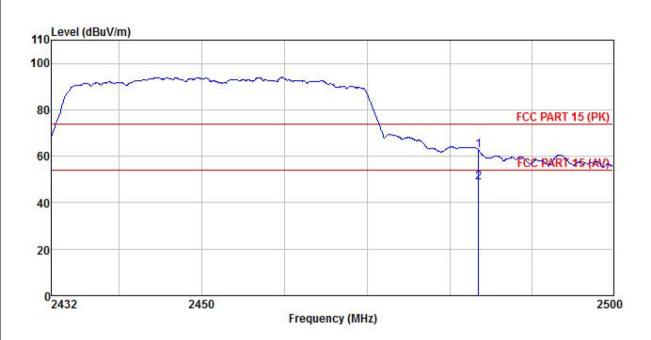
Product Name:	Mobile phone	Product Model:	A1
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


Freq		Antenna Factor						
MHz	dBu∜	<u>dB</u> /m	 <u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
2390.000 2390.000								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

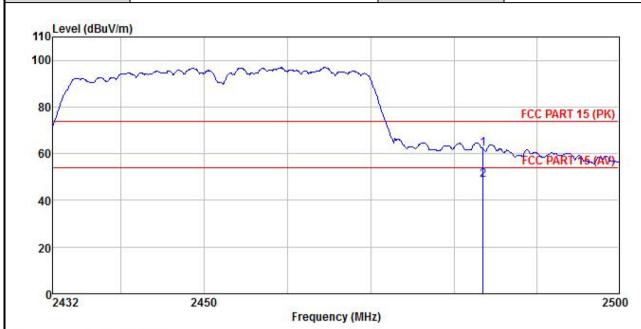
Product Name:	Mobile phone	Product Model:	A1
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



	Freq		Antenna Factor						Over Limit Remark	
,	MHz	dBu∜	<u>dB</u> /m	<u>d</u> B	<u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$		
									-7.15 Peak -2.96 Average	е

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Mobile phone	Product Model:	A1		
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode		
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		



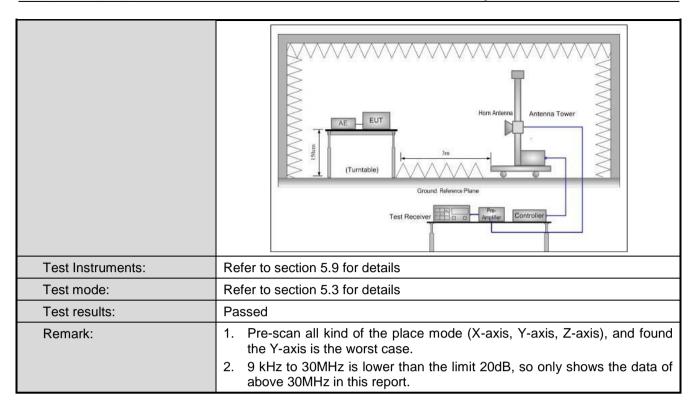
	Freq			Cable Aux Loss Factor		Preamp Factor Level		Over Limit	Remark
2	MHz	dBu∇	— <u>d</u> B/m	 <u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>ab</u>	
	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Mobile phone	Product Model:	A1
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Freq	Read: Level	Antenna Factor	Cable Loss	Aux Factor	Preamp Factor	Level	Limit Line	Over Limit	Remark
MHz	dBu∜	— <u>d</u> B/m	<u>d</u> B	<u>ab</u>	<u>dB</u>	dBuV/m	dBuV/m		
2483.500 2483.500									

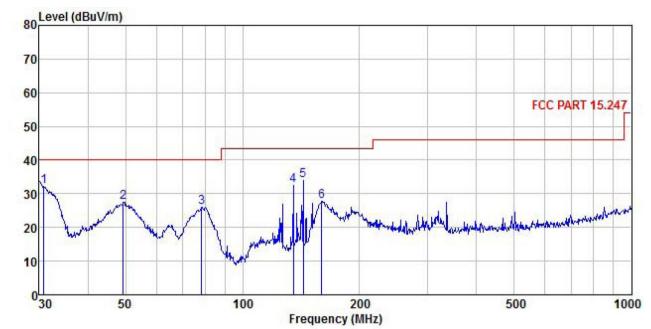
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



