

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZB-R12-2101835

FCC REPORT

Applicant: Sun Cupid Technology (HK) Ltd.

Address of Applicant: 16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan,

Kowloon, Hong Kong.

Equipment Under Test (EUT)

Product Name: Android PDA

Model No.: N5501LAT, A5X

Trade mark: NUU

FCC ID: 2ADINN5501LAT

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 03 Sep., 2021

Date of Test: 04 Sep., to 22 Oct., 2021

Date of report issued: 25 Oct., 2021

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	25 Oct., 2021	Original

Tested by:	Mike ou	Date:	25 Oct., 2021	

Test Engineer

Reviewed by:

| Winner Thang | Date: 25 Oct., 2021

Project Engineer

Contents

			Page
1	COVI	ER PAGE	1
2	VERS	SION	2
3		TENTS	
4	TEST	SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
		GENERAL DESCRIPTION OF E.U.T	
		TEST ENVIRONMENT AND MODE	
		DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	6
	5.6	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	6
		LABORATORY FACILITY	
		LABORATORY LOCATION	
	5.9	Test Instruments list	7
6	TEST	RESULTS AND MEASUREMENT DATA	9
	6.1	Antenna requirement:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
		OCCUPY BANDWIDTH	
		Power Spectral Density	
		BAND EDGE	
	6.6.1	Conducted Emission Method	
	6.6.2	Radiated Emission Method	
		SPURIOUS EMISSION	
	6.7.1	Conducted Emission Method	
	6.7.2	Radiated Emission Method	
7	TEST	SETUP PHOTO	27
0	EUT	CONSTRUCTIONAL DETAILS	20

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result
Antenna requirement	15.203 & 15.247 (b)	See Section 6.1	Pass
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass
Conducted Peak Output Power	15.247 (b)(3)	Appendix A - BLE	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A - BLE	Pass
Power Spectral Density	15.247 (e)	Appendix A - BLE	Pass
Conducted Band Edge	45.047.(-1)	Appendix A - BLE	Pass
Radiated Band Edge	15.247 (d)	See Section 6.6.2	Pass
Conducted Spurious Emission	45.005.8.45.000	Appendix A - BLE	Pass
Radiated Spurious Emission	15.205 & 15.209	See Section 6.7.2	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013
KDB 558074 D01 15.247 Meas Guidance v05r02

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

General Information

5.1 Client Information

Applicant:	Sun Cupid Technology (HK) Ltd.
Address:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong.
Manufacturer:	Sun Cupid Technology (HK) Ltd.
Address:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong.
Factory:	Shenzhen Saidaxin Technology Co., Ltd.
Address:	6/F, Building 1, Saitu Digitial Technology Park, Bulan Road, Jihua Street, Longgang, Shenzhen, China.

5.2 General Description of F.U.T.

5.2 General Description	71 OI L.O.1.
Product Name:	Android PDA
Model No.:	N5501LAT, A5X
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	2.03 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V/2650mAh
AC adapter:	Model: HJ-0501000E1-US
	Input: AC100-240V, 50/60Hz, 0.2A
	Output: DC 5.0V, 1000mA
Remark:	Model No.: N5501LAT, A5X were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.
	2. EUT has two kind of CPUs, CPU 1: MT6739, CPU 2: MT8765.
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation
Remark :	During the test, pre-scan CPU1 and CPU2, found CPU1 was worse case mode. The report only reflects the worst mode.

