

FCC TEST REPORT for Xiamen Prima Technology Inc.

Interactive Flat Panel

Model No.: LE-55PC**(* can be A \sim Z, 0 \sim 9 instead)

FCC ID: 2ADID-LE-55PC88

Prepared for Address	 Xiamen Prima Technology Inc. No.178, Xinfeng Road, Xiamen, Fujian, P.R. China
Prepared by Address	 Accurate Technology Co., Ltd. F1, Bldg. A&D, Changyuan New Material Port, Keyuan Rd., Science & Industry Park, Nanshan District Shenzhen 518057, P.R. China
	Tel: +86-755-26503290 Fax: +86-755-26503396

Report No.	:	ATE20160582
Date of Test	:	September 3, 2016
Date of Report	:	September 5, 2016

TABLE OF CONTENTS

Description

Page

Test	Report
1001	1 topolt

1. TE	EST RESULTS SUMMARY	
2. GE	ENERAL INFORMATION	5
2.1.	Description of Device (EUT)	
2.2.	Accessory and Auxiliary Equipment	
2.3.	Description of Test Facility	
2.4.	Measurement Uncertainty	7
3. MI	EASURING DEVICE AND TEST EQUIPMENT	
3.1.	For Radiated Emission Measurement	8
3.2.	The Equipment Used to Measure Conducted Disturbance (L.I.S.N)	9
4. PC	OWER LINE CONDUCTED MEASUREMENT	
4.1.	Block Diagram of Test Setup	10
4.2.	Test mode description	
4.3.	Power Line Conducted Emission Measurement Limits	10
4.4.	Configuration of EUT on Measurement	10
4.5.	Operating Condition of EUT	
4.6.	Test Procedure	
4.7.	Power Line Conducted Emission Measurement Results	
5. R/	ADIATED EMISSION MEASUREMENT	
5.1.	Block Diagram of Test	
5.2.	Test mode description	
5.3.	Radiated Emission Limit (Class B)	
5.4.	Manufacturer	
5.5.	Operating Condition of EUT	
5.6.	Test Procedure	
5.7.	Radiated Emission Noise Measurement Result	
6. PH	HOTOGRAPHS	
6.1.	Photos of Radiated Emission Measurement	
6.2.	Photo of Conducted Emission Measurement	
6.3.	Photo of EUT	89

Test Report

Applicant	: Xiamen Prima Technology Inc.
Manufacturer	: Xiamen Prima Technology Inc.
EUT Description	: Interactive Flat Panel
Model No.	: LE-55PC**(* can be A \sim Z, 0 \sim 9 instead)
Trade Name	: PRIMA

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart B Class B ANSI C63.4: 2014

The device described above is tested by Accurate Technology Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart B Class B limits both radiated and conducted emissions. The measurement results are contained in this test report and Accurate Technology Co., Ltd. is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of Accurate Technology Co., Ltd.

Date of Test : Date of Report:

September 3, 2016 September 5, 2016

Prepared by :

(Bob Wang, Engineer)

Approved & Authorized Signer :

(Sean Liu, Manager)

1. TEST RESULTS SUMMARY

Test Items	Test Standard	Test Results
Power Line Conducted Emission	FCC Part 15 Subpart B	Pass
Radiated Emission	FCC Part 15 Subpart B	Pass

Remark: "N/A" Means not applicable

2. GENERAL INFORMATION

2.1.Description of Device (EUT)

Product	:	Interactive Flat Panel
Model No.	:	LE-55PC**(* can be A \sim Z, 0 \sim 9 instead)
Test Voltage	:	INPUT: AC 100240V~50/60Hz 2.4A
Trade Name	:	PRIMA
Remark(s)	:	The EUT highest operating frequency provided by Manufacturer is 1.2GHz and include include 2.4GHz and 5GHz wifi, the radiated emission measurement shall be made up to 40 GHz.
Applicant Address	:	Xiamen Prima Technology Inc. No.178, Xinfeng Road, Xiamen, Fujian, P.R. China
Manufacturer Address	:	Xiamen Prima Technology Inc. Wanlida Industry Zone Building C, Nanjing Fujian, P.R. China.
Date of sample receiver	:	
Date of Test	:	September 3, 2016

2.2. Accessory and Auxiliary Equipment

PC	:	Manufacturer: DELL M/N: DMC S/N: HZXLM1
media player	:	Manufacturer: TOSHIBA M/N: STOR.E TV+ S/N: 101200005
USB Memory Disk	(:	Manufacturer: Smartocean M/N: 3611S/N: 101200005
LCD Monitor	:	Manufacturer: DELL M/N: 1704FPTt S/N: 434
Keyboard	:	Manufacturer: DELL M/N: SK-8110 S/N: LR86682
Mouse	:	Manufacturer: DELL M/N: M071KC S/N: 410042355
Earphone	:	Manufacturer: APPLE M/N: iPhone (Matching earphone) S/N: 7M6369W3VQ5
HDMI Line	:	HDMI line length of 1 meters, have shield and magnetic ring
VGA Line	:	VGA line length of 1 meters, have shield and magnetic ring
AV Line	:	AV line length of 0.8 meters, have shield and magnetic ring
DP Line	:	DP line length of 0.8 meters, have shield and magnetic ring
TOUCH Line	:	DP line length of 1.2 meters, have shield and magnetic ring
Net port line	:	Net port length of 4 meters, have shield and magnetic ring

2.3.Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen

Listed by FCC The Registration Number is 253065 Listed by FCC The Registration Number is 752051 Listed by Industry Canada

The Registration Number is 5077A-1 Listed by Industry Canada The Registration Number is 5077A-2

Accredited by China National Accreditation Committee for Laboratories The Certificate Registration Number is L3193

Name of Firm	:	Accurate Technology Co., Ltd.
Site Location	:	F1, Bldg. A&D, Changyuan New Material Port, Keyuan Rd.
		Science & Industry Park, Nanshan District, Shenzhen
		518057, P.R. China

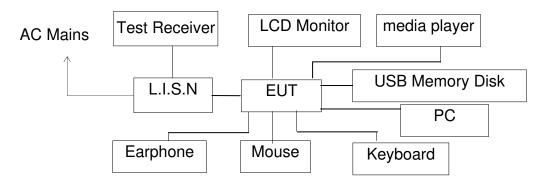
2.4.Measurement Uncertainty

Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Power Disturbance Expanded Uncertainty	=	2.92 dB, k=2
Radiated emission expanded uncertainty (9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty (30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty (Above 1GHz)	=	4.06dB, k=2

3. MEASURING DEVICE AND TEST EQUIPMENT

3.1. For Radiated Emission Measurement

ltem	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.
1.	Spectrum Analyzer	Agilent	E7405A	MY45115511	lan 09, 2016	Interval 1 Year
2.	Spectrum Analyzer		FSV40	101495	Jan.09, 2016	1 Year
3.	Test Receiver		ESCS30	100307	Jan.09, 2016	1 Year
4.	Test Receiver	Rohde& Schwarz		100396/003	Jan.09, 2016	1 Year
5.	Test Receiver	Rohde& Schwarz		101526/003	Jan.09, 2016	1 Year
6.	Test Receiver	Rohde& Schwarz		101817	Jan.09, 2016	1 Year
7.	Bilog Antenna	Schwarzbeck	VULB9163	9163-194	Jan.14, 2016	1 Year
8.	Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan.14, 2016	1 Year
9.	LogPer.Antenna	Schwarzbeck	VUSLP	9111B-074	Jan.14, 2016	1 Year
_			9111B			
10.	Biconical Broad	Schwarzbeck	VHBB	9124-617	Jan.14, 2016	1 Year
	Band Antenna		9124+BBA			
			9106			
11.	Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan.14, 2016	1 Year
12.	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan.14, 2016	1 Year
13.	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1067	Jan.14, 2016	1 Year
14.	Vertical Active Monopole Antenna	Schwarzbeck	VAMP 9243	9243-370	Jan.14, 2016	1 Year
15.	RF Switching	Compliance	RSU-M2	38322	Jan.09, 2016	1 Year
13.	Unit+PreAMP	Direction		50522	Jan.03, 2010	i ieai
16.	Pre-Amplifier		8447D	294A10619	Jan.09, 2016	1 Year
17.	Pre-Amplifier	Rohde&Schwarz	CBLU11835 40-01	3791	Jan.09, 2016	1 Year
18.	50 Coaxial Switch	Anritsu Corp	MP59B	6200237248	Jan.09, 2016	1 Year
19.	50 Coaxial Switch	Anritsu Corp	MP59B	6200506474	Jan.09, 2016	1 Year
20.	RF Coaxial Cable	Schwarzbeck	N-5m	No.1	Jan.09, 2016	1 Year
21.	RF Coaxial Cable	Schwarzbeck	N-1m	No.6	Jan.09, 2016	1 Year
22.	RF Coaxial Cable	Schwarzbeck	N-1m	No.7	Jan.09, 2016	1 Year
23.	RF Coaxial Cable	SUHNER	N-3m	No.8	Jan.09, 2016	1 Year
24.	RF Coaxial Cable	RESENBERGER		No.9	Jan.09, 2016	
25.	RF Coaxial Cable	SUHNER	N-6m	No.10	Jan.09, 2016	1 Year
26.	RF Coaxial Cable	RESENBERGER	N-12m	No.11	Jan.09, 2016	1 Year
27.	RF Coaxial Cable	RESENBERGER	N-0.5m	No.12	Jan.09, 2016	1 Year
28.	RF Coaxial Cable	SUHNER	N-2m	No.13	Jan.09, 2016	1 Year
29.	RF Coaxial Cable	SUHNER	N-0.5m	No.15	Jan.09, 2016	1 Year
30.	RF Coaxial Cable	SUHNER	N-2m	No.16	Jan.09, 2016	1 Year
31.	RF Coaxial Cable	RESENBERGER	N-6m	No.17	Jan.09, 2016	1 Year


3.2. The Equipment Used to Measure Conducted Disturbance (L.I.S.N)

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.
						Interval
1.	Test Receiver	Rohde & Schwarz	ESCS30	100307	Jan.09, 2016	1 Year
2.	Test Receiver	Rohde & Schwarz		100396/003	Jan.09, 2016	1 Year
3.	Test Receiver	Rohde & Schwarz		101526/003	Jan.09, 2016	1 Year
4.	L.I.S.N.	Schwarzbeck	NLSK8126	8126431	Jan.09, 2016	1 Year
5.	L.I.S.N.	Rohde & Schwarz	ESH3-Z5	100305	Jan.09, 2016	1 Year
6.	L.I.S.N.	Rohde & Schwarz	ESH3-Z5	100310	Jan.09, 2016	1 Year
7.	L.I.S.N.	Rohde & Schwarz	ESH3-Z6	100132	Jan.09, 2016	1 Year
8.	Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100305	Jan.09, 2016	1 Year
9.	Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100312	Jan.09, 2016	1 Year
10.	Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100815	Jan.09, 2016	1 Year
11.	50Ω Coaxial Switch	Anritsu Corp	MP59B	6200283936	Jan.09, 2016	1 Year
12.	50Ω Coaxial Switch	Anritsu Corp	MP59B	6200283933	Jan.09, 2016	1 Year
13.	50Ω Coaxial Switch	Anritsu Corp	MP59B	6200506474	Jan.09, 2016	1 Year
14.	VOLTAGE PROBE	Schwarzbeck	TK9416	N/A	Jan.09, 2016	1 Year
15.	RF CURRENT PROBE	Rohde & Schwarz	EZ-17	100048	Jan.09, 2016	1 Year
16.	8-Wire Impedance Stabilisation Network	Schwarzbeck	CAT5 8158	8158-0035	Jan.09, 2016	1 Year
17.	RF Coaxial Cable	SUHNER	N-2m	No.2	Jan.09, 2016	1 Year
18.	RF Coaxial Cable	SUHNER	N-2m	No.3	Jan.09, 2016	1 Year
19.	RF Coaxial Cable	SUHNER	N-2m	No.14	Jan.09, 2016	1 Year
Expa	nded Uncertainty:	U= 2.23dB, k=2				