5.7 Spurious Emission

5.7.1 Radiated Emission Method

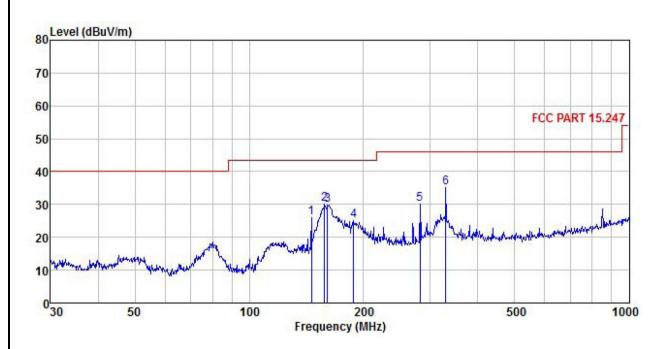
	Wethod						=======================================
Test Requirement:	FCC Part 15 C Se	ction 15.2	209 an	d 15.205			
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m						
Receiver setup:	Frequency	Detec	tor	RBW	V	BW	Remark
	30MHz-1GHz	Quasi-p	eak	120KHz	300	KHz	Quasi-peak Value
	Above 1GHz	Pea		1MHz		ИHz	Peak Value
		RMS		1MHz		ИHz	Average Value
Limit:	Frequency		Limit	t (dBuV/m @3i	m)		Remark
	30MHz-88MH			40.0			uasi-peak Value
	88MHz-216MHz 216MHz-960MHz			43.5 46.0			uasi-peak Value uasi-peak Value
	960MHz-1GH			54.0			uasi-peak Value
	900101112-11311	IZ		54.0			Average Value
	Above 1GHz	<u> </u>		74.0		,	Peak Value
Test Procedure:	The table was highest radiated 2. The EUT was antenna, which tower. 3. The antenna ground to det horizontal and measurement 4. For each sustand then the and the rota to maximum readstructure 5. The test-recest Specified Bares 6. If the emission limit specified the EUT would sent the sum of the s	above 1Gs rotated tion. Seet 3 method was method vertical to the pected erantenna value was ading. Siver system dwidth wen level of I, then tested be repowould be	Hz) at 360 de eters a counted varied ne max polariz mission was turned em was with Mathe El eting coorted. Or re-tes	dove the group egrees to determine the don the top of t	ind at ermin interior a value of the ante as arroses to be Mode word are emisone us	t a 3 mile the properties the properties of four miles of	eter chamber. Position of the Pereceiving Pheight antenna Pheters above the Perength. Both Pereceiving Pheters above the Perength. Both Pereceiving Pereceiving Pheight antenna Pheters above the Pereceiving Pheight antenna Pereceiving Pheters above the Pheters above the Pereceiving Pheters above the
Test setup:	Below 1GHz Turn Table Ground F	> 3m <				Ant	enna Tower Search ntenna



Measurement Data (worst case):

Below 1GHz:

Product Name:	Mobile phone	Product Model:	A1
Test By:	Mike	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