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 150KHz) for V-AMN	3.11 dB
Conducted Emission (150kHz ~ 30MHz) for V-AMN	2.62 dB
Conducted Emission (150kHz ~ 30MHz) for AAN	3.54 dB
Radiated Emission (9kHz ~ 30MHz electric field) for 3m SAC	3.13 dB
Radiated Emission (9kHz ~ 30MHz magnetic field) for 3m SAC	3.13 dB
Radiated Emission (30MHz ~ 1GHz) for 3m SAC	4.45 dB
Radiated Emission (1GHz ~ 18GHz) for 3m SAC	5.34 dB
Radiated Emission (18GHz ~ 40GHz) for 3m SAC	5.34 dB
Radiated Emission (30MHz ~ 1GHz) for 10m SAC	4.32 dB

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

5.9 Test Instruments list

Radiated Emission(3m SAC):						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
3m SAC	ETS	RFD-100	Q1984	04-14-2021	04-13-2024	
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-044	03-07-2021	03-06-2022	
BiConiLog Antenna	SCHWARZBECK	VULB9163	9163-1246	03-07-2021	03-06-2022	
Biconical Antenna	SCHWARZBECK	VUBA 9117	9117#359	06-17-2021	06-17-2022	
Horn Antenna	SCHWARZBECK	BBHA9120D	912D-916	03-07-2021	03-06-2022	
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1067	04-02-2021	04-01-2022	
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1068	04-02-2021	04-01-2022	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022	
Spectrum analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021	
Simulated Station	Anritsu	MT8820C	6201026545	03-03-2021	03-02-2022	
Low Pre-amplifier	SCHWARZBECK	BBV9743B	00305	03-07-2021	03-06-2022	
High Pre-amplifier	SKET	LNPA_0118G-50	MF280208233	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-1G-NN-8M	JYT3M-1	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-18G-NN-8M	JYT3M-2	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-1G-BB-5M	JYT3M-3	03-07-2021	03-06-2022	
Cable	Bost	JYT3M-40G-SS-8M	JYT3M-4	04-02-2021	04-01-2022	
EMI Test Software	Tonscend	TS+		Version:3.0.0.1		

Radiated Emission(1	Radiated Emission(10m SAC):						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
10m SAC	ETS	RFSD-100-F/A	Q2005	04-28-2021	04-27-2024		
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1249	04-02-2021	04-01-2022		
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1250	04-02-2021	04-01-2022		
EMI Test Receiver	R&S	ESR 3	102800	04-08-2021	04-07-2022		
EMI Test Receiver	R&S	ESR 3	102802	04-08-2021	04-07-2022		
Low Pre-amplifier	Bost	LNA 0920N	2016	04-06-2021	04-05-2022		
Low Pre-amplifier	Bost	LNA 0920N	2019	04-06-2021	04-05-2022		
Cable	Bost	JYT10M-1G-NN-10M	JYT10M-1	04-02-2021	04-01-2022		
Cable	Bost	JYT10M-1G-NN-10M	JYT10M-2	04-02-2021	04-01-2022		
Test Software	R&S	EMC32	Version: 10.50.40				

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI 3	101189	03-03-2021	03-02-2022	
LISN	Rohde & Schwarz	ENV432	101602	04-06-2021	04-05-2022	
LISN	Rohde & Schwarz	ESH3-Z5	843862/010	06-18-2020	06-17-2022	
RF Switch	TOP PRECISION	RSU0301	N/A	03-03-2021	03-02-2022	
Cable	Bost	JYTCE-1G-NN-2M	JYTCE-1	03-03-2021	03-02-2022	
Cable	Bost	JYTCE-1G-BN-3M	JYTCE-2	03-03-2021	03-02-2022	
EMI Test Software	AUDIX	E3	\	ersion: 6.110919l	0	

Conducted method:									
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021				
Vector Signal Generator	Keysight	N5182B	MY59101009	11-27-2020	11-26-2021				
Analog Signal Generator	Keysight	N5173B	MY59100765	11-27-2020	11-26-2021				
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-27-2020	11-26-2021				
Simulated Station	Rohde & Schwarz	CMW270	102335	11-27-2020	11-26-2021				
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A				
PDU	MWRF-test	XY-G10	N/A	N/A	N/A				
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2021				
Temperature Humidity Chamber	ZhongZhi	CZ-C-150D	ZH16491	11-01-2020	10-31-2021				
Test Software	MWRF-tes	MTS 8310		Version: 2.0.0.0					

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 2.03 dBi.