4. POWER LINE CONDUCTED MEASUREMENT

4.1.Block Diagram of Test Setup

(EUT: Interactive Flat Panel)

4.2.Test mode description

Test mode 1: USB IN Test mode 2: AV IN Test mode 3: VGA IN Test mode 4: DP IN Test mode 5: HDMI IN Test mode 6: Memory Playing

4.3. Power Line Conducted Emission Measurement Limits

Frequency	Limit d	B(μV)					
(MHz)	Quasi-peak Level	Average Level					
0.15 - 0.50	66.0 - 56.0 *	56.0 - 46.0 *					
0.50 - 5.00	56.0	46.0					
5.00 - 30.00	60.0	50.0					
NOTE1: The lower limit sh	all apply at the transition fre	quencies.					
	NOTE2: The limit decreases linearly with the logarithm of the frequency in the						
range 0.15MHz to	o 0.50MHz.						

4.4.Configuration of EUT on Measurement

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

4.5.Operating Condition of EUT

- 4.5.1.Setup the EUT and simulator as shown as Section 4.1.
- 4.5.2.Turn on the power of all equipment.
- 4.5.3.Let the EUT work in test mode and measure it.

4.6.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4: 2014 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

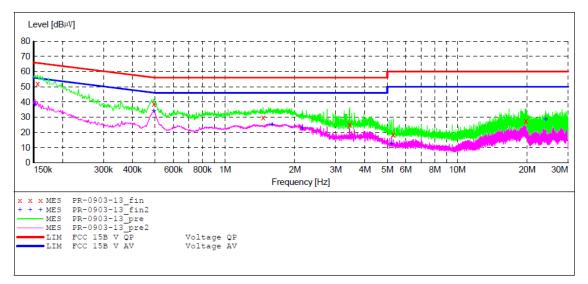
4.7. Power Line Conducted Emission Measurement Results

PASS.

The frequency range from 150kHz to 30MHz is checked.

Emissions attenuated more than 20 dB below the permissible value are not reported.

The spectral diagrams are attached as below.



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:	Interactive Flat Panel	M/N:LE-55PC88
Manufacturer:	PRIMA	
Operating Condition:	Memory PLAYING	
Test Site:	2#Shielding Room	
Operator:	DING	
Test Specification:	N 120V/60Hz	
Comment:	Report No.:ATE20160582	
Start of Test:	2016-9-3 / 13:56:41	

SCAN TABLE: "V 150K-30MHz fin"

Short Descri			UB_STD_VTEF	RM2 1.70		
Start S	Stop	Step	Detector	Meas.	IF	Transducer
Frequency F	Frequency	Width		Time	Bandw.	
150.0 kHz 3	30.0 MHz	4.5 kHz	~	1.0 s	9 kHz	LISN (ESH3-Z5)
			Average			

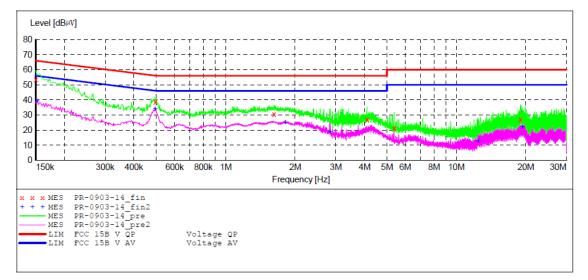
MEASUREMENT RESULT: "PR-0903-13 fin"

2016-9-3 13:58

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	ΡE
0.156000 0.494000 1.460000 3.444500 5.298500 19.779500	52.10 38.80 29.60 25.20 18.50 27.40	10.4 11.5 11.6 11.7 11.8 11.9	66 56 56 60 60	13.6 17.3 26.4 30.8 41.5 32.6	QP QP QP QP QP QP	N N N N N	GND GND GND GND GND GND

MEASUREMENT RESULT: "PR-0903-13 fin2"

2016-9-3 13:58 Level Transd Limit Margin Detector Line PE Frequency MHz dBµV dB dBµV dB 17.4 AV 12.0 AV 0.152000 38.50 10.4 56 Ν GND 0.494000 34.10 11.5 46 Ν GND 11.6 1.594000 25.10 46 20.9 AV Ν GND 22.90 12.50 23.1 AV 37.5 AV 2.153000 11.7 46 Ν GND 5.213000 11.8 50 Ν GND 24.000500 28.40 12.0 50 21.6 AV Ν GND



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:	Interactive Flat Panel	M/N:LE-55PC88
Manufacturer:	PRIMA	
Operating Condition:	Memory PLAYING	
Test Site:	2#Shielding Room	
Operator:	DING	
Test Specification:	L 120V/60Hz	
Comment:	Report No.:ATE20160582	
Start of Test:	2016-9-3 / 13:59:03	

SCAN TABLE: "V 150K-30MHz fin"

Short Desci	ription:		SUB STD VTER	RM2 1.70		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak	1.0 s	9 kHz	LISN(ESH3-Z5)
			Average			

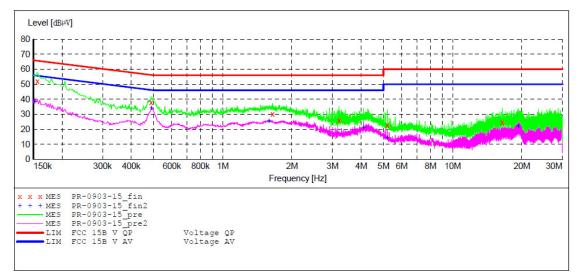
MEASUREMENT RESULT: "PR-0903-14 fin"

2016-9-3 14:02

Freq	uency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.4 1.6 4.0 5.3	50000 94000 518000 97000 870500 956000	53.50 38.60 30.60 27.10 21.20 27.10	10.3 11.5 11.6 11.8 11.8 11.9	66 56 56 60 60		~	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND

MEASUREMENT RESULT: "PR-0903-14_fin2"

2016-9-3 14:02 Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.152000 0.494000 1.812000 2.832500 12.404000	39.00 34.10 24.90 18.80 12.60	10.4 11.5 11.7 11.7 11.9	56 46 46 50	16.9 12.0 21.1 27.2 37.4	AV AV AV AV AV	L1 L1 L1 L1 L1	GND GND GND GND GND
19.329500	22.00	11.9	50	28.0	AV	L1	GND



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:	Interactive Flat Panel	M/N:LE-55PC88
Manufacturer:	PRIMA	
Operating Condition:	VGA IN	
Test Site:	2#Shielding Room	
Operator:	DING	
Test Specification:	L 120V/60Hz	
Comment:	Report No.:ATE20160582	
Start of Test:	2016-9-3 / 14:03:08	

SCAN TABLE: "V 150K-30MHz fin"

Short Desc		it othing	SUB STD VTE	RM2 1.70		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak Average	1.0 s	9 kHz	LISN(ESH3-Z5)

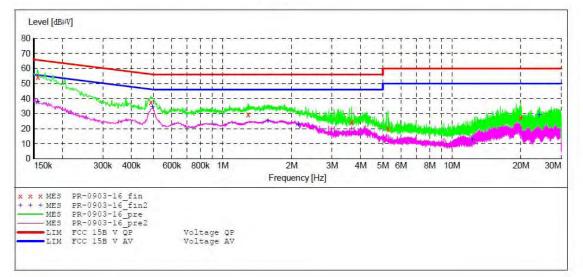
MEASUREMENT RESULT: "PR-0903-15_fin"

2016-9-3 14:04

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.156000 0.488000 1.646000 3.206000 5.204000 16.436000	51.80 37.80 30.30 25.70 22.70 24.50	10.4 11.5 11.6 11.7 11.8 11.9	66 56 56 60 60	13.9 18.4 25.7 30.3 37.3 35.5	QP QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND

MEASUREMENT RESULT: "PR-0903-15_fin2"

2016-9-3 14:0 Frequency MHz)4 Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.152000	38.50	10.4	56		AV	L1	GND
0.490000	33.90	11.5	46	12.3	AV	L1	GND
1.590000	25.50	11.6	46	20.5	AV	L1	GND
4.097000	21.00	11.8	46	25.0	AV	L1	GND
5.204000	14.30	11.8	50	35.7	AV	L1	GND
19.316000	21.90	11.9	50	28.1	AV	L1	GND



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:	Interactive Flat Panel	M/N:LE-55PC88
Manufacturer:	PRIMA	
Operating Condition:		
Test Site:	2#Shielding Room	
Operator:	DING	
Test Specification:	N 120V/60Hz	
Comment:	Report No.:ATE20160582	
Start of Test:	2016-9-3 / 14:05:25	

SCAN TABLE: "V 150K-30MHz fin"

Short Desc	ription:		SUB_STD_VTE	KMZ 1.70		
Start	· · · · · · · · · · · · · · · · · · ·	Step	Detector		IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak	1.0 s	9 kHz	LISN (ESH3-Z5)
			Average			

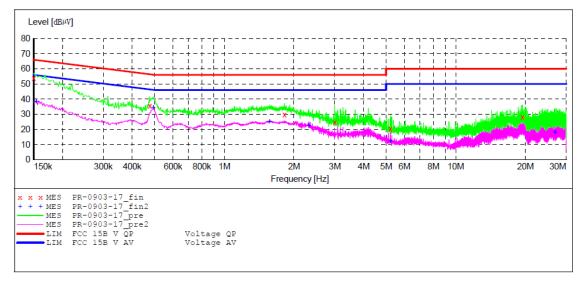
MEASUREMENT RESULT: "PR-0903-16 fin"

2016-9-3 14:07

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE	
0.156000	54.50	10.4	66	11.2	QP	N	GND	
0.486000	37.70	11.5	56	18.5	QP	N	GND	
1.292000	29.30	11.6	56	26.7	QP	N	GND	
3.660500	24.10	11.7	56	31.9	QP	N	GND	
5.276000	20.00	11.8	60	40.0	QP	N	GND	
19.937000	27.30	11.9	60	32.7	QP	N	GND	

MEASUREMENT RESULT: "PR-0903-16 fin2"