Freq			intenna Factor				eamp Limit Ov ctor Level Line Lim		Over Limit		
<u> </u>	MHz	dBuV		<u>d</u> B	<u>ab</u>		dBuV/m				
1	30.853 49.359	49.85 43.85	11.95	0.39 0.38			32.22 27.56	40.00 40.00			
2	78.413	42.84	12.39	0.47	0.00	29.65	26.05	40.00	-13.95	QP	
4 5	135.032 143.326	47.73 48.67	13.50 13.87	0.59 0.61	0.00 0.00			43.50 43.50			
6	159.784	40.88	15.50	0.63	0.00	29.13	27.88	43.50	-15.62	QP	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Product Name:	Mobile phone	Product Model:	A1
Test By:	Mike	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Intenna Factor					Limit Line	Over Limit	Remark
<u> </u>	MHz	−−dBuV	<u>dB</u> /m		<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	145.861	40.53	13.98	0.61	0.00	29.24	25.88	43.50	-17.62	QP
2 3	158.112	43.45	15.13	0.63	0.00	29.15	30.06	43.50	-13.44	QP
3	160.909	42.85	15.52	0.63	0.00	29.12	29.88	43.50	-13.62	QP
4 5	188.413	35.98	17.34	0.70		28.91			-18.39	
5	281.995	39.15	18.63	0.84	0.00	28.48			-15.86	0.70 (0.00)
6	329.039	43.97	18.76	0.90			35.12			

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz

Above 1GHz	4											
				8	02.11b							
	Test channel: Lowest channel											
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4824.00	49.85	30.81	6.81	2.46	41.82	48.11	74.00	-25.89	Vertical			
4824.00	48.14	30.81	6.81	2.46	41.82	46.40	74.00	-27.60	Horizontal			
Detector: Average Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4824.00	40.15	30.81	6.81	2.46	41.82	38.41	54.00	-15.59	Vertical			
4824.00	39.65	30.81	6.81	2.46	41.82	37.91	54.00	-16.09	Horizontal			
			Te	est channe	l: Middle cl	hannel						
				Detector	: Peak Val	ue						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4074.00	FO FO	20.00	0.05	0.47	44 0 4	40.00	74.00	05.07	\ / = =t! = = 1			

	Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	50.52	30.93	6.85	2.47	41.84	48.93	74.00	-25.07	Vertical				
4874.00	49.73	30.93	6.85	2.47	41.84	48.14	74.00	-25.86	Horizontal				
				Detector:	Average Va	alue							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	40.15	30.93	6.85	2.47	41.84	38.56	54.00	-15.44	Vertical				
4874.00	39.96	30.93	6.85	2.47	41.84	38.37	54.00	-15.63	Horizontal				
4									· ·				

	Test channel: Highest channel											
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4924.00 49.65 31.05 6.89 2.48 41.86 48.21 74.00 -25.79 Vertical												
4924.00 48.72 31.05 6.89 2.48 41.86 47.28 74.00 -26.72 Horizontal												
				Detector:	Average V	alue						
Frequency (MHz)	l level factor i ross i factor i factor i line i rimii i Polanzanon											
4924.00	39.65	31.05	6.89	2.48	41.86	38.21	54.00	-15.79	Vertical			
4924.00	40.04	31.05	6.89	2.48	41.86	38.60	54.00	-15.40	Horizontal			
I												

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

802.11g											
			Te		l: Lowest c	hannel					
					r: Peak Val						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	49.65	30.81	6.81	2.46	41.82	47.91	74.00	-26.09	Vertical		
4824.00	48.25	30.81	6.81	2.46	41.82	46.51	74.00	-27.49	Horizontal		
				Detector:	Average V	alue					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	40.22	30.81	6.81	2.46	41.82	38.48	54.00	-15.52	Vertical		
4824.00	41.36	30.81	6.81	2.46	41.82	39.62	54.00	-14.38	Horizontal		
Test channel: Middle channel											
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	48.88	30.93	6.85	2.47	41.84	47.29	74.00	-26.71	Vertical		
4874.00	47.95	30.93	6.85	2.47	41.84	46.36	74.00	-27.64	Horizontal		
				Detector:	Average V	alue					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	39.65	30.93	6.85	2.47	41.84	38.06	54.00	-15.94	Vertical		
4874.00	40.33	30.93	6.85	2.47	41.84	38.74	54.00	-15.26	Horizontal		
			Te	st channel	: Highest c	hannel					
				Detector	: Peak Val	ue					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	49.98	31.05	6.89	2.48	41.86	48.54	74.00	-25.46	Vertical		
4924.00	48.73	31.05	6.89	2.48	41.86	47.29	74.00	-26.71	Horizontal		
				Detector:	Average V	alue					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	40.15	31.05	6.89	2.48	41.86	38.71	54.00	-15.29	Vertical		
4924.00	41.33	31.05	6.89	2.48	41.86	39.89	54.00	-14.11	Horizontal		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