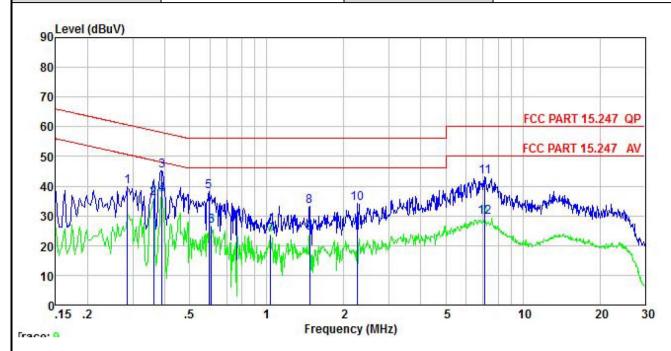
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366


6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	7			
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9kHz, VBW=30kHz				
Limit:	·	Limit (dBuV)		
-	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithn	n of the frequency.			
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement. 				
Test setup:	Reference	Plane			
	AUX Equipment E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Ne	EMI Receiver	– AC power		
	Test table height=0.8m				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details	i			
Test results:	Passed				

Measurement Data:

Product name:	Android PDA	Product model:	N5501LAT
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

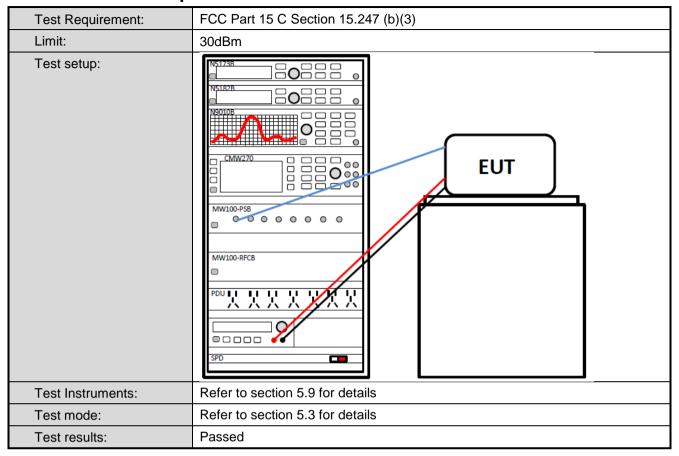

	Freq	Read Level	LISN Factor		Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	<u>ab</u>	<u>dB</u>	<u>ab</u>	dBu∜	dBu∜	<u>dB</u>	
1 2 3 4 5 6 7 8 9	0.158	27.75	10.22	-0.07	0.01	37.91		-27.65	100
2	0.286	22.34	10.26	-0.25	0.03	32.38	50.63	-18.25	Average
3	0.389	37.17	10.28	0.34	0.04	47.83	58.08	-10.25	QP
4	0.389	29.78	10.28	0.34	0.04	40.44	48.08	-7.64	Average
5	0.686	15.60	10.30	-0.40	0.03	25.53	46.00		Average
6	0.771	25.05	10.31	-0.17	0.03	35.22		-20.78	
7	1.123	24.16	10.32	0.33	0.08	34.89	56.00	-21.11	ΘP
8	1.123	14.18	10.32	0.33	0.08	24.91	46.00	-21.09	Average
9	1.908	14.50	10.33	-0.26	0.20	24.77			Average
10	6.988	33.21	10.49	1.30	0.10	45.10		-14.90	
11	7.407	23, 25	10.51	1.43	0.10	35.29			Äverage
12	14.063	25.26	10.74	3.34	0.12	39.46		-20.54	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