2016-9-3 14:0 Frequency MHz	7 Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE	
0.156000	38.00	10.4	56	17.7	AV	N	GND	
0.494000	34.30	11.5	46	11.8	AV	N	GND	
1.576000	25.10	11.6	46	20.9	AV	N	GND	
2.135000	22.90	11.7	46	23.1	AV	N	GND	
12.287000	12.60	11.9	50	37.4	AV	N	GND	
24.000500	28,80	12.0	50	21.2	AV	N	GND	



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:	Interactive Flat Panel	M/N:LE-55PC88
Manufacturer:	PRIMA	
Operating Condition:	HDMI IN	
Test Site:	2#Shielding Room	
Operator:	DING	
Test Specification:	N 120V/60Hz	
Comment:	Report No.:ATE20160582	
Start of Test:	2016-9-3 / 14:07:46	

SCAN TABLE: "V 150K-30MHz fin"

Short Desci	ription:		SUB_STD_VTER	RM2 1.70		
	Stop	-				Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak Average	1.0 s	9 kHz	LISN (ESH3-Z5)

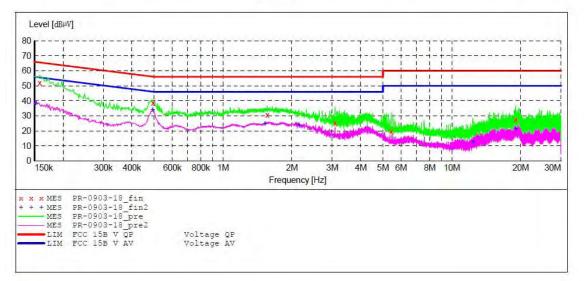
MEASUREMENT RESULT: "PR-0903-17 fin"

2016-9-3 14:09

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.150000 0.476000 1.818000 2.999000 5.222000 19.410500	53.80 35.60 29.80 24.50 20.50 28.30	10.3 11.4 11.7 11.7 11.8 11.9	66 56 56 60 60	12.2 20.8 26.2 31.5 39.5 31.7	QP QP	N N N N N	GND GND GND GND GND GND

MEASUREMENT RESULT: "PR-0903-17 fin2"

2016-9-3 14:09 Frequency Level Transd Limit Margin Detector Line PE MHz dBµV dB dBµV dB 17.3 AV 11.6 AV 0.154000 38.50 10.4 56 Ν GND 11.5 34.50 0.492000 46 GND Ν 1.568000 25.20 11.6 46 20.8 AV Ν GND 2.319500 22.50 23.5 AV 37.8 AV 11.7 11.8 46 GND Ν 5.222000 50 Ν GND 17.90 12.0 26.813000 50 32.1 AV Ν GND



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:	Interactive Flat Panel	M/N:LE-55PC88
Manufacturer:	PRIMA	
Operating Condition:	HDMI IN	
Test Site:	2#Shielding Room	
Operator:	DING	
Test Specification:	L 120V/60Hz	
Comment:	Report No.:ATE20160582	
Start of Test:	2016-9-3 / 14:10:30	

SCAN TABLE: "V 150K-30MHz fin"

Short Desc	ription:		SUB STD VTE	RM2 1.70		
Start Frequency	Stop Frequency	Step Width	Detector	Meas. Time	IF Bandw.	Transducer
150.0 kHź	30.0 MHz	4.5 kHz	QuasiPeak Average	1.0 s	9 kHz	LISN (ESH3-Z5)

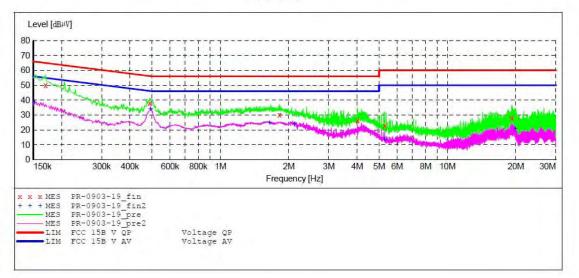
MEASUREMENT RESULT: "PR-0903-18 fin"

2016-9-3 14:13

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.158000	51.80	10.4	66	13.8	QP	L1	GND
0.494000	38.80	11.5	56	17.3	QP	L1	GND
1.560000	30.40	11.6	56	25.6	QP	L1	GND
3.093500	25.60	11.7	56	30.4	QP	L1	GND
5.433500	19.60	11.8	60	40.4	QP	L1	GND
19.014500	27.40	11.9	60	32.6	<i></i> Q́Р	L1	GND

MEASUREMENT RESULT: "PR-0903-18_fin2"

2016-9-3 14:1 Frequency MHz	3 Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE	
0.152000	38.50	10.4	56	17.4	AV	L1	GND	
0.492000	34.20	11.5	46	11.9	AV	L1	GND	
1.524000	24.50	11.6	46	21.5	AV	L1	GND	
2.144000	23.70	11.7	46	22.3	AV	L1	GND	
12.363500	12.50	11.9	50	37.5	AV	L1	GND	
19.014500	21.20	11.9	50	28.8	AV	L1	GND	



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:	Interactive Flat Panel	M/N:LE-55PC88
Manufacturer:	PRIMA	
Operating Condition:	AV IN	
Test Site:	2#Shielding Room	
Operator:	DING	
Test Specification:	L 120V/60Hz	
Comment:	Report No.:ATE20160582	
Start of Test:	2016-9-3 / 14:13:36	

SCAN TABLE: "V 150K-30MHz fin"

Short Desc	ription:		SUB_STD_VTEN	M12 1.70		
	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak	1.0 s	9 kHz	LISN(ESH3-Z5)
			Average			

MEASUREMENT RESULT: "PR-0903-19_fin"

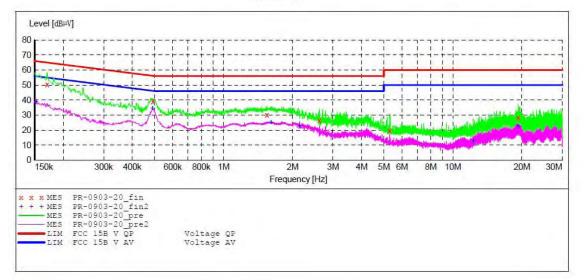
2016-9-3 14:16

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE	
0.170000	50.10	10.5	65	14.9	QP	L1	GND	
0.488000	37.90	11.5	56	18.3	QP	L1	GND	
1.822000	30.00	11.7	56	26.0	QP	L1	GND	
4.011500	26.40	11.8	56	29.6	QP	L1	GND	
5.289500	22.90	11.8	60	37.1	QP	L1	GND	
19.226000	28,10	11.9	60	31.9	QP	L1	GND	

MEASUREMENT RESULT: "PR-0903-19_fin2"

2016-9-3	14:16	
Fremer	VDC	Level

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE	
0.152000	38.50	10.4	56	17.4	AV	L1	GND	
0.492000	34.10	11.5	46	12.0	AV	L1	GND	
1.650000	24.80	11.6	46	21.2	AV	L1	GND	
2.121500	24.10	11.7	46	21.9	AV	L1	GND	
5.289500	13.50	11.8	50	36.5	AV	L1	GND	
19.833500	20.70	11.9	50	29.3	AV	L1	GND	



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:	Interactive Flat Panel M/N:LE-55PC88	
Manufacturer:	PRIMA	
Operating Condition:	AV IN	
Test Site:	2#Shielding Room	
Operator:	DING	
Test Specification:		
Comment:	Report No.:ATE20160582	
Start of Test:	2016-9-3 / 14:16:53	

SCAN TABLE: "V 150K-30MHz fin"

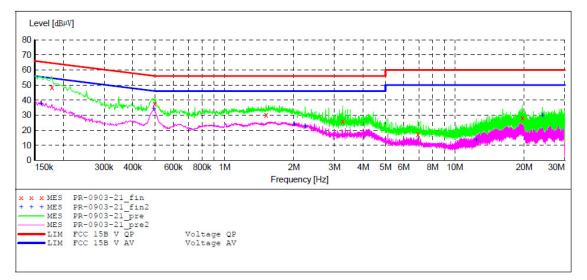
Short Desc	ription:		SUB_STD_VTE	RMZ 1.70		
Start Frequency	Stop Frequency	Step Width	Detector	Meas. Time	IF Bandw.	Transducer
	30.0 MHz		QuasiPeak Average	1.0 s	9 kHz	LISN (ESH3-Z5)

MEASUREMENT RESULT: "PR-0903-20 fin"

2016-9-3 14:1	8							
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE	
0.170000	50.60	10.5	65	14.4	QP	N	GND	
0.492000	39.20	11.5	56	16.9	QP	N	GND	
1.544000	30.30	11.6	56	25.7	QP	N	GND	
2.621000	26.20	11.7	56	29.8	QP	N	GND	
5.303000	19.80	11.8	60	40.2	QP	N	GND	
19.284500	28.10	11.9	60	31.9	Q P	N	GND	

MEASUREMENT RESULT: "PR-0903-20_fin2"

201	6-9-3	14:18								
	Freque	ncy MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE	
	0.152	000	38.90	10.4	56	17.0	AV	N	GND	
	0.490	000	34.30	11.5	46	11.9	AV	N	GND	
	1.610	000	25.00	11.6	46	21.0	AV	N	GND	
	2.144	000	22.90	11.7	46	23.1	AV	N	GND	
	12.264	500	12.60	11.9	50	37.4	AV	N	GND	
	19.284	500	22.20	11.9	50	27.8	AV	N	GND	
					5.7					



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT: Manufacturer:	Interactive Flat Panel PRIMA	M/N:LE-55PC88
Operating Condition:		
Test Site:	2#Shielding Room	
	2	
Operator:	DING	
Test Specification:		
Comment:	Report No.:ATE20160582	
Start of Test:	2016-9-3 / 14:19:03	

SCAN TABLE: "V 150K-30MHz fin"

Short Description:				_SUB_STD_VTE	RM2 1.70		
	Start	Stop	Step	Detector	Meas.	IF	Transducer
	Frequency	Frequency	Width		Time	Bandw.	
	150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak Average	1.0 s	9 kHz	LISN(ESH3-Z5)

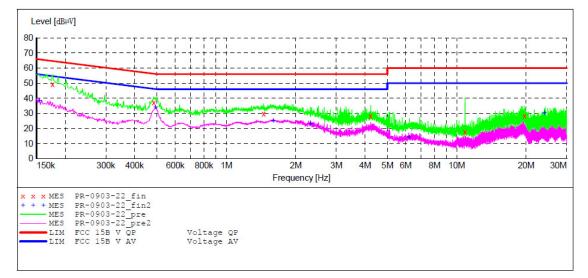
MEASUREMENT RESULT: "PR-0903-21 fin"

2016-9-3 14:21

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.178000 0.498000 1.516000 3.260000 6.914000 19.689500	48.60 37.60 30.00 26.00 17.40 28.20	10.5 11.5 11.6 11.7 11.8 11.9	65 56 56 60 60	16.0 18.4 26.0 30.0 42.6 31.8	QP QP QP QP QP QP QP	N N N N N	GND GND GND GND GND GND