802.11n(HT20)											
			Te		I: Lowest c	hannel					
				Detector	r: Peak Val	ue					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	49.85	30.81	6.81	2.46	41.82	48.11	74.00	-25.89	Vertical		
4824.00	48.73	30.81	6.81	2.46	41.82	46.99	74.00	-27.01	Horizontal		
				Detector:	Average V	alue					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	40.15	30.81	6.81	2.46	41.82	38.41	54.00	-15.59	Vertical		
4824.00	41.16	30.81	6.81	2.46	41.82	39.42	54.00	-14.58	Horizontal		
Test channel: Middle channel											
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	49.66	30.93	6.85	2.47	41.84	48.07	74.00	-25.93	Vertical		
4874.00	48.37	30.93	6.85	2.47	41.84	46.78	74.00	-27.22	Horizontal		
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	39.65	30.93	6.85	2.47	41.84	38.06	54.00	-15.94	Vertical		
4874.00	40.02	30.93	6.85	2.47	41.84	38.43	54.00	-15.57	Horizontal		
			Te	st channel	l: Highest c	hannel					
					: Peak Val	ue					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	48.95	31.05	6.89	2.48	41.86	47.51	74.00	-26.49	Vertical		
4924.00	47.17	31.05	6.89	2.48	41.86	45.73	74.00	-28.27	Horizontal		
				Detector:	Average V	alue					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	49.66	31.05	6.89	2.48	41.86	48.22	54.00	-5.78	Vertical		
4924.00	48.21	31.05	6.89	2.48	41.86	46.77	54.00	-7.23	Horizontal		
Remark:	vol – Possi	iver Pead le	rol . Anton	no Footor :	Cable Loss	Dragonalitie					

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

				000.4	14 · /LIT 40\					
			Т		11n(HT40)					
			16		l: Lowest c					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	r: Peak Val Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4844.00	49.88	30.87	6.83	2.46	41.83	48.21	74.00	-25.79	Vertical	
4844.00	48.73	30.87	6.83	2.46	41.83	47.06	74.00	-26.94	Horizontal	
				Detector:	Average V	alue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4844.00	41.15	30.87	6.83	2.46	41.83	39.48	54.00	-14.52	Vertical	
4844.00	40.22	30.87	6.83	2.46	41.83	38.55	54.00	-15.45	Horizontal	
Test channel: Middle channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4874.00	48.65	30.93	6.85	2.47	41.84	47.06	74.00	-26.94	Vertical	
4874.00	47.92	30.93	6.85	2.47	41.84	46.33	74.00	-27.67	Horizontal	
				Detector:	Average V	alue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4874.00	39.65	30.93	6.85	2.47	41.84	38.06	54.00	-15.94	Vertical	
4874.00	40.02	30.93	6.85	2.47	41.84	38.43	54.00	-15.57	Horizontal	
			Te	est channel	l: Highest c	hannel				
				Detector	r: Peak Val	ue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4904.00	49.73	30.99	6.87	2.48	41.85	48.22	74.00	-25.78	Vertical	
4904.00	48.57	30.99	6.87	2.48	41.85	47.06	74.00	-26.94	Horizontal	
				ı	Average V	alue			1	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4904.00	40.15	30.99	6.87	2.48	41.85	38.64	54.00	-15.36	Vertical	
4904.00	39.65	30.99	6.87	2.48	41.85	38.14	54.00	-15.86	Horizontal	
Remark:										

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.