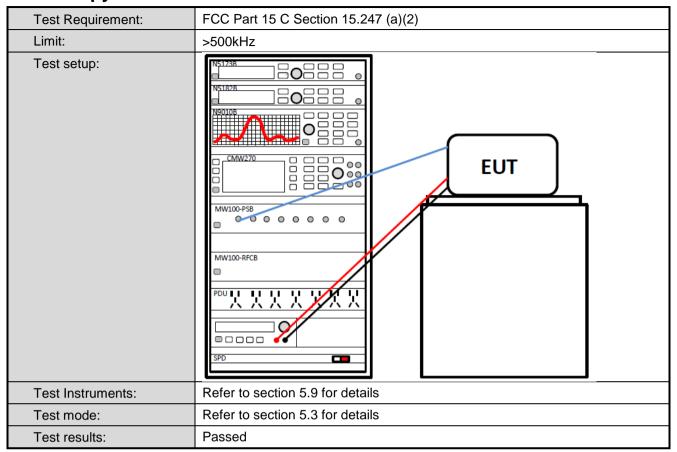
Product name:	Android PDA	Product model:	N5501LAT
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
2	MHz	dBu∜	<u>dB</u>	<u>dB</u>	<u>ap</u>	dBu₹	—dBu₹	<u>qp</u>	
1 2 3 4 5 6 7 8 9	0.286	29.62	10.25	0.01	0.03	39.91		-20.72	3.04.70
2	0.361	25.66	10.26	-0.03	0.02	35.91	48.69	-12.78	Average
3	0.389	35.01	10.27	-0.05	0.04	45.27	58.08	-12.81	QP
4	0.389	27.00	10.27	-0.05	0.04	37.26	48.08	-10.82	Average
5	0.595	27.97	10.29	0.04	0.02	38.32		-17.68	
6	0.608	16.21	10.29	0.04	0.02	26.56	46.00	-19.44	Average
7	1.037	13.07	10.31	0.08	0.06	23.52			Average
8	1.472	22.73	10.32	0.13	0.14	33.32		-22.68	
9	1.472	13.68	10.32	0.13	0.14	24.27	46.00	-21.73	Average
10	2,261	23.37	10.33	0.21	0.17	34.08		-21.92	
11	7,100	31.84	10.48	0.85	0.10	43.27	60.00	-16.73	ΩP
12	7.100	18.21	10.48	0.85	0.10	29.64			Äverage


Notes:

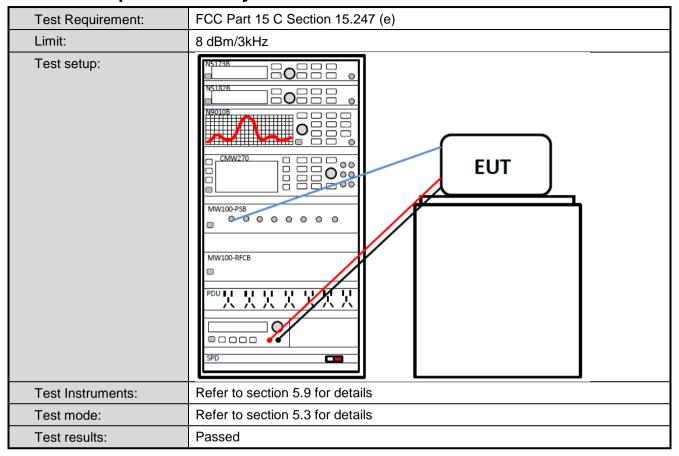
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