MEASUREMENT RESULT: "PR-0903-21_fin2"

2016-9-3 14:21 Frequency MHz	l Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.160000 0.492000 2.004500 2.238500 12.395000 24.000500	37.50 34.50 23.80 22.90 13.30 29.60	10.4 11.5 11.7 11.7 11.9 12.0	56 46 46 50 50	18.0 11.6 22.2 23.1 36.7 20.4	AV AV AV AV AV	N N N N N	GND GND GND GND GND GND



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:	Interactive Flat Panel	M/N:LE-55PC88
Manufacturer:	PRIMA	
Operating Condition:	DP IN	
Test Site:	2#Shielding Room	
Operator:	DING	
Test Specification:	L 120V/60Hz	
Comment:	Report No.:ATE20160582	
Start of Test:	2016-9-3 / 14:22:09	

SCAN TABLE: "V 150K-30MHz fin"

Short Description:	on Somiz	_SUB_STD_VTE	RM2 1.70			
Start Stop	Step	Detector	Meas.	IF	Transducer	
Frequency Frequency	Width		Time	Bandw.		
150.0 kHz 30.0 MHz	4.5 kHz	~	1.0 s	9 kHz	LISN (ESH3-Z5)	
		Average				

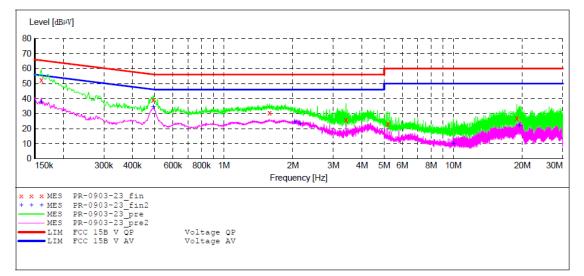
MEASUREMENT RESULT: "PR-0903-22 fin"

2016-9-3 14:24

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.176000 0.484000 1.452000 4.232000 10.860500 19.680500	49.10 37.30 29.70 28.20 17.60 28.10	10.5 11.5 11.6 11.8 11.9 11.9	65 56 56 60 60	15.6 19.0 26.3 27.8 42.4 31.9	QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND

MEASUREMENT RESULT: "PR-0903-22 fin2"

2016-9-3 14:24 Level Transd Limit Margin Detector Line PE Frequency dBµV dB dBµV MHz dB 0.154000 38.40 10.4 56 17.4 AV GND L1 11.5 11.6 11.7 46 0.492000 34.20 11.9 AV L1GND 46 46 20.8 AV 22.9 AV 1.596000 25.20 L1 GND 23.10 2.319500 L1 GND 50 50 35.7 AV 19.8 AV 11.8 6.194000 14.30 GND L1 24.000500 30.20 L1 GND



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT: Manufacturer:	Interactive Flat Panel PRIMA	M/N:LE-55PC88
Operating Condition:	USB IN	
Test Site:	2#Shielding Room	
Operator:	DING	
Test Specification:	L 120V/60Hz	
Comment:	Report No.:ATE20160582	
Start of Test:	2016-9-3 / 14:24:39	

SCAN TABLE: "V 150K-30MHz fin"

Short Desc		K-30M12	SUB STD VTE	RM2 1.70		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak Average	1.0 s	9 kHz	LISN(ESH3-Z5)

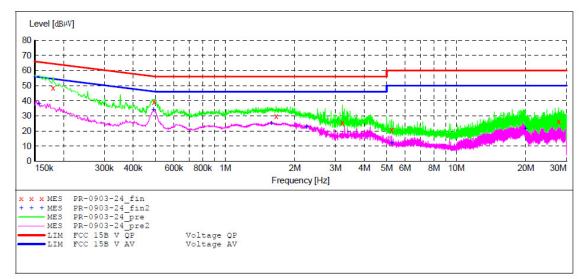
MEASUREMENT RESULT: "PR-0903-23_fin"

2016-9-3 14:26

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.160000 0.492000 1.580000 3.408500 5.190500 18.942500	52.20 39.00 30.50 25.90 23.10 27.00	10.4 11.5 11.6 11.7 11.8 11.9	66 56 56 60 60	25.5	ÕР	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND

MEASUREMENT RESULT: "PR-0903-23_fin2"

2016-9-3 14:20 Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.160000 0.492000 2.036000 2.144000	37.50 34.30 24.30 23.60	10.4 11.5 11.7 11.7	56 46 46	11.8 21.7 22.4	AV AV AV AV	L1 L1 L1 L1	GND GND GND GND
10.014500 19.397000	9.90 21.90	11.9 11.9	50 50	40.1 28.1	AV AV	L1 L1	GND GND



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:	Interactive Flat Panel	M/N:LE-55PC88
Manufacturer:	PRIMA	
Operating Condition:	USB IN	
Test Site:	2#Shielding Room	
Operator:	DING	
Test Specification:	N 120V/60Hz	
Comment:	Report No.:ATE20160582	
Start of Test:	2016-9-3 / 14:27:41	

SCAN TABLE: "V 150K-30MHz fin"

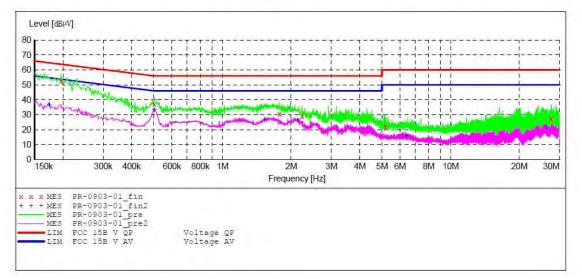
Short Desc			SUB_STD_VTE	RM2 1.70		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak Average	1.0 s	9 kHz	LISN (ESH3-Z5)

MEASUREMENT RESULT: "PR-0903-24_fin"

2016-9-3 14:30

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.180000 0.492000 1.662000 3.215000 5.253500 27.749000	48.60 39.30 29.90 25.40 20.60 26.10	10.5 11.5 11.6 11.7 11.8 12.0	65 56 56 60 60	15.9 16.8 26.1 30.6 39.4 33.9	QP QP QP QP QP QP QP	N N N N N	GND GND GND GND GND GND

MEASUREMENT RESULT: "PR-0903-24_fin2"


2016-9-3 14:30)						
Frequency	Level		Limit	-	Detector	Line	PE
MHz	dBµV	dB	dBµV	dB			
0 15 6000	20.00	10 4	FC	17 7	777		CINID
0.156000	38.00	10.4	56	17.7	AV	N	GND
0.490000	34.20	11.5	46	12.0	AV	N	GND
1.586000	25.10	11.6	46	20.9	AV	N	GND
2.252000	22.80	11.7	46	23.2	AV	N	GND
5.253500	12.10	11.8	50	37.9	AV	N	GND
19.883000	21.40	11.9	50	28.6	AV	N	GND

CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:	Interactive Flat Panel	M/N:LE-55PC88
Manufacturer:	PRIMA	
Operating Condition:	USB IN	
Test Site:	2#Shielding Room	
Operator:	DING	
Test Specification:	N 240V/60Hz	
Comment:	Report No.:ATE20160582	
Start of Test:	2016-9-3 / 13:27:32	

SCAN TABLE: "V150K-30MHzfin"
SUB_STD_VTERM2Short Description:______SUB_STD_VTERM21.70
Detector Meas.StartStopStepDetector Meas.FrequencyFrequency WidthTimeBandw.150.0 kHz30.0 MHz4.5 kHzQuasiPeak1.0 s9 kHzLISN(ESH3-Z5)
Average

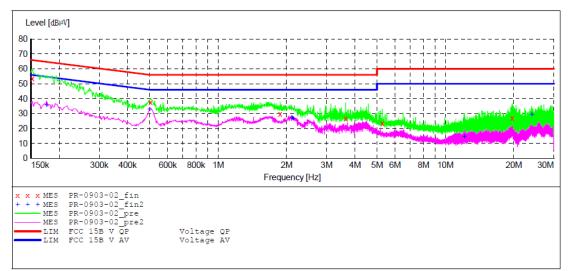
MEASUREMENT RESULT: "PR-0903-01 fin"

2016-9-3 13:28

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE	
0.196000	52.70	10.6	64	11.1	QP	N	GND	
0.502000	37.20	11.5	56	18.8	QP	N	GND	
1.778000	30.40	11.7	56	25.6	QP	N	GND	
2.234000	29.00	11.7	56	27.0	QP	N	GND	
5.172500	22.00	11.8	60	38.0	QP	N	GND	
27.623000	27.30	12.0	60	32.7	QP	N	GND	

MEASUREMENT RESULT: "PR-0903-01 fin2"

2016-9-3 13:2 Frequency MHz	8 Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE	
0.174000	36.20	10.5	55	18.6	AV	N	GND	
0.502000	33.20	11.5	46	12.8	AV	N	GND	
1.528000	26.10	11.6	46	19.9	AV	N	GND	
2.135000	26.40	11.7	46	19.6	AV	N	GND	
6.374000	15.70	11.8	50	34.3	AV	N	GND	
26.223500	21.40	12.0	5.0	28.6	AV	N	GND	



CONDUCTED EMISSION STANDARD FCC PART 15B

Operating Condition:	Interactive Flat Panel PRIMA USB IN 2#Shielding Room	M/N:LE-55PC88
Operator: Test Specification: Comment:	DING	

SCAN TABLE: "V 150K-30MHz fin"

Short Description:				SUB_STD_VTERM2 1.70				
	Start	1	1	Detector			Transducer	
	Frequency	Frequency	Width		Time	Bandw.		
	150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak Average	1.0 s	9 kHz	LISN (ESH3-Z5)	

MEASUREMENT RESULT: "PR-0903-02_fin"

2016-9-3 13:30 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.152000 0.504000 1.874000 3.642500 5.271500 19.694000	53.70 37.70 29.60 26.60 23.40 26.90	10.4 11.5 11.7 11.7 11.8 11.9	66 56 56 60 60	12.2 18.3 26.4 29.4 36.6 33.1	~	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND

MEASUREMENT RESULT: "PR-0903-02 fin2"

2016-9-3 13:30 Frequency Level Transd Limit Margin Detector Line PE MHz dBµV dB dBµV dB 55 18.9 AV 0.176000 35.80 10.5 L1GND

 33.00
 11.5
 46
 13.0
 AV

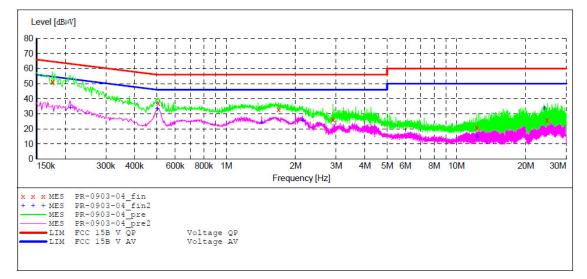
 27.40
 11.7
 46
 18.6
 AV

 26.80
 11.7
 46
 19.2
 AV

 14.70
 11.9
 50
 35.3
 AV

 29.30
 12.0
 50
 20.7
 AV

 0.500000 GND L12.112500 L1GND 2.135000 L1GND 12.134000 GND L124.000500 L1GND



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT: Manufacturer: Operating Condition:	Interactive Flat Panel PRIMA DP IN	M/N:LE-55PC88
Test Site: Operator: Test Specification:	2#Shielding Room DING N 240V/60Hz	
Comment: Start of Test:	Report No.:ATE20160582 2016-9-3 / 13:33:31	

SCAN TABLE: "V 150K-30MHz fin"

Short Descri			JB_STD_VTEF	M2 1.70		
Start S	Stop	Step	Detector	Meas.	IF	Transducer
Frequency H	Frequency	Width		Time	Bandw.	
150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak	1.0 s	9 kHz	LISN(ESH3-Z5)
			Average			

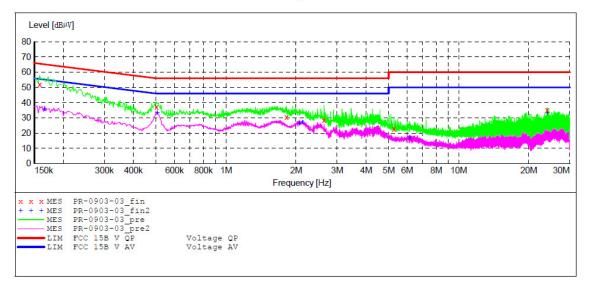
MEASUREMENT RESULT: "PR-0903-04 fin"

2016-9-3 13:35

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.176000 0.506000 1.688000 2.909000 12.264500 24.797000	51.20 37.00 32.70 26.20 20.80 25.90	10.5 11.5 11.6 11.7 11.9 12.0	65 56 56 60 60	13.5 19.0 23.3 29.8 39.2 34.1	QP QP QP QP QP QP QP	N N N N N	GND GND GND GND GND GND

MEASUREMENT RESULT: "PR-0903-04_fin2"

2016-9-3 13:35 Frequency Level Transd Limit Margin Detector Line PE MHz dBµV dB dBµV dB 0.210000 34.00 10.7 53 19.2 AV Ν GND 33.40 0.502000 11.5 46 12.6 AV GND Ν 1.426000 24.40 21.6 AV 46 Ν GND 2.144000 12.264500 25.50 11.7 11.9 12.0 46 20.5 AV Ν GND 35.2 AV 16.3 AV 50 50 14.80 Ν GND Ν 24.000500 33.70 GND



CONDUCTED EMISSION STANDARD FCC PART 15B

Interactive Flat Panel	M/N:LE-55PC88
PRIMA	
DP IN	
2#Shielding Room	
DING	
L 240V/60Hz	
Report No.:ATE20160582	
2016-9-3 / 13:31:12	
	PRIMA DP IN 2#Shielding Room DING L 240V/60Hz

SCAN TABLE: "V 150K-30MHz fin"

Short Desc		n Somiz	SUB STD VTE	RM2 1.70		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak Average	1.0 s	9 kHz	LISN (ESH3-Z5)

MEASUREMENT RESULT: "PR-0903-03_fin"

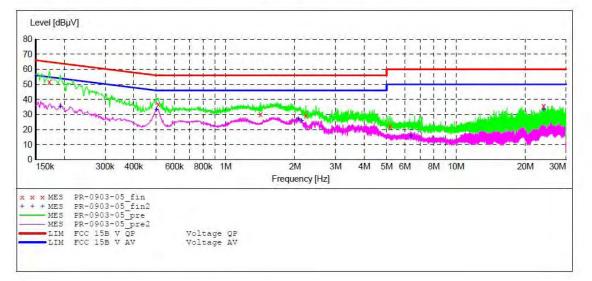
2016-9-3 13:32

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.158000 0.502000 1.818000 2.639000 5.271500 24.000500	52.10 37.10 30.70 28.60 22.70 35.20	10.4 11.5 11.7 11.7 11.8 12.0	66 56 56 60 60	13.5 18.9 25.3 27.4 37.3 24.8	QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND

MEASUREMENT RESULT: "PR-0903-03 fin2"

2016-9-3 13:32

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.166000 0.506000 2.063000 2.135000 6.153500 24.000500	35.50 33.30 26.30 26.90 16.40 33.10	10.4 11.5 11.7 11.7 11.8 12.0	55 46 46 50 50	19.7 12.7 19.7 19.1 33.6 16.9	AV AV AV AV AV AV	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT: Manufacturer:	Interactive Flat Panel PRIMA	M/N:LE-55PC88	
Operating Condition: Test Site:	AV IN 2#Shielding Room		
Operator:	DING		
Test Specification:	N 240V/60Hz		
Comment:	Report No.:ATE20160582		
Start of Test:	2016-9-3 / 13:35:46		

SCAN TABLE: "V 150K-30MHz fin"

		Transducer
		LISN (ESH3-Z5)
lth	dth Time 5 kHz QuasiPeak 1.0 s	dth Time Bandw. 5 kHz QuasiPeak 1.0 s 9 kHz

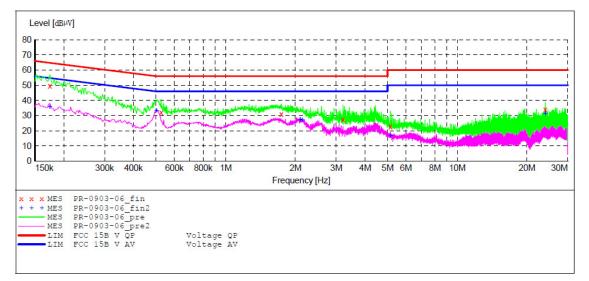
MEASUREMENT RESULT: "PR-0903-05 fin"

2016-9-3 13:37

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE	
0.172000	51.50	10.5	65	13.4	QP	N	GND	
0.510000	36.60	11.5	56	19.4	QP	N	GND	
1.416000	30.30	11.6	56	25.7	QP	N	GND	
2.229500	29.40	11.7	56	26.6	QP	N	GND	
5.177000	22.10	11.8	60	37.9	QP	N	GND	
24.000500	35.60	12.0	60	24.4	QP	N	GND	

MEASUREMENT RESULT: "PR-0903-05 fin2"

2016-9-3 13:3 Frequency MHz	7 Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.192000	35.30	10.6	54	18.6	AV	N	GND
0.502000	33.40	11.5	46	12.6	AV	N	GND
2.072000	27.00	11.7	46	19.0	AV	N	GND
2.135000	25.90	11.7	46	20.1	AV	N	GND
6.360500	15.70	11.8	50	34.3	AV	N	GND
24.000500	33.40	12.0	50	16.6	AV	N	GND



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:	Interactive Flat Panel	M/N:LE-55PC88
Manufacturer:	PRIMA	
Operating Condition:	AV IN	
Test Site:	2#Shielding Room	
Operator:	DING	
Test Specification:	L 240V/60Hz	
Comment:	Report No.:ATE20160582	
Start of Test:	2016-9-3 / 13:38:21	

SCAN TABLE: "V 150K-30MHz fin"

0	Short Desci			SUB_STD_VTER	RM2 1.70		
	Start	Stop	Step	Detector	Meas.	IF	Transducer
	Frequency	Frequency	Width		Time	Bandw.	
	150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak Average	1.0 s	9 kHz	LISN(ESH3-Z5)

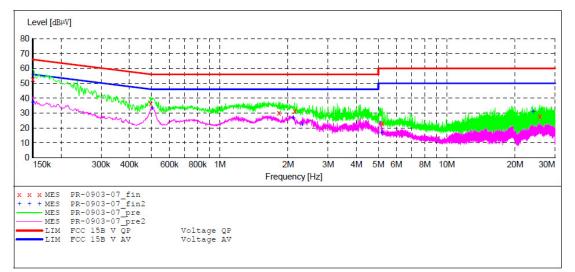
MEASUREMENT RESULT: "PR-0903-06 fin"

2016-9-3 13:40

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.174000 0.526000 1.740000 3.210500 5.145500 24.000500	49.50 32.00 31.10 27.30 22.90 33.90	10.5 11.5 11.6 11.7 11.8 12.0	65 56 56 60 60	15.3 24.0 24.9 28.7 37.1 26.1	QP QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND

MEASUREMENT RESULT: "PR-0903-06 fin2"

2016-9-3 13:40 Level Transd Limit Margin Detector Line PE Frequency MHz dBµV dB dBµV dB 19.0 AV 12.6 AV 0.174000 35.80 10.5 55 GND L1 0.502000 33.40 11.5 46 L1 GND 11.7 18.5 AV 2.094500 27.50 46 L1 GND 11.7 11.8 18.9 AV 33.4 AV 2.135000 27.10 46 GND L1 5.145500 16.60 50 L1 GND 24.000500 50 31.40 12.0 18.6 AV L1 GND



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:	Interactive Flat Panel	M/N:LE-55PC88
Manufacturer:	PRIMA	
Operating Condition:	HDMI IN	
Test Site:	2#Shielding Room	
Operator:	DING	
Test Specification:	L 240V/60Hz	
Comment:	Report No.:ATE20160582	
Start of Test:	2016-9-3 / 13:41:08	

SCAN TABLE: "V 150K-30MHz fin"

Short Desc.		K JUMIZ	SUB_STD_VTEN	RM2 1.70		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak Average	1.0 s	9 kHz	LISN(ESH3-Z5)

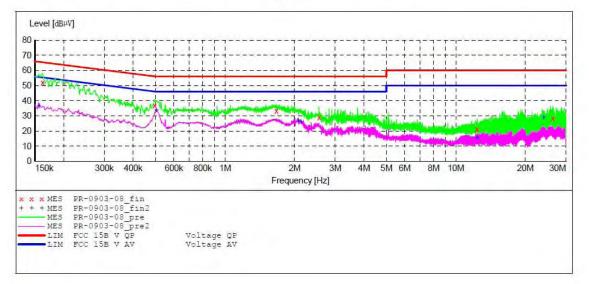
MEASUREMENT RESULT: "PR-0903-07_fin"

2016-9-3 13:42 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.150000 0.496000 1.822000 2.139500 5.213000 25.724000	52.80 36.50 30.30 31.50 23.30 27.90	10.3 11.5 11.7 11.7 11.8 12.0	66 56 56 60 60	13.2 19.6 25.7 24.5 36.7 32.1	QP QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND

MEASUREMENT RESULT: "PR-0903-07 fin2"

2016-9-3 13:42

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.150000 0.504000 2.108000 2.310500	37.30 33.40 26.80 22.20	10.3 11.5 11.7 11.7	56 46 46	18.7 12.6 19.2 23.8	AV AV AV AV	L1 L1 L1 L1	GND GND GND GND
5.159000 24.000500	17.00 31.00	11.8 12.0	50 50	33.0 19.0	AV AV	L1 L1	GND GND



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT: Manufacturer:	Interactive Flat Panel M/N:LE-55PC88 PRIMA
Operating Condition:	HDMI IN
Test Site:	2#Shielding Room
Operator:	DING
Test Specification:	N 240V/60Hz
Comment:	Report No.:ATE20160582
Start of Test:	2016-9-3 / 13:44:40