6.3 Conducted Output Power


Measurement Data: Refer to Appendix A - BLE

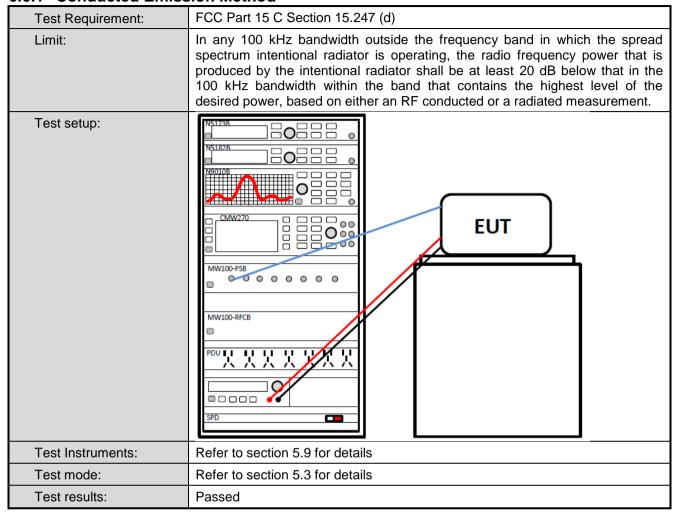
Page 13 of 41

6.4 Occupy Bandwidth


Measurement Data: Refer to Appendix A - BLE

Page 14 of 41

6.5 Power Spectral Density

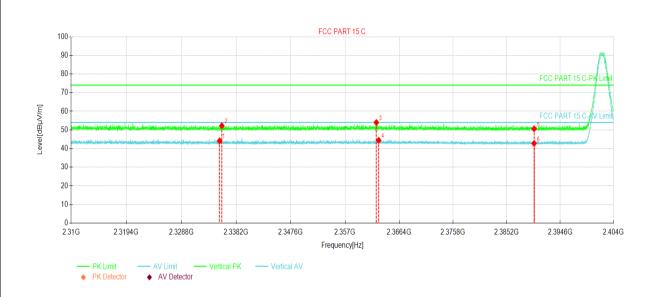

Measurement Data: Refer to Appendix A - BLE

6.6 Band Edge

6.6.1 Conducted Emission Method

Measurement Data: Refer to Appendix A - BLE

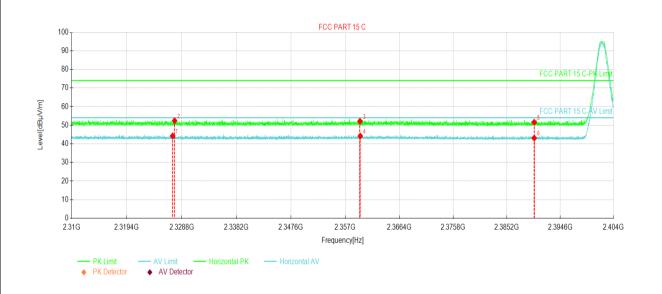
Page 16 of 41



Radiated Emission Method 6.6.2

Test Requirement:		Section 15.20	05 and 15.209					
Test Frequency Range:	2310 MHz to 2	2390 MHz and	2483.5MHz to 2	2500 MHz				
Test Distance:	3m	3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
·	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
		RMS	1MHz	3MHz	Average Value			
Limit:	Frequer	ncy Liı	mit (dBuV/m @3		Remark			
	Above 10	GHz —	54.00 74.00		verage Value Peak Value			
Test Procedure:	the groun to determ 2. The EUT antenna, tower. 3. The anter the groun Both horiz make the 4. For each case and meters are to find the 5. The test-I Specified 6. If the emit the limit so of the EU have 10 ce	ad at a 3 meter inne the position was set 3 met which was mound height is varied to determine zontal and vert measurement suspected emother the anternal the rota table maximum reasurement be maximum reasured to the rota table maximum reasurement of the rota table maximum reasurement be maximum reasurement of the rota table maximum reasurement of the rota table of the receiver system. Bandwidth with specified, then the rotal table of the rotal table of the region of the region of the rotal table of the	the top of a rot camber. The tan of the highest ers away from the unted on the top aried from one rethe maximum vical polarization ission, the EUT in a was turned from was set to Peading. In was set to Peading to Maximum Hole EUT in peak testing could be ported. Otherwis	ating table 1. ble was rotat radiation. he interference of a variable meter to four value of the fi s of the ante was arrange of heights from of degrees ak Detect Fund Mode. mode was 1 stopped and the the emissione by one u	ted 360 degrees ce-receiving e-height antenna meters above ield strength. nna are set to d to its worst m 1 meter to 4 s to 360 degrees nction and 0 dB lower than d the peak values ons that did not sing peak, quasi-			
Test setup:	AE (T	Test Receiver	Horn Antenna 3m Reference Plane	Antenna Tower				
Test Instruments:	Refer to section	Refer to section 5.9 for details						
Test mode:	Refer to section	on 5.3 for detai	ls					
Test results:	Passed							