SCAN TABLE: "V 150K-30MHz fin"

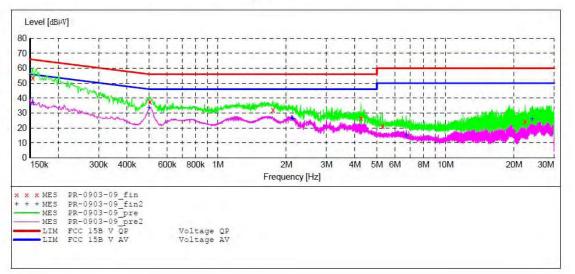
Short Desc			SUB STD VTE	RM2 1.70		
	Stop Frequency	Step Width	Detector	Meas. Time	IF Bandw.	Transducer
150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak Average	1.0 s	9 kHz	LISN (ESH3-Z5)

MEASUREMENT RESULT: "PR-0903-08_fin"

2016-9-3 13:46 Frequency Level Transd Limit Margin Detector Line PE

MHz	dBµV	dB	dBµV	dB			
0.162000	52.00	10.4	65	13.4	QP	N	GND
0.494000	36.90	11.5	56	19.2	QP	N	GND
1.668000	33.10	11.6	56	22.9	QP	N	GND
2.553500	28.90	11.7	56	27.1	QP	N	GND
12.372500	21.20	11.9	60	38.8	QP	N	GND
26.331500	28.20	12.0	60	31.8	QP	N	GND

MEASUREMENT RESULT: "PR-0903-08 fin2"


2016-9-3 13:4	6							
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE	
0.156000	36.50	10.4	56	19.2	AV	N	GND	
0.504000	33.50	11.5	46	12.5	AV	N	GND	
2.072000	27.10	11.7	46	18.9	AV	N	GND	
2.130500	25.80	11.7	46	20.2	AV	N	GND	
12.372500	15.20	11.9	50	34.8	AV	N	GND	
24.000500	28.90	12.0	50	21.1	AV	N	GND	

CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:	Interactive Flat Panel	M/N:LE-55PC88
Manufacturer:	PRIMA	
Operating Condition:	VGA IN	
Test Site:	2#Shielding Room	
Operator:	DING	
Test Specification:	N 240V/60Hz	
Comment:	Report No.:ATE20160582	
Start of Test:	2016-9-3 / 13:47:18	

SCAN TABLE: "V 150K-30MHz fin"
Short Description: _SUB_STD_VTERM2 1.70Start Stop Step Detector Meas. IF Transducer
Frequency Frequency Width Time Bandw.
150.0 kHz 30.0 MHz 4.5 kHz QuasiPeak 1.0 s 9 kHz LISN (ESH3-Z5)
Average

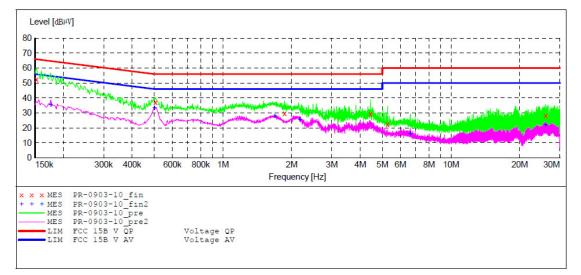
MEASUREMENT RESULT: "PR-0903-09 fin"

2016-9-3 13:49

 10 0 0 10.4	5							
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE	
0.154000	53.70	10.4	66	12.1	QP	N	GND	
0.504000	37.40	11.5	56	18.6	QP	N	GND	
1.748000	32.00	11.6	56	24.0	QP	N	GND	
4.254500	26.60	11.8	56	29.4	QP	N	GND	
5.289500	21.20	11.8	60	38.8	QP	N	GND	
22.380500	24.30	12.0	60	35.7	Q P	N	GND	

MEASUREMENT RESULT: "PR-0903-09 fin2"

2016-9-3 13:4 Frequency MHz	9 Level dBuV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.154000	36.90	10.4	56	18.9	AV	N	GND
0.500000	33.50	11.5	46	12.5	AV	N	GND
2.112500	26.60	11.7	46	19.4	AV	N	GND
2.130500	26.10	11.7	46	19.9	AV	N	GND
6.734000	14.80	11.8	50	35.2	AV	N	GND
24.000500	25.80	12.0	50	24.2	AV	N	GND



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:	Interactive Flat Panel	M/N:LE-55PC88
Manufacturer:	PRIMA	
Operating Condition:	VGA IN	
Test Site:	2#Shielding Room	
Operator:	DING	
Test Specification:	L 240V/60Hz	
Comment:	Report No.:ATE20160582	
Start of Test:	2016-9-3 / 13:49:58	

SCAN TABLE: "V 150K-30MHz fin"

Short Desc		K-SUMHZ	SUB STD VTE	RM2 1.70		
Start	-	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak Average	1.0 s	9 kHz	LISN (ESH3-Z5)

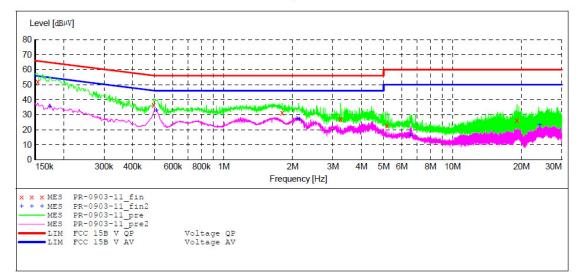
MEASUREMENT RESULT: "PR-0903-10_fin"

2016-9-3 13:51

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.152000 0.506000 1.862000 4.434500 5.276000 25.998500	52.30 37.20 29.60 29.20 22.40 28.10	10.4 11.5 11.7 11.8 11.8 12.0	66 56 56 60 60	13.6 18.8 26.4 26.8 37.6 31.9	QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND

MEASUREMENT RESULT: "PR-0903-10 fin2"

2016-9-3 13:51 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.176000 0.502000 1.686000	35.10 33.40 27.60	10.5 11.5 11.6	55 46 46	19.6 12.6 18.4	AV AV AV	L1 L1 L1	GND GND GND
2.171000	25.60	11.7	46	20.4	AV	L1	GND
6.621500	16.10	11.8	50	33.9	AV	L1	GND
25.998500	21.90	12.0	50	28.1	AV	L1	GND



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:	Interactive Flat Panel	M/N:LE-55PC88
Manufacturer:	PRIMA	
Operating Condition:	Memory Playing	
Test Site:	2#Shielding Room	
Operator:	DING	
Test Specification:	L 240V/60Hz	
Comment:	Report No.:ATE20160582	
Start of Test:	2016-9-3 / 13:52:09	

SCAN TABLE: "V 150K-30MHz fin"

Short Descr			SUB_STD_VTE	RM2 1.70		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.0 kHz	30.0 MHz	4.5 kHz	~	1.0 s	9 kHz	LISN(ESH3-Z5)
			Average			

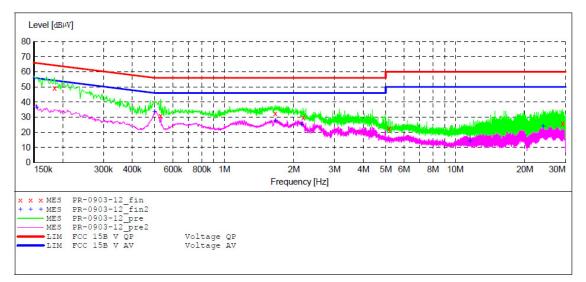
MEASUREMENT RESULT: "PR-0903-11 fin"

2016-9-3 13:53

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.154000 0.494000 1.800000 3.237500 5.177000 19.122500	52.10 36.50 31.20 26.90 22.70 26.10	10.4 11.5 11.7 11.7 11.8 11.9	66 56 56 60 60	13.7 19.6 24.8 29.1 37.3 33.9	QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND

MEASUREMENT RESULT: "PR-0903-11_fin2"

2016-9-3 13:5		Turneral	Timit	Manada	Detector	Time	DE
Frequency MHz	dBµV	dB	dBµV	Margin dB	Detector	LIUG	PE
0.174000	35.30	10.5	55	19.5	AV	L1	GND
0.508000	33.00	11.5	46	13.0	AV	L1	GND
2.090000	27.50	11.7	46	18.5	AV	L1	GND
2.135000	27.00	11.7	46	19.0	AV	L1	GND
6.536000	16.30	11.8	50	33.7	AV	L1	GND
24.000500	23.30	12.0	50	26.7	AV	L1	GND



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:	Interactive Flat Panel	M/N:LE-55PC88
Manufacturer:	PRIMA	
Operating Condition:	Memory Playing	
Test Site:	2#Shielding Room	
Operator:	DING	
Test Specification:	N 240V/60Hz	
Comment:	Report No.:ATE20160582	
Start of Test:	2016-9-3 / 13:54:20	

SCAN TABLE: "V 150K-30MHz fin"

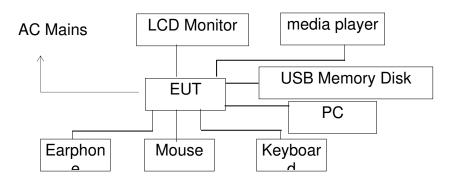
BCAN IADIE	· · · · · · · · · · · · · · · · · · ·	-Somiz	T T 11			
Short Desci	ciption:		SUB_STD_VTE	RM2 1.70		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak	1.0 s	9 kHz	LISN(ESH3-Z5)
			Average			

MEASUREMENT RESULT: "PR-0903-12 fin"

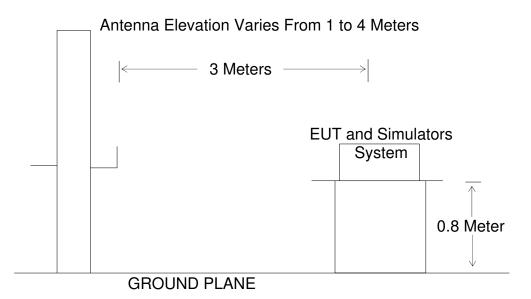
2016-9-3 13:56

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.184000 0.530000 1.662000 2.193500 5.159000 29.175500	49.20 30.80 32.50 29.90 22.20 25.70	10.5 11.5 11.6 11.7 11.8 12.0	64 56 56 60 60	15.1 25.2 23.5 26.1 37.8 34.3	Q P	N N N N N	GND GND GND GND GND GND

MEASUREMENT RESULT: "PR-0903-12 fin2"


2016-9-3 13:56 Frequency Level Transd Limit Margin Detector Line PE dBµV MHz dB dBµV dB 10.4 0.154000 36.50 19.3 AV 56 Ν GND 0.500000 33.60 11.5 46 12.4 AV Ν GND 18.4 AV 21.1 AV 36.0 AV 27.60 24.90 11.6 1.668000 46 Ν GND 2.162000 11.7 46 Ν GND 11.571500 14.00 11.9 50 Ν GND 24.000500 23.90 12.0 50 26.1 AV N GND

5. RADIATED EMISSION MEASUREMENT


5.1.Block Diagram of Test

5.1.1.Block diagram of connection between the EUT and simulators

(EUT: Interactive Flat Panel)

5.1.2.Block diagram of test setup (In chamber)

5.2.Test mode description

Test mode 1: USB IN Test mode 2: AV IN Test mode 3: VGA IN Test mode 4: DP IN Test mode 5: HDMI IN Test mode 6: Memory Playing

5.3.Radiated Emission Limit (Class B)

All emanations from a class B device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified below:

Frequency	Distance	Field Strengths Limit			
MHz	Meters	μV/m	dB(µV/m)		
30-88	3	100	40.0		
88-216	3	150	43.5		
216-960	3	200	46.0		
Above 960	3	500	54.0		

Remark:

(1) Emission level dB(μ V) = 20 log Emission level μ V/m.