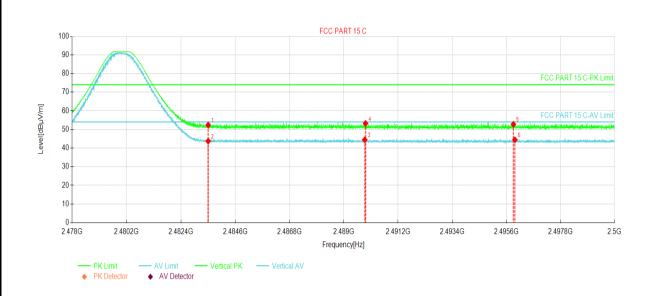
Product Name:	Android PDA	Product Model:	N5501LAT
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


Susp	Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity	
1	2335.35	37.24	44.14	6.90	54.00	9.86	AV	Vertical	
2	2335.74	45.36	52.26	6.90	74.00	21.74	PK	Vertical	
3	2362.44	47.00	53.99	6.99	74.00	20.01	PK	Vertical	
4	2362.83	37.42	44.41	6.99	54.00	9.59	AV	Vertical	
5	2390.00	43.53	50.61	7.08	74.00	23.39	PK	Vertical	
6	2390.00	35.67	42.75	7.08	54.00	11.25	AV	Vertical	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 18 of 41

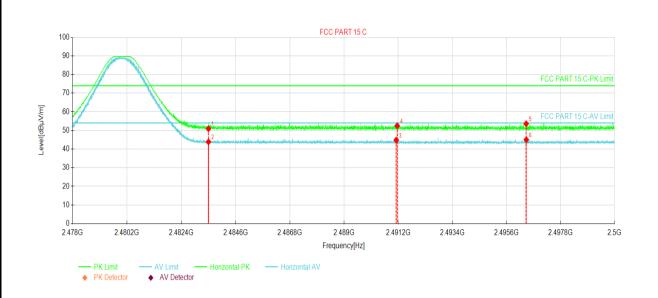
Product Name:	Android PDA	Product Model:	N5501LAT
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


Susp	Suspected Data List									
NO	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Dolority		
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity		
1	2327.24	37.37	44.24	6.87	54.00	9.76	AV	Horizontal		
2	2327.57	45.56	52.43	6.87	74.00	21.57	PK	Horizontal		
3	2359.54	45.14	52.12	6.98	74.00	21.88	PK	Horizontal		
4	2359.60	37.17	44.15	6.98	54.00	9.85	AV	Horizontal		
5	2390.00	44.51	51.59	7.08	74.00	22.41	PK	Horizontal		
6	2390.00	36.02	43.10	7.08	54.00	10.90	AV	Horizontal		

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 19 of 41

Product Name:	Android PDA	Product Model:	N5501LAT
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


Suspected Data List									
NO	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Dolority	
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity	
1	2483.50	44.66	52.35	7.69	74.00	21.65	PK	Vertical	
2	2483.50	36.04	43.73	7.69	54.00	10.27	AV	Vertical	
3	2489.84	36.71	44.44	7.73	54.00	9.56	AV	Vertical	
4	2489.87	45.49	53.22	7.73	74.00	20.78	PK	Vertical	
5	2495.88	44.97	52.74	7.77	74.00	21.26	PK	Vertical	
6	2495.94	36.66	44.43	7.77	54.00	9.57	AV	Vertical	