(2) The smaller limit shall apply at the cross point between two frequency bands.

(3) Distance is the distance in meters between the measuring instrument antenna and the closest point of any part of the device or system.

5.4.Manufacturer

The following equipments are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.4.1.Interactive Flat Panel (EUT)

Model Number: LE-55PC88 Manufacturer: Xiamen Prima Technology Inc.

5.5.Operating Condition of EUT

5.5.1.Setup the EUT and simulator as shown as Section 5.1

5.5.2.Turn on the power of all equipment.

5.5.3.Let the EUT work in test mode and measure it.

5.6.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2014 on radiated emission measurement.

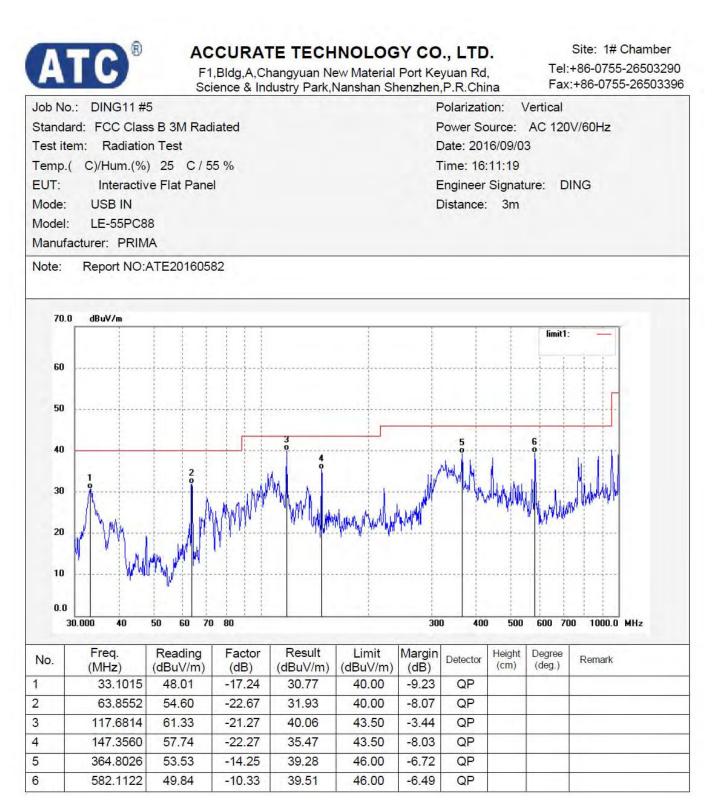
The bandwidth of the EMI test receiver (R&S ESCS30) is set at 120kHz.

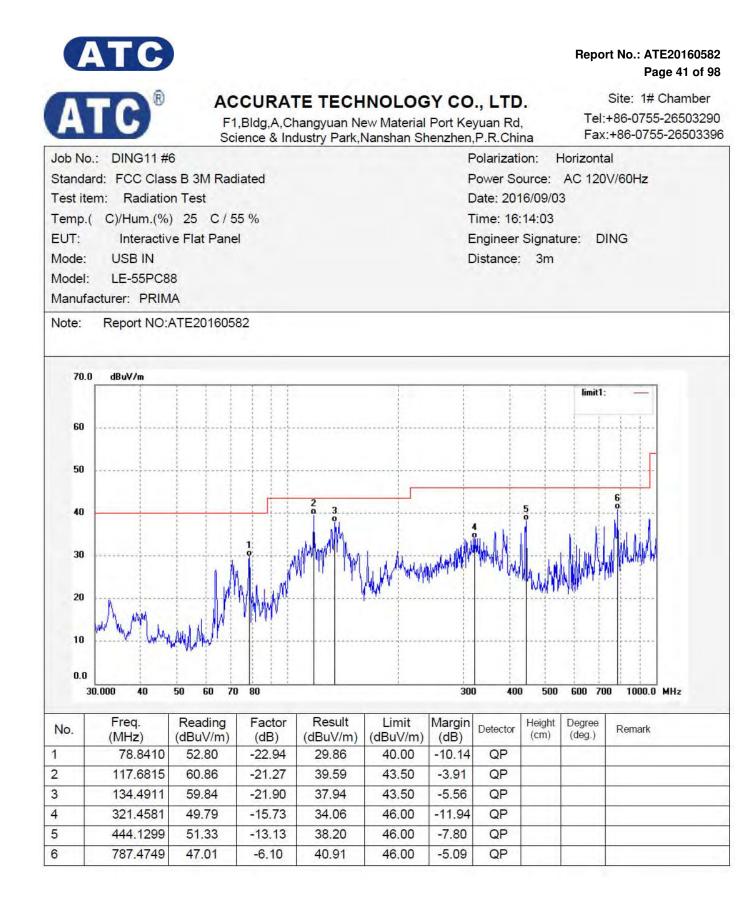
The frequency range from 30MHz to 24000MHz is checked. Note:The EUT highest operating frequency provided by Manufacturer is 1.2GHz and include 2.4GHz and 5GHz wifi, the radiated emission measurement shall be made up to 40 GHz.

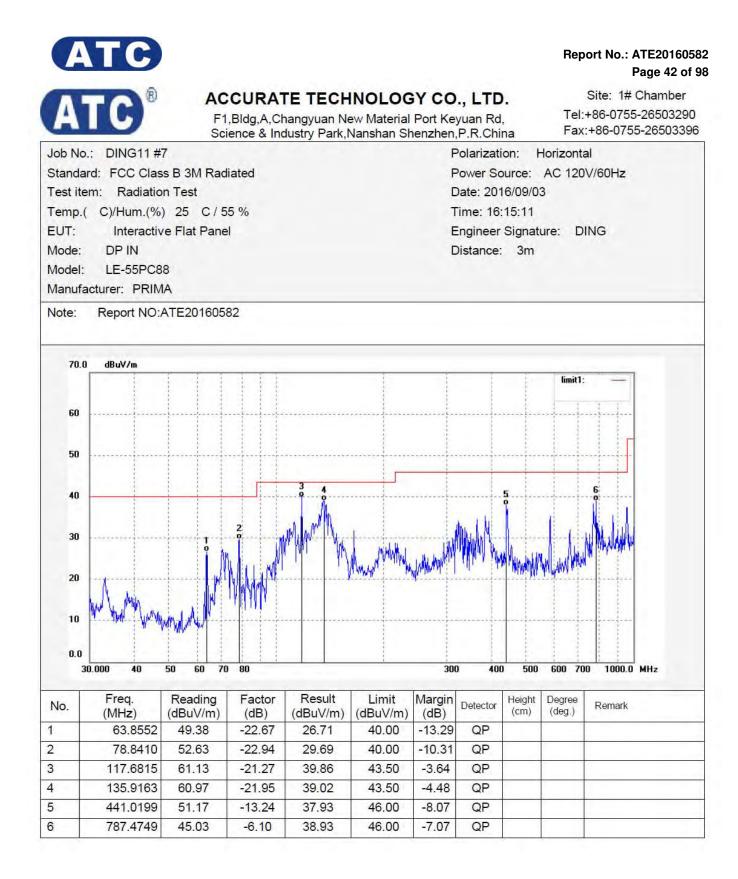
Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measure- ment range (MHz)
Below 1.705 1.705–108 108–500 500–1000 Above 1000	 30. 1000. 2000. 5000. 5th harmonic of the highest frequency or 40 GHz, whichever is lower.

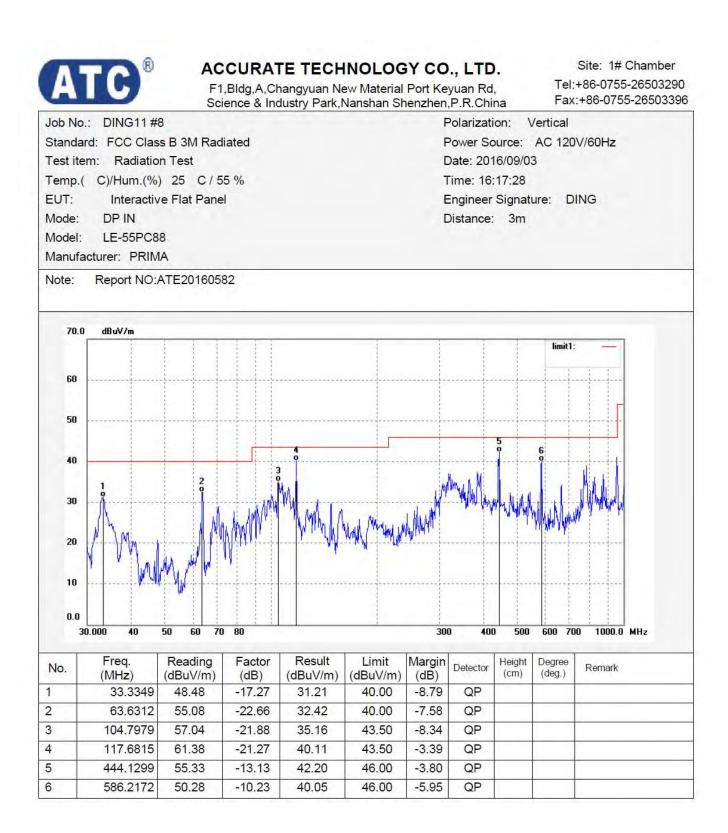
5.7.Radiated Emission Noise Measurement Result

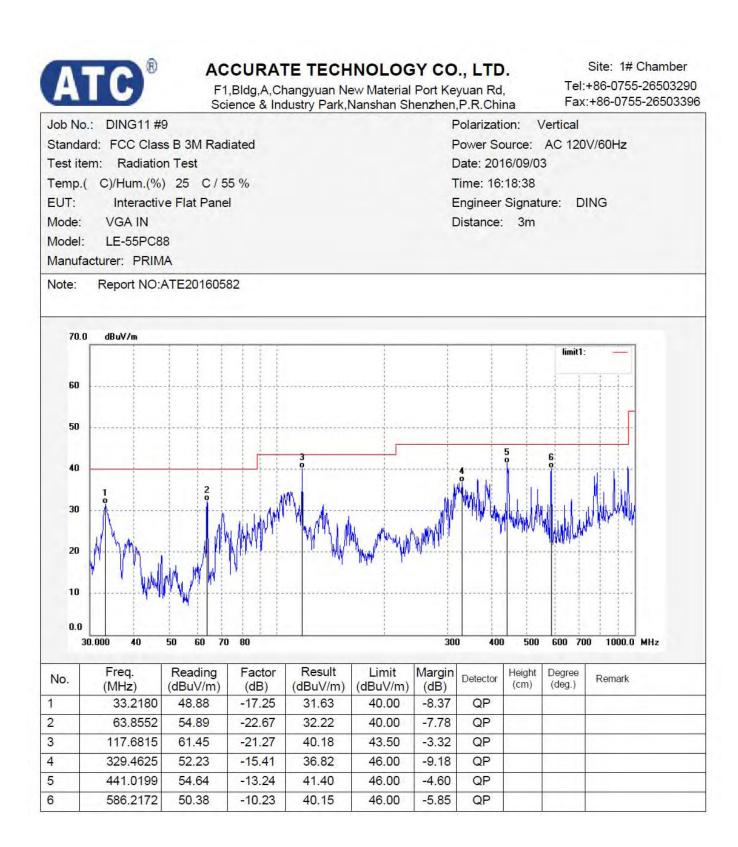
PASS.