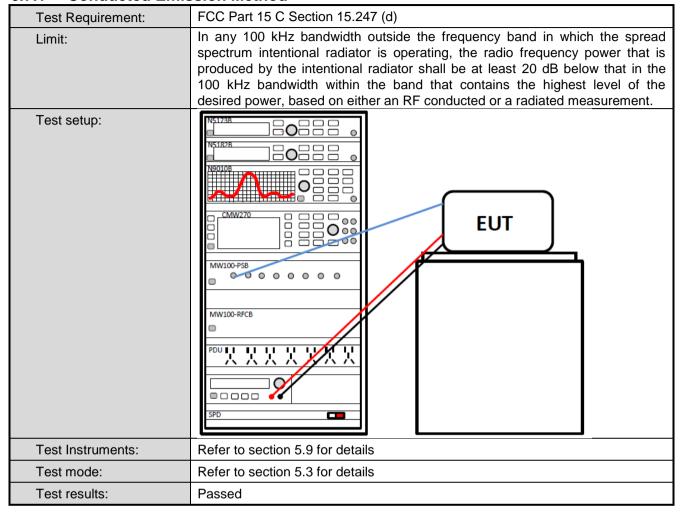
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 20 of 41

Product Name:	Android PDA	Product Model:	N5501LAT
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Suspected Data List									
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trans	Dolorite	
	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity	
1	2483.50	43.23	50.92	7.69	74.00	23.08	PK	Horizontal	
2	2483.50	36.17	43.86	7.69	54.00	10.14	AV	Horizontal	
3	2491.11	37.10	44.84	7.74	54.00	9.16	AV	Horizontal	
4	2491.15	44.75	52.49	7.74	74.00	21.51	PK	Horizontal	
5	2496.40	45.81	53.59	7.78	74.00	20.41	PK	Horizontal	
6	2496.40	37.23	45.01	7.78	54.00	8.99	AV	Horizontal	

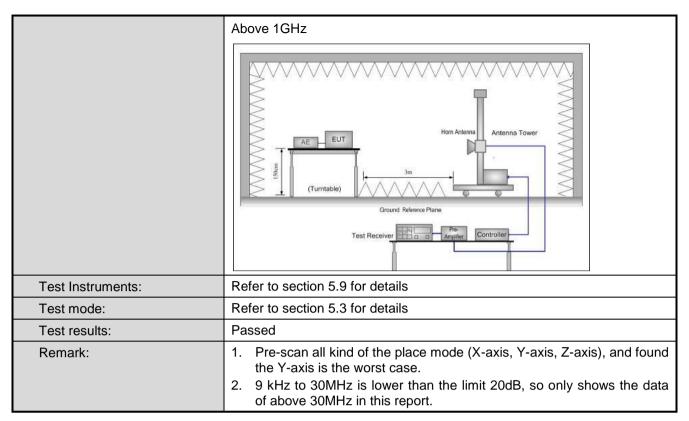
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.


Page 21 of 41

6.7 Spurious Emission

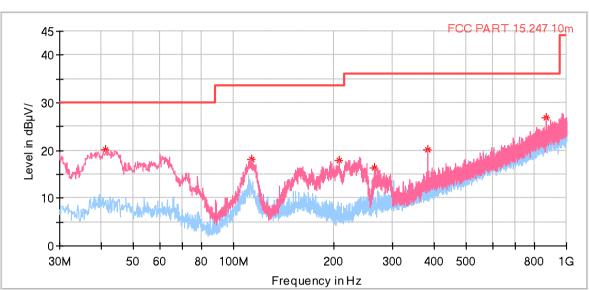
6.7.1 Conducted Emission Method

Measurement Data: Refer to Appendix A - BLE


Page 22 of 41

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.205 and 15.209						
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	Below 1GHz for	10m SAC te	st, Above 1GI	Hz for 3	m SA	C test.	
Receiver setup:	Frequency	Detector	RBW	VB	BW Remark		
·	30MHz-1GHz	Quasi-peak	120KHz	3001	KHz	Quasi-peak Value	
	Above 1GHz	Peak	1MHz	3M	3MHz Peak \		
	Above 1G112	RMS	1MHz	3M	Hz	Average Value	
Limit:	Frequency		mit (dBuV/m @	10m)		Remark	
	30MHz-88M		30.0			Quasi-peak Value	
	88MHz-216N		33.5			Quasi-peak Value	
	216MHz-960I		36.0			Quasi-peak Value	
	960MHz-1G		44.0	\ O\	(Quasi-peak Value	
	Frequency	/	imit (dBuV/m @	(3m)		Remark	
	Above 1GH	lz 🗀	54.0 74.0			Average Value Peak Value	
Test Procedure:	1. The EUT	was placed		of a ro	tating	table 0.8m(below	
Toot noture	(below 1G rotated 36 radiation. 2. The EUT was away from on the top of the ground Both horizon make the numbers and to find the state of the emission of the EUT have 10 depeak or avisheet.	Hz)or 3 me to degrees was set 10 me the interference a variablema height is to determinate and veneasurement suspected en the anterest and with the rota tab maximum reasurement sion level of ecified, then the would be reasured and would be reasured.	ter chamber(to determine eters(below 10 ence-receiving height antenn varied from o ne the maxim rtical polarizar . mission, the E enna was tune le was turned ading. em was set th Maximum H the EUT in pe testing could I eported. Other Id be re-tested	above the part of	1GHz position r 3 me na, where r to see the a respect to	10 meter chamber (2). The table was in of the highest eters (above 1GHz) hich was mounted four meters above the field strength, antenna are set to anged to its worst from 1 meter to 4 ees to 360 degrees tect Function and as 10 dB lower than and the peak values ssions that did not using peak, quasi-reported in a data	
Test setup:	Below 1GHz Turn Table Ground Plane	10m 4m		S A RF	Antenna Tolearch Antenna Test ceiver	ower	



Measurement Data (worst case):

Below 1GHz:

Product Name:	Android PDA	Product Model:	N5501LAT	
Test By:	Mike	Test mode:	BLE Tx mode	
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical & Horizontal	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%	

Critical Fregs

Frequency (MHz)	MaxPeak (dB + V/m)	Limit (dB # V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
41.349000	20.17	30.00	9.83	100.0	V	184.0	-15.7
113.129000	18.10	33.50	15.40	100.0	V	354.0	-17.7
207.316000	17.85	33.50	15.65	100.0	V	0.0	-17.9
265.613000	16.36	36.00	19.64	100.0	V	9.0	-15.4
383.953000	20.25	36.00	15.75	100.0	V	259.0	-11.6
870.117000	26.75	36.00	9.25	100.0	V	187.0	-1.3

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Project No.: JYTSZE2109034

Above 1GHz

		Test cl	hannel: Lowest cha	annel			
		De	etector: Peak Value	Э			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4804.00	58.53	-9.60	48.93	74.00	25.07	Vertical	
4804.00	60.27	-9.60	50.67	74.00	23.33	Horizontal	
	•	Dete	ector: Average Val	ue	•	·	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4804.00	52.08	-9.60	42.48	54.00	11.52	Vertical	
4804.00	55.69	-9.60	46.09	54.00	7.91	Horizontal	
		Test c	hannel: Middle cha	annel			
		De	etector: Peak Value	е			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4884.00	58.36	-9.04	49.32	74.00	24.68	Vertical	
4884.00	60.57	-9.04	51.53	74.00	22.47	Horizontal	
Detector: Average Value							
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
			Level	Limit Line	•	Polarization Vertical	

		Test ch	nannel: Highest ch	annel		
		De	etector: Peak Valu	е		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4960.00	58.62	-8.45	50.17	74.00	23.83	Vertical
4960.00	60.41	-8.45	51.96	74.00	22.04	Horizontal
		Det	ector: Average Val	lue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4960.00	51.98	-8.45	43.53	54.00	10.47	Vertical
4960.00	55.74	-8.45	47.29	54.00	6.71	Horizontal

Remark:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 26 of 41

^{1.} Final Level =Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.