The frequency range from 30MHz to 24000MHz is investigated.


Emissions attenuated more than 20 dB below the permissible value are not reported.

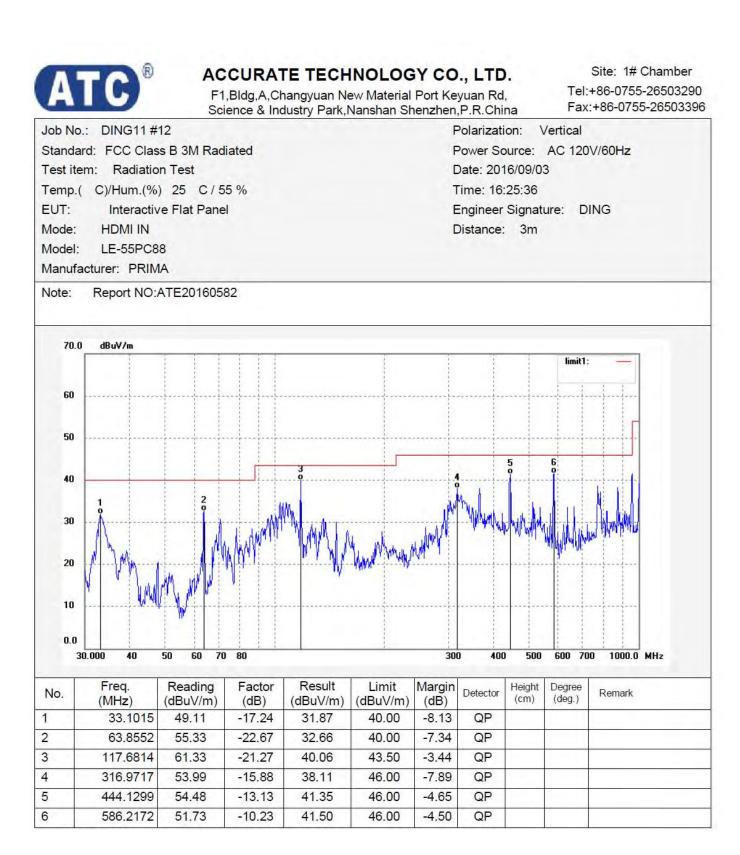

The spectral diagrams are attached as below.


Below 1GHz

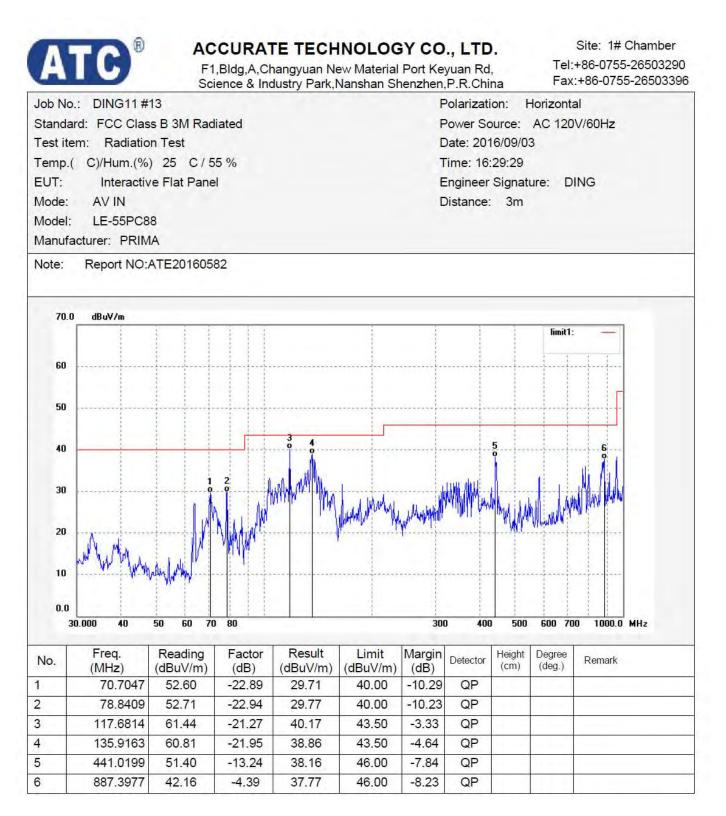


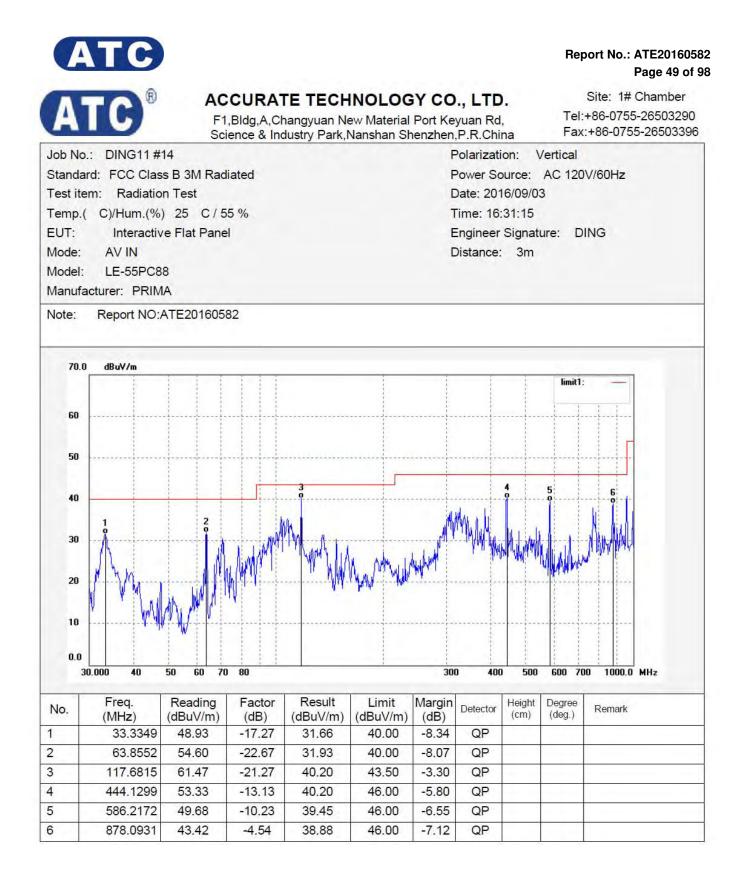
Site: 1# Chamber Tel:+86-0755-26503290

ob No.:	o No.: DING11 #10					F	Polarization: Horizontal					
tandard: FCC Class B 3M Radiated					F	ower So	ource:	AC 120	V/60Hz			
est item: Radiation Test					C	Date: 20	16/09/03	3				
Гетр.(C)/Hum.(%) 25 С / 55 %					1	Time: 16:21:00						
UT:		e Flat Pane				E	Engineer Signature: DING					
lode:	VGA IN						Distance: 3m					
lodel:	LE-55PC8	8										
lanufac	turer: PRIM	A										
lote:	Report NO:	ATE201605	82									
70.0	dBuV/m											
Γ								-	limit1:	-		
60									1			
00					ļ		}					
50						1						
50												
				2 2				5				
40				0				ľ.		6		
			1	A. Marth		1. MAN	Mund		f di	and the		
30				A WALL AND	hi Mull	100 Million	- MANPL	IT III	古城市	W DAMAGE A		
	1		N. L.W		All the state of t	en de		MUM	WINN'S I			
20	A		WALLANT.	*****************	L	•••••••						
4	W had My me		A INAL 1		1	1	1		1 1			
10	······································	Attack Manager		*****								
0.0												
100 C	000 40	50 60 70	0 80		4	30	0 400) 500	600 70	00 1000.0 MHz		
			F	E	1							
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark		
	78.5645	52.98	-22.95	30.03	40.00	-9.97	QP					
5	117.6815	61.78	-21.27	40.51	43.50	-2.99	QP					
7	134.4911	59.90	-21.90	38.00	43.50	-5.50	QP					
	318.0875	52.53	-15.84	36.69	46.00	-9.31	QP					
	441.0199	53.27	-13.24	40.03	46.00	-5.97	QP					
	10.01.21.20.02.20 J	and the second sec	and the second second	0.000			12.82					


ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China


Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396


Job No	.: DING11 #	11				F	Polarizati	on: H	orizonta	al
Standa	lard: FCC Class B 3M Radiated					F	Power So	ource:	AC 120	V/60Hz
Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 %					[Date: 201	6/09/03	3		
					1	Time: 16	23:13			
					E	Engineer	Signat	ure: D	ING	
Mode:	HDMI IN					C	Distance:	3m		
Model:	LE-55PC8	8								
Manufa	acturer: PRIM	A								
Note:	Report NO:/	ATE201605	82							
70.0	dBuV/m									
		1 1 1						- Free	limit1:	
60										
50										Γ
50						1				
40				2 3		1		4		5 C
40				Ĩ.,				1		0 0
			1	Monall			Any Will			AL GAL
30				Alsh-whi	MANI	III III			TIM	
			MILA		MANN MA	ha Manine	River C	a whith the	VIVIMI	
20	1		ANNUA.		 					
	M WM K	1.4.1	14							
10		panyles will		****		·····				
0.0										
	0.000 40	50 60 70	80		1	30	0 400	500	600 70	0 1000.0 MHz
	-									
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	78.8410	52.87	-22.94	29.93	40.00	-10.07	QP	1	1 9.1	
2	117.6815	61.25	-21.27	39.98	43.50	-3.52	QP			
3	137.8400	60.41	-22.00	38.41	43.50	-5.09	QP			
4	441.0199	52.14	-13.24	38.90	46.00	-7.10	QP			
5	787.4749	43.76	-6.10	37.66	46.00	-8.34	QP			
6	962.0879	40.98	-3.25	37.73	54.00	-16.27		-		

